US3580664A - Transmission element for magneto-optical applications, particularly for the modulation of infrared radiation in the wavelength range between 1 and 20 microns - Google Patents
Transmission element for magneto-optical applications, particularly for the modulation of infrared radiation in the wavelength range between 1 and 20 microns Download PDFInfo
- Publication number
- US3580664A US3580664A US789506A US3580664DA US3580664A US 3580664 A US3580664 A US 3580664A US 789506 A US789506 A US 789506A US 3580664D A US3580664D A US 3580664DA US 3580664 A US3580664 A US 3580664A
- Authority
- US
- United States
- Prior art keywords
- microns
- transmission element
- radiation
- wavelength range
- exceeding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 27
- 230000005540 biological transmission Effects 0.000 title claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 11
- 230000005291 magnetic effect Effects 0.000 claims abstract description 10
- 230000035699 permeability Effects 0.000 claims abstract description 6
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 6
- 239000011029 spinel Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 6
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims description 26
- YOOPKCNFZNRZOC-UHFFFAOYSA-N [Se-2].[Cr+3].[Cd+2] Chemical compound [Se-2].[Cr+3].[Cd+2] YOOPKCNFZNRZOC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims 1
- 229910002547 FeII Inorganic materials 0.000 claims 1
- 239000011669 selenium Substances 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 10
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 6
- 230000005293 ferrimagnetic effect Effects 0.000 abstract description 5
- 229910052711 selenium Inorganic materials 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 4
- 230000005415 magnetization Effects 0.000 abstract description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 abstract description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000011593 sulfur Substances 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000006870 function Effects 0.000 description 4
- 239000002223 garnet Substances 0.000 description 4
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- UVZCKRKEVWSRGT-UHFFFAOYSA-N chromium(ii) selenide Chemical compound [Se]=[Cr] UVZCKRKEVWSRGT-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- -1 compounds cadmium chromium selenide Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
- G02F1/0036—Magneto-optical materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/40—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Definitions
- Trifari ABSTRACT A novel magneto-optical transmission element consisting of a substrate transparent to radiation in the wavelength range between 1 and 20 microns having thereon a monocrystalline or polycrystalline layer of a material having a spinel structure, a magnetic permeability, in vacuo, #0 B/H exceeding 1.2 at temperatures lower than the Curie point, i.e. the material is either ferromagnetic or ferrimagnetic, a resistivity at the Curie point exceeding 100 ohm-cm and a chemical composition having the formula A C52,, Z being selenium, sulfur, or telluorium and A being in general a divalent metal or complex, preferrably cadmium.
- the transmission element may also serve as a memory element in which information therein can be read out by determining the sign of the remanent magnetization thereof by means of polarized infrared radiation.
- the invention relates to a transmission element for magneto-optical applications, particularly for the modulation of infrared radiation in the wavelength range between l and 20 microns.
- Transmission elements as meant here consist of one or more single crystals or of a monocrystalline or polycrystalline layer on a substrate transmitting infrared radiation.
- the above-mentioned application is based on the ability of the substance of which the transmission element in question consists to rotate the plane of polarization of an incident linearly polarized electromagnetic radiation under the influence of a magnetic field which has a component in the direction of propagation of the radiation. The rotation is known as Faraday-rotation.”
- the value of the Faraday-rotation ((D) is cxpremed here in the number of degrees of rotation of the plane of polarization per cm. of path length of the radiation covered in the transmission element, when the latter is magnetized to saturation in a magnetic field parallel to the direction of radiation.
- magnetic materials which readily transmit the radiation to be modulated.
- Said magnetic materials are to be understood to means herein materials which, at temperatures lower than a critical temperature (Curie point), characteristic of the material in question, are ferromagnetic or ferrimagnetic.
- P D the so-called figure of merit
- the so far best known materials for transmission elements to be ,used for the modulation of infrared radiation having a wavelength between 1 and 6 microns are yttrium-iron garnet, Y Fe O, and the compounds which can be derived therefrom, inter alia by the partial replacement of iron by gallium. These substances are ferrimagnetic at room temperature. They are preferably used in the form of single crystals. Although the Faraday rotation of these garnets increases when the wavelength decreases below a value of 1 micron, this advantage is undone by a radiation absorption which also increases strongly, so that the figure of merit assumes low values. For wavelengths exceeding 6 microns, both the rotation is small and the absorption coefficient is large so that garnets are useless at those wavelengths for the applications in view.
- the invention relates to a transmission element for the modulation of infrared radiation in the wavelength range between I and 20 microns.
- This transmission element must satisfy each of the following conditions:
- the crystals in question can be obtained, for example, by synthesis.
- crystals of the compounds cadmium chromium selenide, CdCr Se may be prepared in such a manner that cadmium selenide, CdSe, and chromium selenide, Cr Se are dissolved in anhydrous, molten cadmium chloride and the resulting solution is slowly cooled for example, at a rate of l-5 C. per hour.
- the cadmium chromium selenide is one of the most important representatives of the group of substances which have the above-defined chemical composition and the crystals of which are suitable for the formation of transmission elements according to the invention. It is ferromagnetic at temperatures lower than approximately FIG.
- la is a graph which shows the variation of the absorption coefficient, a (in cm"), of a crystal of CdCr,Se as a function of the wavelength A (in microns) in the wavelength range of approximately l2l microns, at a temperature of K. It was found that the absorption coefficient is low throughout the wavelength range of approximately 1 to 21 microns, with a highest value not exceeding approximately 13 cm. in the wavelength range between 6 and 18 microns. From the substantially constant value of a in the last-mentioned wavelength range it may be concluded that the measured absorption is mainly to be ascribed to the presence of chemical and physical inhomogeneities in the crystal so that the absorption measured in a substantially homogenous crystal will be considerably lower than the one actually measured.
- FIG. lb shows corresponding graphs for a crystal of yttrium-iron garnet, Y Fe O, at 90 K and at 300 K. It may be seen that, although this crystal has a still considerably lower absorption at wavelengths. between approximately LI and 6 microns than the crystal of CdCr Se to which FIG. 1a relates, the absorption of the yttrium-iron garnet crystal at wavelengths exceeding 6 microns increases so strongly as a function of the wavelength that the use of the said material is restricted to wavelengths of 1.1-6 microns.
- the graph shown in FIG. 3 represents the Faraday-rotation of the CdCr,Se crystal considered, as a function of the wavelength, within the wavelength range of 45-18 microns, at a temperature of 90 K. It is seen from this FIG. that at a wavelength of approximately 7.8 microns, the Faraday-rotation of the CdCr,Se crystal in question (at 90 K.) changes its sign, so that the crystal at that temperature cannot be used for modulating radiation having a wavelength between approximately 7.5 and 8 microns.
- FIGS. 4 and 5 shown graphs for the figure of merit of the present CdCr,Se crystal as a function of the wavelength, also at a temperature of 90 K.
- Transmission elements according to the invention may also be used as memory elements which are read by determining the sign of the remanent magnetization thereof by means of polarized infrared radiation.
- Z is a member of the group consisting of S, Se and Te.
- a process of storing and retrieving information from a memory element consisting of a substrate transparent to radiation having a wavelength between 1 and 20 microns having a layer thereon of at least one crystal having a spinel structure, having a magnetic permeability, in vacuo, ;t,, B/H exceeding 1.2 at temperatures lower than the Curie point, a resistivity at the Curie point exceeding ohm-cm, and a chemical composition having the formula A Cr Z wherein A is one of the members of the group consisting of Cd, Zn, Hg, Mn, Fe", Co, Mg, Ni, Pb,
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Compounds Of Iron (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Soft Magnetic Materials (AREA)
- Thin Magnetic Films (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL6800387A NL6800387A (enrdf_load_stackoverflow) | 1968-01-11 | 1968-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3580664A true US3580664A (en) | 1971-05-25 |
Family
ID=19802478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US789506A Expired - Lifetime US3580664A (en) | 1968-01-11 | 1969-01-07 | Transmission element for magneto-optical applications, particularly for the modulation of infrared radiation in the wavelength range between 1 and 20 microns |
Country Status (4)
Country | Link |
---|---|
US (1) | US3580664A (enrdf_load_stackoverflow) |
FR (1) | FR2005197A1 (enrdf_load_stackoverflow) |
GB (1) | GB1238831A (enrdf_load_stackoverflow) |
NL (1) | NL6800387A (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0255959A1 (en) * | 1986-08-08 | 1988-02-17 | Sumitomo Electric Industries Limited | Magnet-electro-optic effect light modulator |
EP0361236A1 (en) * | 1988-09-16 | 1990-04-04 | Casio Computer Company Limited | Magnetic apparatus |
US6232763B1 (en) * | 1993-03-29 | 2001-05-15 | Matsushita Electric Industrial Co., Ltd. | Magneto-optical element and optical magnetic field sensor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3491026A (en) * | 1967-05-19 | 1970-01-20 | Rca Corp | Ferromagnetic-semiconductor composition |
-
1968
- 1968-01-11 NL NL6800387A patent/NL6800387A/xx unknown
-
1969
- 1969-01-07 US US789506A patent/US3580664A/en not_active Expired - Lifetime
- 1969-01-08 GB GB1238831D patent/GB1238831A/en not_active Expired
- 1969-01-13 FR FR6900384A patent/FR2005197A1/fr not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3491026A (en) * | 1967-05-19 | 1970-01-20 | Rca Corp | Ferromagnetic-semiconductor composition |
Non-Patent Citations (1)
Title |
---|
Baltzer et al., Insulating Ferromagnetic Spinels Phys. Rev. Letters Vol. 15, No. 11 (13 Sept. 1965) pp. 493 495 350/151 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0255959A1 (en) * | 1986-08-08 | 1988-02-17 | Sumitomo Electric Industries Limited | Magnet-electro-optic effect light modulator |
US4806885A (en) * | 1986-08-08 | 1989-02-21 | Sumitomo Electric Industries, Ltd. | Magnet-electro-optic effect light modulator |
EP0361236A1 (en) * | 1988-09-16 | 1990-04-04 | Casio Computer Company Limited | Magnetic apparatus |
US4966445A (en) * | 1988-09-16 | 1990-10-30 | Casio Computer Co., Ltd. | Optical device using magnetic thin films and electric field means |
US6232763B1 (en) * | 1993-03-29 | 2001-05-15 | Matsushita Electric Industrial Co., Ltd. | Magneto-optical element and optical magnetic field sensor |
Also Published As
Publication number | Publication date |
---|---|
GB1238831A (enrdf_load_stackoverflow) | 1971-07-14 |
DE1816031A1 (de) | 1969-07-31 |
DE1816031B2 (de) | 1976-04-08 |
FR2005197A1 (enrdf_load_stackoverflow) | 1969-12-05 |
NL6800387A (enrdf_load_stackoverflow) | 1969-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4981341A (en) | Apparatus comprising a magneto-optic isolator utilizing a garnet layer | |
US5087984A (en) | Optical isolators employing oppositely signed faraday rotating materials | |
Suits et al. | Paramagnetic faraday rotation of EuSe | |
US3989352A (en) | Bismuth substituted rare earth garnets as magneto-optic materials exhibiting magnetic circular dichroism | |
Wittekoek et al. | Faraday rotation and optical absorption of epitaxial films of Y 3− x Bi x Fe 5 O 12 | |
US3495189A (en) | Broadband magneto-optic garnet modulator | |
US6288827B1 (en) | Faraday rotator | |
US3580664A (en) | Transmission element for magneto-optical applications, particularly for the modulation of infrared radiation in the wavelength range between 1 and 20 microns | |
Egashira et al. | Effects of some transition metal ions on the visible and infrared Faraday rotation of gadolinium iron garnet | |
US5608570A (en) | Article comprising a magneto-optic material having low magnetic moment | |
US3418036A (en) | Magneto-optical rotation device with europium chalcogenide magneto-optical elements | |
Deeter et al. | Crystals and Glasses | |
EP0104675B1 (en) | Magneto-optical element on the basis of pt-mn-sb | |
US3654162A (en) | Ferrimagnetic iron garnet having large faraday effect | |
US4698281A (en) | Garnet-type magnetic material high faraday rotation magnetic film containing such a material and process for the production thereof | |
JP4400959B2 (ja) | ファラデー回転子用ガーネット結晶体、およびそれを有する光アイソレータ | |
EP0039463B1 (en) | Magnetic garnet film and manufacturing method therefor | |
NL8004201A (nl) | Inrichting voor de voortbeweging van magnetische domeinen. | |
US3850706A (en) | Mn{11 {118 {11 M{11 {11 Ga Ge FERROMAGNETIC MATERIALS WHERE M COMPRISES TRANSITION METALS | |
Ahrenkiel et al. | Magnetooptical properties of ferrimagnetic CoCr 2 S 4 in the near infrared | |
JP2874319B2 (ja) | 磁気光学材料、その製造法およびそれを用いた光素子 | |
Tamaki et al. | Growth of (GdBi) 3Fe5O12 Bulk Single Crystals and its Application to an Optical Isolator | |
US3639167A (en) | TRANSITION METAL DOPED EuO FILMS | |
JP2816370B2 (ja) | 磁気光学材料 | |
US3516726A (en) | Optical devices with zero linear magnetic birefringence |