US3575087A - Locking cylinder - Google Patents
Locking cylinder Download PDFInfo
- Publication number
- US3575087A US3575087A US776490A US3575087DA US3575087A US 3575087 A US3575087 A US 3575087A US 776490 A US776490 A US 776490A US 3575087D A US3575087D A US 3575087DA US 3575087 A US3575087 A US 3575087A
- Authority
- US
- United States
- Prior art keywords
- beveled
- abutment
- collet
- shaft
- combination according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000006835 compression Effects 0.000 claims description 34
- 238000007906 compression Methods 0.000 claims description 34
- 230000000295 complement effect Effects 0.000 claims description 15
- 239000012530 fluid Substances 0.000 description 12
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 235000021028 berry Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A23/00—Gun mountings, e.g. on vehicles; Disposition of guns on vehicles
- F41A23/56—Arrangements for adjusting the gun platform in the vertical or horizontal position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
- F15B15/26—Locking mechanisms
- F15B15/262—Locking mechanisms using friction, e.g. brake pads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B1/00—Devices for securing together, or preventing relative movement between, constructional elements or machine parts
- F16B1/02—Means for securing elements of mechanisms after operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B4/00—Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
- F16B4/002—Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings engaging or disengaging by means of fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A23/00—Gun mountings, e.g. on vehicles; Disposition of guns on vehicles
- F41A23/50—Travelling locks; Brakes for holding the gun platform in a fixed position during transport
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41F—APPARATUS FOR LAUNCHING PROJECTILES OR MISSILES FROM BARRELS, e.g. CANNONS; LAUNCHERS FOR ROCKETS OR TORPEDOES; HARPOON GUNS
- F41F3/00—Rocket or torpedo launchers
- F41F3/04—Rocket or torpedo launchers for rockets
- F41F3/052—Means for securing the rocket in the launching apparatus
Definitions
- FIG. 1 represents an axial sectional view of a cylinder and piston provided with locking means
- FIG. 2 represents a detail sectional view showing an alternative form of locking means, parts being broken away and parts being omitted;
- FIG. 3 represents graphically the parameters involved in the design of the locking means.
- the cylinder has a bore 11 in which the piston 12 is slidable, the piston being provided with sealing means 13 to prevent leakage of hydraulic fluid past the piston head.
- the piston rod 14 extends from one end of the cylinder through a sealed opening 15, into and beyond the locking chambers 16, 17 and free end 18 of the piston being engageable with a part to be moved.
- Socket 19 represents a point of attachment for the piston to a mechanical part subject to movement relative to the cylinder; for present purposes it will be assumed that the cylinder is to be fixed and that a load is to be moved by the piston.
- the locking chamber 16 is shown as containing resilient drive means in the form of a spring 21 under compression between the end 22 of the chamber and an annular unlocking piston 23 which surrounds the piston rod 14 and sealingly engages said rod and the wall of the chamber 16.
- the locking chambers 16 and 17 are separated by the provision of an annular shoulder 24 integral with the locking chamber wall and shown as having beveled surfaces 25, 26 facing each of the locking chambers.
- collet compression rings Between the unlocking piston 23 and the shoulder 24 there are a plurality of collets 27, 27' (two being shown) each having double beveled outer surfaces, and a plurality of collet compression rings, the first one 28 having a beveled inner surface with the same angle as the adjacent collet surface and the next ring 28 having double beveled inner surfaces and being disposed between the collets 27 and 27.
- the collet 27 nearest the shoulder 24 has one beveled surface engageable with the surface and disposed at the same angle.
- the locking chamber 17 is provided with elements corresponding to those just described but complementary thereto, the spring 29 being under compression between the end 30 of the chamber and an unlocking piston 31, collets 32, 32' and collet locking rings 33, 33' being disposed.
- the cylinder 10 is provided, at suitable points, with ports for admission of hydraulic fluid under pressure, the piston extending port being designated 34 and the piston retracting port being designated 35.
- the shoulder 24 is traversed radially by a fluid passage 36 communicating with the port 37 for admission of fluid under pressure for unlocking the piston whenever it is to be moved either by its load or by fluid admitted through ports 34 or 35.
- the source or sources of hydraulic fluid and valves to control its admission and discharge are conventional and not shown. If adequate shaft seals are provided at the ends 22 and 30 of the locking chambers, the springs 21 and 29 could be replaced by bodies of air compressed to a pressure less than that of the fluid supplied through the port 37, in accordance with known practice in the accumulator art.
- the spring 40 urges the unlocking piston 41 against the flat radial surface 42 of a first collet 43, the single bevel 44 of which bears against the complimentary single bevel 45 of the first compression ring 46.
- Each collet and each compression ring in this form, is beveled only on one side, the flat radial surface 47 of the first compression ring 46 bearing on a flat radial surface of the second collet, and so on through the series of alternating collets and compression rings on each said of the shoulder 48.
- the last collet on each side of the shoulder has its beveled surface bearing against a corresponding surface of the shoulder, as in the form of FIG. 1. Hydraulic fluid pressure is admitted through the port 49, when desired, to drive back the unlocking pistons and relieve all the collets of the locking forces communicated by their respective compression rings.
- FIG. 3 The relation of the forces applied and developed in the locking operation of the mechanism shown in FIG. 2 is graphically illustrated in FIG. 3.
- a constant force Kx is applied to the unlocking piston (not shown) by the spring (not shown), this force being translated by the engagement of the beveled surfaces of the collet C and compression ring R into a locking force tan 0 applied by the collet to the piston rod. If a load F on the piston rod tends to move it in the same direction as the spring force this tendency is communicated to the ring R which reacts with a force ftan 0 and is thus urged toward the next following collet and ring with a force Kit .4 tan 0 and the cumulation of locking forces continues through the whole series.
- each collet will release its grip on the piston rod, leaving the piston free to be advanced or retracted to a new position, as desired.
- the hydraulic cylinder is designed to be mounted in any suitable manner on the frame or base toward or away from which a load is to be moved and the end of the piston rod is designed to be connected to a load (or frame bearing a load),
- the cylinder and piston are actuated to position the load as precisely as desired-the locking elements being in unlocking relation during such positioningand when said elements are returned to locking relation the position of the load is maintained against any anticipated forces.
- the locking in an assembly of the type illustrated having a piston rod 1% inches in diameter the locking withstands loads up to 17,000 lbs. or more. Since the locking action is mechanical it is not materially affected by extreme variations in climatic conditions including heat, cold, moisture, etc. The mechanism is thus useful, for instance, in such items of ordnance as rocket launchers.
- a shaft slida'ole through a housing to selected adjusted positions with respect to said housing in combination with releasable locking means adapted to hold the shaft in each adjusted position against an applied axial load comprising, a fixed abutment within the housing, a plurality of collets bearing against the shaft, each collet having at least one beveled outer surface, at least one compression ring having a beveled inner surface complementary to and bearing against the beveled outer surface of an adjacent collet, resilient drive means biased to urge said collets and ring toward said abutment and into shaft locking position, the collet nearest said drive means engaging tightly with the shaft and transmitting additional locking force from the shaft to an adjacent collet the locking force applied representing the sum of the forces developed and transmitted by the arrangement of the components of said locking means in cooperation with said shaft, and unlocking means adapted to be actuated to counter act the bias of said drive means.
- each collet has two oppositely facing beveled outer surfaces and at least one compression ring has oppositely facing beveled inner surfaces.
- the shaft locking combination according to claim 3 which includes a second compression ring having a single beveled inner surface complementary to and bearing against a beveled outer surface of a collet.
- each collet has two oppositely facing beveled outer surfaces and at least one compression ring on each side of the abutment has oppositely beveled inner surfaces.
- the shaft locking combination according to claim ii which includes a second compression ring on each side of the abutment and having a single beveled inner surface complementary to and bearing against a beveled outer surface of a collet.
- each collet has a single beveled outer surface and a flat radially disposed side face and each compression ring has a single beveled inner surface and a flat radially disposed side face.
- the shaft locking combination according to claim it in which the fixed abutment is located intermediate the ends of the housing and which includes a plurality of collets as claimed on each side of said fixed abutment, at least one compression ring as claimed on each side of the abutment, resilient drive means as claimed on each side of the abutment, and in which the unlocking means is associated with said abutment, the respective beveled surfaces on one side of the fixed abutment being disposed oppositely with respect to the beveled surfaces on the other side of the abutment.
- the shaft locking combination according to claim lit in which the fixed abutment is provided with beveled inner surfaces on each side complementary to and bearing against the beveled outer surface of an adjacent collet.
- the shaft locking combination according to claim l which includes a hydraulic cylinder and piston, said slidable shaft being a piston rod attached to said piston.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Actuator (AREA)
- Clamps And Clips (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77649068A | 1968-11-18 | 1968-11-18 | |
US82382469A | 1969-05-12 | 1969-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3575087A true US3575087A (en) | 1971-04-13 |
Family
ID=27119193
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US776490A Expired - Lifetime US3575087A (en) | 1968-11-18 | 1968-11-18 | Locking cylinder |
US823824A Expired - Lifetime US3528343A (en) | 1968-11-18 | 1969-05-12 | Hydraulic cylinder and piston lock |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US823824A Expired - Lifetime US3528343A (en) | 1968-11-18 | 1969-05-12 | Hydraulic cylinder and piston lock |
Country Status (5)
Country | Link |
---|---|
US (2) | US3575087A (enrdf_load_stackoverflow) |
DE (1) | DE6945459U (enrdf_load_stackoverflow) |
FR (1) | FR2024884A1 (enrdf_load_stackoverflow) |
GB (1) | GB1263120A (enrdf_load_stackoverflow) |
NL (1) | NL6917122A (enrdf_load_stackoverflow) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3813065A (en) * | 1969-06-23 | 1974-05-28 | Decoto Aircraft Inc | Locking mechanisms and actuator assemblies of coaxial locked remotely at selected locations after motions of a nearly complete circumferential one piece chamfered locking ring |
US3995534A (en) * | 1973-06-30 | 1976-12-07 | Adolf Rastetter | Safety arrester for arresting a hydraulically operated lifting ram of a hydraulic elevator |
JPS5251995U (enrdf_load_stackoverflow) * | 1975-10-11 | 1977-04-14 | ||
FR2512890A1 (fr) * | 1981-09-12 | 1983-03-18 | Festo Maschf Stoll G | Verin actionne par fluide sous pression |
US4491095A (en) * | 1983-07-20 | 1985-01-01 | Avalon Research | Cyclic dwell engine |
US4502571A (en) * | 1982-11-26 | 1985-03-05 | The United States Of America As Represented By The Secretary Of The Army | Rod lock mechanism |
EP0281767A1 (de) * | 1987-03-10 | 1988-09-14 | Werkzeugmaschinenfabrik Oerlikon-Bührle AG | Elevierbare Feuerwaffe mit einer Vorrichtung zum Einstellen der Elevation des Waffenrohres |
US4779513A (en) * | 1984-06-11 | 1988-10-25 | Nippon Joucomatic Co., Ltd. | Pneumatic cylinder with rod braking and decelerating mechanism |
US4792128A (en) * | 1988-03-08 | 1988-12-20 | Power Components, Inc. | No grow gas spring |
US4836091A (en) * | 1980-03-17 | 1989-06-06 | De-Sta-Co Division, Dover Resources, Inc. | Hydraulic work support |
US4840055A (en) * | 1987-01-24 | 1989-06-20 | L. Schuler Gmbh | Drawing apparatus in a press |
FR2635148A1 (fr) * | 1988-08-03 | 1990-02-09 | Onera (Off Nat Aerospatiale) | Verin, notamment pneumatique, muni de moyens de blocage en position du piston |
US4955467A (en) * | 1987-11-10 | 1990-09-11 | Fluor Corporation | Energy damping device |
US5095808A (en) * | 1990-04-30 | 1992-03-17 | Halliburton Company | Sequential remote control plug release system |
US5540135A (en) * | 1994-12-27 | 1996-07-30 | Advanced Machine & Engineering Co. | Device for clamping an axially movable rod |
US5791230A (en) * | 1997-04-18 | 1998-08-11 | Advanced Machine & Engineering Co. | Rod clamping device for a linear fluid actuator |
WO1999042755A1 (de) * | 1998-02-20 | 1999-08-26 | Erwin Weh | Schnellanschluss, insbesondere an stehbolzen von maschinenteilen |
US6386339B1 (en) * | 1997-01-24 | 2002-05-14 | John Woollams | Automatic adjuster for spring applied mechanisms |
US6478123B2 (en) * | 1998-04-24 | 2002-11-12 | Kone Inc. | Hydraulic elevator with plunger brakes |
EP1898103A3 (fr) * | 2006-09-06 | 2008-07-02 | Hydro Leduc | Vérin hydraulique à verrouillage automatique |
US20090277736A1 (en) * | 2008-05-09 | 2009-11-12 | Specialized Bicycle Components, Inc. | Bicycle damper |
US20100040484A1 (en) * | 2008-08-13 | 2010-02-18 | Shade W Norm | Variable volume clearance pocket for a reciprocating compressor cylinder |
US20110067965A1 (en) * | 2009-09-18 | 2011-03-24 | Specialized Bicycle Components, Inc. | Bicycle shock absorber with slidable inertia mass |
CN105387115A (zh) * | 2015-12-24 | 2016-03-09 | 北京工业大学 | 一种双压簧平板式-向心变摩擦阻尼器 |
CN105604203A (zh) * | 2015-12-24 | 2016-05-25 | 北京工业大学 | 具有复阻尼特征的双压簧圆筒向心式变摩擦阻尼器 |
CN111288847A (zh) * | 2020-02-24 | 2020-06-16 | 北京中科宇航技术有限公司 | 一种下夹钳 |
US10774970B2 (en) * | 2018-10-17 | 2020-09-15 | Tdw Delaware, Inc. | Shaft mechanical lock for pipeline isolation tools |
CN113864293A (zh) * | 2021-08-27 | 2021-12-31 | 武汉船用机械有限责任公司 | 液压容器制动装置及其使用方法 |
US11346485B2 (en) | 2018-10-17 | 2022-05-31 | Tdw Delaware, Inc. | Shaft mechanical lock for pipeline isolation tools |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2655284A1 (de) * | 1976-12-07 | 1978-06-08 | Festo Maschf Stoll G | Pneumatisch oder hydraulisch und einseitig oder doppelt beaufschlagbare kolben-zylinder-vorrichtung |
FR2389020A1 (fr) * | 1977-04-25 | 1978-11-24 | Outillage Air Comprime | Dispositif de blocage d'un verin |
DE3118449A1 (de) * | 1981-05-09 | 1982-12-02 | Sitema Gesellschaft für Sicherheitstechnik und Maschinenbau mbH, 7500 Karlsruhe | "klemmvorrichtung" |
DE3331508A1 (de) * | 1983-09-01 | 1985-06-27 | Rudolf Dipl.-Ing. 6203 Hochheim Oertel | Selbsthemmende hydraulik zum bewegen von vorrichtungs- und maschinenteilen |
DE10158844A1 (de) * | 2001-11-27 | 2003-06-12 | Herbert Haenchen Gmbh & Co Kg | Klemmvorrichtung und Stelleinrichtung |
CN114046688B (zh) * | 2021-10-19 | 2023-04-07 | 蓝箭航天空间科技股份有限公司 | 火箭起竖架快速后倒实现方法及实现系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2348764A (en) * | 1937-11-11 | 1944-05-16 | Dehavilland Aircraft | Variable pitch airscrew |
US2632425A (en) * | 1950-05-26 | 1953-03-24 | Reginald L Grover | Piston lock |
US2808903A (en) * | 1956-01-13 | 1957-10-08 | Goodyear Tire & Rubber | Spring loaded grip |
US3009747A (en) * | 1956-11-23 | 1961-11-21 | Paul Gross | Bushing |
US3176590A (en) * | 1961-09-01 | 1965-04-06 | Cincinnati Milling Machine Co | Clamping device |
US3203513A (en) * | 1961-05-29 | 1965-08-31 | Valentine E Macy Jr | Braking means for a hydraulic drive cylinder |
US3353455A (en) * | 1965-09-20 | 1967-11-21 | Westinghouse Air Brake Co | Fluid pressure motor |
US3429233A (en) * | 1966-10-06 | 1969-02-25 | Compressed Air Service Co | Resistance stroke control cylinder |
-
1968
- 1968-11-18 US US776490A patent/US3575087A/en not_active Expired - Lifetime
-
1969
- 1969-05-12 US US823824A patent/US3528343A/en not_active Expired - Lifetime
- 1969-11-13 FR FR6938977A patent/FR2024884A1/fr not_active Withdrawn
- 1969-11-13 NL NL6917122A patent/NL6917122A/xx unknown
- 1969-11-17 DE DE6945459U patent/DE6945459U/de not_active Expired
- 1969-11-17 GB GB56151/69A patent/GB1263120A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2348764A (en) * | 1937-11-11 | 1944-05-16 | Dehavilland Aircraft | Variable pitch airscrew |
US2632425A (en) * | 1950-05-26 | 1953-03-24 | Reginald L Grover | Piston lock |
US2808903A (en) * | 1956-01-13 | 1957-10-08 | Goodyear Tire & Rubber | Spring loaded grip |
US3009747A (en) * | 1956-11-23 | 1961-11-21 | Paul Gross | Bushing |
US3203513A (en) * | 1961-05-29 | 1965-08-31 | Valentine E Macy Jr | Braking means for a hydraulic drive cylinder |
US3176590A (en) * | 1961-09-01 | 1965-04-06 | Cincinnati Milling Machine Co | Clamping device |
US3353455A (en) * | 1965-09-20 | 1967-11-21 | Westinghouse Air Brake Co | Fluid pressure motor |
US3429233A (en) * | 1966-10-06 | 1969-02-25 | Compressed Air Service Co | Resistance stroke control cylinder |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3813065A (en) * | 1969-06-23 | 1974-05-28 | Decoto Aircraft Inc | Locking mechanisms and actuator assemblies of coaxial locked remotely at selected locations after motions of a nearly complete circumferential one piece chamfered locking ring |
US3995534A (en) * | 1973-06-30 | 1976-12-07 | Adolf Rastetter | Safety arrester for arresting a hydraulically operated lifting ram of a hydraulic elevator |
JPS5251995U (enrdf_load_stackoverflow) * | 1975-10-11 | 1977-04-14 | ||
US4836091A (en) * | 1980-03-17 | 1989-06-06 | De-Sta-Co Division, Dover Resources, Inc. | Hydraulic work support |
FR2512890A1 (fr) * | 1981-09-12 | 1983-03-18 | Festo Maschf Stoll G | Verin actionne par fluide sous pression |
US4502571A (en) * | 1982-11-26 | 1985-03-05 | The United States Of America As Represented By The Secretary Of The Army | Rod lock mechanism |
US4491095A (en) * | 1983-07-20 | 1985-01-01 | Avalon Research | Cyclic dwell engine |
US4779513A (en) * | 1984-06-11 | 1988-10-25 | Nippon Joucomatic Co., Ltd. | Pneumatic cylinder with rod braking and decelerating mechanism |
US4840055A (en) * | 1987-01-24 | 1989-06-20 | L. Schuler Gmbh | Drawing apparatus in a press |
EP0281767A1 (de) * | 1987-03-10 | 1988-09-14 | Werkzeugmaschinenfabrik Oerlikon-Bührle AG | Elevierbare Feuerwaffe mit einer Vorrichtung zum Einstellen der Elevation des Waffenrohres |
US4890537A (en) * | 1987-03-10 | 1990-01-02 | Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag | Elevatable firing weapon with a device for setting the elevation of the weapon barrel |
US4955467A (en) * | 1987-11-10 | 1990-09-11 | Fluor Corporation | Energy damping device |
WO1992004555A1 (en) * | 1987-11-10 | 1992-03-19 | Fluor Corporation | Energy damping device |
US4792128A (en) * | 1988-03-08 | 1988-12-20 | Power Components, Inc. | No grow gas spring |
FR2635148A1 (fr) * | 1988-08-03 | 1990-02-09 | Onera (Off Nat Aerospatiale) | Verin, notamment pneumatique, muni de moyens de blocage en position du piston |
US5095808A (en) * | 1990-04-30 | 1992-03-17 | Halliburton Company | Sequential remote control plug release system |
US5540135A (en) * | 1994-12-27 | 1996-07-30 | Advanced Machine & Engineering Co. | Device for clamping an axially movable rod |
US6386339B1 (en) * | 1997-01-24 | 2002-05-14 | John Woollams | Automatic adjuster for spring applied mechanisms |
US5791230A (en) * | 1997-04-18 | 1998-08-11 | Advanced Machine & Engineering Co. | Rod clamping device for a linear fluid actuator |
WO1999042755A1 (de) * | 1998-02-20 | 1999-08-26 | Erwin Weh | Schnellanschluss, insbesondere an stehbolzen von maschinenteilen |
US6478123B2 (en) * | 1998-04-24 | 2002-11-12 | Kone Inc. | Hydraulic elevator with plunger brakes |
EP1898103A3 (fr) * | 2006-09-06 | 2008-07-02 | Hydro Leduc | Vérin hydraulique à verrouillage automatique |
US8342302B2 (en) | 2008-05-09 | 2013-01-01 | Specialized Bicycle Components, Inc. | Bicycle damper |
US8511445B2 (en) * | 2008-05-09 | 2013-08-20 | Specialized Bicycle Components, Inc. | Bicycle damper |
US20100224456A1 (en) * | 2008-05-09 | 2010-09-09 | Specialized Bicycle Components, Inc. | Bicycle damper |
US20100224455A1 (en) * | 2008-05-09 | 2010-09-09 | Specialized Bicycle Components, Inc. | Bicycle damper |
US8336683B2 (en) | 2008-05-09 | 2012-12-25 | Specialized Bicycle Components, Inc. | Bicycle damper |
US20090277736A1 (en) * | 2008-05-09 | 2009-11-12 | Specialized Bicycle Components, Inc. | Bicycle damper |
US20100040484A1 (en) * | 2008-08-13 | 2010-02-18 | Shade W Norm | Variable volume clearance pocket for a reciprocating compressor cylinder |
US8430646B2 (en) * | 2008-08-13 | 2013-04-30 | Aci Services, Inc. | Variable volume clearance pocket for a reciprocating compressor cylinder |
US8960389B2 (en) | 2009-09-18 | 2015-02-24 | Specialized Bicycle Components, Inc. | Bicycle shock absorber with slidable inertia mass |
US20110067965A1 (en) * | 2009-09-18 | 2011-03-24 | Specialized Bicycle Components, Inc. | Bicycle shock absorber with slidable inertia mass |
CN105387115A (zh) * | 2015-12-24 | 2016-03-09 | 北京工业大学 | 一种双压簧平板式-向心变摩擦阻尼器 |
CN105604203A (zh) * | 2015-12-24 | 2016-05-25 | 北京工业大学 | 具有复阻尼特征的双压簧圆筒向心式变摩擦阻尼器 |
US10774970B2 (en) * | 2018-10-17 | 2020-09-15 | Tdw Delaware, Inc. | Shaft mechanical lock for pipeline isolation tools |
US11346485B2 (en) | 2018-10-17 | 2022-05-31 | Tdw Delaware, Inc. | Shaft mechanical lock for pipeline isolation tools |
CN111288847A (zh) * | 2020-02-24 | 2020-06-16 | 北京中科宇航技术有限公司 | 一种下夹钳 |
CN111288847B (zh) * | 2020-02-24 | 2022-04-29 | 北京中科宇航技术有限公司 | 一种下夹钳 |
CN113864293A (zh) * | 2021-08-27 | 2021-12-31 | 武汉船用机械有限责任公司 | 液压容器制动装置及其使用方法 |
Also Published As
Publication number | Publication date |
---|---|
US3528343A (en) | 1970-09-15 |
NL6917122A (enrdf_load_stackoverflow) | 1970-05-20 |
DE6945459U (de) | 1971-05-27 |
GB1263120A (en) | 1972-02-09 |
DE1958862B2 (de) | 1972-11-23 |
DE1958862A1 (de) | 1970-06-25 |
FR2024884A1 (enrdf_load_stackoverflow) | 1970-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3575087A (en) | Locking cylinder | |
US3359862A (en) | Piston locking means | |
US3150571A (en) | Actuator | |
US3180234A (en) | Dual-position lockable actuator | |
US4784037A (en) | Locking apparatus for gate valves | |
US2811136A (en) | Lock mechanism for fluid motors | |
US3179018A (en) | Hydraulic rotary actuator with locking means | |
US2815005A (en) | Fluid pressure actuator with stroke end locking means | |
US2378409A (en) | Hydraulic elevating mechanism | |
US4469201A (en) | Clamping device | |
US3685398A (en) | Hydraulic cylinder | |
US3979999A (en) | Fluid cylinder having self-locking means | |
US3803988A (en) | Diesel fuel primer pump | |
US2713328A (en) | Fluid actuator with integral mechanical locking means | |
US3420144A (en) | Fluid pressure motor system | |
US3554094A (en) | Piston rod locking mechanism | |
US3649053A (en) | Tubing coupling | |
US3732783A (en) | Fluid cylinder having self-locking means | |
US4691814A (en) | Clutch release mechanism | |
US3940151A (en) | Glands | |
US3598021A (en) | Hydraulic cylinder assembly | |
US3605568A (en) | Hydraulic actuator with center lock | |
US2815736A (en) | Safety lock for fluid-pressure actuator | |
US5406879A (en) | Actuator lock | |
US4700814A (en) | Locking device for reciprocating members |