US3566163A - Multiple-component piezomeasuring cells - Google Patents

Multiple-component piezomeasuring cells Download PDF

Info

Publication number
US3566163A
US3566163A US756173A US3566163DA US3566163A US 3566163 A US3566163 A US 3566163A US 756173 A US756173 A US 756173A US 3566163D A US3566163D A US 3566163DA US 3566163 A US3566163 A US 3566163A
Authority
US
United States
Prior art keywords
cell
forces
multiple component
piezomeasuring
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US756173A
Other languages
English (en)
Inventor
Hans Fischer
Hans C Sonderegger
Gelli Spescha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kistler Instrumente AG
Original Assignee
Kistler Instrumente AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kistler Instrumente AG filed Critical Kistler Instrumente AG
Application granted granted Critical
Publication of US3566163A publication Critical patent/US3566163A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/167Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using piezoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0907Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the compression mode type

Definitions

  • the present invention relates to improvements in piezoelectric transducers, and more particularly to multicomponent piezotransducers for measuring forces, accelerations and moments.
  • the piezomeasurement technique provides the possibility of being able to determine forces in different directions of interaction in one and the same measurement body by the use of differently cut crystals. Very simple measurement bodies of great rigidity in every desired measuring direction are obtained thereby.
  • the underlying concept of the present invention is concerned with those piezoelements which form an inherently closed unit, i.e., a self-contained unit, and which can be assembled in any desired measuring system.
  • Such multiple component piezomeasuring cells can be used both for force measurements and also for acceleration measurements. Depending on the particular arrangement, it is possible to measure in one cell only forces or forces and accelerations or also moments and forces and finally also moments, forces and accelerations with the same multiple component piezomeasuring cell.
  • the mean feature of the present invention is the arrangement of various piezoelements in plate form, which have piezoelectric properties both as regards shear forces and also normal pressures. Quartz crystals are used advantageously for the purposes of the present invention; however, any other known piezocrystals can be used, whose axes are correspondingly polarized. It is also possible to construct the multiple component piezomeasurement cells according to the present invention by the combination of quartz and other piezocrystals.
  • FIG. 1 is an axial cross-sectional view through one embodiment of a multiple component measuring-cell according to the present invention, taken along line H of FIG. 2;
  • FIG. 2 is a transverse cross-sectional view through the multiple component measuring cell of FIG. 1, taken along line II-II OF FIG. 1;
  • FIG. 3 is a somewhat schematic, exploded view, in perspective, of the arrangement of the pairs of crystals together with the output electrodes thereof as used in FIGS. 1 and 2;
  • FIG. 4 is an axial, longitudinal cross-sectional view through a multiple component piezomeasuring cell with acceleration compensation and of in-line construction according to the present invention
  • FIG. 5 is an axial longitudinal cross-sectional view through a modified embodiment of a measuring cell according to the present invention for moment and multiple component force measurements;
  • FIG. 6 is an axial cross-sectional view through a measuring cell according to the present invention for acceleration measurements in several components
  • FIG. 7 is an axial cross-sectional view through a further embodiment of a measuring cell according to the present invention for acceleration measurements
  • FIG. 8 is an axial cross-sectional view through a measuring cell according to the present invention and corresponding to FIG. 1, for acceleration measurements;
  • FIG. 9 is an axial cross-sectional view through a still further modified embodiment of a measuring cell according to FIG. 1, built into a casing for acceleration measurement.
  • the measurement cell illustrated in these FIGS. includes a housing or casing 1 which consists of a circular, rectangular or square plate provided with a through-bore.
  • Connecting sockets 2 are fitted into the casing l on one side thereof; however, the connecting sockets 2 may also be arranged differently instead of being all disposed on one side, as shown.
  • the piezoelement 3 consists of a multiple player crystal arrangement and lies between two force-transmitting discs 4 and 5 which are connected by means of resilient flanges 6 with the casing 1.
  • these flanges 6 are of great importance for the functioning of the multiple component piezomeasuring cell of flat o'r plate-type construction.
  • the flanges 6 have to connect the force-transmitting discs 4 and 5 with the casing 1 elastically both in the axial direction as also in the plane of the discs.
  • these flanges 6 must also permit a constant mechanical prestressing to be exerted on the piezoelement 3 in order to avoid any faults in the spring action.
  • a thin-walled sleeve 8 is connected with resilient flanges 9 of the force-transmitting discs 4 and 5. Also, these connections are made that the sleeve 8 is under a constant prestress.
  • This prestress is effected in the completely assembled cell by a special welding operation as the final operation. In place of a welding operation, crimping is also possible.
  • a centering ring 7 which is provided with an opening or aperture for the electrodes 10, is inserted into the casing l.
  • the centering ring 7, in turn, is constructed resiliently as compared to the piezo piezoelement 3 by means of grooves formed therein and consists of a highly insulating material of any known type.
  • the procedure is such that the upper force-transmitting disc 4 is only inserted, after the connection of the electrode lugs 10 with thecontact pins 11 has been made, whereupon the upper disc 4 is connected under prestress with the casing 1.
  • the contact pins 11 are mounted in highly insulating guides 12 which, in turn, are fixed in and sealed to the connecting sockets 2.
  • the connecting sockets 2 are so arranged that commercially available contact plugs can be connected thereto.
  • the arrangement of the crystal packets is further explained by reference to FIG. 3, again for a measuring cell according to FIGS. 1 and 2.
  • the correspondingly cut crystal discs are used for each direction of sensitivity.
  • the respective takeoff electrodes can in each case be disposed between two discs.
  • the discs 21 and 22 are cut from the crystal in such a manner that under lateral or shear stress in the plane of the discs, the outer surface of one disc emits positive charges and the other negative charges.
  • the axis 30 of the maximum shear sensitivity is marked on the two discs 21, 22 and the axes are superimposed one on the other during assembly.
  • the pair of discs 23 and 24 possess the normal piezosection or cut so that during stressing normal to the plane of the' discs, positive charges are produced on one outer face or surface and negative charges on the other outer face or surface'of the two discs.
  • the takeoff electrode 27 is again arranged between the pair of discs.
  • the pair of discs 25 and 26 is cut in the same way as discs 21 and 22 but the axis 31 of the greatest shear sensitivity is offset to the axis by 90. All the outer disc surfaces of the three pairs of crystals are connected to a common electrode insulating disc or foil must then be inserted. In this way, however, the output signal for each unit is reduced to one-half but the height of the cell can be reduced.
  • FIG. 4 shows a multiple component piezomeasuring cell of rod-type construction.
  • the cell consists of a casing 40 which includes a force input plate 41 with a mounting bore 42 and passes over into an elongated, longitudinally resilient tube 39 having a welding flange 43.
  • the piezoelement 44 again consisting of a multiple player piezodisc arrangement, is arranged directly behind the force input plate 41.
  • a resilient ring 45 is provided for centering the piezoelement 44, which ring is cut away segmentally at the point 46 in order that the electrodes 47 can be connected.
  • the electrode connections are led out of the measuring cell in a multicore insulated cable 48 which extends through a sealing plug 49.
  • the piezoelement 44 may be followed by an additional mass 51 and by piezocompensating element 52 to provide for acceleration compensation. In many applications, however, this is not necessary so that the piezoelement may be fitted for such applications directly onto the tubular member 53.
  • the casing 40 is held at the flange part 43 and placed under high mechanical prestress. Thereupon, the flange part 43 is joined to the tubular member 53 by means of spot welding points 55. To obtain a complete sealing, the liplike ends of the flanges 43 and 54 are joined together at 56 by welding.
  • the multiple-component piezomeasuring cell can be fitted into suitable mounting flanges 57 for incorporation in measurement systems.
  • any desired model 58 can be mounted on the force input plate 41.
  • the mass 51 of a heavy metal, for example, of tungsten or of a lead alloy.
  • the compensation plate 52 is polai'ized'oppositely to the plate 50.
  • a signal produced by the acceleration in the Z axis of the pressure sensitive plate arrangement is compensated for by the oppositely polarized plate 52.
  • the magnitude of the compensation can be adjusted to suit the requirements by the number of the piezoplates 50 and 52 and by the size of the' 7 mass 51.
  • the casing 40 as a resilient tube that all forces acting on the force input plate 41 can be transmitted to the piezoelement without hindrance.
  • the very compact arrangement of the piezoelement 44 in the casing 40 permits the accommodation of the shear plates, sensitive in the X- and Y-axes, exactly in the center of gravity 59 of the test model 58 whereby considerable simplifications in the evaluation of the measurement results are realized for certain types of measurements.
  • FIG. 5 A further arrangement of a multiple-component piezomeasuring cell according to the present-invention is shown in FIG. 5. Also in this case a rod-type construction is involved which is particularly useful for aerodynamic tests and experiments.
  • the casing 60 consists again of a force input plate 61 with mounting bolts 62 and of a tubular transfer member 63 having a flange portion 64.
  • a torque-measuring device precedes the multiple-component force-measuring element 65.
  • the torquemeasuring device consists of the carrier flange 66 and of the carrier rod 67 which is firmly and securely pressed into this carrier flange 66.
  • the support discs 68 and 69 constructed as electrodes, are supported on the carrier rod 67 with a spacing a.
  • Electrodes 68 and 69 are each electrically insulated from the carrier rod 67 by means of an insulating ring 70 consisting of conventional high-strength highly insulating material.
  • On both sides of the support discs 68 and 69 are disposed shear-sensitive piezodiscs 71 and 7 2.
  • the two illustrated piezosystems 71 and 72 can be so arranged and connected that their signals are of the same polarity when subjected to the action of a moment at the torque-engagement point 73 and are thus automatically added in se ries. It is, however, also possible to lead-out the signals from the electrodes 68 and 69 individually from the measurement cell for evaluation in the connected electronic circuitry" i I In the arrangement shown in FIG. 5, the torque or moment is measured in one plane.
  • the support discs 68 and 69 may each consists of two discs placed one against the other by means of an intermediate insulating layer. Then each of the two associated piezodiscs 71, 72 would be adjusted for a desired axial direction.
  • the piezodiscs 71 and 72 as also the support discs 68 and 69 are forced by correspondingly machined intermediate members 74, 75 and 76 against the carrier flange 66.
  • This flange 66 itself is pressed against the main flange 77 by way of the multiple-component piezoelement 65 whereby the axial stress is applied according to known principles by means of a threaded bush 78.
  • the body 60 is a resilient prestressed tube that the thin casing walls exert only a very small influence on the transmission of moments and forces. Owing to the large cross sections of the material of the piezodiscs, which are thus available, a rigid measuring system in each direction of measurement with a correspondingly high natural frequency is obtained.
  • the measuring cell is mounted by means of an assembly thread 79 in any desired holder or mount.
  • the test model 80 is mounted on the measurement cell.
  • the measurement cell according to FIG. 5 can, if necessary, be provided with an acceleration compensation in the axial direction A-A.
  • a multiple-component piezomeasuring cell for measuring accelerations is illustrated in FIG. 6.
  • the acceleration forces derived from the force action on the seismic mass can be resolved in the illustrated example into three components X, Y and 2.
  • the described multiple layer piezoarrangement 91 is mounted on the base plate 92 of the casing 93.
  • a piezodevice 94 is mounted above the seismic mass 90 which in the illustrated case, measures the X and Y components.
  • the arrangement of the discs for the X and Y components is such that they lie nearest the mass 90.
  • the piezoelements and the mass are subjected to a high mechanical prestress by means of the cap 96 and the transmission member so that lateral acceleration forces can be transmitted to the mass 90 merely by friction and by way of the piezoelements 91 and 94.
  • the piezoelements 91 and 94 are again centered by elastic segmental rings 98 and 99, respectively.
  • the electrode outputs of the two X and Y elements are connected in series and are connected to the output pins 100.
  • a second three-component element can be used like the piezoelement 91 but located above the mass.
  • the piezocell .110 is forced against the base plate 111 by the mass'1l'2 by means of the sleevelike prestressing spring 113.
  • the prestressing spring or sleeve 113 is welded to the base plate 111 at the points 115 under mechanical prestress.
  • a segmental interrupted ring 116 is.
  • the mass is axially connected to the diaphragm 118 ing 117.
  • the base plate 111 is fixedly, threadably con nectedto the casing 117 while the connector pins 114 are likewise fixedly mounted in the casing 117.
  • the arrangement of the diaphragm 118 adversely affects or impairs the movability of the mass 112 in the X and Y axes so-that the sensitivity of the measuring cell is somewhat reduced in these two axes; It is, however, possible without any difficulty to omit this diaphragm, especially if relativelysmall lateral accelerations have to be measured.
  • accelerations can also be measured directly with multiple component measuring-cells according'to FIG. 1.-Such an arrangement is shown in FIG. 8 where .a mass 123 is mounted by means of a screw or bolt 121 on a multiple component piezomeasuring cell 122.
  • a standard multiple'component measuring cell 130 is mounted by means of a centering pin 131 in a casing 132.
  • the mass 133 is forced into the casing 132 under prestressing by means of the screw cover 134 and the central pressure point 135.
  • complex acceleration problems can be solved with standard elements.
  • a multiple component piezomeasuring cell for measuring forces and accelerations which includes an arrangement of superimposed piezodiscs, at least one of said discs being fonned and positioned to be sensitive to compressional forces and atleast two of the other discs being formed and positioned to be sensitive to shear forces, characterized in that the measuring cell forms an integral, self-contained element in which forcetransrnitting disc means are connected to a casing of the cell by way of transversely and longitudinally resilient collar portions, and in which the piezoelement of multiple layer construction is mounted under axial prestress.
  • a mul ple component piezomeasuring cell for measuring forces and accelerations which includes an arrangement of supcrimposed piezodiscs, with at least one of said discs being formed and positioned to be sensitive to compressional forces and at least two of the other discs being formed and positioned to be sensitive to shear forces, characterized in that the measuring cell comprises a cup-shaped body which extends with a tubular portion thereof over the piezoarrangement and is connected to a flange of a force transmitting member under high prestress, and in which the tubular portion of the body has sufficient elasticity so that practically all the applied forces are exerted on the piezoarrangement.
  • a multiple component piezomeasuring cell characterized in that a seismic mass is provided in operative association with the multiple component element which acts on a compensating piezoelement, said compensating piezoelement being connected in opposition to the output of the Z axis of the multiple component element, said Z axis being parallel to the direction in which said discs are superimposed, whereby acceleration signals produced by the mass arranged in front of the multiple component elements can be compensated.
  • a multiple component piezomeasuring cell characterized in that the multiple component forcemeasuring element is preceded by a torque-measuring element including a carrier with a flange and two electrodes formed as support rings which are clamped between two shear sensitive piezodiscs under high prestress so that the support rings convert an externally applied torque into a pair of forces at spaced points.
  • a multiple component piezorneasuring cell for measuring acceleration forces characterized in that a seismic mass is arranged in a casing under high mechanical prestress between 'two sets of multiple layer piezoelements whose corresponding sensitive axes are connected in series to corresponding output contacts.
  • a multiple component piezomeasuring cell for measuring acceleration forces characterized in that a seismic mass is clamped by a prestressing sleeve and by way of a multiple layer piezoelement against a base plate which is assembled in a casing and provided with corresponding outputs, and diaphragm means for'avoiding idle swinging of the mass which is connected to the center portion of the mass and is clamped at the periphery to the casing.
  • a multiple component piezomeasuring cell for measuring acceleration forces characterized in that a standard, self-contained measurement cell, which includes an arrangement of superimposed piezodiscs, and a mass are clamped to the object to be measured by means of a prestressing screw.
  • a multiple component piezomcasuring cell for measuring acceleration forces which includes an arrangement of superimposed piezodiscs, at least one of said discs being formed and positioned to be sensitive to compressional forces, and at least two of the other discs beingformed and positioned to be sensitive to shear forces, characterized in that a seismic mass is fitted into a casing under high prestress between a forcetransmitting member and a standard measuring cell.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Vibration Prevention Devices (AREA)
US756173A 1967-09-05 1968-08-29 Multiple-component piezomeasuring cells Expired - Lifetime US3566163A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1242367A CH472668A (de) 1967-09-05 1967-09-05 Einrichtung mit einer Mehrkomponenten-Piezomesszelle

Publications (1)

Publication Number Publication Date
US3566163A true US3566163A (en) 1971-02-23

Family

ID=4382886

Family Applications (1)

Application Number Title Priority Date Filing Date
US756173A Expired - Lifetime US3566163A (en) 1967-09-05 1968-08-29 Multiple-component piezomeasuring cells

Country Status (4)

Country Link
US (1) US3566163A (enrdf_load_stackoverflow)
AT (1) AT291629B (enrdf_load_stackoverflow)
CH (1) CH472668A (enrdf_load_stackoverflow)
GB (1) GB1225799A (enrdf_load_stackoverflow)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697790A (en) * 1970-12-02 1972-10-10 William T Flint Transducers having piezoelectric struts
DE2747309A1 (de) * 1976-10-29 1978-05-03 Westinghouse Electric Corp Piezoelektrisches geraet
US4088015A (en) * 1975-09-26 1978-05-09 Kistler Instrumente Ag Force measuring apparatus with mounting arrangement
DE3110280A1 (de) * 1981-03-17 1982-09-30 Siemens AG, 1000 Berlin und 8000 München "ultraschallaufnehmer"
US4567395A (en) * 1984-10-26 1986-01-28 Texas Instruments Incorporated Piezoelectric pressure transmitter for an internal combustion engine
US4566316A (en) * 1983-01-10 1986-01-28 Nissan Motor Co., Ltd. Washer type pressure sensor
US4570097A (en) * 1984-10-26 1986-02-11 Texas Instruments Incorporated Electrical connections for a piezoelectric pressure transmitter for an internal combustion engine
US4586377A (en) * 1983-02-21 1986-05-06 Vibro-Meter Sa Dual accelerometer, method for its fabrication and application thereof
US4590400A (en) * 1984-10-26 1986-05-20 Texas Instruments Incorporated Piezoelectric cylinder pressure transmitter
WO1986004137A1 (en) * 1984-12-31 1986-07-17 Bruel & Kjaer Instruments, Inc. Acceleration responsive transducers
US4620438A (en) * 1983-12-15 1986-11-04 Texas Instruments Incorporated Cylinder pressure transmitter for an internal combustion engine
US4645965A (en) * 1984-10-26 1987-02-24 Texas Instruments Incorporated Cylinder pressure transmitter for an internal combustion engine
US4671147A (en) * 1985-05-30 1987-06-09 General Electric Company Instrumented tool holder
EP0266452A1 (de) * 1986-11-07 1988-05-11 Kristal Instrumente AG Piezoelektrisches Aufnehmerelement
EP0270693A1 (de) * 1986-11-07 1988-06-15 Kristal Instrumente AG Mehrkomponenten-Dynamometer
US4767960A (en) * 1983-12-15 1988-08-30 Texas Instruments Incorporated Cylinder pressure transmitter for an internal combustion engine
US4797369A (en) * 1985-04-05 1989-01-10 International Technidyne Corp. Method and apparatus for detecting a blood clot
US4835436A (en) * 1988-03-21 1989-05-30 Lew Hyok S Piezoelectric impulse sensor
EP0342253A1 (de) * 1988-05-18 1989-11-23 Kistler Instrumente AG Kraftaufnehmer zum Einbau in Messplattformen
US4967114A (en) * 1988-04-13 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Acceleration detector
US5239223A (en) * 1989-12-04 1993-08-24 Nec Corporation Piezoelectric actuator and method of manufacturing the same
EP0598301A3 (en) * 1992-11-16 1994-08-24 Goodyear Tire & Rubber 3-dimensional pressure sensor.
WO1998001732A1 (en) * 1996-07-09 1998-01-15 Panex Corporation Quartz transducer
US5714687A (en) * 1995-10-31 1998-02-03 Dunegan; Harold L. Transducer for measuring acoustic emission events
EP0736758A3 (de) * 1995-04-07 1998-07-08 EUROPEAN TRANSONIC WINDTUNNEL GmbH Modellträger für Windkanalmodelle
US6031317A (en) * 1997-09-17 2000-02-29 Aeptec Microsystems, Inc. Piezoelecric shock sensor
US6173613B1 (en) 1996-04-30 2001-01-16 Harold L. Dunegan Measuring crack growth by acoustic emission
US6626029B2 (en) 1999-01-08 2003-09-30 Harold L. Dunegan Apparatus and methods for measuring surface roughness
WO2006131015A3 (de) * 2005-06-10 2007-02-22 Kistler Holding Ag Drucksensor mit aktiver und passiver beschleunigungskompensation
WO2008043594A3 (de) * 2006-10-13 2008-06-05 Bosch Gmbh Robert Druckmesseinrichtung
WO2009016030A1 (de) * 2007-07-27 2009-02-05 Piezocryst Advanced Sensorics Gmbh Kraftsensor
US20090217768A1 (en) * 2006-05-04 2009-09-03 Kistler Holding Ag Piezoelectric measuring element with transverse effect and sensor comprising such a measuring element
US20110046521A1 (en) * 2009-08-20 2011-02-24 Krypton Systems LLC Ultra-Sonic and Vibratory Treatment Devices and Methods
CN102519634A (zh) * 2011-12-12 2012-06-27 济南大学 一种压电薄膜力传感器
CN102735375A (zh) * 2011-04-14 2012-10-17 精工爱普生株式会社 传感器装置、力检测装置以及机器人
JP2013053985A (ja) * 2011-09-06 2013-03-21 Seiko Epson Corp 力センサー、力検出装置、ロボットハンド、およびロボット
JP2013064623A (ja) * 2011-09-16 2013-04-11 Seiko Epson Corp 力センサー、力検出装置、ロボットハンド、ロボット、および力センサーの製造方法
JP2013101020A (ja) * 2011-11-08 2013-05-23 Seiko Epson Corp センサー素子、力検出装置およびロボット
JP2013130431A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーデバイス、センサーモジュール、ロボット、センサーデバイスの製造方法
JP2013130433A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーモジュール、力検出装置、ロボット
JP2013130430A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置、ロボット
JP2013130432A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置及びロボット
JP2013160669A (ja) * 2012-02-07 2013-08-19 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置及びロボット
JP2013186030A (ja) * 2012-03-09 2013-09-19 Seiko Epson Corp センサーモジュール、力検出装置及びロボット
JP2013234940A (ja) * 2012-05-10 2013-11-21 Seiko Epson Corp 力検出素子、力検出モジュール、力検出ユニットおよびロボット
JP2013245937A (ja) * 2012-05-23 2013-12-09 Seiko Epson Corp 力検出素子、力検出モジュール、力検出ユニットおよびロボット
JP2014041038A (ja) * 2012-08-22 2014-03-06 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置およびロボット
US20140305133A1 (en) * 2013-04-15 2014-10-16 Rolls-Royce Plc Dual channel accelerometer and method of manufacturing the same
US20150127159A1 (en) * 2013-11-05 2015-05-07 Seiko Epson Corporation Force detecting device, robot, electronic component conveying apparatus
JP2015087292A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087285A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087331A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087332A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087333A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087330A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015090295A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 力検出装置、ロボットおよび電子部品搬送装置
JP2015090296A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 力検出装置、ロボットおよび電子部品搬送装置
JP2015520386A (ja) * 2012-06-20 2015-07-16 キストラー ホールディング アクチエンゲゼルシャフト 力を測定するための測定エレメント、測定本体及び測定配置、並びにそのような測定本体の使用
US20150226641A1 (en) * 2012-08-29 2015-08-13 Citizen Holdings Co., Ltd. Combustion pressure sensor
JP2015166706A (ja) * 2014-03-04 2015-09-24 セイコーエプソン株式会社 力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015169593A (ja) * 2014-03-10 2015-09-28 セイコーエプソン株式会社 力検出装置、ロボットおよび部品加工装置
JPWO2014034641A1 (ja) * 2012-08-30 2016-08-08 シチズンファインデバイス株式会社 圧力検出装置
JP2017198705A (ja) * 2017-07-10 2017-11-02 セイコーエプソン株式会社 センサー素子、力検出装置およびロボット
JP2018077248A (ja) * 2018-01-10 2018-05-17 セイコーエプソン株式会社 センサーデバイス、センサーモジュール、力検出装置およびロボット
US20190242768A1 (en) * 2016-10-17 2019-08-08 Kistler Holding Ag Force and Moment Sensor, Force Transducer Module for Such a Force and Moment Sensor and Robot Comprising Such a Force and Moment Sensor
US10661456B2 (en) * 2017-06-30 2020-05-26 Seiko Epson Corporation Force detection apparatus and robot
US10677667B2 (en) 2015-06-05 2020-06-09 Kistler Holding, Ag Component transducer and multi-component transducer using such component transducer as well as use of such multi-component transducer
US20210190609A1 (en) * 2018-01-24 2021-06-24 Avl List Gmbh Measuring system and method for determining a force and/or a torque on a torque-transmitting shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2855746C3 (de) * 1978-12-22 1981-07-30 Kistler Instrumente Ag, Winterthur Piezoelektrischer Dehnungsaufnehmer
DE3151669C2 (de) * 1981-12-28 1989-10-12 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Heckstielwaage zur Luftkraftbestimmung an Windkanalmodellen
GB2282450B (en) * 1993-09-29 1997-03-26 Roke Manor Research Improvements in or relating to accelerometers

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728868A (en) * 1951-09-24 1955-12-27 Northrop Aircraft Inc Liquid filled accelerometer
US2808524A (en) * 1952-03-20 1957-10-01 Sylvania Electric Prod Inertia responsive electro-mechanical transducer
US2963911A (en) * 1959-02-18 1960-12-13 Bell Telephone Labor Inc Piezoresistive accelerometer
US3060333A (en) * 1959-03-23 1962-10-23 Endevco Corp High capacity accelerometer
US3075098A (en) * 1957-12-26 1963-01-22 Endevco Corp Accelerometer
US3104334A (en) * 1959-09-15 1963-09-17 Endevco Corp Annular accelerometer
US3151258A (en) * 1960-12-10 1964-09-29 Sonderegger Hans Conrad Device for measuring the forces between components of an assembly
US3158763A (en) * 1961-01-02 1964-11-24 List Hans Piezoelectric gauge
US3158762A (en) * 1962-12-27 1964-11-24 John J Horan Bilaminar transducers
US3269175A (en) * 1964-03-16 1966-08-30 Clevite Corp Piezoelectric force measuring device
US3311873A (en) * 1965-11-10 1967-03-28 Schloss Fred Intensity meter, particle acceleration type
US3320580A (en) * 1963-02-27 1967-05-16 Alan O Sykes Multipurpose piezoelectric transducer system
US3349259A (en) * 1965-05-27 1967-10-24 Kistler Instr Corp Piezoelectric pressure transducer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728868A (en) * 1951-09-24 1955-12-27 Northrop Aircraft Inc Liquid filled accelerometer
US2808524A (en) * 1952-03-20 1957-10-01 Sylvania Electric Prod Inertia responsive electro-mechanical transducer
US3075098A (en) * 1957-12-26 1963-01-22 Endevco Corp Accelerometer
US2963911A (en) * 1959-02-18 1960-12-13 Bell Telephone Labor Inc Piezoresistive accelerometer
US3060333A (en) * 1959-03-23 1962-10-23 Endevco Corp High capacity accelerometer
US3104334A (en) * 1959-09-15 1963-09-17 Endevco Corp Annular accelerometer
US3151258A (en) * 1960-12-10 1964-09-29 Sonderegger Hans Conrad Device for measuring the forces between components of an assembly
US3158763A (en) * 1961-01-02 1964-11-24 List Hans Piezoelectric gauge
US3158762A (en) * 1962-12-27 1964-11-24 John J Horan Bilaminar transducers
US3320580A (en) * 1963-02-27 1967-05-16 Alan O Sykes Multipurpose piezoelectric transducer system
US3269175A (en) * 1964-03-16 1966-08-30 Clevite Corp Piezoelectric force measuring device
US3349259A (en) * 1965-05-27 1967-10-24 Kistler Instr Corp Piezoelectric pressure transducer
US3311873A (en) * 1965-11-10 1967-03-28 Schloss Fred Intensity meter, particle acceleration type

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3697790A (en) * 1970-12-02 1972-10-10 William T Flint Transducers having piezoelectric struts
US4088015A (en) * 1975-09-26 1978-05-09 Kistler Instrumente Ag Force measuring apparatus with mounting arrangement
DE2747309A1 (de) * 1976-10-29 1978-05-03 Westinghouse Electric Corp Piezoelektrisches geraet
US4088907A (en) * 1976-10-29 1978-05-09 Westinghouse Electric Corp. Piezoelectric acoustic emission instrumentation
DE3110280A1 (de) * 1981-03-17 1982-09-30 Siemens AG, 1000 Berlin und 8000 München "ultraschallaufnehmer"
US4566316A (en) * 1983-01-10 1986-01-28 Nissan Motor Co., Ltd. Washer type pressure sensor
US4586377A (en) * 1983-02-21 1986-05-06 Vibro-Meter Sa Dual accelerometer, method for its fabrication and application thereof
US4767960A (en) * 1983-12-15 1988-08-30 Texas Instruments Incorporated Cylinder pressure transmitter for an internal combustion engine
US4620438A (en) * 1983-12-15 1986-11-04 Texas Instruments Incorporated Cylinder pressure transmitter for an internal combustion engine
US4645965A (en) * 1984-10-26 1987-02-24 Texas Instruments Incorporated Cylinder pressure transmitter for an internal combustion engine
US4570097A (en) * 1984-10-26 1986-02-11 Texas Instruments Incorporated Electrical connections for a piezoelectric pressure transmitter for an internal combustion engine
US4590400A (en) * 1984-10-26 1986-05-20 Texas Instruments Incorporated Piezoelectric cylinder pressure transmitter
US4567395A (en) * 1984-10-26 1986-01-28 Texas Instruments Incorporated Piezoelectric pressure transmitter for an internal combustion engine
WO1986004137A1 (en) * 1984-12-31 1986-07-17 Bruel & Kjaer Instruments, Inc. Acceleration responsive transducers
US4620446A (en) * 1984-12-31 1986-11-04 Bruel & Kjaer Instruments, Inc. Acceleration responsive transducers
US4797369A (en) * 1985-04-05 1989-01-10 International Technidyne Corp. Method and apparatus for detecting a blood clot
US4671147A (en) * 1985-05-30 1987-06-09 General Electric Company Instrumented tool holder
EP0266452A1 (de) * 1986-11-07 1988-05-11 Kristal Instrumente AG Piezoelektrisches Aufnehmerelement
EP0270693A1 (de) * 1986-11-07 1988-06-15 Kristal Instrumente AG Mehrkomponenten-Dynamometer
US4802371A (en) * 1986-11-07 1989-02-07 Kristal Instrumente Ag Multi-component dynamometers
US4835436A (en) * 1988-03-21 1989-05-30 Lew Hyok S Piezoelectric impulse sensor
US4967114A (en) * 1988-04-13 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Acceleration detector
US4974454A (en) * 1988-05-18 1990-12-04 Kistler Instrumente Aktiengesellschaft Force transducers for fitting in force plates
EP0342253A1 (de) * 1988-05-18 1989-11-23 Kistler Instrumente AG Kraftaufnehmer zum Einbau in Messplattformen
US5239223A (en) * 1989-12-04 1993-08-24 Nec Corporation Piezoelectric actuator and method of manufacturing the same
US5272797A (en) * 1989-12-04 1993-12-28 Nec Corporation Method of manufacturing a piezoelectric actuator
EP0598301A3 (en) * 1992-11-16 1994-08-24 Goodyear Tire & Rubber 3-dimensional pressure sensor.
EP0736758A3 (de) * 1995-04-07 1998-07-08 EUROPEAN TRANSONIC WINDTUNNEL GmbH Modellträger für Windkanalmodelle
US6062083A (en) * 1995-10-31 2000-05-16 Dunegan; Harold L. Measuring crack growth by acoustic emission
US6360608B1 (en) 1995-10-31 2002-03-26 Dunegan Engineering Consultants, Inc. Transducer for measuring acoustic emission events
US5714687A (en) * 1995-10-31 1998-02-03 Dunegan; Harold L. Transducer for measuring acoustic emission events
US5929315A (en) * 1995-10-31 1999-07-27 Dunegan; Harold L. Measuring crack growth by acoustic emission
US6041656A (en) * 1995-10-31 2000-03-28 Dunegan; Harold L. Transducer for measuring acoustic emission events
US6173613B1 (en) 1996-04-30 2001-01-16 Harold L. Dunegan Measuring crack growth by acoustic emission
WO1998001732A1 (en) * 1996-07-09 1998-01-15 Panex Corporation Quartz transducer
US6031317A (en) * 1997-09-17 2000-02-29 Aeptec Microsystems, Inc. Piezoelecric shock sensor
US6626029B2 (en) 1999-01-08 2003-09-30 Harold L. Dunegan Apparatus and methods for measuring surface roughness
WO2006131015A3 (de) * 2005-06-10 2007-02-22 Kistler Holding Ag Drucksensor mit aktiver und passiver beschleunigungskompensation
US20080168843A1 (en) * 2005-06-10 2008-07-17 Kistler Holding Ag Pressure Sensor with Active and Passive Acceleration Compensation
US7546774B2 (en) 2005-06-10 2009-06-16 Kistler Holding, Ag Pressure sensor with active and passive acceleration compensation
US20090217768A1 (en) * 2006-05-04 2009-09-03 Kistler Holding Ag Piezoelectric measuring element with transverse effect and sensor comprising such a measuring element
US8074524B2 (en) * 2006-05-04 2011-12-13 Kistler Holding, Ag Piezoelectric measuring element with transverse effect and sensor comprising such a measuring element
US20100300186A1 (en) * 2006-10-13 2010-12-02 Christoph Kern Pressure-Measuring Device
WO2008043594A3 (de) * 2006-10-13 2008-06-05 Bosch Gmbh Robert Druckmesseinrichtung
WO2009016030A1 (de) * 2007-07-27 2009-02-05 Piezocryst Advanced Sensorics Gmbh Kraftsensor
US20110046521A1 (en) * 2009-08-20 2011-02-24 Krypton Systems LLC Ultra-Sonic and Vibratory Treatment Devices and Methods
US8460221B2 (en) 2009-08-20 2013-06-11 Krypton Systems LLC Ultra-sonic and vibratory treatment devices and methods
JP2012220462A (ja) * 2011-04-14 2012-11-12 Seiko Epson Corp センサーデバイス、力検出装置およびロボット
CN102735375A (zh) * 2011-04-14 2012-10-17 精工爱普生株式会社 传感器装置、力检测装置以及机器人
CN102735375B (zh) * 2011-04-14 2016-03-16 精工爱普生株式会社 传感器装置、力检测装置以及机器人
JP2013053985A (ja) * 2011-09-06 2013-03-21 Seiko Epson Corp 力センサー、力検出装置、ロボットハンド、およびロボット
JP2013064623A (ja) * 2011-09-16 2013-04-11 Seiko Epson Corp 力センサー、力検出装置、ロボットハンド、ロボット、および力センサーの製造方法
JP2013101020A (ja) * 2011-11-08 2013-05-23 Seiko Epson Corp センサー素子、力検出装置およびロボット
CN102519634A (zh) * 2011-12-12 2012-06-27 济南大学 一种压电薄膜力传感器
CN102519634B (zh) * 2011-12-12 2014-04-09 济南大学 一种压电薄膜力传感器
JP2013130432A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置及びロボット
JP2013130430A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置、ロボット
JP2013130433A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーモジュール、力検出装置、ロボット
JP2013130431A (ja) * 2011-12-20 2013-07-04 Seiko Epson Corp センサーデバイス、センサーモジュール、ロボット、センサーデバイスの製造方法
US9217680B2 (en) 2011-12-20 2015-12-22 Seiko Epson Corporation Sensor device, sensor module, robot and method of manufacturing sensor device
JP2013160669A (ja) * 2012-02-07 2013-08-19 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置及びロボット
JP2013186030A (ja) * 2012-03-09 2013-09-19 Seiko Epson Corp センサーモジュール、力検出装置及びロボット
JP2013234940A (ja) * 2012-05-10 2013-11-21 Seiko Epson Corp 力検出素子、力検出モジュール、力検出ユニットおよびロボット
JP2013245937A (ja) * 2012-05-23 2013-12-09 Seiko Epson Corp 力検出素子、力検出モジュール、力検出ユニットおよびロボット
JP2015520386A (ja) * 2012-06-20 2015-07-16 キストラー ホールディング アクチエンゲゼルシャフト 力を測定するための測定エレメント、測定本体及び測定配置、並びにそのような測定本体の使用
US9677953B2 (en) 2012-08-22 2017-06-13 Seiko Epson Corporation Sensor device, sensor module, force detection device, and robot
JP2014041038A (ja) * 2012-08-22 2014-03-06 Seiko Epson Corp センサーデバイス、センサーモジュール、力検出装置およびロボット
US9410856B2 (en) 2012-08-22 2016-08-09 Seiko Epson Corporation Sensor device, sensor module, force detection device, and robot
US20150226641A1 (en) * 2012-08-29 2015-08-13 Citizen Holdings Co., Ltd. Combustion pressure sensor
US9841356B2 (en) * 2012-08-29 2017-12-12 Citizen Finedevice Co., Ltd. Combustion pressure sensor
CN104583744B (zh) * 2012-08-29 2017-04-12 西铁城精密器件株式会社 燃烧压力传感器
EP2891872A4 (en) * 2012-08-29 2016-04-06 Citizen Finedevice Co Ltd COMBUSTION PRESSURE SENSOR
JPWO2014034641A1 (ja) * 2012-08-30 2016-08-08 シチズンファインデバイス株式会社 圧力検出装置
US20140305133A1 (en) * 2013-04-15 2014-10-16 Rolls-Royce Plc Dual channel accelerometer and method of manufacturing the same
US9488672B2 (en) * 2013-04-15 2016-11-08 Rolls-Royce Plc Dual channel accelerometer and method of manufacturing the same
JP2015087333A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087330A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087331A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087332A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087292A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 センサー素子、力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015087285A (ja) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015090296A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 力検出装置、ロボットおよび電子部品搬送装置
JP2015090295A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 力検出装置、ロボットおよび電子部品搬送装置
US9770826B2 (en) * 2013-11-05 2017-09-26 Seiko Epson Corporation Force detecting device, robot, electronic component conveying apparatus
US20150127159A1 (en) * 2013-11-05 2015-05-07 Seiko Epson Corporation Force detecting device, robot, electronic component conveying apparatus
US9975250B2 (en) 2013-11-05 2018-05-22 Seiko Epson Corporation Force detecting device, robot, electronic component conveying apparatus
JP2015166706A (ja) * 2014-03-04 2015-09-24 セイコーエプソン株式会社 力検出装置、ロボット、電子部品搬送装置、電子部品検査装置および部品加工装置
JP2015169593A (ja) * 2014-03-10 2015-09-28 セイコーエプソン株式会社 力検出装置、ロボットおよび部品加工装置
US10677667B2 (en) 2015-06-05 2020-06-09 Kistler Holding, Ag Component transducer and multi-component transducer using such component transducer as well as use of such multi-component transducer
US20190242768A1 (en) * 2016-10-17 2019-08-08 Kistler Holding Ag Force and Moment Sensor, Force Transducer Module for Such a Force and Moment Sensor and Robot Comprising Such a Force and Moment Sensor
US10661456B2 (en) * 2017-06-30 2020-05-26 Seiko Epson Corporation Force detection apparatus and robot
JP2017198705A (ja) * 2017-07-10 2017-11-02 セイコーエプソン株式会社 センサー素子、力検出装置およびロボット
JP2018077248A (ja) * 2018-01-10 2018-05-17 セイコーエプソン株式会社 センサーデバイス、センサーモジュール、力検出装置およびロボット
US20210190609A1 (en) * 2018-01-24 2021-06-24 Avl List Gmbh Measuring system and method for determining a force and/or a torque on a torque-transmitting shaft
US11852545B2 (en) 2018-01-24 2023-12-26 Avl List Gmbh Measuring device and method for determining a force and/or a torque on a torque-transmitting shaft
US12013301B2 (en) * 2018-01-24 2024-06-18 Avl List Gmbh Measuring system and method for determining a force and/or a torque on a torque-transmitting shaft

Also Published As

Publication number Publication date
DE1773551A1 (de) 1971-07-29
AT291629B (de) 1971-07-26
GB1225799A (enrdf_load_stackoverflow) 1971-03-24
DE1773551B2 (de) 1972-07-06
CH472668A (de) 1969-05-15

Similar Documents

Publication Publication Date Title
US3566163A (en) Multiple-component piezomeasuring cells
US3673442A (en) Temperature compensated piezoelectric accelerometer
US3495102A (en) Piezoelectric transducer
US5117696A (en) Biaxial accelerometer
US3433064A (en) Flexible structure for yieldably withstanding forces
US3349259A (en) Piezoelectric pressure transducer
US5512794A (en) Shear accelerometer
US6397677B1 (en) Piezoelectric rotational accelerometer
US3031591A (en) Pressure measuring gage
US4441044A (en) Transducer with a piezoelectric sensor element
US5402684A (en) Multicomponent force and moment measuring arrangement
US3025359A (en) Vibration-compensated pressure sensitive microphone
US4620446A (en) Acceleration responsive transducers
US3801838A (en) Piezoelectric pressure transducer
EP0635703A1 (en) Combined weighing and displacement sensor and weighing apparatus using the same
US4503351A (en) Piezoelectric element for incorporation in pressure, force or acceleration transducers
US3402609A (en) Semiconductor mechanical-to-electrical transducer
US4211951A (en) Shear type prestressed piezoelectric force transducer
JP2643025B2 (ja) 圧電変換器による加速度の計測装置
US4359658A (en) Prestressed piezoelectric accelerometer
US4052628A (en) Dynamic, shear-mode piezoelectric pressure sensor
EP0664004B1 (en) An accelerometer of the shear type
US3429031A (en) Method of assembling a force transducer
US3233465A (en) Accelerometer
US3651353A (en) Piezoelectric pressure transducer with acceleration compensation