US3560257A - Metallization of insulating substrates - Google Patents
Metallization of insulating substrates Download PDFInfo
- Publication number
- US3560257A US3560257A US606919A US3560257DA US3560257A US 3560257 A US3560257 A US 3560257A US 606919 A US606919 A US 606919A US 3560257D A US3560257D A US 3560257DA US 3560257 A US3560257 A US 3560257A
- Authority
- US
- United States
- Prior art keywords
- metal
- catalytic
- electroless
- insulating
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001465 metallisation Methods 0.000 title description 6
- 239000000758 substrate Substances 0.000 title description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 173
- 239000002184 metal Substances 0.000 abstract description 173
- 239000000203 mixture Substances 0.000 abstract description 52
- 150000001875 compounds Chemical class 0.000 abstract description 34
- 150000002739 metals Chemical class 0.000 abstract description 22
- 230000008021 deposition Effects 0.000 abstract description 21
- 230000000737 periodic effect Effects 0.000 abstract description 11
- 150000002894 organic compounds Chemical class 0.000 abstract description 5
- 238000009877 rendering Methods 0.000 abstract description 3
- 230000003197 catalytic effect Effects 0.000 description 114
- 229920005989 resin Polymers 0.000 description 43
- 239000011347 resin Substances 0.000 description 43
- 239000000243 solution Substances 0.000 description 35
- 239000010408 film Substances 0.000 description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 31
- 238000000034 method Methods 0.000 description 31
- 229910052802 copper Inorganic materials 0.000 description 28
- 239000010949 copper Substances 0.000 description 28
- 150000002902 organometallic compounds Chemical class 0.000 description 28
- 238000000151 deposition Methods 0.000 description 23
- 239000010410 layer Substances 0.000 description 23
- 239000003795 chemical substances by application Substances 0.000 description 21
- -1 palladium ions Chemical class 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 229920000647 polyepoxide Polymers 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 17
- 239000000853 adhesive Substances 0.000 description 17
- 230000001070 adhesive effect Effects 0.000 description 17
- 238000005530 etching Methods 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 238000000454 electroless metal deposition Methods 0.000 description 16
- 239000011888 foil Substances 0.000 description 15
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 15
- 229910052737 gold Inorganic materials 0.000 description 15
- 239000010931 gold Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 125000002524 organometallic group Chemical group 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 239000003822 epoxy resin Substances 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 150000001412 amines Chemical class 0.000 description 11
- 239000013522 chelant Substances 0.000 description 11
- 239000000976 ink Substances 0.000 description 11
- 238000010899 nucleation Methods 0.000 description 11
- 229920000768 polyamine Polymers 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000004840 adhesive resin Substances 0.000 description 9
- 229920006223 adhesive resin Polymers 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 230000001235 sensitizing effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000004606 Fillers/Extenders Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229920001187 thermosetting polymer Polymers 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000008139 complexing agent Substances 0.000 description 6
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229910052703 rhodium Inorganic materials 0.000 description 6
- 239000010948 rhodium Substances 0.000 description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 229910000365 copper sulfate Inorganic materials 0.000 description 5
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- 238000007645 offset printing Methods 0.000 description 4
- 150000002924 oxiranes Chemical class 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- KXZJHVJKXJLBKO-UHFFFAOYSA-N chembl1408157 Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=CC=1C1=CC=C(O)C=C1 KXZJHVJKXJLBKO-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Chemical class O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 3
- 230000000536 complexating effect Effects 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- GQZXNSPRSGFJLY-UHFFFAOYSA-N hydroxyphosphanone Chemical compound OP=O GQZXNSPRSGFJLY-UHFFFAOYSA-N 0.000 description 3
- 229940005631 hypophosphite ion Drugs 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- SDKPSXWGRWWLKR-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-1-sulfonic acid Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O SDKPSXWGRWWLKR-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 2
- UWNADWZGEHDQAB-UHFFFAOYSA-N 2,5-dimethylhexane Chemical group CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 2
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical group CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- 229920006397 acrylic thermoplastic Polymers 0.000 description 2
- 150000001266 acyl halides Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- BELZJFWUNQWBES-UHFFFAOYSA-N caldopentamine Chemical compound NCCCNCCCNCCCNCCCN BELZJFWUNQWBES-UHFFFAOYSA-N 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 235000019256 formaldehyde Nutrition 0.000 description 2
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical compound CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 239000012279 sodium borohydride Substances 0.000 description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000001119 stannous chloride Substances 0.000 description 2
- 235000011150 stannous chloride Nutrition 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 2
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 2
- 229910001432 tin ion Inorganic materials 0.000 description 2
- 229960001124 trientine Drugs 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- RRKODOZNUZCUBN-CCAGOZQPSA-N (1z,3z)-cycloocta-1,3-diene Chemical compound C1CC\C=C/C=C\C1 RRKODOZNUZCUBN-CCAGOZQPSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- MXHKJQTYOAFPBY-UHFFFAOYSA-N 2-(2,3-dihydroxypropoxycarbonyl)benzoic acid Chemical class OCC(O)COC(=O)C1=CC=CC=C1C(O)=O MXHKJQTYOAFPBY-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- KFDNQUWMBLVQNB-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;sodium Chemical compound [Na].[Na].[Na].[Na].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KFDNQUWMBLVQNB-UHFFFAOYSA-N 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 241000545744 Hirudinea Species 0.000 description 1
- 229920013646 Hycar Polymers 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 1
- DNSISZSEWVHGLH-UHFFFAOYSA-N butanamide Chemical compound CCCC(N)=O DNSISZSEWVHGLH-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- MOIPGXQKZSZOQX-UHFFFAOYSA-N carbonyl bromide Chemical compound BrC(Br)=O MOIPGXQKZSZOQX-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 150000004695 complexes Chemical class 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- IZLAVFWQHMDDGK-UHFFFAOYSA-N gold(1+);cyanide Chemical compound [Au+].N#[C-] IZLAVFWQHMDDGK-UHFFFAOYSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000001457 metallic cations Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XPVOJYDIBHYVFL-UHFFFAOYSA-N n'-[2-(2-aminoethylamino)ethyl]ethane-1,2-diamine;hydrochloride Chemical compound Cl.NCCNCCNCCN XPVOJYDIBHYVFL-UHFFFAOYSA-N 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-K pentetate(3-) Chemical compound OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O QPCDCPDFJACHGM-UHFFFAOYSA-K 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical class O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 229940080818 propionamide Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000010019 resist printing Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- WHNXAQZPEBNFBC-UHFFFAOYSA-K trisodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O WHNXAQZPEBNFBC-UHFFFAOYSA-K 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06Q—DECORATING TEXTILES
- D06Q1/00—Decorating textiles
- D06Q1/04—Decorating textiles by metallising
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/422—Plated through-holes or plated via connections characterised by electroless plating method; pretreatment therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0236—Plating catalyst as filler in insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/12—Using specific substances
- H05K2203/121—Metallo-organic compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/425—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
- H05K3/427—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31696—Including polyene monomers [e.g., butadiene, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31699—Ester, halide or nitrile of addition polymer
Definitions
- a method for rendering insulating compositions receptive to the deposition of an electroless metal comprises utilizing in such compositions an organic compound of a metal which is a member selected from the metals in Groups lB and 8 of the Periodic Table of Elements, including mixtures of such compounds.
- This invention relates to materials and techniques for metallizing insulating substrates generally and for the manufacture of printed circuits particularly.
- Another object of this invention is to make rugged and durable metallized objects from such catalytic insulating blanks.
- a further object of this invention is to make printed circuit boards from such blanks, including one-layer, twolayer and multi-layer boards.
- a further object of this invention is to make from such blanks printed circuit boards, including one-layer, twolayer and multi-layer boards, which are provided with conductive passageways.
- An additional object of this invention is to provide materials and techniques for producing high density printed circuit boards, including high density one-layer, two-layer and multi-layer boards which are provided with conductive passageways, or, as more commonly referred to, plated through holes.
- Still a further object of this invention is to provide materials and techniques for producing new and improved printed circuit armatures.
- one such treatment involves immersing the perforated insulating base material first in an aqueous solution of stannous chloride having a pH of about 6.6 to 7.4, followed by washing, after which the substratum is immersed in an acidic aqueous solution of palladium chloride having a pH of about 4.8 to 5.4.
- the perforated substratum is simply immersed in a one-step seeder sensitizer acidic aqueous solution comprising a mixture of stannous chloride and palladium chloride.
- Such aqueous seeding and sensitizing solutions have important limitations. Hydrophobic plastics cannot be readily wetted with such solutions and therefore the sensitization achieved with such materials is ordinarily less than satisfactory.
- aqueous seeding and sensitizing solutions are utilized to sensitize lateral walls Patented Feb. 2, 1971 ice of the holes or passageways in panels provided with metal foil on one or more surfaces of the panel, the bond between the hole plating and the surface foil tends to be weak. This is so because use of such seeding and sensitizing systems result in depositing a seeder layer on the surface foil, including the edges thereof which surround the holes. This seeder layer interferes with the bond between the surface foil edges surrounding the holes and electroless metal deposited simultaneously on the edges and on the walls surrounding the holes.
- the initial foil may not be thick enough for the desired printed circuit component and additional metal may therefore have to be added to thicken the pattern.
- additional metal may therefore have to be added to thicken the pattern.
- metals such as nickel, gold, silver and rhodium, including mixtures of such metals, are electroplated or electrolessly deposited on an initial layer of copper foil or cladding during the manufacture of printed circuits from copper clad laminates.
- the bond between the copper and the metal subsequently superimposed on the copper also tends to be weak.
- the weakness is attributable to the intermediate seeder layer formed on the metal cladding by the seeder-sensitizer solutions of the type described.
- use of the catalytic blanks and compositions of the present invention eliminates the need for such conventional seeding and/ or sensitizing solutions and therefore eliminates the problems concomitant with the use thereof.
- use of the catalytic blanks and compositions of this invention insures a strong bond between the laminate foil bonded to the catalytic blank and electroless metal deposited on the blank, e.g., on walls surrounding holes, since no intermediate seeder layer is present to interfere with the bond.
- use of these catalytic blanks and compositions leads to the achievement of uniformly high bond strengths between the insulating substratum itself and the electroless metal deposit.
- compositions of the present invention represent an improvement over the seeding and/or sensitizing systems heretofore employed. They are extremely easy to prepare, are readily responsive to deposition when exposed to electroless metal baths; are adaptable to a wide variety of substrata and processing conditions; and are also quite economical.
- compositions of this invention utilize relatively small amounts of catalytic metals of Groups l-B and 8 of the Periodic Table of Elements and thus permit efiicient utilization of such metals generally, and the precious metals in those groups particularly.
- the seeding systems of the present invention are also non-conducting in nature, thereby rendering them highly useful for making printed circuits by both positive and negative print techniques.
- the catalytic compositions of the present invention comprise organo-metallic compounds which contain a metal or compound of a metal selected from Groups 1-B or 8 of the Periodic Table of Elements which is catalytic to the reception of electroless metal.
- Preferred metals from the aforesaid groups are gold, silver, platinum, palladium, rhodium, tin, copper and iridium.
- the organo-metallic compounds or complexes are reaction products or chemical complexes formed by reacting or complexing a metal or compound containing a metal of Groups l-B or 8 of the Periodic Table of Elements, with a suitable organic compound.
- a relatively high molecular weight organo-metallic compound or complex which has associated therewith a comparatively small percentage by weight of the Groups 1-B or 8 metal. Selection of such materials leads to a considerable cost savings, especially when the Groups 1-B or 8 metal is a noble metal, such as gold, silver, palladium and platinum.
- organo-metallic compounds or complexes of this invention may themselves be formed into catalytic bases, catalytic adhesives, catalytic inks or other suitable catalytic composition forms which are capable of being metallized directly upon exposure to electroless metal deposition solutions.
- such compounds or complexes could be admixed with or dissolved in suitable extending media to form or to coat substrata to thereby render them sensitive to the electroless deposition of metal.
- Suitable extenders for the organo-metallic compounds are carboxylic acids, alcohols, acyl halides, ketones, esters, sulfoxides, amines and the like.
- ketones are acetone, methylethyl ketone, methyl isobutyl ketone, mesityl oxide, di-isobutyl ketone, ethyl butyl ketone and isophorone.
- the alcohols which may be used as extenders or solvents include primary, secondary and tertiary monohydric alcohols, and also polyhydric alcohols. Typical are methyl alcohol, ethyl alcohol, isopropyl alcohol, npropyl alcohol, butyl alcohol, secondary butyl alcohol, isobutyl alcohol, methyl isobutyl carbinol. Preferred for use are the long chain alcohols, such as iso-octyl alcohol.
- Typical of the polyhydric alcohols i.e., alcohols which have more than one hydroxyl group, are ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, heptamethylene glycol, glycerol and the like.
- Carboxylic acids which may be used as solvents or extenders for the organo-metallic compounds or com plexes include formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, n-caproic acid, n-heptoic acid, caprylic acid and n-nonylic acid. Also may be used halogen acids such as dichloroacetic acid. Dicarboxylic acids as well as polycarboxylic acids and also acid anhydrides and acyl halides may also be used.
- aldehydes that could serve as the extender or solvent may be mentioned acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valearaldehyde, n-capronaldehyde, nheptaldehyde, and the like.
- amines including primary, secondary and tertiary amines.
- Typical of the amines are methyl amine, dimethyl amine, trimethyl amine, ethyl amine, and n-propyl amine.
- polyamines having two or more primary nitrogens such as ethylene diamine, propylene diamine, diethylene triamine, dipropylene triamine, triethylenetetraamine, tetraethylene pentamine, tetrapropylene pentamine and mixtures of the foregoing.
- amides including polyamides, amido-amines, and poly-amidoamines. Typical of the amides are formamide, acelnmide, propionamide and butyramide.
- the amides, polyamides, amido-amines and polyamido-amines which may serve as the extender or solvent are condensation products of monocarboxylic acids, polycarboxylic acids, or mixtures of monocarboxylic acids and polycarboxylic acids of the type described with amines and polyamines of the type described.
- the extender may be used heterocyclic nitrogen containing compounds such as pyrrole, pyrrolidone, piperidine, pyridine and the like; sulfur containing organic compounds such as dimethyl sulfoxide; halogenated hydrocarbons such as methylene chloride, propylene chloride; ethers, such as ethyl ether, methyl ether, and propyl ether; and esters, such as ethyl formate, methyl acetate, n-butyl acetate, n-amyl acetate, isoamyl acetate, methyl propionate and the like.
- heterocyclic nitrogen containing compounds such as pyrrole, pyrrolidone, piperidine, pyridine and the like
- sulfur containing organic compounds such as dimethyl sulfoxide
- halogenated hydrocarbons such as methylene chloride, propylene chloride
- ethers such as ethyl ether, methyl ether, and propyl
- extender may also be used substituted and unsubstituted hydrocarbons of the alkane, alkene and alkyne series, and also substituted and unsubstituted hydrocarbons of the aromatic series.
- Organic resins may also serve as extenders or solvents for the organo-metallic compounds, including thermosetting resins, thermoplastic resins and mixtures of the foregoing.
- thermoplastic resins may be mentioned the acetal resins: acrylics, such as methyl acrylate; cellulosic resins, such as ethyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose nitrate and the like; chlorinated polyethers; nylon; polyethylene and polypropylene; polystyrene; styrene blends, such as acrylonitrile styrene co-polymer and acrylonitrilebutadiene-styrene co-polymers; polycarbonates; polychlortrifiuoroethylene; and vinyl polymers and co-polymers, such as vinyl acetate, vinyl alcohol, vinyl butyral, vinyl chloride, vinyl chloride-acetate-co-polymer, vinylidene chloride, and vinyl formal.
- acrylics such as methyl acrylate
- cellulosic resins such as ethyl cellulose, cellulose acetate, cellulose
- thermosetting resins which may be mentioned are allyl phthalate; furane; melamine-formaldehyde; phenol formaldehyde and phenol-furfural co-polymer, alone or compounded with butadiene acrylonitrile co-polymer or acrylonitrile-butadiene-styrene co-polymers; polyacrylic esters; silicones; urea formaldehydes; epoxy resins; allyl resins; glyceryl phthalates; polyesters, and the like.
- the resin system containing the organO-metallic compound comprises a flexible adhesive resin, preferably in combination with a thermosetting resin.
- Typical of the thermosetting resins which may be used in such systems are the phenolic type resins and polyester resins.
- the polyester resins are ordinarily dissolved in styrene monomer and cross-linked by reaction with the styrene.
- the thermosetting resins may also be mentioned epoxy resins.
- Typical of the flexible adhesive resins which may be used. in such a system are the flexible adhesive epoxy resins, polyvinyl acetal resins, polyvinyl alcohol, polyvinyl acetate, and the like.
- the adhesive resin will be a natural or synthetic rubber, such as chlorinated rubber, butadiene acrylonitrile co-polymer rubber, or an acrylic polymer or co-polymer.
- the adhesive resins of the type described have appended thereto polar groups, such as nitrile, epoxide, acetal and hydroxyl groups. Such adhesive resins copolymerize with and plasticize thermosetting resins, and impart good adhesive characteristics through the action of the polar groups.
- organic compounds and resins heretofore described could also be reacted with metals or compounds of metals of Groups l-B or 8 to form the catalytic organo-metallic compounds or complexes of this invention.
- organo-metallics are susceptible of use in a wide variety of ways to elfect electroless metal deposition.
- the organo-metallics may be dissolved in a suitable solvent. It is then only necessary to dip the substratum to be sensitized in the solution of the organometallic and permit the substratum to dry, following which it may be contacted with the electroless metal deposition solution, to thereby initiate deposition of the electroless metal.
- the catalytic insulating base need not be organic. Thus, it could be made of inorganic insulating materials, e.g., inorganic clays and minerals such as ceramic, ferrite, Carborundum, glass, glass bonded mica, steatite and the like.
- inorganic insulating materials e.g., inorganic clays and minerals such as ceramic, ferrite, Carborundum, glass, glass bonded mica, steatite and the like.
- Preferred for use as the organo-metallic compound or complex are coordination compounds of ions of the Groups l-B or 8 metals described with olefins or olefinlike substances, such asthose described in Chemistry of the Coordination Compounds, John C. Bailar, editor, Reinhold Publishing Corp., 1956, chapter 15, pages 487- 508.
- Platinum-olefin compounds, iron-olefin compounds, iridium-olefin compounds, copper-olefin compounds, silver-olefin compounds and palladium-olefin compounds of the type described therein are particularly suitable for use.
- metal-olefin compound it is intended to mean those compounds of metal ions with olefin and olefin-like substances described in the article cited in this paragraph, which article is hereby incorporated herein by reference.
- organo-metallic compounds which may be used in the practice of this invention may, if desired, serve an additional function, e.g., they could serve as an accelerator or curing agent or hardening agent for an organic resin making up or forming a component of the substratum or composition desired to be rendered catalytic.
- the composition to be rendered catalytic is epoxy resin
- a metal-amine chelate compound in which the amino nitrogen is held by the metal through a Coordinate valence bond.
- chelate compounds are described, for example, in US. 2,819,233, the specification of which is incorporated herein by reference.
- Metal-amine chelates may be prepared by reacting a polyamine with an inorganic or organic salt or metal of Groups l-B or 8 of the Periodic Table of Elements to form an amine-metal salt complex or coordinate compound.
- the active hydrogen atoms of the amine groups are then rendered inactive by the metal toward the reactive epoxide groups of the resinous polyepoxide at room temperature; but upon application of heat or a suitable polar solvent, e.g., water, alcohol, and the like, a number of active hydrogens provided by the amine groups are released and react with a number of epoxide groups, cross-linking the resinous polyepoxide and converting it to its insoluble, infusible state.
- a suitable polar solvent e.g., water, alcohol, and the like
- the aminemetal salt complex-polyepoxide composition has excellent catalytic properties and is stable.
- the metal used in making the amine-metal organic salt complex or chelate compound is one which, when reduced to a salt by an organic acid and reacted with the polyamine, forms a coordinate valence bond holding the nitrogen of the amine groups.
- metals are platinum, palladium, iron, iridium, gold and silver.
- organic acids suitable for formation of the metal salt are aliphatic acids such as acetic, hexoic,
- Polyamines suitable for reaction with the metal organic salt, to form the complex or chelate compound are those which in themselves are capable of reacting with epoxide groups through active hydrogens provided by the different amine groups.
- Such polyamines contain two or more amino nitrogens preferably attached to aliphatic carbon atoms. Examples of such amines include ethylenediamine, propylene diamine, diethylenetriamine, dipropylene triamine, triethylenepentamine, tetrapropylene pentamine, and mixtures of the foregoing.
- higher alkyl polyamines satisfying the above formulae such as alkyl polyamines in which the alkyl group is butyl, hexyl, octyl and so forth.
- Duomeen 0 consists essentially of a mixture of N-alkyl trimethylene diamines derived from soya acids.
- the metal-amine compounds may be made from both inorganic and organic salts of Groups 1-3 and 8 of the Periodic Table of Elements.
- Polyamines such as diethylenetriamine complexes of the chlorides and acetates of metals from Groups 1-13 and 8 are particularly useful.
- the proportions of the chelate compound and polyepoxide resin may be varied over a wide range; for any selected proportion the complex cures the epoxy resin with a relatively small amount of amine.
- the ratio of active amine group to epoxy group Will be 0.8:1 to 12:1, although much higher ratios can be used.
- organo-metallic compound for practice of this invention may be mentioned carbonyls of the Group 8 metals, such as the iron carbonyls, and iridium carbonyls.
- Metal alkyls such as metal diisobutyl, metal triiso butyl, metal triethyl and metal ditoluene, wherein the metal is selected from Groups 18 or 8 of the Periodic Table of Elements may also be used.
- Group 8 metal dibenzenes and Groups 1B and 8 metal dimesitylene diodides already mentioned are the metal olefin compounds.
- Typical of this group are the bis-cyclopeniadienyls of a Group 8 metal; also may be mentioned esters, such as acetylacetonates of the metals described. Also may be used metallic-organo hydride compounds, such as metal diethyl hydride and metal dimethyl hydride, wherein the metal is selected from the Groups l-B and 8 of the Periodic Table of Elements. Nitro organo compounds such as metal nitrosyl carbonyls may also be used.
- Organo-metallic compounds such as alkyl and aryl metal carbonyls, e.g., benzene metal tricarbonyl, phenathrene metal tricarbonyl, naphthalene metal ortho-tricarbonyls, naphthalene metal tricarbonyl, ortho-xylene metal tricarbonyl, benzene metal tricarbonyl, cyclo-octadiene metal tricarbonyl, bis-cyclopentadienyl chlorides, bromides and diiodides of the metals described herein, cyclopentadienyl metal carbonyls, carbonyl metal halogen such as metal carbonyl bromide, metal carbonyl chloride and the like, may also be used.
- benzene metal tricarbonyl e.g., benzene metal tricarbonyl, phenathrene metal tricarbonyl, naphthalene metal ortho-tricarbonyls, naphthalene metal tricarbonyl,
- the autocatalytic or electroless metal deposition solutions for use with the catalytic insulating bases and adhesives described comprise an aqueous solution of a water soluble salt of the metal or metals to be deposited, a reducing agent for the metal cations, and a complexing or sequestering agent for the metal cations.
- the function of the complexing or sequestering agent is to form a water soluble complex with the dissolved metallic cations so as to maintain the metal in solution.
- the function of the reducing agent is to reduce the metal cation to metal at the appropriate time, as will be made more clear hereinbelow.
- Typical of such solutions are electroless copper, electroless nickel and electroless gold solutions.
- Such solutions are well known in the art and are capable of auto catalytically depositing the identified metals without the use of electricity.
- Typical of the electroless copper solutions which may be used are those described in US. Pat. 3,095,309, the description of which is incorporated herein by reference.
- such solutions comprise a source of cupric ions, e.g., copper sulfate, a reducing agent for cupric ions, e.g., formaldehyde, a complexing agent for cupric ions, e.g., tetrasodium ethylenediaminetetraacetic acid, and a pH adjustor, e.g., sodium hydroxide.
- Typical electroless nickel baths which may be used are described in Brenner, Metal Finishing, November 1954, pages 68 to 76, incorporated herein by reference. They comprise aqueous solutions of a nickel salt, such as nickel chloride; an active chemical reducing agent for the nickel salt, such as the hypophosphite ion; and a complexing agent, such as carboxylic acids and salts thereof.
- a nickel salt such as nickel chloride
- an active chemical reducing agent for the nickel salt such as the hypophosphite ion
- a complexing agent such as carboxylic acids and salts thereof.
- Electroless gold plating baths which may be used are disclosed in U.S. Pat. 2,976,181, hereby incorporated herein by reference. They contain a slightly water soluble gold salt, such as gold cyanide, a reducing agent for the gold salt, such as the hypophosphite ion, and a chelating or complexing agent, such as sodium or potassium cyanide.
- the hypophosphite ion may be introduced in the form of the acid or salts thereof, such as the sodium, calcium and the ammonium salts.
- the purpose of the complexing agent is to maintain a relatively small portion of the gold in solution as a water soluble gold complex, permitting a relatively large portion of the gold to remain out of solution as a gold reserve.
- the pH of the bath will be about 13.5, or between about 13 and 15, and the ion ratio of hypophosphite radical to insoluble gold salt may be between about 0.33 and :1.
- electroless copper depositing baths suitable for use will now be described:
- EXAMPLE 2 Moles/liter Copper sulfate 0.02 Sodium hydroxide 0.05 Sodium cyanide 0.0002 Trisodium N-hydroxyethylethylenediaminetriacetate 0.032 Formaldehyde 0.08 .Water Remainder This bath is preferably operated at a temperature of about 56 C., and will deposit a coating of ductile electroless copper about 1 mil. thick in 21 hours.
- very thin conducting metal films may be laid down.
- the metal films superimposed by electroless metal deposition will range from 0.1 to 7 mils. in thickness, with metal films having a thickness of even less than 0.1 mil. being a distinct possibility.
- the organo-metallics may be added to photoresists which may in turn be used to coat a substratum which is desired to be metallized.
- the photoresist may then be photo printed, and following development, the substratum is immersed in an electroless metal deposition solution to metallize the area of the resist still remaining intact following development.
- the organo-metallic compounds may be dissolved in a solvent, and the solution then used for seeding purposes.
- the organo-metallics in addition to being highly useful for seedling plastic substrate, as by immersion, are also suitable for impregnating coating materials, such as photoresists, to render such compositions catalytic to the initiation of electroless copper deposition.
- the organo-metallics may also be mixed with the solid catalytic agent systems of the type described in co-pending application Ser. No. 249,063, now US. Pat. 3,226,256, to make such systems more responsive to electroless metal deposition.
- the organo-metallic compounds of this invention may also be mixed with a resin binder to form a catalytic ink.
- the substrata need only be immersed in or sprayed with the resin binder containing the organo-metallic to deposit on the substratum a minor amount of resin containing therein the catalytic agent. Suitable solvents may be used in this system when required.
- Ethylene glycol monoethyl ether acetate 600 Epoxy resin (ERL 2256) 109 Acrylonitrile butadiene (Hycar 1312) 20 Phenolic resin (SP 20 Phenolic resin (SP 126) 20 Phenolic resin (SP 6600) 20 Acrylonitrile butadiene (Paracil CV) 144 Silicon dioxide-(Cab-O-Sil) 50 Wetting agent (Igepal 430) 17.5
- EXAMPLE 6 An organic metallic compound was prepared by mixing the following composition:
- the composition was heated to C. for 3 minutes. After cooling, the resulting organo-metallic compound was added to the adhesive binder of Example 6 in an amount sufiicient to produce a composition containing 0.2% palladium by weight.
- the resulting product when exposed to a copper electroless deposition solution of the type described in Example 1 was highly catalytic to the deposition of electroless copper.
- Epoxy resin (Epon 826) 400 Dimethyl formamide 70 Tertiary butyl perbenzoate 1.5 Palladium chloride 8
- the first three components of the formula were heated to 50 C. following which the palladium chloride was added.
- the admixture was then heated slowly to 130 C. and held at that temperature for minutes following which it was cooled.
- the resulting organo-metallic com pound was incorporated into epoxy resin, Epon 828, in an amount such that the epoxy resin contained 0.2% palladium by weight.
- the resulting epoxy resin when exposed to an electroless deposition solution of the type described hereinabove in Example 1, received a deposit of electroless copper both on the surface and on walls surrounding apertures which were pre-formed in the resin.
- EXAMPLE 8 An organo-metallic chelate was prepared by dispersing 1 gram of palladium chloride in milliliters triethylene tetramine. The resulting chelate was used as an epoxy curing agent in the following composition:
- the resulting epoxy composition was catalytic to the reception of electroless copper.
- the organo-metallic compounds of the type described may be used in still other ways. For example, they could be conveniently used to impregnate paper, wood, Fiberglas cloth, finely divided clays and fillers, polyester fibers, and other porous solid materials to render such insulating solid materials catalytic to the reception of electroless copper.
- Such base materials for example, could be immersed in a solution of the organo-metallic compound, then dried to evaporate the solvent, leaving the catalytic organo-metallic compound throughout the interior as well as on the surface of the porous material.
- the resulting catalytic materials could then be incorporated into resins to produce a wide variety of catalytic substrata, the interior portions of which would be receptive to the deposition of electroless metal.
- electroless metal would deposit on the walls surrounding the holes, since the entire interior of the substratum, as well as the surface, would be catalytic.
- the catalytic organic metallic compounds could also be used as an ink to paint the surface areas on which electroless metal is to be deposited.
- the insulating base members on which electroless metal is to be deposited are most frequently formed of resinous material.
- the organo-metallic compounds disclosed herein could be dissolved into a resin after which the resin could be set to form the base.
- a thin film or strip of unpolymerized resin having dissolved therein the organo-metallic compounds of this invention could be pre-formed or pre-molded, and then laminated to a resinous insulating base, and cured thereon.
- the insulating base could for example be made up of laminates, e.g., resin impregnated paper sheets, resin impregnated Fiberglas sheets, and the like.
- a resinous ink having the catalytic compound dissolved therein could be printed 1.0 on the surface, as by silk screen printing, of an insulating support and cured thereon.
- a particularly important embodiment of the invention is that wherein the catalytically active organic-metallic compound is dissolved or dispersed in a resin which may in turn be formed into a three-dimensional object, as by molding.
- the entire composition including the interior is catalytic.
- electroless metal deposition solution electroless metal deposits not only on the exposed portions of the surface of the article, but also on the Walls surrounding the apertures.
- This embodiment is especially suitable for making printed circuit patterns having plated through holes, i.e., holes having surrounding walls which are plated with metal to form through connections between a surface supporting a printed circuit pattern, and the interior of the substratum supporting the circuit pattern.
- interconnecting holes could be bored into the catalytically active article, and then the article subjected to an electroless copper deposition, to thereby deposit copper on the walls surrounding the holes. Following electroless copper deposition, the interconnecting holes, which are now metallized, form a conducting pattern which may be limited to the interior portion of the article.
- printed circuits may be made by employing either the direct or reverse printing technique, since the organometallics are non-conducting.
- the organo-metallics of this invention could be used as additives to render photoresists sensitive to electroless metal deposition; as a pre-treatment composition whenever and wherever metallization of insulating substrata is desired; as impregnants for porous plastics to be metallized; as an impregnant for ceramics or clays to be metallized; in the form of sensitizer-seeder solution for sensitizing insulating substrata to the reception of electroless metal; as an activator and penetrant for solid particles, which in turn are incorporated into insulating material in the form of an ink or a coating composition.
- the organometallics of this invention could also serve as wash sensitizers and penetrants for thermoplastic adhesives, such as acrylonitrile-butadiene-styrene acrylics, vinyls, etc., to render these thermoplastic materials receptive to the deposition of electroless metal.
- thermoplastic adhesives such as acrylonitrile-butadiene-styrene acrylics, vinyls, etc.
- a blank for the manufacture of printed circuits which comprises an insulating base material which is formed in whole or in part of an insulating organometallic compound which is catalytic to the reception of electroless metal.
- a thin metal film is superimposed on one or more surfaces of the base and adhered thereto.
- Blanks of the type described could be used to prepare one-layer, two-layer and multi-layer printed circuit boards with and without plated through holes in the manner more particularly described in co-pending application Ser. No. 561,123, filed June 28, 1966 and now abandoned.
- FIGS. 1 and 2 are three-dimensional views of certain embodiments of the blanks of this invention.
- FIGS. 3 and 4 are cross-sectional views of further embodiments of the catalytic blanks of this invention.
- FIGS. 5A-F is a schematic illustration of the steps utilized in making a one-sided printed circuit board from the blank of FIG. 1;
- FIGS. 6 and 7 are cross-sectional views of typical embodiments of two-sides plated through hole printed circuit boards produced in accordance with this invention utilizing the blanks of FIGS. 2 and 4, respectively;
- FIG. 8 is a cross-sectional view of a one-sided plated through hole circuit board manufactured from the blank of FIG. 3.
- FIG. 1 a blank which comprises, in its simplest form, an insulating base 10 having distributed therein an organo-metallic agent of the type described which is catalytic to the reception of electroless metal from an electroless metal deposition solution.
- an organo-metallic agent of the type described which is catalytic to the reception of electroless metal from an electroless metal deposition solution.
- catalytic is employed it will refer to the organo-metallic agents described hereinabove.
- the catalytic agent 12 may be dissolved in or dispersed throughout the base 10.
- the insulating base material itself may be catalytic to the reception of electroless metal, e.g., the insulating base material may be formed in whole or in part of an insulating organo-metallic compound which is catalytic to the reception of electroless metal.
- superimposed on the base 10 and adhered thereto is a thin unitary and integral metal film or laminate 14 which preferably covers and is substantially conterminous with, Le, has the same boundaries as, the surface of base 10.
- the thickness of the metal film 14 will depend primarily upon the manner in which it is fabricated and bonded to the base 10, and will also depend upon the ultimate use to which the blank is to be put.
- the metal film will have a thickness of between about 0.05 micron and 200 microns.
- the metal film 14 is copper.
- the thickness of the metal film 14 when made of copper will preferably be such that its weight will vary between about 0.03 and 2 ounces per square foot.
- the metal film 14 When the metal film 14 is superimposed on the base 10 by means of conventional metal cladding techniques, i.e., by preforming a thin foil of metal, e.g., by electrolytic deposition, and laminating it to the base, the foil 14 will have a thickness of at least about 17 microns. On the other hand, if the metal film is produced by vapor deposition or by the electroless chemical metal deposition technique described herein, it can be as thin as 0.05 micron.
- the film 14 is produced by electroless metal deposition, preferably electroless copper deposition, and has a thickness of between about 0.05 and 30 microns, preferably bet-ween about 0.1 and 10 microns.
- Thin films of the type disclosed having a thickness of less than microns and preferably between 2 and 4 microns, have the ability to be quick etched, as described hereinbelow.
- FIG. 2 there is shown an embodiment of the blank which comprises an insulating member containing a catalytic agent 12. Adhered to both surfaces of the base are thin unitary metal films 14.
- FIGS. 3 and 4 illustrate modified embodiments of the blank shown in FIGS. 1 and 2.
- the catalytic base 10 has superimposed thereon an insulating adhesive resin 18 which is itself catalytic to the reception of electroless metal.
- the adhesive resin 18 has dissolved therein or dispersed therein a catalytic agent.
- the adhesive resin 18 may be formed in whole or in part of an insulating organo-metallic compound which is itself catalytic to the reception of electroless metal.
- the thin layer of metal 14 is adhered to the base 10 by the catalytic adhesive 18.
- the catalytic base 10 is coated on both surfaces with an adhesive 18, which is catalytic, and thin metal films 14 are adhered to both surfaces of base 10 by the adhesive 18.
- FIG. 5 illustrates the steps to be used in the manufacture of a one-sided plated through hole board from the blank shown in FIG. 1.
- FIG. SA illustrates the starting blank comprising a catalytic base 10 having a thin metal film 14 adhered to the upper surface.
- the thin metal film may but need not be conterminous with the upper surface.
- a negative resin mask 20 has been printed onto the metal foil 14 to leave exposed a positive pattern of the desired printed circuit.
- a hole 22 has been provided as by punching or drilling through the foil 14 and base 10, at an interconnecting point of the desired circuit.
- the blank as it appears in FIG. 5C is then immersed in an electroless metal plating bath of the type described herein to deposit metal 26 on the wall 30 of hole 22. Additional metal 26 deposits on the surface of the metal film 14 which is not covered by the mask 20.
- an electrode may be attached to the board after the wall 24 has been formed by electroless deposition, and the circuit pattern and hole walls built up by conventional electrolytic deposition of metal.
- the blank is treated with a suitable solvent to remove the mask 20.
- the blank following removal of the mask '20, is depicted in FIG. 5E.
- the panel is subjected to an etching solution, e.g., ferric chloride, ammonium persulfate, and the like, when the metal film 14 is copper, to thereby remove the thin film of copper .34 which was initially covered by the mask 20.
- an etching solution e.g., ferric chloride, ammonium persulfate, and the like
- the metal film 14 is thin, e.g., less than 10% the thickness of the desired circuit pattern, there will be no need to mask the circuit pattern 26 or the plating 24 on the hole walls 30 during the etching step, because the film of metal 14 is so extremely thin compared with the circuit pattern 26 that it will be removed before any substantial etching of circuit 26 or plated wall 24 occurs.
- the initial metal film 14 is thick, the circuit 26 and wall 30 will have to be masked prior to the etching operation.
- the etching operation may be carried out by either blasting the surface of the panel with a fine spray of etchant solution or by immersing the panels, which are held in a rack or on a conveyor, in an agitated tank of etchant.
- concentration of the etching solution and the time of contact will be controlled to insure complete removal of the thin layer of copper foil in the areas 34.
- the panel should be water rinsed to remove all etching chemicals to thereby prevent contamination of the surface or edges of the panels.
- the circuit pattern may be plated with additional metals, such as silver, nickel, rhodium, gold or similar high wear resistant materials for special applications. When it is necessary to solder lugs or other hardware to the pattern, it is advisable to solder plate the conductive pattern.
- the procedure described above and illustrated in FIG. 5 may also be used to prepare a two-sided, plated through hole printed circuit board of the type shown in FIG. 6, starting with a blank of the type shown in FIG. 2.
- the circuit board comprises a catalytic base 10 having circuit patterns 52 and S4 superimposed on the lower and upper surfaces, respectively. Through connections between the circuit patterns is provided by hole 22, the lateral wall of which is coated with metal 24.
- the one-sided plated through hole board of FIG. 8 is prepared by applying the technique illustrated in FIG. 5 and described above to the blank of FIG. 3.
- the two-sided plated through hole board shown in FIG. 7 is prepared by applying the procedure of FIG. 5 to the blank shown in FIG. 4.
- FIG. 7 is prepared by applying the procedure of FIG. 5 to the blank shown in FIG. 4.
- circuits 52 and 54 on the lower and upper surfaces, respectively, of catalytic base are connected via plated through hole 22, the lateral walls of which are coated with electroless metal 24.
- all of the blanks described herein may be used to form metallized insulating substrates directly on insulating base materials without the necessity of seeding the insulating material prior to metallization.
- a distinct advantage of these blanks in printed circuit manufacture is that they can be used to produce directly rugged and reliable printed circuit boards having plated through holes. Use of such blanks eliminates the pre-seeding and/or pre-sensitizing steps of conventional practice together with the concomitant problems associated with such practice.
- Catalytic insulating bases containing non-catalytic surfaces may be made in a variety of ways.
- the catalytic insulating base could be made with a minimal amount of catalytic agent to insure that the surface of the base is extremely rich in insulating and extremely poor in catalyst.
- a base, or laminates impregnated with such a base will have surfaces which are substantially non-catalytic to the deposition of electroless metal.
- a catalytic insulating base rich in catalyst could be prepared and one or both surfaces thereon then coated with a non-catalytic insulating film or adhesive.
- a catalytic base is made by impregnating paper or fibrous substrata, e.g., Fiberglas
- a final gel coat of non-catalytic resin could be superimposed on the laminated structure during man-ufacture to produce the non-catalytic surface.
- a film of non-catalytic resin could be bonded to the substrata following completion of lamination.
- an agent which is catalytic to the reception of electroless metal is distributed throughout an insulating base or adhesive, as by dissolution, dispersion, or by reacting a part or all of the material of the base or adhesive with a catalytic agent so as to form a chemical compound or complex, which is itself catalytic to the reception of electroless metal.
- the resulting base or adhesive will be catalytic to the reception of electroless metal throughout its interior.
- Exposed surfaces of the catalytic base materials of this invention are catalytic to the reception of electroless metal, or may be rendered catalytic by subjecting the surface to relatively mild mechanical or chemical abrasion or etching or by coating the surface with catalytic adhesives of the type described.
- a film of metal as shown in FIGS. 1-4 may be readily superimposed on such a base simply by immersing the base in an electroless metal deposition solution of the type to be described.
- the catalytic base could actually be clad with a thin metal foil, using typical metal cladding or lamination techniques, e.g., by bonding a thin foil of metal to the base.
- a printed pattern may be formed on the metal clad blanks of this invention in a variety of ways.
- the surface is cleaned and degreased, and a light sensitive enamel is uniformly spread over the metal foil and dried.
- the photographic system of printing could also be used to produce the mask in the additive process for producing a circuit pattern by electroless metal deposition techniques described hereinabove.
- the light sensitive enamel could be made catalytic to the reception of electroless metal by dissolving or dispersing therein an agent which is catalytic to the reception of electroless metal.
- etch resist printing will ordinarily be carried out either by offset printing on an offset printing press or by screen stencil printing on a manual or automatically operative screen printing press.
- the step and repeat negative is used to produce, in the case of an offset printing press, an offset printing plate.
- Acid resist ink is transferred by a rubber covered roll from the printing plate to the metal clad base.
- the step and repeat negative is used to produce a stencil on the silk or wire mesh of the screen frame.
- the stencil is made photographically from the negative and reproduces it exactly.
- the ink used in printing is acid resistant, so that the portions of the metal foil covered thereby are not affected by the etching solution when the plate is contacted therewith.
- acid resistant inks are well understood in the art, and commonly comprise resins such as cellulose acetate, cellulose butyrate, casein-formaldehyde, styrene-maleic anhydride, and the like. Such materials are acid resistant but can be readily removed when desired by readily available solvents or otherwise.
- etching solution commonly used with copper clad stock is ferric chloride.
- the etching operation is carried out by either blasting the surface of the panel with a fine spray of ferric chloride or immersing the printed sheets, which are held in a rack or on a conveyor, in an agitated tank of ferric chloride.
- the etching operation is controlled by the concentration of the etching solution and time of contact, and these variables must be carefully controlled empirically for good results.
- a water rinsing process is employed to remove all etching chemicals, thereby preventing contamination of the surface or edges of the panel.
- a bare copper foil circuit is not adequate. If, for example, the circuit pattern is to be used as a switch, slip ring, or commutator, it may be necessary to plate the circuit pattern with silver, nickel, rhodium, gold and similar highly wear resistant metals. Where it is necessary to solder lugs or other hardware to the pattern, it may be advisable to have the conductor pattern solder plated.
- the metal layer may be any of the well known conductive metals, including copper, silver, gold, nickel, rhodium, aluminum and the like, including mixtures or alloys of such metals. Copper, aluminum, nickel and silver are particularly preferred.
- a preferred blank For metallization of plastics, as distinguished from printed circuit manufacture, a preferred blank consists of an inexpensive insulating base whose interior is noncatalytic, having a catalytic gel or other type of catalytic coating on one or both surfaces.
- the catalytic skin or coating could be molded or extruded on one or both surfaces of the insulating non-catalytic base.
- an oxidation or degradation agent such as sulfuric acid, chromic acid, permanganate, and the like.
- Particularly suitable is an aqueous mixture of sulfuric and chromic acid.
- micropores in the surface of the catalytic film or layer, and exposes the catalyst for contact with an electroless metal deposition solution. Such micropores also enhance the adhesion between the catalytic base and the electroless metal deposited thereon.
- the electroless metal may be electroless copper, electroless nickel, electroless silver, electroless gold or the like. Use of this blank accordingly would result in the economical production of metallized plastic articles, since the costly catalytic agents described herein need to be used only in thin surface films or layers on a surface or surfaces of the articles.
- Such articles could be manufactured for example by an extrusion process.
- the catalytic material could be extruded simultaneously as a skin over an insulating, non-catalytic base.
- a molding process could be employed wherein the catalytic film could be separately or simultaneously molded over an insulating noncatalytic base.
- the insulating base and the skin or surface film could either be the same as or a different resin system.
- the non-catalytic, insulating core of the articles under discussion is preferably made of cheap, readily available resins or plastics, such as acrylonitrile-butadiene-styrene (ABS), polyesters, phenolics such as phenol formaldehyde, and the like.
- the insulating base could be any of the resins described hereinabove as suitable for producing insulating blanks.
- the catalytic film or layer could be any such resins or resin systems described hereinabove having dispersed therein a catalytic agent of the type described.
- the catalytic film or layer could, for instance, correspond to the resin formulations given in any of the preceding examples.
- inks containing the catalytic agents described herein could be used to produce printed circuit patterns by printing a positive design of the pattern on non-catalytic surfaces, and then subjecting the base to electroless metal deposition.
- These catalytic agent containing inks have the advantage of being non-conducting, as already brought out.
- the metal component is a member selected from the group consisting of gold, silver, palladium, platinum, iridium, copper and rhodium.
- the insulating composition comprises an epoxy resin
- said catalytic compound is a chelate of a metal selected from Groups l-B and 8 of the Periodic Table of Elements, with a member selected from the group consisting of amines, polyamines, amides, polyamides, amino-amines, and poly-amido-amines, said chelate being capable of curing the epoxy resin.
- catalytic compound is a coordinate compound of a metal selected from Groups 1-B and 8 of the Periodic Table of Elements with an olefin.
- the insulating composition comprises an insulating molded resin substratum, the interior of which is catalytic to the reception of electroless metal.
- the insulating composition is a member selected from the group consisting of thermosetting resins, thermoplastic resins and mixtures of the foregoing,
- composition comprises in combination a thermosetting resin and a flexible adhesive resin.
- the insulating composition is a photoresist composition.
- the insulating composition is a resinous ink containing said catalytic compound.
- the insulating composition including said catalytic compound is provided with an aperture extending from at least one surface into the interior of the component, the walls of said aperture being receptive to the reception of electroless metal upon contact of the walls to an electroless metal deposition solution.
- a three-dimensional article comprising an insulating material which contains a catalytic compound as defined in claim 1, both the surface and interior portion of said article being catalytic to the deposition of electroless metal, at least a surface portion of said article having adhered thereto a thin film of metal.
- the thin metal film is a thin film of electroless metal.
- a three-dimensional article comprising an insulating material containing a catalytic compound as defined in claim 41, said article being provided with an aperture extending from one surface into the interior, the lateral walls surrounding the aperture being catalytic to the deposition of electroless metal.
- the thin metal film is a thin film of electroless metal.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60691967A | 1967-01-03 | 1967-01-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3560257A true US3560257A (en) | 1971-02-02 |
Family
ID=24430058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US606919A Expired - Lifetime US3560257A (en) | 1967-01-03 | 1967-01-03 | Metallization of insulating substrates |
Country Status (7)
Country | Link |
---|---|
US (1) | US3560257A (enrdf_load_stackoverflow) |
JP (1) | JPS501424B1 (enrdf_load_stackoverflow) |
DK (1) | DK143288C (enrdf_load_stackoverflow) |
ES (1) | ES348919A1 (enrdf_load_stackoverflow) |
FR (1) | FR1550676A (enrdf_load_stackoverflow) |
NL (1) | NL157660B (enrdf_load_stackoverflow) |
SE (1) | SE335657B (enrdf_load_stackoverflow) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3627576A (en) * | 1967-08-18 | 1971-12-14 | Degussa | Process for adherent metallizing of synthetic resins |
US3697817A (en) * | 1971-01-25 | 1972-10-10 | Rca Corp | Mounting attachment for a modular substrate |
US3772056A (en) * | 1971-07-29 | 1973-11-13 | Kollmorgen Photocircuits | Sensitized substrates for chemical metallization |
US3772078A (en) * | 1971-07-29 | 1973-11-13 | Kollmorgen Photocircuits | Process for the formation of real images and products produced thereby |
US3834373A (en) * | 1972-02-24 | 1974-09-10 | T Sato | Silver, silver chloride electrodes |
US3871903A (en) * | 1971-03-09 | 1975-03-18 | Hoechst Ag | Metallized shaped body of macromolecular material |
DE2635457A1 (de) * | 1976-08-04 | 1978-02-09 | Schering Ag | Katalytischer lack zur herstellung von gedruckten schaltungen |
DE2821303A1 (de) * | 1977-05-14 | 1978-11-23 | Hitachi Chemical Co Ltd | Verfahren zur verbesserung der haftung der oberflaeche eines isolierenden substrats |
US4493861A (en) * | 1981-12-23 | 1985-01-15 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for currentless metallization |
US4636441A (en) * | 1984-10-09 | 1987-01-13 | Bayer Aktiengesellschaft | Semi-finished products for the manufacture of printed circuit boards |
US4661384A (en) * | 1984-06-29 | 1987-04-28 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for electroless metallization |
EP0195332A3 (en) * | 1985-03-21 | 1987-08-05 | Bayer Ag | Printed circuits |
EP0250867A1 (en) * | 1986-06-16 | 1988-01-07 | International Business Machines Corporation | Seeding process for electroless metal deposition |
US4719145A (en) * | 1983-09-28 | 1988-01-12 | Rohm And Haas Company | Catalytic process and systems |
US4764401A (en) * | 1981-12-05 | 1988-08-16 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for electroless metallization |
EP0255012A3 (en) * | 1986-07-29 | 1989-07-26 | Bayer Ag | Process for modifying the adhesion of electroless metal coatings or plastic materials |
US4910072A (en) * | 1986-11-07 | 1990-03-20 | Monsanto Company | Selective catalytic activation of polymeric films |
DE3938710A1 (de) * | 1989-11-17 | 1991-05-23 | Schering Ag | Komplexverbindungen mit oligomerem bis polymerem charakter |
US5075039A (en) * | 1990-05-31 | 1991-12-24 | Shipley Company Inc. | Platable liquid film forming coating composition containing conductive metal sulfide coated inert inorganic particles |
US5075037A (en) * | 1986-11-07 | 1991-12-24 | Monsanto Company | Selective catalytic activation of polymeric films |
US5076841A (en) * | 1990-05-31 | 1991-12-31 | Shipley Company Inc. | Coating composition |
US5120578A (en) * | 1990-05-31 | 1992-06-09 | Shipley Company Inc. | Coating composition |
US5176743A (en) * | 1990-05-16 | 1993-01-05 | Bayer Aktiengesellschaft | Formulation of activating substrate surfaces for their electroless metallization |
US5200272A (en) * | 1988-04-29 | 1993-04-06 | Miles Inc. | Process for metallizing substrate surfaces |
DE4209708A1 (de) * | 1992-03-25 | 1993-09-30 | Bayer Ag | Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten |
US5264065A (en) * | 1990-06-08 | 1993-11-23 | Amp-Akzo Corporation | Printed circuits and base materials having low Z-axis thermal expansion |
US5279899A (en) * | 1992-03-17 | 1994-01-18 | Monsanto Company | Sulfonated polyamides |
US5288313A (en) * | 1990-05-31 | 1994-02-22 | Shipley Company Inc. | Electroless plating catalyst |
US5338567A (en) * | 1990-06-08 | 1994-08-16 | Amp-Akzo Corporation | Printed circuits and base materials precatalyzed for metal deposition |
US5378869A (en) * | 1992-06-02 | 1995-01-03 | Amkor Electronics, Inc. | Method for forming an integrated circuit package with via interconnection |
US5378268A (en) * | 1990-11-16 | 1995-01-03 | Bayer Aktiengesellschaft | Primer for the metallization of substrate surfaces |
US5397917A (en) * | 1993-04-26 | 1995-03-14 | Motorola, Inc. | Semiconductor package capable of spreading heat |
US5407622A (en) * | 1985-02-22 | 1995-04-18 | Smith Corona Corporation | Process for making metallized plastic articles |
US5419954A (en) * | 1993-02-04 | 1995-05-30 | The Alpha Corporation | Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof |
US5487964A (en) * | 1993-06-15 | 1996-01-30 | Bayer Aktiengesellschaft | Powder mixtures for metallization of substrate surfaces |
US5589446A (en) * | 1993-02-24 | 1996-12-31 | Tech Spray, Inc. | Process for removal of ionic salt deposits |
US5604191A (en) * | 1993-02-24 | 1997-02-18 | Tech Spray, Inc. | Composition for removal of ionic salt deposits |
US5637925A (en) * | 1988-02-05 | 1997-06-10 | Raychem Ltd | Uses of uniaxially electrically conductive articles |
US5882954A (en) * | 1997-10-06 | 1999-03-16 | Ford Motor Company | Method for adhering a metallization to a substrate |
US5952712A (en) * | 1996-07-18 | 1999-09-14 | Nec Corporation | Packaged semiconductor device and method of manufacturing the same |
US20050236182A1 (en) * | 2002-06-04 | 2005-10-27 | Noriki Hayashi | Board for printed wiring, printed wiring board, and method for manufacturing them |
US20050266214A1 (en) * | 2004-05-28 | 2005-12-01 | Ryosuke Usui | Wiring substrate and method of fabricating the same |
US20070261595A1 (en) * | 2004-10-08 | 2007-11-15 | Qinetiq Limited | Active Filler particles in Inks |
US20080038523A1 (en) * | 2006-06-20 | 2008-02-14 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board and fabricating method of the same |
US20130075946A1 (en) * | 2010-05-04 | 2013-03-28 | Unipixel Displays, Inc. | Method of fabricating micro structured surfaces with electrically conductive patterns |
US20130236656A1 (en) * | 2012-02-27 | 2013-09-12 | Liquid X Printed Metals, Inc. | Self-reduced metal complex inks soluble in polar protic solvents and improved curing methods |
EP3339471A1 (en) * | 2016-12-22 | 2018-06-27 | Rohm and Haas Electronic Materials LLC | Method for electroless plating |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2111136A1 (de) * | 1971-03-09 | 1972-09-28 | Kalle Ag | Verfahren zur Herstellung von metallisierten Formkoerpern aus makromolekularem Material |
-
1967
- 1967-01-03 US US606919A patent/US3560257A/en not_active Expired - Lifetime
- 1967-12-29 DK DK668967A patent/DK143288C/da active
- 1967-12-29 JP JP43000264A patent/JPS501424B1/ja active Pending
-
1968
- 1968-01-03 NL NL6800086.A patent/NL157660B/xx not_active IP Right Cessation
- 1968-01-03 FR FR1550676D patent/FR1550676A/fr not_active Expired
- 1968-01-03 SE SE00063/68A patent/SE335657B/xx unknown
- 1968-01-03 ES ES348919A patent/ES348919A1/es not_active Expired
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3627576A (en) * | 1967-08-18 | 1971-12-14 | Degussa | Process for adherent metallizing of synthetic resins |
US3697817A (en) * | 1971-01-25 | 1972-10-10 | Rca Corp | Mounting attachment for a modular substrate |
US3871903A (en) * | 1971-03-09 | 1975-03-18 | Hoechst Ag | Metallized shaped body of macromolecular material |
US3772056A (en) * | 1971-07-29 | 1973-11-13 | Kollmorgen Photocircuits | Sensitized substrates for chemical metallization |
US3772078A (en) * | 1971-07-29 | 1973-11-13 | Kollmorgen Photocircuits | Process for the formation of real images and products produced thereby |
US3834373A (en) * | 1972-02-24 | 1974-09-10 | T Sato | Silver, silver chloride electrodes |
DE2635457A1 (de) * | 1976-08-04 | 1978-02-09 | Schering Ag | Katalytischer lack zur herstellung von gedruckten schaltungen |
DE2821303A1 (de) * | 1977-05-14 | 1978-11-23 | Hitachi Chemical Co Ltd | Verfahren zur verbesserung der haftung der oberflaeche eines isolierenden substrats |
US4764401A (en) * | 1981-12-05 | 1988-08-16 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for electroless metallization |
US4493861A (en) * | 1981-12-23 | 1985-01-15 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for currentless metallization |
US4719145A (en) * | 1983-09-28 | 1988-01-12 | Rohm And Haas Company | Catalytic process and systems |
US4661384A (en) * | 1984-06-29 | 1987-04-28 | Bayer Aktiengesellschaft | Process for activating substrate surfaces for electroless metallization |
US4636441A (en) * | 1984-10-09 | 1987-01-13 | Bayer Aktiengesellschaft | Semi-finished products for the manufacture of printed circuit boards |
US5407622A (en) * | 1985-02-22 | 1995-04-18 | Smith Corona Corporation | Process for making metallized plastic articles |
US4728560A (en) * | 1985-03-21 | 1988-03-01 | Bayer Aktiengesellschaft | Electrical printed circuit boards |
EP0195332A3 (en) * | 1985-03-21 | 1987-08-05 | Bayer Ag | Printed circuits |
EP0250867A1 (en) * | 1986-06-16 | 1988-01-07 | International Business Machines Corporation | Seeding process for electroless metal deposition |
EP0255012A3 (en) * | 1986-07-29 | 1989-07-26 | Bayer Ag | Process for modifying the adhesion of electroless metal coatings or plastic materials |
US4910072A (en) * | 1986-11-07 | 1990-03-20 | Monsanto Company | Selective catalytic activation of polymeric films |
US5075037A (en) * | 1986-11-07 | 1991-12-24 | Monsanto Company | Selective catalytic activation of polymeric films |
US5637925A (en) * | 1988-02-05 | 1997-06-10 | Raychem Ltd | Uses of uniaxially electrically conductive articles |
US5200272A (en) * | 1988-04-29 | 1993-04-06 | Miles Inc. | Process for metallizing substrate surfaces |
DE3938710A1 (de) * | 1989-11-17 | 1991-05-23 | Schering Ag | Komplexverbindungen mit oligomerem bis polymerem charakter |
US5176743A (en) * | 1990-05-16 | 1993-01-05 | Bayer Aktiengesellschaft | Formulation of activating substrate surfaces for their electroless metallization |
US5120578A (en) * | 1990-05-31 | 1992-06-09 | Shipley Company Inc. | Coating composition |
US5076841A (en) * | 1990-05-31 | 1991-12-31 | Shipley Company Inc. | Coating composition |
US5075039A (en) * | 1990-05-31 | 1991-12-24 | Shipley Company Inc. | Platable liquid film forming coating composition containing conductive metal sulfide coated inert inorganic particles |
US5288313A (en) * | 1990-05-31 | 1994-02-22 | Shipley Company Inc. | Electroless plating catalyst |
US5264065A (en) * | 1990-06-08 | 1993-11-23 | Amp-Akzo Corporation | Printed circuits and base materials having low Z-axis thermal expansion |
US5338567A (en) * | 1990-06-08 | 1994-08-16 | Amp-Akzo Corporation | Printed circuits and base materials precatalyzed for metal deposition |
US5378268A (en) * | 1990-11-16 | 1995-01-03 | Bayer Aktiengesellschaft | Primer for the metallization of substrate surfaces |
EP0485839B1 (de) * | 1990-11-16 | 1995-01-04 | Bayer Ag | Primer zum Metallisieren von Substratoberflächen |
US5279899A (en) * | 1992-03-17 | 1994-01-18 | Monsanto Company | Sulfonated polyamides |
US5436034A (en) * | 1992-03-25 | 1995-07-25 | Bayer Aktiengesellschaft | Process for improving the adhesiveness of electrolessly deposited metal films |
DE4209708A1 (de) * | 1992-03-25 | 1993-09-30 | Bayer Ag | Verfahren zur Verbesserung der Haftfestigkeit von stromlos abgeschiedenen Metallschichten |
US5483100A (en) * | 1992-06-02 | 1996-01-09 | Amkor Electronics, Inc. | Integrated circuit package with via interconnections formed in a substrate |
US5378869A (en) * | 1992-06-02 | 1995-01-03 | Amkor Electronics, Inc. | Method for forming an integrated circuit package with via interconnection |
US5985785A (en) * | 1993-02-04 | 1999-11-16 | Alpha Corporation | Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof |
US5419954A (en) * | 1993-02-04 | 1995-05-30 | The Alpha Corporation | Composition including a catalytic metal-polymer complex and a method of manufacturing a laminate preform or a laminate which is catalytically effective for subsequent electroless metallization thereof |
US5589446A (en) * | 1993-02-24 | 1996-12-31 | Tech Spray, Inc. | Process for removal of ionic salt deposits |
US5604191A (en) * | 1993-02-24 | 1997-02-18 | Tech Spray, Inc. | Composition for removal of ionic salt deposits |
US5397917A (en) * | 1993-04-26 | 1995-03-14 | Motorola, Inc. | Semiconductor package capable of spreading heat |
US5487964A (en) * | 1993-06-15 | 1996-01-30 | Bayer Aktiengesellschaft | Powder mixtures for metallization of substrate surfaces |
US6130111A (en) * | 1996-07-18 | 2000-10-10 | Nec Corporation | Packaged semiconductor device and method of manufacturing the same |
US5952712A (en) * | 1996-07-18 | 1999-09-14 | Nec Corporation | Packaged semiconductor device and method of manufacturing the same |
US5882954A (en) * | 1997-10-06 | 1999-03-16 | Ford Motor Company | Method for adhering a metallization to a substrate |
US20050236182A1 (en) * | 2002-06-04 | 2005-10-27 | Noriki Hayashi | Board for printed wiring, printed wiring board, and method for manufacturing them |
US8231766B2 (en) | 2002-06-04 | 2012-07-31 | Sumitomo Electric Industries, Ltd. | Method for producing printed wiring board |
US20080063792A1 (en) * | 2002-06-04 | 2008-03-13 | Sumitomo Electric Industries, Ltd. | Board for printed wiring, printed wiring board, and method for manufacturing them |
US20050266214A1 (en) * | 2004-05-28 | 2005-12-01 | Ryosuke Usui | Wiring substrate and method of fabricating the same |
US7491895B2 (en) * | 2004-05-28 | 2009-02-17 | Sanyo Electric Co., Ltd. | Wiring substrate and method of fabricating the same |
US20070261595A1 (en) * | 2004-10-08 | 2007-11-15 | Qinetiq Limited | Active Filler particles in Inks |
US7794820B2 (en) * | 2006-06-20 | 2010-09-14 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board and fabricating method of the same |
US20110099807A1 (en) * | 2006-06-20 | 2011-05-05 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing printed circuit board |
US8065798B2 (en) | 2006-06-20 | 2011-11-29 | Samsung Electro-Mechanics Co., Ltd. | Method of manufacturing printed circuit board |
US20080038523A1 (en) * | 2006-06-20 | 2008-02-14 | Samsung Electro-Mechanics Co., Ltd. | Printed circuit board and fabricating method of the same |
US20130075946A1 (en) * | 2010-05-04 | 2013-03-28 | Unipixel Displays, Inc. | Method of fabricating micro structured surfaces with electrically conductive patterns |
US20130236656A1 (en) * | 2012-02-27 | 2013-09-12 | Liquid X Printed Metals, Inc. | Self-reduced metal complex inks soluble in polar protic solvents and improved curing methods |
EP3339471A1 (en) * | 2016-12-22 | 2018-06-27 | Rohm and Haas Electronic Materials LLC | Method for electroless plating |
CN108220930A (zh) * | 2016-12-22 | 2018-06-29 | 罗门哈斯电子材料有限责任公司 | 无电镀法 |
Also Published As
Publication number | Publication date |
---|---|
DK143288B (da) | 1981-08-03 |
DE1696603A1 (de) | 1972-01-05 |
FR1550676A (enrdf_load_stackoverflow) | 1968-12-20 |
JPS501424B1 (enrdf_load_stackoverflow) | 1975-01-17 |
NL157660B (nl) | 1978-08-15 |
DK143288C (da) | 1982-01-04 |
SE335657B (enrdf_load_stackoverflow) | 1971-06-01 |
ES348919A1 (es) | 1969-03-16 |
NL6800086A (enrdf_load_stackoverflow) | 1968-07-04 |
DE1696603B2 (de) | 1972-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3560257A (en) | Metallization of insulating substrates | |
US3925578A (en) | Sensitized substrates for chemical metallization | |
US3962494A (en) | Sensitized substrates for chemical metallization | |
US3799802A (en) | Plated through hole printed circuit boards | |
US3546009A (en) | Metallization of insulating substrates | |
US3772056A (en) | Sensitized substrates for chemical metallization | |
EP0616053B9 (en) | Self accelerating and replenishing non-formaldehyde immersion coating method | |
US3772078A (en) | Process for the formation of real images and products produced thereby | |
US3959547A (en) | Process for the formation of real images and products produced thereby | |
US3600330A (en) | Metallization of insulating substrates | |
US3625758A (en) | Base material and method for the manufacture of printed circuits | |
US3259559A (en) | Method for electroless copper plating | |
US3562038A (en) | Metallizing a substrate in a selective pattern utilizing a noble metal colloid catalytic to the metal to be deposited | |
US3628999A (en) | Plated through hole printed circuit boards | |
US3672986A (en) | Metallization of insulating substrates | |
US4097684A (en) | Electric wiring assemblies | |
US4339303A (en) | Radiation stress relieving of sulfone polymer articles | |
US4035500A (en) | Method of depositing a metal on a surface of a substrate | |
JPS6321752B2 (enrdf_load_stackoverflow) | ||
JPH01501402A (ja) | 選択的金属化法及びプリント回路基板の加層的製造方法 | |
EP0053279B1 (en) | Method of preparing a printed circuit | |
US3799816A (en) | Metallizing insulating bases | |
US3399268A (en) | Chemical metallization and products produced thereby | |
JPH0639711B2 (ja) | 基材を処理するための状態調整剤及びその方法 | |
US3674485A (en) | Method of manufacturing electrically conducting metal layers |