US3542658A - Electrolytic bath containing ammonium nitrate and a phenol - Google Patents

Electrolytic bath containing ammonium nitrate and a phenol Download PDF

Info

Publication number
US3542658A
US3542658A US722554A US3542658DA US3542658A US 3542658 A US3542658 A US 3542658A US 722554 A US722554 A US 722554A US 3542658D A US3542658D A US 3542658DA US 3542658 A US3542658 A US 3542658A
Authority
US
United States
Prior art keywords
phenol
stripping
bath
ammonium nitrate
grams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US722554A
Other languages
English (en)
Inventor
Horst Dillenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bergische Metallwarenfabrik Dillenberg & Co Kg
Dillenberg Bergische Metall
Original Assignee
Dillenberg Bergische Metall
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dillenberg Bergische Metall filed Critical Dillenberg Bergische Metall
Application granted granted Critical
Publication of US3542658A publication Critical patent/US3542658A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings

Definitions

  • the phenol is consumed during the course of the stripping and the invention contemplates replenishing it in order to maintain the concentration between the level of 1-20 grams per liter.
  • 800 grams of phenol may be needed during the stripping of one kilogram of semilustrous nickel or of mat nickel coating.
  • This invention relates to a novel electrolytic stripping bath for the removal of galvanic coatings or deposits, such as nickel coatings, from ferrous metal articles, the bath comprising, as its sole stripping component, a major proportion of an aqueous solution of ammonium ni trate (on a dry chemical basis) and a minor but critical proportion of a water-soluble phenol which serves as the sole accelerator for the stripping of the metal coating by the ammonium nitrate.
  • the invention also relates to a new method of stripping metal coatings, especially nickel coatings, from ferrous metal articles wherein a ferrous metal article having a nickel coating is immersed in the stripping bath containing as its essential stripping ingredient, an aqueous solution of from 50-400 grams of ammonium nitrate per liter of solution and from about lgrams per liter of a water-soluble phenol serving as the accelerator for the stripping action of the ammonium nitrate solution, 0
  • a pH bulfer consisting of the alkali metal salt of an organic acid, e.g. sodium acetate or sodium citrate, in an amount to maintain the pH at between 4 and 6 during the passage of direct current through the stripping bath.
  • an organic acid e.g. sodium acetate or sodium citrate
  • the ferrous metal article having the nickel coating is placed in the stripping bath which is held in a corrosion resistant tank, and the ferrous metal article connected as the anode to the electrolytic stripping apparatus employing a stainless steel plate as the cathode. Rapid and complete stripping occurs at temperatures of from 20 100 C., preferably -60 C., at a current density of 8 amperes per square decimeter as the minimum density up to about 36 amperes per square decimeter as a desirable top limit of current density.
  • Stripping baths containing concentrated sulfuric acid at 52 to 56 Beaum are slow in their action and, when accelerated with catalytic agents, result in attack by the acid on the base metal.
  • Alkali metal nitrate baths such as sodium or potassium nitrate, have been used to avoid the attack on the base metal, but these are unsatisfactory because they are no faster than the sulfuric acid bath.
  • potassium nitrate and sodium nitrate have the additional disadvantage of setting free hydroxide during the stripping process, this hydroxide forming a slush which renders the stripping bath unusable in a relatively short period of time.
  • a stripping bath based upon ammonium nitrate as the sole stripping agent has the advantage of avoiding the slush buildup, but is nevertheless extremely slow in its stripping action and also tends to corrode the ferrous base metal, especially alloy steels and ordinary steels with carbon content greater than 0.1%.
  • the current densities of ammonium nitrate stripping solutions vary from 108 amperes per square foot, which is about 11.6 amperes per square decimeter, up to 475 amperes per square foot, which is 51.1 amperes per square decimeter, the higher current densities demanding higher voltages and producing more rapid stripping, and the lower current densities permitting undesirable etching of the ferrous base metal.
  • sulfates did not detract from the efliciency of their stripping method if a nitrogen base were present, such as guanidine, diethanolamine, trimethyl amine, ethylene diamine, urea, aniline etc., in an amount of at least 50 grams per liter and at a pH of about 3 to 6.
  • a nitrogen base such as guanidine, diethanolamine, trimethyl amine, ethylene diamine, urea, aniline etc.
  • the present invention distinguishes over the teaching of Bell et al., US. Pat. 2,549,411, in the employment of a water-soluble phenol selected from the group consisting of phenol, pyrocatechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, oxyhydroquinone, nitrophenol, nitropyrocatechol and dinitrophenol, which serves as the sole accelerator of stripping at low current densities in the range of from 8 amperes per square decimeter to about 36 amperes per square decimeter.
  • a water-soluble phenol selected from the group consisting of phenol, pyrocatechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, oxyhydroquinone, nitrophenol, nitropyrocatechol and dinitrophenol
  • a low-carbon stripping bath need contain only ammonium nitrate and phenol, the preferred amounts being 200 grams of ammonium nitrate and 5 cubic centimeters of the phenol, the preferred phenol being phenol.
  • the density of pure phenol is 1.07 grams per milliliter.
  • the water-soluble phenols other than phenol itself are each measured in grams, while phenol is most conveniently liquefied by heating to above 41 C. and is measured in cubic centimeters.
  • An object of the invention is to provide a stripping bath which is free from nonvolatile, inorganic acid such as sulfuric acid or chromic acid but which is adapted for rapid and complete electrolytic stripping of a nickel coating from ferrous articles of complex shapes, without attacking or etching the ferrous base.
  • Another object is to provide an aqueous solution of ammonium nitrate as the sole stripping component with a water-soluble phenol as the accelerator for the stripping action, which solution is acidified to a pH of 4-6 with nitric acid, the proportions of the phenol being maintained between 1 and 20 grams per liter by replenishing during usage and being particularly adapted for stripping low-carbon steels.
  • a solution is prepared containing 200 grams of ammonia nitrate, 2 cc. of phenol measured when melted to 45 C. and 100 grams of sodium acetate in 1 liter of water.
  • a high carbon steel angle-iron (more than 0.1% carbon) which bears a semi-lustrous nickel coating in a thickness of .0008 inch is submerged in the solution constituting the bath in a corrosion-resistant tank formed of molded synthetic resin, such as polystyrene or polyethylene.
  • the bath is maintained at 45 C.
  • the angle-iron is made the anode and a stainless steel plate is used as the cathode.
  • the pH of the bath is adjusted to four by adding nitric acid.
  • a current density of 8 amperes per square decimeter is applied and the nickel coating is completely stripped from the angle-iron in about 10 minutes, leaving the angle-iron bright and in condition to be replated without repolishing.
  • EXAMPLE II instead of using a high-carbon ferrous base as in Example I, a low-carbon angle-iron (less than 0.1% carbon) coated with nickel having a thickness of .00125 inch is stripped in 20 minutes using a bath solution consisting of 200 grams of ammonium nitrate and cc. of phenol per liter of water, the solution being adjusted to pH 4 with nitric acid and being free of buffer, such as sodium acetate or sodium citrate.
  • a bath solution consisting of 200 grams of ammonium nitrate and cc. of phenol per liter of water, the solution being adjusted to pH 4 with nitric acid and being free of buffer, such as sodium acetate or sodium citrate.
  • Example I illustrates a bath which is particularly useful for stripping ferrous metals with a carbon content greater than 0.1%.
  • Example II illustrates a bath useful for stripping ferrous metals with a carbon content less than 0.1%.
  • the stripping rate becomes so slow as to make the process impractical. Raising the current density up to about 36 amperes per square decimeter tends to cause loss of the stripping solution and requires higher voltages so as to increase operating costs, but stripping can be hastened. It is preferred to carry out the stripping operation at lower cost keeping in mind that phenol is consumed and required replenishment. Operating at higher current densities increases the temperature of the bath making the replenishment with phenol more diflicult.
  • the dihydric phenols such as resorcinol may be used, or the trihydric phenols such as pyrogallol may be used, these being less volatile and odorous than phenol.
  • the advantages of low cost and simplicity of operation with phenol can outweigh the disadvantages of odor and volatility in installations provided with good ventilation.
  • Example I If the phenol accelerator in Example I is eliminated, the semi-lustrous nickel coating is not completely removed, even after 24 hours. Therefore, the effect of the phenol is to accelerate stripping from a time period of about a day to about -20 minutes, as shown in Examples I and II.
  • the present composition serves as a universal solution for electrolytic stripping of nickel coatings from ferrous metal articles, whether of high or low carbon content.
  • the stripping bath of the present invention is useful not only for removing nickel coatings from a ferrous base, but also may be used for stripping any non-ferrous coating, such as chromium, cobalt and the like.
  • An aqueous electrolytic stripping bath to remove nickel coatings from ferrous metal articles comprising ammonium nitrate as the sole stripping component in an amount of from 50-400 grams per liter and a water-soluble phenol having from 1 to 3 hydroxyl groups and no other functional group than the nitro group as the sole accelerator in an amount of from l-20 grams per liter, said bath being acidified with nitric acid to a pH of between 4 and 6 and being adapted to completely strip the nickel coating at a current density of at least 8 amperes per square decimeter and at a temperature of 20-l00 C.
  • a bath as claimed in claim 1 wherein said watersoluble phenol is selected from the group consisting of phenol, pyrocatechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, oxyhydroquinone, nitrophenol, nitropyrcatechol and dinitrophenol.
  • the process which comprises inserting a ferrous metal article coated with nickel in a stripping bath and passing an electric current from said article, serving as anode. to a cathode, said stripping bath consisting essentially of an aqueous solution of ammonium nitrate, as the sole stripping component, in an amount of from 50-400 grams per liter and a water soluble phenol having from 1 to 3 hydroxyl groups and no other functional group than the nitro group, as the sole accelerator, in an amount of from l-20 grams per liter, said bath being acidified with nitric acid to a pH of between 4 and 6 and being adapted to completely strip the nickel coating at a current density of at least 8 amperes per square decimeter and at a temperature of 20l00 C.
  • a process as claimed in claim 3 wherein said watersoluble phenol is phenol which is continuously added during the course of the stripping process to maintain the level of phenol in the solution at a value of at least about 2 cubic centimeters of phenol per lliter of water making up the bath, there being consumed an amount of said phenol during stripping to require about 800 cubic centimeters of phenol for each kilogram of nickel which is stripped.
  • a process as claimed in claim 3 wherein said Watersoluble phenol is phenol which is present in an amount of 2 cubic centimeters per liter of water in the bath and said stripping bath contains about 200 grams of ammonium nitrate and about grams of sodium acetate.
  • a process as claimed in claim 3 wherein said watersoluble phenol is phenol which is present in an amount of about 5 cubic centimeters per liter of water in the bath and said stripping bath contains about 200 grams of ammonium nitrate which adapts the bath, free from acetate 6 or citrate, for the stripping of nickel from low-carbon References Cited steel containing less than 0.1% carbon.
  • UNITED STATES PATENTS 7 A process as claimed in claim 3 wherein said watersoluble phenol is selected from the group consisting of 2,549,411 4/1951 Bell et a1 204-146 phenol, pyrocatechol, resorcinol, hydroquinone, pyrogal- 6 ,93 5/ 1960 WeiSberg et a1. 204-446 101, phloroglucinol, oxyhydroquinone, nitrophenol, nitropyrocatechol, and dinitm he L PATRICK GARVIN, Primary Examiner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • ing And Chemical Polishing (AREA)
  • Paints Or Removers (AREA)
US722554A 1967-04-27 1968-04-19 Electrolytic bath containing ammonium nitrate and a phenol Expired - Lifetime US3542658A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEB92263A DE1281217B (de) 1967-04-27 1967-04-27 Bad zum elektrolytischen Abloesen galvanischer Niederschlaege von eisenhaltigen Grundkoerpern
DEB95716A DE1301185B (de) 1967-04-27 1967-12-06 Bad zum elektrolytischen Abloesen galvanischer Niederschlaege von eisenhaltigen Grundkoerpern

Publications (1)

Publication Number Publication Date
US3542658A true US3542658A (en) 1970-11-24

Family

ID=25968312

Family Applications (1)

Application Number Title Priority Date Filing Date
US722554A Expired - Lifetime US3542658A (en) 1967-04-27 1968-04-19 Electrolytic bath containing ammonium nitrate and a phenol

Country Status (10)

Country Link
US (1) US3542658A (cs)
AT (1) AT275991B (cs)
BE (1) BE713896A (cs)
BR (1) BR6898611D0 (cs)
CH (1) CH499626A (cs)
DE (2) DE1281217B (cs)
FR (1) FR1561701A (cs)
GB (1) GB1169498A (cs)
NL (1) NL6805158A (cs)
SE (1) SE334518B (cs)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619390A (en) * 1969-02-21 1971-11-09 Horst Dillenberg Aqueous electrolytic stripping bath to remove metal coatings from bases of steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549411A (en) * 1946-12-06 1951-04-17 Henderson M Bell Electrolytic stripping of nickel coatings from ferrous metals
US2937940A (en) * 1957-07-01 1960-05-24 Eltex Chemical Corp Selective stripping of electroplated metals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB336532A (en) * 1929-03-06 1930-10-16 Ternstedt Mfg Co Improved method and means for stripping chromium plating
DE825597C (de) * 1950-09-14 1951-12-20 Collardin Gmbh Gerhard Verfahren zum anodischen Entnickeln

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549411A (en) * 1946-12-06 1951-04-17 Henderson M Bell Electrolytic stripping of nickel coatings from ferrous metals
US2937940A (en) * 1957-07-01 1960-05-24 Eltex Chemical Corp Selective stripping of electroplated metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619390A (en) * 1969-02-21 1971-11-09 Horst Dillenberg Aqueous electrolytic stripping bath to remove metal coatings from bases of steel

Also Published As

Publication number Publication date
NL6805158A (cs) 1968-10-28
BR6898611D0 (pt) 1973-01-09
BE713896A (cs) 1968-09-16
AT275991B (de) 1969-11-10
GB1169498A (en) 1969-11-05
DE1281217B (de) 1968-10-24
FR1561701A (cs) 1969-03-28
CH499626A (de) 1970-11-30
SE334518B (cs) 1971-04-26
DE1301185B (de) 1969-08-14

Similar Documents

Publication Publication Date Title
US4111767A (en) Electrolytic stripping bath for removing metal coatings from stainless steel base materials
US3619390A (en) Aqueous electrolytic stripping bath to remove metal coatings from bases of steel
US4075066A (en) Electroplating zinc, ammonia-free acid zinc plating bath therefor and additive composition therefor
DE2122263A1 (de) Verfahren zur Herstellung eines primären Glanzers fur saure galvanische Verzinnungsbader
ES454407A1 (es) Un procedimiento para revestimiento galvanico catodico de unsubstrato metalico.
US2654701A (en) Plating aluminum
JPS6045274B2 (ja) 金属析出物の化学的剥離用組成物および方法
US3337431A (en) Electrochemical treatment of metal surfaces
US3542658A (en) Electrolytic bath containing ammonium nitrate and a phenol
KR100929761B1 (ko) 주석-아연 합금 전기 도금 방법
US3895969A (en) Composition and process for inhibiting corrosion of non-ferrous metal surfaced articles and providing surface for synthetic resin coating compositions
US2750337A (en) Electroplating of chromium
US4356069A (en) Stripping composition and method for preparing and using same
US2846380A (en) Chromium electroplating
US3419481A (en) Electrolyte and process for electroplating black chromium and article thereby produced
US2408424A (en) Pickling steels
US2549411A (en) Electrolytic stripping of nickel coatings from ferrous metals
US2795491A (en) Process for etching aluminum alloy surfaces
US4135992A (en) Zinc electroplating bath
US2581490A (en) Electrolytic process of stripping metallic coatings from a ferrous metal base
US3617456A (en) Bath for the electrolytic stripping of galvanic coatings made of nickel, chromium or gold from base bodies made of copper, copper alloys, silver, zinc or titanium
US4647352A (en) Stripping composition and process for selective removal of electroless applied nickel
US2706171A (en) Stripping chromium plating from zinc electrolytically
US3004879A (en) Brightening and cleaning composition and treatment for magnesium and magnesium-base alloys
DE3317669C2 (de) Wäßriges Bad und Verfahren für die galvanische Abscheidung von glänzenden Zinküberzügen