US3531904A - Reinforced construction for wood stress members - Google Patents

Reinforced construction for wood stress members Download PDF

Info

Publication number
US3531904A
US3531904A US737585A US3531904DA US3531904A US 3531904 A US3531904 A US 3531904A US 737585 A US737585 A US 737585A US 3531904D A US3531904D A US 3531904DA US 3531904 A US3531904 A US 3531904A
Authority
US
United States
Prior art keywords
strips
wood
strip
toothed
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US737585A
Other languages
English (en)
Inventor
Arthur Carol Sanford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3531904A publication Critical patent/US3531904A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/12Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members
    • E04C3/18Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of wood, e.g. with reinforcements, with tensioning members with metal or other reinforcements or tensioning members

Definitions

  • the cheaper softer wood components of original transverse dimension can be used because the strength of the wood in both tension and compression is in effect upgraded to be more than equal to harder wood components of the same transverse dimension.
  • the wood components can be made proportionately stronger in areas requiring greater strength by using additional strips in those areas, either side by side with the first strips or in underlying relation thereto.
  • the bottom chord may have a long toothed metal reinforcing strip applied over the greater part of its length just short of the ends, and at least one shorter strip underlying or alongside of the central portion of the chord.
  • the additional or underlying strips may not be required to be toothed but are perforated to allow the teeth of the overlying strip to penetrate therethrough into the wood.
  • a thin steel toothed strip of 18 gauge hot rolled low carbon steel has approximately the same strength in tension as the average wooden member having sixteen times as much cross-sectional area, so that two steel 18 gauge strips 1 /2 wide applied to a 2 X 4 would be equivalent to adding a wood strip 1%" wide (actual 2 X 4 width) and slightly more than 1 inch thick in respect to the increase in tensile strength.
  • Another object is to provide an improved reinforced construction for an elongated wooden stress member comprising a toothed metal strip applied longitudinally to said member to increase its tension and compression strength.
  • a further object is to provide an improved reinforced construction for progressively increasing the strength in tension and compression of a wooden stress member by applying at least one additional metal strip to said member in the area of its greatest stress.
  • FIG. 1 is a side elevation of a flat wood and metal truss having the novel metal reinforcing strips applied to its top and bottom wood chords.
  • FIG. 2 is a bottom plan view, partly broken away to show additional perforated strips underlying the toothed strips.
  • FIG. 3 is a side elevation of a triangular wood truss having the novel metal reinforcing strips applied to its bottom chord.
  • FIG. 4 is a side elevation of a triangular wood truss in which the top and bottom chords are composed of several relatively short wood pieces, and having the novel metal reinforcing strips applied to both the top and bottom chords.
  • FIG. 5 is an enlarged partial sectional view as on line 55 of FIG. 3 showing a perforated strip and an overlying toothed strip applied to the bottom of a wood chord member.
  • FIG. 6 is an enlarged partial isometric view showing the toothed strip and perforated strip of FIG. in detached position relative to the wood chord member.
  • the flat truss indicated generally at 10 has a wooden top chord 11 and a wooden bottom chord 12 parallel thereto.
  • the chord members 11 and 12 may be dimensional lumber such as 2 x 4s with their longest transverse dimension extending horizontally.
  • the top and bottom chords are connected by metallic web members 13 which resist the tensile and compressive forces between the chords and also impart unity to the truss.
  • the diagonal web members 13a, 13b, 13c, and 13d each have a strut portion 14 extending between the chords and a flat load transfer flange 15 at each end.
  • the strut portions 14 may be longitudinally corrugated for increased strength, and the strut portions 14a, 14b, 14c and 14d are progressively narrower since the stress on the diagonal web members at the bearing wall is greatest and becomes less and less toward the center of the truss span.
  • the diagonals on one half of the truss may be inclined in the opposite direction to those on the other half.
  • the diagonal members may be duplicated on the other side of the truss.
  • the load transfer flanges 15 are provided with a plurality of perforations arranged to register with the teeth in toothed connector plates 16 which penetrate the perforations and are embedded into the sides of the wood chord member-s to connect the load transfer flanges thereto.
  • the detailed construction of the perforations and the teeth penetrating them is not part of the present invention, and an example of such construction is shown in my copending application Ser. No. 591,788, filed Nov. 3, 1966 now Pat. No. 3,416,283.
  • vertical wood compression posts 17 may be positioned between the top and bottom chords 11 and 12 adjacent the connector plates 16, and these spacer posts may be standard dimensional lumber, such as 2 x 4s.
  • the reinforcing strips of the present invention may be applied to the top surface of the top chord 11 to reinforce it against compressive stress, and to the bottom of the bottom chord to reinforce it against tension stress.
  • the strips 20 are narrow elongated strips extending over a substantial part, and preferably a major part, of the chords.
  • the strips are preferably 18 gauge, hot rolled steel.
  • the strips 20 have longitudinal rows of teeth extending throughout their lengths. Two rows of teeth 21 are shown, but one or more additional rows may be provided
  • the teeth 21 may vary in configuration, and a preferred construction is shown in which the teeth are struck from the flat body portion of the strip in opposed pairs, forming openings 22.
  • Each tooth has a relatively wide base portion 23 and a narrow tip portion 24.
  • One edge of the tooth has inclined portion 25 connecting the base and tip portions.
  • These teeth are preferably of the same configuration as the teeth on the toothed connector plates, and further details of their construction are set forth in my copending application Ser. No. 591,788.
  • the chord 12 has two strips 20 applied to its bottom surface in side-by-side relation. These strips may be about 1 /2" in width, and the chord 12 may be a standard 2 X 4 with its widest transverse dimension (3%") extending horizontally or crosswise of the truss. Thus, the outer edges of the two strips 20 may be flush with the sides of the chord, leaving a space of about /3" between the strips. As shown in FIGS. 5 and 6, a single strip 20 applied to the narrower side of a 2 x 4 member 26 will extend over substantially the entire width of the surface.
  • one or more strips 27 may be placed in underlying relation with strips 20.
  • the strips 27 have two rows of holes 28 spaced longitudinally in pairs so as to register with the pairs of teeth 21.
  • the holes or perforations 28 are shown as circular, but the shape of the holes may vary as long as their maximum dimension permits the base 23 of a tooth 21 to fully penetrate the hole and bring the body of strip 20 into flat abutment with the body of strip 27, as shown in FIG. 5.
  • the fit or engagement between the holes 28 and the teeth 21 should be snug so as to lock the perforate plates against lateral movement. Such snug fit reinforces the teeth against bending when the wood member is stressed, thereby increasing the holding power of the teeth.
  • the central portions of the chords 11 and 12 which are at the central part of the span of the truss and hence subjected to the greatest stress, have two perforated strips 27a and 27b underlying the toothed strips 20.
  • Strips 27a are the shorter ones in abutment with the central portion of the chords, and strips 27b overlie and extend beyond the ends of strips 27a, with the extending portions in abutment with the chords.
  • the toothed strips 20 overlie and extend beyond the ends of perforated strips 27b with the body part of their extending portions in abutment with the chords.
  • teeth 21 which are long and both the toothed strip 20 and perforated strips 27 of 18 gauge steel, no more than two perforated strips 27 should be used, so as to obtain adequate penetration of the teeth into the wood to give effective holding power.
  • additional perforated strips 27 may be used.
  • additional holding power may be obtained by providing at least one of the perforated strips with teeth.
  • the wood chords are subjected to stress, they are reinforced by the steel reinforcing strips 20 and 27 to increase their strength, with no material increase in cross-sectional dimension, and the amount of reinforcement is applied progressively over the length of the chord in accordance with the progressive application of stress to the chord; in other words, the greatest amount of reinforcement is applied at the area of greatest stress.
  • the number, length and location of the reinforcing strips used will depend upon the length and strength of the wood stress member and the amount and kind of loads to which it is subjected.
  • the improved reinforcing strips thus afford wide flexibility in adapting to a wide variety of such conditions.
  • An 18 gauge steel strip 1 /2" wide has been determined to be equivalent in tension to a member of standard grade fir or pine having approximately sixteen times the cross-sectional area of the steel.
  • two rows of three steel strips as shown in FIGS. 1 and 2 are equivalent in tension to 6.6 square inches of wood, which is more than adding another 2 x 4 having a finished cross-sectional area of 5 .89 square inches.
  • the use of this novel reinforcement can substantially increase the effective span of wooden structural members.
  • the reinforced truss 10, of the depth depicted in FIG. 1 could be used over a larger span than possible for a truss of that depth without the reinforcing strips, or, if the depth of the truss is itself a crucial design consideration, these reinforcing strips permit a shallower truss than could heretofore be utilized.
  • the height of the compression post members 17 can be reduced as compared to like members in a truss without reinforcing strips. In fact, the height of posts 17 can be reduced at least to that point at which the stress in the portion of chord member 12 spanning center bay A does not ex ceed the available strength of the chord member in combination with the reinforcing strips.
  • the stress in the lower chord member spanning successive bays toward the support S (which is of progressively lesser magnitude than the stress in the portion of chord member 12 spanning the center bay A) is computed until it is determined that the grommet strips 27a can be eliminated. As depicted in FIG. 1, calculations might indicate that the grommet strips 27a are no longer required in bay C, and strips 27a would, therefore, be terminated within bay C, just to the left of plate 150, as shown.
  • toothed strips 20 must be first computed. Thereafter, one must determine the number of teeth required to effect the load transfer between the wooden chord member 12 and the reinforcing strips.
  • a proper design value for effecting this load transfer with teeth of the type heretofore described is approximately pounds per tooth. Accordingly, one first calculates the total number of teeth required to effect load transfer for the maximum stress to be carried by the two grommets and one toothed strip in each row and then provides at least a sufficient length of toothed strips to assure the number of teeth required to transfer that load. Toothed strips of the type heretofore described preferably have four teeth per lineal inch. Additionally, the number of teeth is computed which is required to transfer the load to be carried by the toothed strips across the last bay where such strips would be required for tensile strength to assure that the proper number of teeth to transfer this load would be embedded beyond the last bay.
  • toothed strips 20 must extend beyond point 31 even if that portion 'of chord member 12 spanning bay D required no reinforcement.
  • a similar arrangement of one toothed strip 20' overlying a shorter grommet strip 27a is shown applied to the bottom chord 26 of a W type peak truss in FIG. 3 to reinforce the chord in tension.
  • the top chords 34 are connected to the bottom chord at the heel joints by toothed plates 35 similar to the plates 16 in FIG. 1, and the strut members 36 and 37 are also connected to the chords by similar toothed plates 38, 39 and 40.
  • one or more toothed reinforcing strips 20 may be sufiicient to reinforce a wood stress member without using any underlying perforated strips. Moreover, one or more reinforcing strips may be applied to a prestressed wood member to maintain it in pre-stressed condition until loaded, and thus further increase its strength.
  • a truss can be constructed with the chords made up of short pieces of wood connected together with their ends in abutment.
  • the peak truss in FIG. 4 may have an upper chord comprising components 42 and 43, and a bottom chord comprising components 44 and 45.
  • the wood strut member 46 is connected to upper chord component 43 and lower chord component 44 by toothed connector plates 47 and 48, and a longitudinally corrugated metal strut 49 (similar in construction to the metal struts 13 in FIG. 1) connects chord component 44 to component 43 at the peak of the truss by overlying toothed plates 50 and 51 respectively.
  • a metal strut 49' from the other side of the truss is connected to the reverse side of the peak joint.
  • a toothed metal reinforcing strip 52 is embedded in the bottom chord components 44 and 45 and extends the full length of the bottom chord to connect the components and reinforce the chord in tension.
  • a toothed metal reinforcing strip 53 is embedded in the top chord components 42 and 43 and extends the full length of the top chord to connect the components and reinforce the chord in compression.
  • the strip 52 may be applied to the top surface of the bottom chord and the strip 53 may be applied to the bottom surface of the top chord.
  • Short toothed plates 54 and 55 are preferably applied at the joints between components 42 and 43 and between components 44 and 45, respectively, to hold the abutted components in alignment.
  • a perforated strip or strips may be applied underlying one or both of the reinforcing strips 5t2 and 53, at the chord portions subjected to the greatest s ress.
  • the improved metal reinforcing strips provide quickly and easily applied means for greatly increasing the tension and compression strength of wood stress members without materially increasing the transverse dimensions of the members, and for proportionately increasing the strength of the wood stress members in the areas of greatest stress. Accordingly, the metal reinforcing strips add a safety factor to the wood stress members to which they are applied, and assist in obtaining less deflection of the wood members under load.
  • the metal reinforcing strips provide a novel mechanical means of gripping the wood member in its unstressed position so as to cause the wood to stretch with the metal when the wood member is stressed, for example as in a beam.
  • At least one wooden component having at least one surface with an elongate dimension, said structure resting on supports and subjected to a load imparting fiber stresses of varying magnitude along the elongate dimension of said wooden component, the stress along a portion of said elongate dimension exceeding the allowable stress for said wooden component, at least one reinforcing steel strip of the order of 18 gauge in thickness extending along and beyond the elongate dimension of the wooden component subjected to stress in excess of that allowable for said wooden component, said strip having a fiat body portion with integral teeth projecting therefrom substantially at right angles thereto throughout the length of said strip, the effective cross section of said strip being such as to bear certain excess stress to which said Wooden component is subjected, said teeth being fully embedded into the wooden component with said flat body portion in substantial abutment with one surface thereof, sufficient teeth being provided within the length of the strip overlying the portion subjected to excess stress to transfer the excess stress into said body portion, the length and the number of teeth in the portion of said strip extending

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
US737585A 1968-06-17 1968-06-17 Reinforced construction for wood stress members Expired - Lifetime US3531904A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73758568A 1968-06-17 1968-06-17

Publications (1)

Publication Number Publication Date
US3531904A true US3531904A (en) 1970-10-06

Family

ID=24964472

Family Applications (1)

Application Number Title Priority Date Filing Date
US737585A Expired - Lifetime US3531904A (en) 1968-06-17 1968-06-17 Reinforced construction for wood stress members

Country Status (8)

Country Link
US (1) US3531904A (no)
BE (1) BE734576A (no)
DE (1) DE1929677A1 (no)
FI (1) FI48625C (no)
FR (1) FR2011055B1 (no)
GB (1) GB1238104A (no)
NO (1) NO126038B (no)
SE (1) SE344219B (no)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651612A (en) * 1970-11-18 1972-03-28 Truswal Systems Inc Floor joist
US3748809A (en) * 1971-08-09 1973-07-31 Steel Web Corp Trussed joist structure
US3861109A (en) * 1973-12-19 1975-01-21 Gerrity Company Inc Continuous shear resistant timber girder
US3875650A (en) * 1973-03-05 1975-04-08 Steel Web Corp Method of making a trussed joist structure
US3985459A (en) * 1976-03-29 1976-10-12 Simpson Manufacturing Co., Inc. Truss ridge-joint connector assembly
US4031686A (en) * 1977-01-13 1977-06-28 Sanford Arthur C Combination wood and metal truss structure
US4143500A (en) * 1978-03-13 1979-03-13 Sanford Arthur C End bearing construction for truss
US4245449A (en) * 1979-02-21 1981-01-20 Steel Web Corporation Truss employing both metallic and non-metallic webs
US4274241A (en) * 1979-05-04 1981-06-23 Lindal S Walter Metal reinforced wood truss and tie means
US4333293A (en) * 1980-05-19 1982-06-08 Steel Web Corporation Joist having differing metal web reinforcement
US4376362A (en) * 1979-02-21 1983-03-15 Steel Web Corporation Truss employing both metallic and non-metallic webs
US4630424A (en) * 1984-09-14 1986-12-23 Lumbermate Company Top hung truss
US4641480A (en) * 1985-06-03 1987-02-10 Inter-Lock Steel Company, Inc. Combination connector plate and tail truss
US4891927A (en) * 1983-10-07 1990-01-09 Metsaliiton Teollisuus Oy Joint for connecting wooden beams to each other, and the use of the joint in roof truss structures
US5809735A (en) * 1996-08-19 1998-09-22 Les Bois Laumar Inc. Steel-wood system
US6167675B1 (en) * 1996-08-19 2001-01-02 Les Bois Laumar, Inc. Steel-wood system
US20080092477A1 (en) * 1999-11-16 2008-04-24 Larry Perrault Roof truss
EP2154316A1 (en) * 2007-06-06 2010-02-17 Mikel Landa Esparza Method for in situ restoration of wood beams
US20100205892A1 (en) * 2009-02-18 2010-08-19 Andre Lemyre Top-chord bearing wooden joist and method
US20100263319A1 (en) * 2009-04-16 2010-10-21 Andre Lemyre Top-chord bearing wooden joist and method
US20120324827A1 (en) * 2011-06-25 2012-12-27 James Forero Bracing system for reinforcing beams
US20140174017A1 (en) * 2012-12-24 2014-06-26 Whole Trees, LLC Truss and column structures incorporating natural round timbers and natural branched round timbers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2606666C2 (de) * 1976-02-19 1982-03-18 Greimbau-Lizenz-Gmbh, 3200 Hildesheim Nagelplatte zum Verbinden von Holzbauteilen
FI76860C (fi) * 1986-07-04 1988-12-12 Markku Karhumaeki Fastsaettningsprofil eller balk.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1335609A (en) * 1918-03-25 1920-03-30 George A Schneller Reinforced beam for wing-panels of aeroplanes
GB391257A (en) * 1930-03-19 1933-04-27 Aeint Hermann De Boer Jr Improvements in or relating to gusset or reinforcing plates for timber
US2039398A (en) * 1934-10-11 1936-05-05 Edward R Dye Prestressed beam and method of manufacture
US2738832A (en) * 1950-08-01 1956-03-20 Frank C Torkelson Cradled spanning board construction
US3067544A (en) * 1958-04-22 1962-12-11 Willatts William Henry Building components and structures
US3344225A (en) * 1966-06-29 1967-09-26 Pole bonding
US3416283A (en) * 1966-11-03 1968-12-17 Sanford Arthur Carol Combination wood and metal trusses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2601910A (en) * 1944-05-16 1952-07-01 Thomas F Nichols Composite structural member
US3309833A (en) * 1963-05-22 1967-03-21 Automated Building Components Structural wooden beams
GB1090373A (en) * 1964-01-09 1967-11-08 Beves And Company Ltd Improvements in or relating to connector plates for joining timbers
US3294608A (en) * 1964-02-27 1966-12-27 Peterson John Method of prestressing a wood beam
FR1541840A (fr) * 1967-10-19 1968-10-11 Dispositif d'assemblage, notamment pour constructions de bois

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1335609A (en) * 1918-03-25 1920-03-30 George A Schneller Reinforced beam for wing-panels of aeroplanes
GB391257A (en) * 1930-03-19 1933-04-27 Aeint Hermann De Boer Jr Improvements in or relating to gusset or reinforcing plates for timber
US2039398A (en) * 1934-10-11 1936-05-05 Edward R Dye Prestressed beam and method of manufacture
US2738832A (en) * 1950-08-01 1956-03-20 Frank C Torkelson Cradled spanning board construction
US3067544A (en) * 1958-04-22 1962-12-11 Willatts William Henry Building components and structures
US3344225A (en) * 1966-06-29 1967-09-26 Pole bonding
US3416283A (en) * 1966-11-03 1968-12-17 Sanford Arthur Carol Combination wood and metal trusses

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651612A (en) * 1970-11-18 1972-03-28 Truswal Systems Inc Floor joist
US3748809A (en) * 1971-08-09 1973-07-31 Steel Web Corp Trussed joist structure
US3875650A (en) * 1973-03-05 1975-04-08 Steel Web Corp Method of making a trussed joist structure
US3861109A (en) * 1973-12-19 1975-01-21 Gerrity Company Inc Continuous shear resistant timber girder
US3985459A (en) * 1976-03-29 1976-10-12 Simpson Manufacturing Co., Inc. Truss ridge-joint connector assembly
US4031686A (en) * 1977-01-13 1977-06-28 Sanford Arthur C Combination wood and metal truss structure
US4143500A (en) * 1978-03-13 1979-03-13 Sanford Arthur C End bearing construction for truss
US4245449A (en) * 1979-02-21 1981-01-20 Steel Web Corporation Truss employing both metallic and non-metallic webs
US4376362A (en) * 1979-02-21 1983-03-15 Steel Web Corporation Truss employing both metallic and non-metallic webs
US4274241A (en) * 1979-05-04 1981-06-23 Lindal S Walter Metal reinforced wood truss and tie means
US4333293A (en) * 1980-05-19 1982-06-08 Steel Web Corporation Joist having differing metal web reinforcement
US4891927A (en) * 1983-10-07 1990-01-09 Metsaliiton Teollisuus Oy Joint for connecting wooden beams to each other, and the use of the joint in roof truss structures
US4630424A (en) * 1984-09-14 1986-12-23 Lumbermate Company Top hung truss
US4641480A (en) * 1985-06-03 1987-02-10 Inter-Lock Steel Company, Inc. Combination connector plate and tail truss
US5809735A (en) * 1996-08-19 1998-09-22 Les Bois Laumar Inc. Steel-wood system
US6167675B1 (en) * 1996-08-19 2001-01-02 Les Bois Laumar, Inc. Steel-wood system
US20080092477A1 (en) * 1999-11-16 2008-04-24 Larry Perrault Roof truss
US7814722B2 (en) 1999-11-16 2010-10-19 Larry Perrault Roof truss
EP2154316A4 (en) * 2007-06-06 2011-07-06 Esparza Mikel Landa PROCESS FOR IN SITU RESTORATION OF WOOD BEAMS
EP2154316A1 (en) * 2007-06-06 2010-02-17 Mikel Landa Esparza Method for in situ restoration of wood beams
US20100205892A1 (en) * 2009-02-18 2010-08-19 Andre Lemyre Top-chord bearing wooden joist and method
US8166724B2 (en) * 2009-02-18 2012-05-01 Solive Ajouree 2000 Inc. Top-chord bearing wooden joist and method
US20100263319A1 (en) * 2009-04-16 2010-10-21 Andre Lemyre Top-chord bearing wooden joist and method
US8122676B2 (en) * 2009-04-16 2012-02-28 Solive Ajouree 2000 Inc. Top-chord bearing wooden joist
US20120324827A1 (en) * 2011-06-25 2012-12-27 James Forero Bracing system for reinforcing beams
US20140174017A1 (en) * 2012-12-24 2014-06-26 Whole Trees, LLC Truss and column structures incorporating natural round timbers and natural branched round timbers
US9038347B2 (en) * 2012-12-24 2015-05-26 Whole Trees, LLC Truss and column structures incorporating natural round timbers and natural branched round timbers
US20150225956A1 (en) * 2012-12-24 2015-08-13 Whole Trees, LLC Truss and column structures incorporating natural round timbers and natural branched round timbers
US9499983B2 (en) * 2012-12-24 2016-11-22 Whole Trees, LLC Truss and column structures incorporating natural round timbers and natural branched round timbers

Also Published As

Publication number Publication date
DE1929677A1 (de) 1970-01-02
FR2011055A1 (no) 1970-02-27
FR2011055B1 (no) 1974-08-09
BE734576A (no) 1969-11-17
FI48625C (fi) 1974-11-11
FI48625B (no) 1974-07-31
SE344219B (no) 1972-04-04
NO126038B (no) 1972-12-11
GB1238104A (no) 1971-07-07

Similar Documents

Publication Publication Date Title
US3531904A (en) Reinforced construction for wood stress members
EP0187158B1 (en) Devices for load carrying structures
US4191000A (en) Wooden I-beam
US4012882A (en) Structural building panels
US3079649A (en) Beams and building components
ES408525A1 (es) Una disposicion de estructura de encofrado de hormigon.
US2159300A (en) Insulating structural board
US3494645A (en) High section splice plate and joint therewith
US2118048A (en) Laminated structure
US3686809A (en) Reinforced wood floor sections
CH660392A5 (de) Schalungstraeger aus holz sowie verfahren zur herstellung eines derartigen holz-schalungstraegers.
US5809735A (en) Steel-wood system
DE4420175A1 (de) Beton-Verbundplatte
US2252956A (en) Building construction element
US3234841A (en) Gusset plate
US4312160A (en) Building structure having an improved truss assembly
JPH08312059A (ja) 異種材料補強木造梁
WO1980001297A1 (en) Girder of lattice type
US4891927A (en) Joint for connecting wooden beams to each other, and the use of the joint in roof truss structures
FI70965C (fi) Timmerelement och av timmerelementen tillverkad vaegg
DE2226323A1 (de) Langgestrecktes bauelement, insbesondere fuer das gerippe von haeusern, sowie verbindungsanordnung fuer solche bauelemente
US3064771A (en) Large span building covering unit
US4034950A (en) Form tie
US2920476A (en) Prestressed reinforced concrete mast
US3952474A (en) Method of assembling building structures