US3509970A - Safety device for elevator cars - Google Patents

Safety device for elevator cars Download PDF

Info

Publication number
US3509970A
US3509970A US707619A US3509970DA US3509970A US 3509970 A US3509970 A US 3509970A US 707619 A US707619 A US 707619A US 3509970D A US3509970D A US 3509970DA US 3509970 A US3509970 A US 3509970A
Authority
US
United States
Prior art keywords
safety device
arms
elevator
spring
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US707619A
Other languages
English (en)
Inventor
Rudolf Gabler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aufzuege AG Schaffhausen
Original Assignee
Aufzuege AG Schaffhausen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aufzuege AG Schaffhausen filed Critical Aufzuege AG Schaffhausen
Application granted granted Critical
Publication of US3509970A publication Critical patent/US3509970A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • B66B5/22Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces by means of linearly-movable wedges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces

Definitions

  • the invention relates to an elevator safety-device for mounting on each side of the car and cooperating with a respective guide rail,'and having a pair of rotatable clamping jaws which can be released in dependence on the car speed to clamp under resilient pressure on the guide rail.
  • the :prior art also numbers among the elevator safetydevices, a device in which the clamping jaws are built as eccentrics, which take a tangential position in their end position. As against the wedge-shaped clamping jaws, it is impossible with this design to control the actual clamping force, as result of which the gripping surfaces of the eccentric badly scores the guide rail as they slide therealong.
  • the invention is an elevator-car safetydevice which avoids the above-mentioned disadvantages.
  • each clamping jaw is constructed as a brake pressure plate that rotates about an axis transverse to the guide rail when the plate is pressed against the rail, the plates being located side by side with the rail located therebetween, andv apart of eachv of the inner faces of the plates being pressed against the rail when the safety device is actuated.
  • each brake pressure plate incorporates a helically-shaped bearing surface located on the outer face of the plate, and a pressure roller bearing on each bearing surface, and rotating thereon when the plate rotates, in the region opposite where the plate is pressed against the rail.
  • FIG. 1 is a view of the safety device, unactuated as seen from the guide-rail side;
  • FIG. 2 is a side view of the safety device
  • FIG. 3 is a view corresponding to FIG. 1 of the safety device actuated
  • FIG. 4 is a view in section taken along line IVIV of FIG. 3; l
  • each pressure plate 1 incorporates a helicallyshaped bearing surface or cam track 4, which butts against a rotatably mounted pressure roller 5 arranged as a cam follower on one end of an arm 6.
  • the other end of the respective arm is pivotally connected to the housing 3 of the safety device.
  • the bolt 9 extends transversely through the two arms 6 by means of openings therein, as shown in FIG. 5.
  • a helica'l spring 8 mounted on the bolt urges the two arms 6 together.
  • Two cup springs 7, also mounted on the bolt, are first put under appreciable stress when the arms 6 are forced apart by the pressure plates 2a and 2b as the safety device is applied.
  • Each arm 6 incorporates a stop 12 (FIGS. 1 and 3), which bears on the stop cam -14 of an actuating lever 13, when the safety device is out of operation.
  • the lever 13 is connected at one end to a shaft 15 joined to a connecting rod 16 that leads to an identical actuating lever of the other safety device.
  • the tension applied by the springs 7 and 8 against the arms 6 can be varied by adjusting, in any suitable and known manner, the position of the collar (not referenced), on which the spring 8 is mounted, along the length of the bolt 9.
  • each brake pressure plate 2a and 2b incorporates over the larger part of its circumference a sharply serrated surface 10.
  • the actual brake shoes 11 are wider than the surface 10, as shown in FIG. 4, and their exposed faces have sharp-edged grooves 11a.
  • the shoes advantageously are made as replaceable parts.
  • a spiral torsion spring 18 is arranged coaxially with respect to the compression spring 17 in each pressure plate 2a and 2b. The torsion springs maintain the pressure plates in the position shown in FIGS. 1 and 2, before the safety device is applied, wherein the start of each bearing surface 4 is urged against the respective pressure roller 5 and the start of the surfaces 10 lie opposite the guide rail 1.
  • the safety device operates in the following manner.
  • the actuating lever 13 is connected in the customary way via a rope to a speed governor. If the car speed exceeds a permissible value, the rope pivots the lever 13 upwards.
  • the stop cam 14 thus frees the stops 12, and the levers 6 are urged together by the spring 8.
  • the pressure rollers press the brake pressure plates 2a and 2b against the guide rail 1 in opposition to the bias of the weaker spring 17.
  • the surfaces of the plates 2a and 2b press against the rail 1; and the plates 2a and 2b begin to turn, whereby the pressure rollers 5 turning on the cam track or bearing surface 4 are forced outwards, causing the springs 7 and 8 to be more and more compressed.
  • a lever 22 connected to the shaft is biased by a helical spring 23, which returns the actuating lever 13 to its initial position.
  • a second lever 20 can be mounted on the lever 13 for operating a switch 21 for shutting off the power to the elevator motor, when the lever 13 is pivoted upwards.
  • FIG. 6 shows a second embodiment of the safety device of the invention.
  • This form differs from the preceding only in the construction of the actuating means.
  • an-actuating lever 13 having a stop cam 14 borne upon by two stops 12
  • the sleeve incorporates an outwardly projecting cam 27 on each end.
  • the earns 27 bear on the inner face of the respective arm 6.
  • the arms incorporate each a recess which a respective cam 27 can enter when the sleeve 26 is sufiiciently rotated. The sleeve rotation is caused by a rope connected to the speed governor.
  • the two brake pressure plates 2a and 2b are urged by a common spring 33 against the rollers 5 and also rotated back to their starting positions after an emergency stop by the safety device.
  • a switch 34 operated directly by the plate 2a, can be provided for cutting off the current.
  • FIGS. 7 to 9 automatically adjusts to a wide range of coeflicients of friction, by reducing the force with which the brake pressure plates grip the guide rails when the coefficient is high, and thereby limiting the maximum braking force.
  • Two brake pressure plates 2a and 2b, each having more or less the shape of a segment, are mounted on the bolt. In FIG. 8 the position of the plate 2b is shown in dotdash line When the safety device is not actuated, and in full line when actuated.
  • the bolt 9 mounts only one cup spring 7, which presses the arms 6 towards, and therefore the pressure rollers 5 against, the brake pressure plates 2a and 2b, so that the latter clamp on the guide rail 1 when the actuating means (not shown) is operated.
  • the nose-shaped ends 2 of the plates 2a and 2b bear against a plunger 35 loaded by a spring 36.
  • the arms 6 incorporate a V-shaped groove 6b behind the pressure rollers 5.
  • a wedge-like member in the form of a cylinder 37 embodying a slanting face 38 at each end is located in a bore of the pressure plates 2a and 2b and in a groove 9b of the bolt 9.
  • a cylinder 39 which bears on the face 38 of the cylinder 37 is located in each groove 6b.
  • This embodiment of the invention operates in the following manner.
  • the pressure plates When the pressure plates are located in braking position, with their ends 2] bearing on the plunger 35, the latter shifts as soon as the braking force exerted on the plunger by the plates 2a and 2b exceeds the force of the spring 36 on the plunger.
  • the plates 2a and 2b pivot somewhat, whereby the slanting faces 38 of the cylinder 37, via the cylinders 39, slightly spreads apart the two arms 6 against the force of the spring 7, thereby reducing the force of the rollers 5 on the plates 2a and 2b and decreasing the braking force. Should the coeflicient of friction between the guide rail 1 and the plates 2a and 2b decline, so will the braking force.
  • the safety device of the invention enables setting the maximum braking force to any desired value by adjusting the tension of the spring 36 by means of screws 40'.
  • an elevator including a car traveling along an upright guide rail, a safety device on said car engageable with said rail for braking the car, and actuating means for engaging the safety device with said rail when the downward speed of car movement exceeds a predetermined speed
  • the safety device which comprises:
  • cam follower means engaging each cam track for axially pressing each plate member against said rail in response to said rotation of the plate member.
  • each cam follower means including an arm having two ends, one of said ends being movably mounted on said car, a pressure roller rotatably mounted on the other end, and resilient means holding said roller in engagement with said cam track.
  • said mounting means including a bolt member rotatably supporting said plate members, said arms being formed with respective bores intermediate said ends thereof, said bolt member passing through said bores.
  • said portion of said inner face being sharply serrated in an arc about said axis and carrying a brake shoe.
  • said brake shoe having an exposed face formed with sharpedged grooves.
  • a lever member mounted for being pivoted by said actuating means between an inactive and an active position, cooperating abutment means on said arms and on said lever for holding said arms apart and for thereby disengaging said plate member from said rail in the inactive position of said lever member, and spring means pressing said arms and the pressure rollers thereon against said cam tracks and thereby engaging said inner faces with said rail when said lever member is in the active position thereof.
  • torsion spring means biasing said plate members toward respective angular positions in which the associated pressure roller engages the portion of said cam track nearest said inner face.
  • said mounting means including a bolt member having an axis and rotatably supporting said plate members, said arms being formed with respective bores intermediate said ends thereof, said bolt member passing through said bores, a sleeve coaxially rotatable on said bolt member and connected to said actuating means for rotation thereby between two angular positions, two cams on said s eeve abuttingly engaging said arms in one of said angular positions for holding the arms apart and for thereby holding said plate members out of engagement with said rail, said cams releasing said arms in the other angular position of said sleeve, and spring means pressing said released arms and the pressure rollers thereon against said cam tracks and thereby frictionally engaging the inner faces of said plate members with said rail.
  • said sleeve being located between said arms, and said cams projecting from respective axially terminal portions of said sleeve.
  • connecting means for connecting said sleeve to said actuating means, said bolt member being hollow, and said connecting means including a release shaft rotatably mounted in said bolt, and motion transmitting means for transmitting rotary motion from said shaft to said sleeve.
  • each cam follower means including an arm having two ends, one end being movably mounted on said car, a pressure roller rotatably mounted on the other end, spring means pressing said arms and the pressure rollers thereon against said cam tracks and thereby biasing said inner faces toward frictional engagement with said rail, and securing means securing said arms against rotation about the axes of said plate members, said friction decreasing means including wedge means secured to said plate members for rotation therewith and engaging said arms for urging the same away from each other against the restraint of said spring means in response to movement of said plate members from said first toward said second angular positions thereof.
  • said mounting means including a bolt member rotatably supporting said plate members, said arms being formed with respective bores, portions of said bolt member being received in said bores and constituting said securing means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Braking Arrangements (AREA)
US707619A 1967-03-16 1968-02-23 Safety device for elevator cars Expired - Lifetime US3509970A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH379867A CH447527A (de) 1967-03-16 1967-03-16 Gleitfangvorrichtung an Aufzügen

Publications (1)

Publication Number Publication Date
US3509970A true US3509970A (en) 1970-05-05

Family

ID=4263671

Family Applications (1)

Application Number Title Priority Date Filing Date
US707619A Expired - Lifetime US3509970A (en) 1967-03-16 1968-02-23 Safety device for elevator cars

Country Status (6)

Country Link
US (1) US3509970A (US06623731-20030923-C00008.png)
BE (1) BE710069A (US06623731-20030923-C00008.png)
CH (1) CH447527A (US06623731-20030923-C00008.png)
DE (1) DE1531103B2 (US06623731-20030923-C00008.png)
FR (1) FR1551834A (US06623731-20030923-C00008.png)
SE (1) SE310053B (US06623731-20030923-C00008.png)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240529A (en) * 1977-10-06 1980-12-23 Oehler-Whylen-Lagertechnik AG Vertical conveying apparatus
US4819765A (en) * 1986-05-06 1989-04-11 Kone Elevator Gmbh Arrester device for elevators
US20070007083A1 (en) * 2005-06-17 2007-01-11 Inventio Ag Progressive safety device
US20140216857A1 (en) * 2011-12-07 2014-08-07 Mitsubishi Electric Corporation Elevator safety device and elevator safety device mounting method
US9821983B2 (en) 2009-12-23 2017-11-21 Otis Elevator Company Elevator braking device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT374767B (de) * 1982-07-06 1984-05-25 Otis Elevator Co Bremsvorrichtung fuer aufzuege
FR2670476A1 (fr) * 1990-12-12 1992-06-19 Marion Rene Taquet coulissant pour freinage de mobiles guides.
DE202008015454U1 (de) 2008-11-21 2009-03-12 Voith Patent Gmbh Einrichtung zur Betätigung von Brems- und Fangvorrichtungen für Fahrbühnen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US755736A (en) * 1903-03-19 1904-03-29 Francis Blanding Safety device for elevators.
US1126598A (en) * 1913-12-26 1915-01-26 William J Webb Safety-catch for elevators.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US755736A (en) * 1903-03-19 1904-03-29 Francis Blanding Safety device for elevators.
US1126598A (en) * 1913-12-26 1915-01-26 William J Webb Safety-catch for elevators.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240529A (en) * 1977-10-06 1980-12-23 Oehler-Whylen-Lagertechnik AG Vertical conveying apparatus
US4819765A (en) * 1986-05-06 1989-04-11 Kone Elevator Gmbh Arrester device for elevators
US20070007083A1 (en) * 2005-06-17 2007-01-11 Inventio Ag Progressive safety device
US7299898B2 (en) * 2005-06-17 2007-11-27 Inventio Ag Progressive safety device
US9821983B2 (en) 2009-12-23 2017-11-21 Otis Elevator Company Elevator braking device
US20140216857A1 (en) * 2011-12-07 2014-08-07 Mitsubishi Electric Corporation Elevator safety device and elevator safety device mounting method
US9598264B2 (en) * 2011-12-07 2017-03-21 Mitsubishi Electric Corporation Elevator safety device and elevator safety device mounting method

Also Published As

Publication number Publication date
DE1531103A1 (de) 1970-07-16
FR1551834A (US06623731-20030923-C00008.png) 1968-12-27
DE1531103B2 (de) 1971-06-24
BE710069A (US06623731-20030923-C00008.png) 1968-05-30
CH447527A (de) 1967-11-30
SE310053B (US06623731-20030923-C00008.png) 1969-04-14

Similar Documents

Publication Publication Date Title
CN107000987B (zh) 电梯安全夹钳
US3866725A (en) Load-dependent braking device for conveying systems
FI73651C (fi) Bromsdaempningsanordning.
US8573365B2 (en) Emergency brake apparatus for elevator system
US3509970A (en) Safety device for elevator cars
US6176350B1 (en) Progressive safety gear
JPH0357017B2 (US06623731-20030923-C00008.png)
US4014413A (en) Brakes for vehicles
US3927738A (en) Load dependent acting brake for conveyor devices
FI76049C (fi) Hastighetsbegraensare foer hissar foersedda med spaerranordningar.
CN114787062A (zh) 用于作动电梯制动装置的触发单元
US3207267A (en) Self-energizing disk brake
CN105293247A (zh) 一种限速器及其使用方法
US4234059A (en) Braking system for freight module on overhead guide rail
CN205151436U (zh) 限速器
US4121702A (en) Emergency brake for rail cars
FI73652B (fi) Bromsanordning foer hiss.
US4650040A (en) Block brake for rail vehicles
EP0171916A1 (en) Automatic adjuster for duo-servo internal shoe drum brakes
JPS5821944Y2 (ja) ウエツジ装置
CN108622760B (zh) 电梯限速器
US1268114A (en) Safety device.
JPH0438673B2 (US06623731-20030923-C00008.png)
SU1303470A1 (ru) Тормозной привод транспортного средства
US1702384A (en) Elevator safety