US3502321A - Sheet delivery and collating machine - Google Patents
Sheet delivery and collating machine Download PDFInfo
- Publication number
- US3502321A US3502321A US646918A US3502321DA US3502321A US 3502321 A US3502321 A US 3502321A US 646918 A US646918 A US 646918A US 3502321D A US3502321D A US 3502321DA US 3502321 A US3502321 A US 3502321A
- Authority
- US
- United States
- Prior art keywords
- sheet
- sheets
- collator
- machine
- book
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000295 complement effect Effects 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000010924 continuous production Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H29/00—Delivering or advancing articles from machines; Advancing articles to or into piles
- B65H29/66—Advancing articles in overlapping streams
- B65H29/6609—Advancing articles in overlapping streams forming an overlapping stream
- B65H29/6618—Advancing articles in overlapping streams forming an overlapping stream upon transfer from a first conveyor to a second conveyor advancing at slower speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H31/00—Pile receivers
- B65H31/32—Auxiliary devices for receiving articles during removal of a completed pile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H33/00—Forming counted batches in delivery pile or stream of articles
- B65H33/14—Forming counted batches in delivery pile or stream of articles by diverting batches to separate receivers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H33/00—Forming counted batches in delivery pile or stream of articles
- B65H33/16—Forming counted batches in delivery pile or stream of articles by depositing articles in batches on moving supports
Definitions
- the machine of this invention includes a conveyor for delivering a series of sheets in uniformly overlapped condition, a collator continuously rotatable about a fixed horizontal axis at a delivery end of the conveyor and having a plurality of peripheral sheet collecting pockets successively movable into and out of registry with oncoming sheets for collecting complements of a predetermined number of sheets, and a sheet separating and shifting member positioned between and rotatable in timed relation to the conveyor and the collator for deflecting a last sheet of a complement of sheets to ensure its entry into a receding pocket while permitting the next sheet of a following complement to freely enter an adjacent advancing pocket of the collator.
- This invention generally relates to the sheet handling art and particularly concerns a delivery and collating machine usable with paper handling equipment.
- a primary object of this invention is to provide an improved sheet delivery and collating machine capable of reliable, precision performance at extremely high speeds and which is free of adjustment requirements during a production operation.
- Another object of this invention is to provide such a machine of significantly simplified construction incorporating a minimum number of parts particularly suited for use with printing presses and the like for effecting efiicient continuous sheet handling.
- a further object of this invention is to provide such a machine capable of handling sheets of varying size over a wide range of operating speeds as encountered, e.g., in the automatic manufacture of books, in the production of sheets in specified quantities such as reams, and the manufacture of pads of paper.
- a still further object of this invention is to provide an improved sheet delivery and collating machine of rugged compact construction particularly suited for continuous production operation and having minimal maintenance requirements while virtually eliminating the need for complex mechanisms normally associated with equipment of this type for effecting abrupt changes in speeds and directions of the operating parts.
- FIG. 1 is a diagrammatical side elevational view of part of a sheet delivery and collator machine embodying this invention
- FIG. 2 is a continuation of the view of FIG. 1 showing a collator incorporated in this invention.
- FIG. 3 is a section view, partly broken away, on a reduced scale taken generally along line 33 of FIG. 2.
- the apparatus of this invention may be used with a variety of equipment such as sheeters and similar apparatus for producing specified quantities of cut blank sheets, e.g., it will be assumed for purposes of describing this invention that the ribbons 10 are being discharged from a printing press after having been printed in a repeat pattern, and are suitably presented in strips of equal Width in an ordered arrangement to the feed rolls 12 for automatic manufacture of books wherein the lengths of cut stacks 18 correspond to selected page length as determined by the repeat printing pattern.
- each stack 18 of sheets is cut, it is separated from the ribbons 10 (passing through feed rolls 12) by opposed sets of high speed belts 20 and 21 driven by rollers 22 and 23 shown in the drawings as being suitably connected to the motor 19 so that the belts 20, 21 travel at a surface speed approximately ten percent greater than the peripheral speed of the feed rolls 12 to produce a gap between the trailing end of each cut stack 18 and the leading edges of the following ribbons 10.
- Rollers 24 establish a nip on the leading end of the stacks 18 and are settable horizontally to equal the preselected length of the cut stacks 18.
- the cut stacks or packets 18 of paper sheets are fed onto low speed belts 28.
- the latter are positioned parallel to but somewhat lower than high speed belts 20 and are shown supported on rollers such as at 29 suitably connected to drive the low speed belts 28 at 51 percent of the peripheral speed of feed rolls 12 so that the packets 18 smoothly and uniformly overlap before entering a nip assembly 32 provided in the low speed belt section.
- the nip assembly 32 is settable horizontally within the low speed belt section to ensure that the trailing end of each packet is past roller 22 at the downstream end of the high speed belt section upon the leading end of each packet 18 entering the nip assembly 32.
- Braking of the overlaped stacked sheets is effected by the nip assembly 32 which includes a back-up roller 34 for properly positioning the low speed belts 28 relative to a cooperating upper roller 36 which is grooved to provide clearance between the upper high speed belts 21 and the packets 18 which then pass through a horizontally settable belt nip assembly 38 at a downstream end of the low speed belt section.
- Upper rollers 36 and 39 of the nip assemblies 32 and 38 are each shown suitably connected to be driven at a peripheral speed of 51 percent of that of the feed rolls 12 so as to be in synchronism with the low speed belts 28.
- the speed of the overlapped packets 18 of paper sheets is further reduced by a metering nip assembly 40 downstream from the low speed belts 28.
- the metering nip assembly 40 comprises a rubber idler roll 42 which forms a nip with a driven metering roll 44 for applying a tangential driving force to the overlapped packets 18 to further control their advance.
- a gear box 45 is shown connecting a motor output shaft 46, which will be understood to make one revolution per cut, to a drive shaft 47 for driving the latter at a rate of one revolution per book.
- the metering roll 44 is connected to the drive shaft 47 to rotate at a predetermined peripheral speed relative to that of the rotary cutter 16 whereby the overlapped packets 18 pass through the metering nip assembly 40 and are effectively reduced in length to a known length per book.
- a collator 50 is shown downstream of the metering nip assembly 40 and having open peripheral sheet collecting pockets 52 successively movable in unison into and out of register with the continuous stream of oncoming sheets.
- the pockets 52 are defined by equiangularly spaced forks 54 shown fixed to extend radially outwardly from a pair of spaced collating wheels 56 (FIG. 3) with the forks 54 of each wheel 56 being aligned for common actuation but laterally spaced to form a gap 57 between the forks 54.
- the collator S is shown connected to the drive shaft 47 for rotation in a counterclockwise direction about a fixed horizontal axis at a predetermined constant speed such that a fresh pocket 52 will be advanced to confront and receive the oncoming sheets following the delivery of each completed book from the metering assembly 40. So that the packets will be neatly stacked in alignment, flat abutment surfaces 58 are formed on the periphery of collating wheels 56 between adjacent forks 54 with the abutment surfaces 58 extending at right angles to a leading fork of each adjacent pair.
- sheet delivery to the collator 50 is effected at an approximately constant level as each pocket 52 is successively rotated in descending relation to the sheet flow path with a tangential velocity component of the forks 54 being substantially normal to the line of approach of the sheets.
- each fork 54 will be seen to be in an upwardly tilted attitude with respect to the metering assembly 40, and a tapered end surface 59 is provided on each fork 54 to assist in separating the oncoming packets into different books.
- a sheet separating and shifting member, or cam separator, 60 is provided between the metering nip assembly 40 and the collator '50 for effecting precision separation of the sheet complements for entry into individual pockets 52 at a poduction rate in the order of three times that normally associated with conventional machines.
- the cam separator 60 is positioned in thesheet flow path within the gap 57 (FIG. 3) in operative intersection with the forks 54 of the spaced collating wheels 56 and is supported for rotation about a horizontally disposed axis positioned parallel to but somewhat below that of the metering roll 44.
- a contoured cam surface portion 61 is formed on the cam separator 60 in continuation with a radial cam surface portion 62 and a leading cam nose portion 64 projecting outwardly at a maximum radial distance from its axis.
- the separator 60 is shown connected to the gear box 48 to be driven at a 1:1 speed ratio with the metering roll 44, and the active cam surface (excluding radial portion 62) is designed with a perimetric length equal to the perimeter of the metering roll 44.
- leading cam nose portion 64 acts to depress the leading end of the last packet 18 of each of the sheet complements to guide them into their respective pocket 52 under a descending fork upon which the next following complement of sheets is to be deposited.
- the separator 60 moves through a starting angular position wherein its leading nose portion 64 is generally tangent to the lower tapered surface 59 of fork 54a and the radial portion 62 is then synchronized with the leading edge of the packet 18a with the cam surface portion 61 positioned above the top surface of the fork 54a as shown in the drawing.
- 10 to 78 cuts by the rotary cutter 16 have been found to provide an adequate over-all range of cuts required to make up a single book, and by simply selecting proper gear ratios of the change gears 48, the metering roll 44 and the separator 60, each having a circumference of, say, 15 inches, can be operated to turn, e.g., 2, 4 or 8 complete revolutions per book during an angular displacement of the collator 50 advancing one pocket, thus ensuring that only 30', 60 or inches of overlapped packets corresponding to a single book will pass through the metering nip assembly 40 and into an individual sheet collecting pocket 52 of the collator 50.
- a book consisting of ten 6 inch lengths of stacked sheets will be reduced in length from 60 to 30 inches at the lowest extreme of the range of cuts, and at the highest extreme a book consisting of seventy-eight 10 inch lengths will be reduced in length from 780 to 120 inches.
- the overlapping section of the conveyor between the high and low speed belt sections reduces the original sheet lengths by one half, and the metering nip assembly 40 reduces this half-length to the next lower length of 30, 60 or 120 inches to provide a completed complement of packets corresponding to a single book.
- the radial portion 62 of the separator 60- is of a sufficient length to prevent leading edges of a packet being split between or impaled upon a fork, but the length of radial portion 62 must be less than the chordal distance of fork travel per each revolution of the separator 60 to ensure against a leading edge such as 67 of a last packet of a book improperly entering between cam surface 61 and the upper surface of fork 54a.
- the machine elements may be driven so that the separator 60' makes any integral number of revolutions per book (or index of pocket), provided that the number of revolutions per book does not exceed the ratio obtained by dividing the chordal distance between fork tips by the length of radial portion 62.
- Such provi sion ensures that the revolutions of separator 60 in excess of one will have no meaningful effect upon contacting those packets intermediate the first and last packets of a book.
- the overlapped packets corresponding to each book are continuously and smoothly fed from one pocket into the next, without any break in sheet feeding, by operation of the separator 60 which positively engages the last packet 18 of each book to change its orientation relative to the metering nip assembly 40 while maintaining the attitude of the last packet and the attitude of a first packet of the next following book in entering relation to their respective pockets.
- Completed books or complements such as at 68 are then transferred to a delivery station by an endless belt 70 which coacts with the collator 50 to successively remove the completed books 68.
- the belt 70 has an upper horizontal run 72 positioned in the gap 57 between the collating wheels 56 and is supported by rollers (only one shown at 73) suitably connected to the drive shaft 47 for driving the belt 70 in properly timed relation to the continuously moving collator 50.
- each fork 54 descends toward the belt 70, the former leading edges of the stacked packets of each completed book 68 will engage the abutment surfaces 58 between adjacent forks so as to be disposed perpendicular to the upper run 72 of the belt 70 upon moving into parallel relation therewith to be engaged sequentially by a plurality of spaced L-shaped plates 74 carried by the belt 70 and removed in neatly stacked arrangements to the next delivery station, e.g., to be provided with covers and bound into books.
- Opposite side edges of the completed books are desirably maintained against sagging by a pair of belts 76, 78 synchronized with and positioned on opposite sides of belt 70.
- the above described machine is of compact, rugged construction and can readily handle sheets of varying size over a wide range of operating speeds wherein paper ribbons or webs are being delivered at linear speeds from about to over 1,000 feet per minute. Even in the upper speed range, the machine of this invention is capable of smoothly and automatically handling sheet delivery and collating in a continuous production operation with minimal wear, vibration and malfunctions.
- a conveyor operable for transporting a continuous stream of overlapped sheets along a path
- a continuously movable collator disposed downstream of the conveyor and including a series of pockets each having an entrance opening toward the conveyor, the pockets being successively movable in unison past the conveyor for respectively collecting sheet complements of a predetermined number
- means controlling advance of the sheets in a predetermined attitude relative to the collator means controlling advance of the sheets in a predetermined attitude relative to the collator
- a sheet separating and shifting member mounted for movement between the-conveyor and the collator for positively engaging a last sheet of each complement for changing its orientation relative to the conveyor while maintaining the attitude of said last sheet and the attitude of a first sheet of the following complement in entering relation to their respective pockets of the continuously movable collator.
- said means includes a metering nip assembly positioned in the path of the overlapped sheets upstream of the sheet separating and shifting member and having a metering roll engageable with the approaching sheets, the metering roll being driven in timed relation to the movement of the sheet collecting pockets to continuously deliver thereto complements of a predetermined number of sheets with each of the complements being individually deposited in one of the pockets.
- a conveyor operable for transporting a continuous stream of sheets along a path, the conveyor including a high speed belt section, a low speed belt section downstream of the high speed belt section, and an overlapping section between the high speed and low speed belt sections for effecting delivery of the sheets in overlapping condition, a continuously movable collator disposed downstream of the conveyor and including a series of pockets each having an entrance opening toward the conveyor, the pockets being successively movable in unison past the conveyor for respectively collecting sheet complements of a predetermined number, a sheet separating and shifting member mounted for movement between the conveyor and the collator for positively engaging a last sheet of each complement for changing its orientation relative to the conveyor while maintaining the attitude of said last sheet and the attitude of a first sheet of the following complement in entering relation to their respective pockets of the continuously movable collator, and a metering nip assembly between the low speed belt section and the sheet separating and shifting member and coacting therewith for ensuring delivery of a preselected number of sheets in each of the
- the sheet separating and shifting member comprises a rotary cam rotatable about a fixed axis in spaced parallel relation to the metering roll and having a contoured cam surface portion formed in continuation with a radial cam surface portion and a leading cam nose portion, the cam being driven in synchronism with the metering roll such that the cam nose portion acts to deflect a leading edge of a last sheet of each of the sheet complements into its respective sheet collecting pocket while the leading edge of a first sheet of the following complement is free to enter the next following pocket of the collator.
- the collator comprises a carrier having a plurality of forks defining the sheet collecting pockets, the forks being mounted in equally spaced relation on the carrier for angular movement past the rotary cam about a fixed axis parallel to that of the last mentioned element, and wherein the 'adial cam surface portion is of a preselected length ess than the angular displacement of fork travel per :ach revolution of the rotary cam.
- the cam has an active cam surface with a perimetric length equal to the perimeter of the metering roll, and wherein a common :lrive is provided for driving the metering roll and the :am at a predetermined angular velocity such that a preselected number of complete revolutions of the metering roll and cam ensures delivery of separate sheet complements of a known count to the collator.
- a collator continuously movable in One direction about a fixed horizontal axis disposed in confronting transverse relation to a line of approach of a continuous stream of oncoming overlapped sheets, the collator having a plurality of open peripheral sheet collecting pockets successively and continuously movable into and out of register with oncoming sheets for collecting predetermined counted and separated complements of sheets and moving the same along a common path, and sheet separating means upstream of the collator for separating a last sheet of each complement and a first sheet of a following complement for collating said two sheets in separate sheet collecting pockets.
- the machine of claim 10 further including a metering nip assembly positioned upstream of the collator and having a metering roll engageable with the approaching sheets, the metering roll being driven in timed relation to the movement of the sheet collecting pockets past the line of approach of oncoming sheets to continuously deliver complements of a predetermined number of sheets into the sheet collecting pockets with each of the complements being individually received in one of the same.
- each of the forks is disposed in an upwardly tilted attitude with respect to the oncoming sheets throughout registry therewith of their respective sheet collecting pockets, the forks being continuously movable with a tangential velocity component substantially normal to the line of approach of the sheets in descending relation thereto.
- the machine of claim 14 further including an endless conveyor having an upper run positioned in noninterfering operative intersection with the forks of the collator and continuously traveling outwardly therefrom in timed relation thereto for removing each of the sheet complements from the individual forks as they successively descend through a position parallel to the upper run of the endless conveyor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Delivering By Means Of Belts And Rollers (AREA)
- Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)
- Collation Of Sheets And Webs (AREA)
- Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
- Sorting Of Articles (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64691867A | 1967-06-19 | 1967-06-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3502321A true US3502321A (en) | 1970-03-24 |
Family
ID=24594994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US646918A Expired - Lifetime US3502321A (en) | 1967-06-19 | 1967-06-19 | Sheet delivery and collating machine |
Country Status (11)
Country | Link |
---|---|
US (1) | US3502321A (sv) |
AT (1) | AT321242B (sv) |
BE (1) | BE716849A (sv) |
CH (1) | CH491809A (sv) |
DE (1) | DE1761594C3 (sv) |
ES (1) | ES355209A1 (sv) |
FI (1) | FI49009C (sv) |
FR (1) | FR1570898A (sv) |
GB (1) | GB1179215A (sv) |
NL (1) | NL145172B (sv) |
SE (1) | SE354228B (sv) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833212A (en) * | 1972-09-11 | 1974-09-03 | Harris Int Corp | Signature collating system and method |
US3994221A (en) * | 1975-10-02 | 1976-11-30 | World Color Press, Inc. | Sheeter for use with printing press and adding provision for arresting, squaring and diverting of sheet |
FR2411787A1 (fr) * | 1977-12-16 | 1979-07-13 | Gao Ges Automation Org | Procede de commande de l'introduction de matiere transportee dans une empileuse a compartiments en spirale |
US4161092A (en) * | 1976-02-18 | 1979-07-17 | Gard, Inc. | Flat article handling system |
US4161095A (en) * | 1977-11-08 | 1979-07-17 | Gard, Inc. | Flat article stacking system |
US4749834A (en) * | 1986-06-25 | 1988-06-07 | Tocco, Inc. | Method and apparatus of hardening gears by induction heating |
US4973039A (en) * | 1988-04-16 | 1990-11-27 | Bielomatik Leuze Gmbh & Co. | Device for retarding sheet stacks |
US5265862A (en) * | 1992-09-25 | 1993-11-30 | Numerical Concepts, Inc. | Sheeter for recycled and lightweight paper stocks |
US5522588A (en) * | 1995-03-07 | 1996-06-04 | Moore Business Forms, Inc. | Linerless label stacking |
WO1998022379A1 (en) * | 1996-11-22 | 1998-05-28 | Bell & Howell Mail Processing Systems | Accumulator apparatus and method |
CN110817550A (zh) * | 2019-11-14 | 2020-02-21 | 浙江正诺机械有限公司 | 一种分切机的送纸装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU530927B2 (en) * | 1978-11-03 | 1983-08-04 | Carta Mundi | Collator |
US4265445A (en) * | 1979-06-08 | 1981-05-05 | Langner Fred R | Photocopier collator |
JPS61162422A (ja) * | 1985-01-08 | 1986-07-23 | エフ・エム・シー・コーポレーシヨン | バッグ堆積体の取扱装置 |
DE3725225C1 (de) * | 1987-07-30 | 1988-07-21 | Miller Johannisberg Druckmasch | Vorrichtung zum Sammeln und Ablegen von Signaturen |
DE4031587C1 (sv) * | 1990-10-05 | 1991-11-21 | Man Miller Druckmaschinen Gmbh, 6222 Geisenheim, De |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2876000A (en) * | 1955-01-11 | 1959-03-03 | United States Steel Corp | Hand tool for flame-hardening gear teeth |
US2922640A (en) * | 1953-07-15 | 1960-01-26 | David E Fornell | Collating machine |
US2936167A (en) * | 1957-03-29 | 1960-05-10 | William E Murray | Collator |
US2940750A (en) * | 1957-11-26 | 1960-06-14 | Mestre Luis | Collating machine |
US3026107A (en) * | 1960-03-25 | 1962-03-20 | Edward A Stroud | Collating apparatus for printing machines |
US3420516A (en) * | 1964-09-30 | 1969-01-07 | Graphicart Int | Method of and apparatus for stuffing printed matter with inserts |
-
1967
- 1967-06-19 US US646918A patent/US3502321A/en not_active Expired - Lifetime
-
1968
- 1968-06-10 GB GB27391/68A patent/GB1179215A/en not_active Expired
- 1968-06-12 DE DE1761594A patent/DE1761594C3/de not_active Expired
- 1968-06-14 SE SE08055/68A patent/SE354228B/xx unknown
- 1968-06-14 CH CH890568A patent/CH491809A/de not_active IP Right Cessation
- 1968-06-18 FR FR1570898D patent/FR1570898A/fr not_active Expired
- 1968-06-18 AT AT580768A patent/AT321242B/de not_active IP Right Cessation
- 1968-06-19 ES ES355209A patent/ES355209A1/es not_active Expired
- 1968-06-19 BE BE716849D patent/BE716849A/xx not_active IP Right Cessation
- 1968-06-19 FI FI681714A patent/FI49009C/sv active
- 1968-06-19 NL NL686808605A patent/NL145172B/xx not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2922640A (en) * | 1953-07-15 | 1960-01-26 | David E Fornell | Collating machine |
US2876000A (en) * | 1955-01-11 | 1959-03-03 | United States Steel Corp | Hand tool for flame-hardening gear teeth |
US2936167A (en) * | 1957-03-29 | 1960-05-10 | William E Murray | Collator |
US2940750A (en) * | 1957-11-26 | 1960-06-14 | Mestre Luis | Collating machine |
US3026107A (en) * | 1960-03-25 | 1962-03-20 | Edward A Stroud | Collating apparatus for printing machines |
US3420516A (en) * | 1964-09-30 | 1969-01-07 | Graphicart Int | Method of and apparatus for stuffing printed matter with inserts |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833212A (en) * | 1972-09-11 | 1974-09-03 | Harris Int Corp | Signature collating system and method |
US3994221A (en) * | 1975-10-02 | 1976-11-30 | World Color Press, Inc. | Sheeter for use with printing press and adding provision for arresting, squaring and diverting of sheet |
US4161092A (en) * | 1976-02-18 | 1979-07-17 | Gard, Inc. | Flat article handling system |
US4161095A (en) * | 1977-11-08 | 1979-07-17 | Gard, Inc. | Flat article stacking system |
FR2411787A1 (fr) * | 1977-12-16 | 1979-07-13 | Gao Ges Automation Org | Procede de commande de l'introduction de matiere transportee dans une empileuse a compartiments en spirale |
US4244565A (en) * | 1977-12-16 | 1981-01-13 | Gesellschaft Fur Automation Und Organisation Gmbh | Method of controlling the entry of material into a spiral compartment stacker |
US4749834A (en) * | 1986-06-25 | 1988-06-07 | Tocco, Inc. | Method and apparatus of hardening gears by induction heating |
US4973039A (en) * | 1988-04-16 | 1990-11-27 | Bielomatik Leuze Gmbh & Co. | Device for retarding sheet stacks |
US5265862A (en) * | 1992-09-25 | 1993-11-30 | Numerical Concepts, Inc. | Sheeter for recycled and lightweight paper stocks |
US5522588A (en) * | 1995-03-07 | 1996-06-04 | Moore Business Forms, Inc. | Linerless label stacking |
WO1998022379A1 (en) * | 1996-11-22 | 1998-05-28 | Bell & Howell Mail Processing Systems | Accumulator apparatus and method |
US5775689A (en) * | 1996-11-22 | 1998-07-07 | Bell & Howell Mail Processing Systems | Accumulator apparatus and method |
GB2334024A (en) * | 1996-11-22 | 1999-08-11 | Bell & Howell Mail Proc Sys Co | Accumulator apparatus and method |
GB2334024B (en) * | 1996-11-22 | 2001-05-30 | Bell & Howell Mail Proc System | Accumulator apparatus and method |
CN110817550A (zh) * | 2019-11-14 | 2020-02-21 | 浙江正诺机械有限公司 | 一种分切机的送纸装置 |
Also Published As
Publication number | Publication date |
---|---|
GB1179215A (en) | 1970-01-28 |
NL145172B (nl) | 1975-03-17 |
CH491809A (de) | 1970-06-15 |
DE1761594A1 (de) | 1971-08-12 |
DE1761594B2 (de) | 1975-01-09 |
FI49009B (sv) | 1974-12-02 |
FR1570898A (sv) | 1969-06-13 |
FI49009C (sv) | 1975-03-10 |
SE354228B (sv) | 1973-03-05 |
ES355209A1 (es) | 1969-11-16 |
AT321242B (de) | 1975-03-25 |
NL6808605A (sv) | 1968-12-20 |
DE1761594C3 (de) | 1975-08-28 |
BE716849A (sv) | 1968-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3502321A (en) | Sheet delivery and collating machine | |
CA1167798A (en) | Diverter mechanism | |
US5348527A (en) | Apparatus for cutting and stacking a multi-form web | |
US5083769A (en) | Dual collating machine | |
CA1081601A (en) | Apparatus for the separation of cut portions from flat material | |
US4621966A (en) | Shingle compensating device | |
US3998141A (en) | Batch delivery | |
CN104803229B (zh) | 单张纸重叠机构、折页机、印刷机和单张纸重叠方法 | |
AU601802B2 (en) | Machines for collating forms | |
US2172364A (en) | Delivery mechanism | |
US5615878A (en) | Method and apparatus for accelerating and diverting flat products | |
US3026107A (en) | Collating apparatus for printing machines | |
US3847384A (en) | Apparatus for collating sheet like elements | |
US4491310A (en) | Adjustable folding apparatus | |
US4190243A (en) | Folder assembly for book folding | |
US2843378A (en) | Stacking apparatus | |
US4331327A (en) | Apparatus for destacking at least two stacks of flexible flat structures, especially sheets or printed products | |
JP2516640Y2 (ja) | 紙かわし装置 | |
US3937452A (en) | Method and apparatus for manufacturing continuous form sets | |
US846716A (en) | Machine for assembling leaves. | |
US6561507B1 (en) | Apparatus for decelerating and shingling signatures | |
CN110799329B (zh) | 纸板折叠装置及制盒机 | |
JPH04223892A (ja) | 印刷製品の側方切断装置 | |
US2663564A (en) | Paper ruling, assembling, and stapling machine | |
US3056321A (en) | Sheet shingling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SOMERSET TECHNOLOGIES, INC., WESTON CANAL ROAD, SO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MIDLAND-ROSS CORPORATION;REEL/FRAME:004270/0327 Effective date: 19840504 |
|
AS | Assignment |
Owner name: NATIONAL CITY BANK 1900 EAST NINTH STREET CLEVELAN Free format text: SECURITY INTEREST;ASSIGNOR:SOMERSET TECHNOLOGIES, INC.;REEL/FRAME:004284/0563 Effective date: 19840504 |