US3481846A - Electrolytic production of adiponitrile - Google Patents
Electrolytic production of adiponitrile Download PDFInfo
- Publication number
- US3481846A US3481846A US290112A US3481846DA US3481846A US 3481846 A US3481846 A US 3481846A US 290112 A US290112 A US 290112A US 3481846D A US3481846D A US 3481846DA US 3481846 A US3481846 A US 3481846A
- Authority
- US
- United States
- Prior art keywords
- adiponitrile
- acrylonitrile
- cathode
- cell
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/09—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/29—Coupling reactions
- C25B3/295—Coupling reactions hydrodimerisation
Definitions
- This invention relates to the production of adiponitrile from acrylonitrile. Specifically, this invention relates to the production of adiponitrile by passing a direct electric Current through an electrolyte containing acrylonitrile using lithium bromide as the conductive compound in the electrolyte.
- the above objects are accomplished according to the present invention by passing a direct electric current through acrylonitrile containing from about 1 to about 3.8% by weight water and lithium bromide.
- the process of this invention may be carried out with or without a diaphragm in the electrolytic cell. If a diaphragm is to be used, it is preferable to employ a cationic permselective membrane (that is, a membrane that is only cationpermeable). Such diaphragms are known in the art and are commercially available. If a cationic permselective membrane is used, an anolyte may be employed that contains no acrylonitrile. This can be advantageous for under some conditions the anodic oxidation products tend to couse polymerization of the acrylonitrile. However, a diaphragm is not necessary to the successful operation of the process of this invention.
- FIGURE 1 shows a cross-sectional view through a diaphragmed electrolytic cell suitable for use in carrying out the process of the present invention.
- FIGURE 2 shows a cross-sectional view through an electrolytic cell without a diaphragm that is suitable for carrying out the process of the present invention.
- the process of the present invention is carried out at a cathode current density between about 50 and about 200 amps] sq. ft. and at a voltage (cathode to anode) of between about 1.2 and 15.0 volts.
- the process is preferably carried out within the temperature range of 30 to 70 C. because the conductivity of the electrolyte is greatest at this temperature.
- the optimum temperature is about 45 C.
- the pH of the system is critical only in that the pH should be on the acid side, i.e., less than 6.
- the concentration of the lithium bromide in the moist acrylonitrile can vary over wide limits, but about 2 to about 8% is satisfactory in most instances. The concentrations of about 3 to about 7% are preferred.
- a diaphragmed cell to agitate the portion of the cell in which the acrylonitrile is undergoing hydrodimerization. Agitation avoids areas of high pH and reduces the degree of polarization, resulting in increased yields.
- the degree of agitation useful in the present process varies with the applied cathode current density, but is generally from a Reynolds number of about 12,000 to about 200,000, preferably about 100,000 to about 175,000.
- the diaphragm is preferably a cation permselective diaphragm.
- Suitable ion exchange membranes are commercially available. Useful membranes can be made by sulfonating a copolymer of styrene and divinyl benzene, and blending the product with polyethylene. The blend is then formed into a sheet of about .045 inch thickness. Sulfonated copolymers of styrene and divinyl benzene may be ground and blended with sulfonated polyethylene and cemented as a sheet to Dynel (a copolymer of vinyl chloride and acrylonitrile).
- Some membranes require pre-soaking prior to use. This can be accomplished by techniques known in the art, for example the membrane is installed in the cell, and then treated with aqueous H 50 (5%). This treatment avoids uneven swelling and buckling.
- the anolyte in the diaphragmed cell is an aqueous acid. Sulfuric acid at a concentration of about 25 to 45% is highly satisfactory. Also, dilute hydrobromic can be used when satisfactory means are available for removal of the bromine.
- Aqueous organic acids such as ethyl sulfuric acid and p-toluene sulfonic acid are also satisfactory. Weak acids, such as formic and hydroiodic, give relatively poor results.
- Cathode materials suitable for the process include lead, platinum, palladium, copper, nickel, chromium on brass, and silver. Platinum, lead, silver and copper are the preferred cathode materials.
- the anode may be of any relatively inert conductor; platium and carbon are highly satisfactory.
- the catholyte may contain (in addition to acrylonitrile, water, and lithium bromide) other materials that do not substantially affect the basic composition.
- cosolvents for the lithium bromide may be included. Specifically, dimethyl formamide, methanol, 0r isopropanol may be added to the catholyte as cosolvents for the lithium bromide.
- FIGURE 1 shows an electrolytic cell designated 1, having a cathode 2 in catholyte 3, and an anode 4 in anolyte 5.
- the anolyte and the catholyte are separated by a cation permselective diaphragm 6.
- the cathode compartment of the cell contains an agitator 7.
- Suitable inlet means 8 and outlet means 9 are provided for the cathode compartment.
- the anode compartment has inlet means 10 and outlet means 11.
- the cell is also provided with suitable vents 12 and 13 to remove the gaseous electrolytic products.
- FIGURE 2 diagrammatically shows an undiaphragmed electrolytic cell suitable for use in the process of this invention.
- the cell 1 is provided with a cathode 2, an anode 4, an agitator 7, an inlet means 8 an outlet means 9, and vents 12 and 13. Additionally, inlet means 14 is provided to allow the introduction of acid to keep the pH acidic.
- either of the cells may be run in a batchwise fashion or continuously. That is, electrolyte (moist acrylonitrile and lithium bromide) may be introduced continuously through inlet 8 and withdrawn continuously through outlet 9; or the electrolyte may be introduced through inlet 8, electrolyzed and withdrawn as a batch through outlet 9. In either instance, the adiponitrile is separated from the acrylonitrile, water, and lithium bromide by further processing after removal through outlet 9.
- electrolyte moist acrylonitrile and lithium bromide
- EXAMPLE I In a cell, such as illustrated in FIGURE 2, an electrolyte consisting of 79 parts of acrylonitrile, 14.1 parts of dimethylformamide (a cosolvent for the lithium bromide), 3.5 parts lithium bromide, and 3.4 parts water was electrolyzed with mild agitation using a cathode current density of 60 amps/sq. ft. for 90 minutes, using a lead cathode and a platinum anode. Hydrogen gas was introduced in the anode region in an effort to minimize the polarization. The pH of the electrolyte averaged about 0.8. The product was removed and analyzed, and the current efiiciency for the production of adiponitrile was calculated to be 14%.
- the cathode was vigorously agitated by means of a stirrer and voltage of aproximately 8 volts was applied between a platinum anode and platinum cathode for about 90 minutes.
- the cathode current density was about 50 amps/sq. ft.
- the temperature was approximately 30, and the pH was about 1.
- the current efficiency was about 14% calculated with regard to the amount of acrylonitrile converted to adiponitrile.
- the pH of the organic product from the electrolytic cell was adjusted to 3.5-4.5 and then filtered. The filter cake was discarded.
- the organic liquid was extracted with water and methylene dichloride, the water washes being extracted with methylene dichloride and the methylene dichloride extract being washed with water.
- the aqueous layers were consolidated at the end of the extraction, and the organic layers were separately consolidated.
- the Water was stripped from the combined aqueous layers, leaving as a product dried lithium bromide.
- the combined organic layers were charged slowly through a separatory funnel into the distillation apparatus flashing the acrylonitrile and CH Cl on over a steam bath.
- the separatory tunnel was then removed, and a thermometer was installed where the separatory funnel had been and the distillation resumed at 40 mm. Hg for about five minutes after visible boiling had ceased.
- the pressure was then decreased to mm. Hg, and distillation continued until a pot temperature of 70 C. was reached.
- the adiponitrile was then recovered by distillation.
- the current efiiciency to adiponitril is the percentage of the current which is utilized in making adiponitrile.
- By-products included hydrogen gas, propionitrile, beta-hydroxy propionitrile and beta, beta-oxydipropionitrile, and polyacrylonitrile.
- the electrolyte weighs 252 grams and has a concentration of4.27% adiponitrile, the quantity of adiponitrile is 0.10 mol, and at two faradays per mol of adiponitrile the current efiiciency to adiponitrile is 0.10/ 0.2720 2 which is The adiponitrile produced by the disclosed process is useful as an intermediate in the production of nylon.
- a process for the production of adiponitrile which comprises passing a direct electric current at a potential between about 1.2 and 15 volts at a cathode current density between about 50 and 200 amps/sq. ft. between a cathode selected from the class consisting of palladium, nickel, chromium on brass, platinum, lead, silver and copper, and an inert anode through an electrolyte, in contact with said cathode, consisting essentially of acrylonitrile, about 2 to about 8% lithium bromide, and between about 1 and about 3.8% water thereby forming adiponitrile and thereafter recovering the adipontrile, said electrolyte having a pH of less than 6.
- a process for the production of adiponitrile in an electrolytic cell having an anode compartment and a cathode compartment, said anode compartment being separated from said cathode compartment by means of a cationic permselective membrane which comprises subjecting an electrolyte consisting essentially of acrylonitrile containing between about 1 and about 3.8% water and about 2 to about 8% lithium bromide to the action of direct electric current in the cathode compartment of said cell thereby forming adiponitrile and thereafter recovering the adiponitrile.
- anode compartment of said cell contains an aqueous acid solution selected from the class consisting of sulfuric acid, hydrobromic acid, ethyl sulfuric, and p-toluene sulfonic.
- a process for the production of adiponitrile in an electrolytic cell having an anode compartment and a cathode compartment, said anode compartment being separated from said cathode compartment by means of a cationic permselective membrane, which comprises subjecting an electrolyte in the cell to the action of direct electric current, the electrolyte in the cathode compartment consisting essentially of between about 1 and about 3.8% water, between about 2 to about 8% lithium bromide and acrylonitrile, whereby adipontrile is formed in the cathrode compartment of the cell, and recovering adiponitrile.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US29011263A | 1963-06-24 | 1963-06-24 | |
| US29047163A | 1963-06-25 | 1963-06-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3481846A true US3481846A (en) | 1969-12-02 |
Family
ID=26966013
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US290112A Expired - Lifetime US3481846A (en) | 1963-06-24 | 1963-06-24 | Electrolytic production of adiponitrile |
| US290471A Expired - Lifetime US3488267A (en) | 1963-06-24 | 1963-06-25 | Electrolytic production of adiponitrile |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US290471A Expired - Lifetime US3488267A (en) | 1963-06-24 | 1963-06-25 | Electrolytic production of adiponitrile |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US3481846A (enExample) |
| BE (1) | BE649625A (enExample) |
| DE (1) | DE1468765A1 (enExample) |
| GB (1) | GB1011438A (enExample) |
| LU (1) | LU46226A1 (enExample) |
| NL (1) | NL6407148A (enExample) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IN147984B (enExample) * | 1977-03-23 | 1980-09-06 | Asahi Chemical Ind | |
| US4941954A (en) * | 1989-05-08 | 1990-07-17 | E. I. Du Pont De Nemours And Company | Electrochemical preparation of branched unsaturated dinitriles |
| ES2954738T3 (es) * | 2020-03-03 | 2023-11-24 | Invista Textiles Uk Ltd | Producción de adiponitrilo |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2726204A (en) * | 1949-04-14 | 1955-12-06 | Monsanto Chemicals | Polymerization process |
| CA566274A (en) * | 1958-11-18 | Sun Oil Company | Polymerization of ethylene | |
| US3193480A (en) * | 1963-02-01 | 1965-07-06 | Monsanto Co | Adiponitrile process |
| US3193481A (en) * | 1962-10-05 | 1965-07-06 | Monsanto Co | Electrolytic hydrodimerization alpha, beta-olefinic nitriles |
-
1963
- 1963-06-24 US US290112A patent/US3481846A/en not_active Expired - Lifetime
- 1963-06-25 US US290471A patent/US3488267A/en not_active Expired - Lifetime
-
1964
- 1964-06-02 LU LU46226D patent/LU46226A1/xx unknown
- 1964-06-22 GB GB25804/64A patent/GB1011438A/en not_active Expired
- 1964-06-23 NL NL6407148A patent/NL6407148A/xx unknown
- 1964-06-23 BE BE649625D patent/BE649625A/xx unknown
- 1964-06-24 DE DE19641468765 patent/DE1468765A1/de active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA566274A (en) * | 1958-11-18 | Sun Oil Company | Polymerization of ethylene | |
| US2726204A (en) * | 1949-04-14 | 1955-12-06 | Monsanto Chemicals | Polymerization process |
| US3193481A (en) * | 1962-10-05 | 1965-07-06 | Monsanto Co | Electrolytic hydrodimerization alpha, beta-olefinic nitriles |
| US3193480A (en) * | 1963-02-01 | 1965-07-06 | Monsanto Co | Adiponitrile process |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1011438A (en) | 1965-12-01 |
| LU46226A1 (enExample) | 1964-08-03 |
| US3488267A (en) | 1970-01-06 |
| NL6407148A (enExample) | 1964-12-28 |
| BE649625A (enExample) | 1964-10-16 |
| DE1468765A1 (de) | 1969-01-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3492209A (en) | Hydrodimerization in a wicking type cell | |
| US4124477A (en) | Electrolytic cell utilizing pretreated semi-permeable membranes | |
| EP0532188A2 (en) | Electrochemical process | |
| US4435256A (en) | Process for making potassium ferrate [Fe(VI)] by the electrochemical formation of sodium ferrate | |
| US3523068A (en) | Process for electrolytic preparation of quaternary ammonium compounds | |
| US4149946A (en) | Recovery of spent pickle liquor and iron metal | |
| US3896011A (en) | Process for the preparation of sebacic acid | |
| US3481846A (en) | Electrolytic production of adiponitrile | |
| US3193481A (en) | Electrolytic hydrodimerization alpha, beta-olefinic nitriles | |
| Vaghela et al. | Electrolytic synthesis of succinic acid in a flow reactor with solid polymer electrolyte membrane | |
| EP0291865B1 (en) | Electrochemical synthesis of substituted aromatic amines in basic media | |
| US2419515A (en) | Preparation of 1, 3-butylene glycol | |
| GB2069534A (en) | Reducing cell voltages of electrolytic cell for electrolytically producing hydrogen | |
| US3509031A (en) | Electrochemical oxidation of phenol | |
| Dalrymple et al. | An indirect electrochemical process for the production of naphthaquinone | |
| SU979325A1 (ru) | Способ получени щелочных солей жирных кислот | |
| US4634506A (en) | Process for preparing olefin oxides | |
| US4544459A (en) | Process for obtaining hydrogen and oxygen from water | |
| US3193483A (en) | Electrolysis of acrylamides | |
| US3756928A (en) | Ls process for the manufacture of sebacic acid diesters of higher alcoho | |
| US4402805A (en) | Electrochemical process to prepare p-hydroxymethylbenzoic acid with a low level of 4-CBA | |
| US2793991A (en) | Production of cyanogen | |
| US4394225A (en) | Process for the addition of iodoperfluoroalkanes onto ethylenic or acetylenic compounds by electrocatalysis | |
| US3556961A (en) | Electrolytic hydrodimerisation | |
| US2282683A (en) | Electrochemical preparation of halogenated organic hydroxy compounds |