US3468631A - Blood oxygenator with heat exchanger - Google Patents

Blood oxygenator with heat exchanger Download PDF

Info

Publication number
US3468631A
US3468631A US465451A US3468631DA US3468631A US 3468631 A US3468631 A US 3468631A US 465451 A US465451 A US 465451A US 3468631D A US3468631D A US 3468631DA US 3468631 A US3468631 A US 3468631A
Authority
US
United States
Prior art keywords
chamber
blood
oxygenator
heat exchanger
shells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US465451A
Other languages
English (en)
Inventor
Donald A Raible
Donald J Bentley
Richard A De Wall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Hospital Supply Corp
Bentley Laboratories Inc
Original Assignee
Bentley Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bentley Laboratories Inc filed Critical Bentley Laboratories Inc
Application granted granted Critical
Publication of US3468631A publication Critical patent/US3468631A/en
Assigned to AMERICAN HOSPITAL SUPPLY CORPORATION ONE AMERICAN PLAZA, EVANSTON, ILLINOIS 60201 A CORP OF ILLINOIS reassignment AMERICAN HOSPITAL SUPPLY CORPORATION ONE AMERICAN PLAZA, EVANSTON, ILLINOIS 60201 A CORP OF ILLINOIS ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMERICAN BENTLEY INC., A CORP OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/32Oxygenators without membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/32Oxygenators without membranes
    • A61M1/322Antifoam; Defoaming
    • A61M1/325Surfactant coating; Improving wettability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood

Definitions

  • a unitary blood oxygenator and heat exchanger having a rigid casing, an oxygenator chamber having batlle means and being in the upper part of the casing, a settling chamber separate from, and in communication with, the oxygenator chamber, and a heat exchanger in communication with the settling chamber by means of a thin, elongate 0t.
  • This invention relates to a blood oxygenator to perform the lung function of a heart-lung machine.
  • an extracorporeal circulation system for temporarily assuming the functions of the heart and lungs of the patient.
  • the lung function is performed by an oxygenator. It may also be desired to raise or lower the temperature of the blood in the extracorporeal system or to do both in dilferent parts of the system.
  • heat exchangers for this purpose have generally been made as separate units which were connected by tubing with other components of the system. This has been undesirable because of the time involved in connecting up the components and getting the system into operation, because of the large amount of priming blood required to fill the system, because of the problem of sterilizing all the equipment and for other reasons.
  • Objects of the present invention are, therefore, to provide an improved bubble-type oxygenator, to provide an improved heat exchanger, to provide an oxygenator and heat exchanger combined in a single compact unit, to provide a unit of the type described which is economical to manufacture and disposable after a single use, to provide such a unit having a relatively small priming volume, to provide such a unit of substantially rigid construction so as to maintain desired configurations and dimensions of inside passages and chambers and to provide such a unit having a translucent casing so that the flow of blood therewithin may be observed.
  • the present oxygenator and heat exchange unit has a stifi casing formed by a pair of right and left vacuum molded plastic shells which are secured together and contain elements of the apparatus in chambers formed by cavities in the molded shells. In this way the dimensions and configurations of the internal chambers and passages may be accurately controlled to establish a desired regimen of flow of the blood, obtain quick response from the heat exchanger and minimize the priming volume.
  • the translucent property of the plastic shells permits continuous observation of the blood flow through the unit.
  • the unit is readily set up for operation with a minimum of connections and other preparatory work and the amount of priming blood is further reduced by the close association of the heat exchanger with the oxygenator in a common unit. By making the unit disposable, it never has to be sterilized after use.
  • FIGURE 1 is a perspective view of an oxygenator and heat exchanger unit embodying the principles of the invention
  • FIGURE 2 is a side elevation view with one of the casing shells and other parts broken away;
  • FIGURE 3 is a view on the line 3-3 of FIGURE 2;
  • FIGURE 4 is a view on the line 4-4 of FIGURE 2;
  • FIGURE 5 is a view on the line 55 of FIGURE 2.
  • FIGURE 6 is a view on the line 6-6 of FIGURE 2.
  • the oxygenator and heat exchanger parts are contained within and supported by a pair of complementary, vacuum molded, plastic shells A and B which form left and right halves of an external casing. These two shells are of similar configuration and mate together in a joint plane which extends vertically through the mid-section of the device. At the top the shells have inclined semi-cylindrical complementary cavities which form an inclined cylindrical oxygenating chamber 10. At the bottom the shells have inclined semi-cylindrical complementary cavities which form a cylindrical heat exchange chamber 11.
  • conical settling and debubbling chamber 12 similarly formed by complementary cavities in the two shells. Smaller complementary cavities in the two shells form a port 13 from the bottom of the oxygenator chamber 10 to the top of settling chamber 12 and an elongated slot-shaped port 14 from the bottom of settling chamber 12 to heat exchange chamber 11.
  • Each of these chambers and ports is contained half in the shell A and half in the shell B.
  • the shells A and B are made of a suitable, preferably translucent, non-toxic, plastic material capable of being vacuum molded and capable of being united by heat seals or chemical bonding as by an epoxy resin or compatible solvent.
  • the shells are sufliciently still that the molded contours of the cavities forming the described chambers and ports are self-sustaining and do not lose their shape by collapsing, bulging or sagging under the weight of the internal component and the blood which partially fills the chambers in use.
  • the casing is supported in upright position by means of hanger holes 16 with the back edge 17 approximately vertical.
  • the lower end of oxygenator chamber 10 is closed at the front edge 18 of the casing by a plastic inlet plate 20 having a cylindrical peripheral edge 21 bonded and sealed to the shells A and B.
  • a plastic tube 22 mounted on a boss 19 on the inner side of plate 20 is a plastic tube 22 forming a cylindrical bubble chamber concentric with the chamber 10.
  • Tube 22 is closed at its upper end and is provided with a pair of outlet slots 23 on opposite sides of its distal end.
  • a small drain opening 23a is also provided.
  • a plastic bubble tube or plate having a closed upper end and a perforated side wall 26.
  • This bubble tube extends only a short distance into the lower end of bubble chamber 22 and is supplied by an oxygen inlet connection 27.
  • inlet connection 24 may be made in the form of a Y for connection with two different sources of venous blood if desired.
  • a side connection 27a may also be provided for taking blood samples at this point if desired.
  • the bubble chamber may be furnished with inclined perforated baflles 28 to direct the flow of the blood-oxygen mixture.
  • Bubble chamber 22 is surrounded with a layer of coarse knit mesh 30 of polypropylene plastic or other suitable material impregnated with a non-toxic, anti-foam material such as medical silicone anti-foam which is well-known in the trade.
  • the mesh material is confined by a porous cover 31 preferably of nylon fabric. This cover is secured to the lower end portion of tube 22 by a drawstring 32 so that all of the blood must pass through it.
  • the mesh layer 30 is cylindrical and only slightly smaller in diameter than chamber 10 and is of a construction that provides suitable filtering ability.
  • vent passage 35 which connects with an external vent opening 36 at the highest point in the casing adjacent the rear edge 17.
  • vent passage 37 Extending directly downward from vent opening 36 is another vent passage 37 which communicates with the highest point in settling chamber 12.
  • a plurality of external ports and connector fittings 38 communicate with vent passage 37 through back edge 17 of the casing.
  • Heat exchange chamber 11 contains a cylindrical metal can 40 for heating or cooling water.
  • the beaded inner end of this can is retained by an annular ridge 41 in the plastic shells and the side wall is clamped between the surfaces of the shell cavities which form chamber 11.
  • the outer end of the can is sealed at 42 to the walls of the shell cavities.
  • the shell cavities are vertically grooved to provide shallow channels 45 around the can.
  • the blood enters chamber 11 through slot port 14 directly over the top side of can 40 and flows around opposite sides of the can in thin films through channels 45 to an inclined bottom sump passage.
  • FIGURE 2 shows only a small portion of the outside of shell B at the lower right corner of the casing, the rest of shell B being broken away to show the internal structure and the inside of shell A.
  • the hatching on shell A designates the broken bond between the two shells and indicates the extent of the bonded areas in joint plane 15.
  • Temperature controlled water is admitted into the front end of can or tank 44 through a bottom inlet connection 52. Water leaves the can in continuous circulation through an outlet connection 59 and tube 51 which takes Water from the top rear of the can. Oxygenated and temperature controlled blood leaves the sump passage 44 through an outlet connection 55 which may also take the form of a Y to provide two separate supplies of oxygenated blood.
  • This connection may be equipped with a thermometer or thermocouple tube 56 for monitoring the temperature of the outlet flow.
  • venous blood will flow continuously through inlet connection 24 into the inclined bubble chamber 22 and oxygen will discharge continuously into the blood from bubble tube 25.
  • the rate of flow of blood depends upon the size of the patient.
  • the blood level in settling chamber 12 preferably should not fall below the line 61 since at a lower lever the upper end portion of the water tank 40 is not exposed to contact with the blood.
  • the present construction allows for a variation in flow rates to accommodate patient sizes from infants to large adults.
  • the flow rates For intermediate or average rates of flow, the
  • Vent opening 36 allows the escape of carbon dioxide and excess oxygen from both oxygenator chamber 10 and settling and debubbling chamber 12. This vent opening is made rather large and funnel-shaped to facilitate the addition of a large amount of blood quickly if it should be needed in an emergency. From the foregoing description it will be appreciated that the size and arrangement and close communication of the various chambers all contribute to keep the priming blood to a minimum.
  • a blood oxygenator comprising a shell of relatively stifl? material, including cavities defining an oxygenator chamber including blood inlet means and blood and gas outlet means and a bubble chamber therein; said bubble chamber including an upwardly inclined bubble tube in the interior of the oxygenator chamber with oxygen outlet means in said bubble tube; defoaming means spaced from, and surrounding, said bubble tube; and an oxygen inlet connection to said bubble tube with baffle means in said oxygenator chamber spaced above said bubble tube.
  • a blood oxygenator comprising: a generally rigid case having cavities defining an oxygenator chamber and a heat exchange chamber in communication with each other the oxygenator chamber having blood and oxygen inlet means and gas outlet means; a cylindrical heat exchanger in the heat exchange chamber defining in combination with the casing, a thin, divided annular blood flow jacket, means for heating said heat exchange chamber; and blood outlet means in said heat exhange chamher.
  • the blood oxygenator of claim 5 wherein the blood flow jacket is divided into a plurality of channels.
  • a blood oxygenator assembly comprising a generally rigid case having complementary cavities including first cavities defining an oxygenator chamber with blood and oxygen inlet means and blood and gas outlet means, second cavities defining a set- 'tling chamber separate from, and in communication with, said oxygenator chamber, and third cavities defining a heat exchange chamber in communication with said settling chamber and means for conducting a heat exchange medium to said heat exchange chamber.
  • the oxygenator assembly of claim 8 wherein the heat exchange chamber is in communication with the settling chamber by generally thin, elongate port means capable of producing a generally sheet-like flow of blood.
  • a blood oxygenator and heat exchanger comprising: a casing; an oxygenator chamber in the upper part of the casing having blood and oxygen inlet means and gas outlet means, said oxygenator chamber including means defining a trough at the bottom thereof for feeding blood in an inclined path to a port at the bottom of the oxygenator chamber; a debubbling chamber separate from, and below said oxygenator chamber and in communication therewith by means of the said port at the bottom of the oxygenator chamber; a heat exchange chamber below said debubbling chamber and in communication therewith, said heat exchange chamber having means for conducting a heat exchange medium toward and away from the chamber and including a liquid jacket closely spaced from a heat exchange element, and means communicating said debubbling chamber with said heat exchange chamber including means defining thin, elongated fluid passage from the bottom of the debubbling chamber in communication with said fluid jacket for dis charging a sheet-like flow of blood into said fluid jacket; and outlet means at the bottom of said heat exchange chamber.
  • the oxygenator of claim 11 wherein the casing comprises a pair of generally rigid mating shells having complementary cavities forming said chambers and ports.
  • the oxygenator of claim 13 wherein the heat exchange element comprises a cylindrical tank positioned within said liquid jacket, the tank being provided with means for establishing communication with a source of temperature regulating medium.
US465451A 1965-06-21 1965-06-21 Blood oxygenator with heat exchanger Expired - Lifetime US3468631A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US46545165A 1965-06-21 1965-06-21

Publications (1)

Publication Number Publication Date
US3468631A true US3468631A (en) 1969-09-23

Family

ID=23847870

Family Applications (1)

Application Number Title Priority Date Filing Date
US465451A Expired - Lifetime US3468631A (en) 1965-06-21 1965-06-21 Blood oxygenator with heat exchanger

Country Status (4)

Country Link
US (1) US3468631A (ja)
JP (2) JPS4943432B1 (ja)
DE (1) DE1491658B1 (ja)
GB (1) GB1105001A (ja)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615238A (en) * 1969-09-11 1971-10-26 Donald J Bentley Oxygenator
US3870470A (en) * 1970-07-24 1975-03-11 Fumitake Yoshida Bubble-type blood oxygenator with baffles
US3892534A (en) * 1974-01-02 1975-07-01 Baxter Laboratories Inc Rigidly mounted bubble-type blood oxygenator having flexible flow channels
US3898045A (en) * 1972-10-06 1975-08-05 Intech Corp Blood oxygenator
US3960657A (en) * 1972-10-06 1976-06-01 Intech, Inc. Method for oxygenating blood
US4047563A (en) * 1976-01-27 1977-09-13 Japan Medical Supply Co., Ltd. Heat exchanger for artificial heart and lung devices
US4065264A (en) * 1976-05-10 1977-12-27 Shiley Laboratories, Inc. Blood oxygenator with integral heat exchanger for regulating the temperature of blood in an extracorporeal circuit
US4067696A (en) * 1976-02-03 1978-01-10 Swiley Laboratories, Inc. Blood oxygenator
US4073622A (en) * 1974-03-25 1978-02-14 Libero Luppi Blood oxygenator with heat exchanger
US4138464A (en) * 1976-05-10 1979-02-06 Lewin John E Blood oxygenator with integral heat exchanger
US4138288A (en) * 1976-05-10 1979-02-06 Shiley Scientific Incorporated Method and apparatus for oxygenating and regulating the temperature of blood
US4158693A (en) * 1977-12-29 1979-06-19 Texas Medical Products, Inc. Blood oxygenator
US4180896A (en) * 1977-12-29 1980-01-01 Texas Medical Products, Inc. Blood oxygenator assembly method
US4182739A (en) * 1976-02-03 1980-01-08 Shiley Incorporated Blood oxygenator
US4268476A (en) * 1975-06-06 1981-05-19 Bentley Laboratories, Inc. Blood oxygenator
US4282180A (en) * 1975-06-06 1981-08-04 Bentley Laboratories, Inc. Blood oxygenator
US4282861A (en) * 1977-06-28 1981-08-11 Roark Charles F Water heating system using solar energy
US4297318A (en) * 1975-06-06 1981-10-27 Bentley Laboratories, Inc. Blood oxygenator
US4372914A (en) * 1975-06-06 1983-02-08 Bentley Laboratories, Inc. Blood oxygenator
US4440723A (en) * 1981-07-10 1984-04-03 Bentley Laboratories, Inc. Blood oxygenator
US4469659A (en) * 1982-04-26 1984-09-04 Cobe Laboratories, Inc. Sampling device for blood oxygenator
US4585056A (en) * 1984-04-18 1986-04-29 Norton Company Heat exchanger
US4623518A (en) * 1975-06-06 1986-11-18 Baxter-Travenol Laboratories, Inc. Blood oxygenator
US4637917A (en) * 1983-10-14 1987-01-20 Reed Charles C Bubble oxygenator
US4645645A (en) * 1985-04-04 1987-02-24 Renal Systems, Inc. Oxygenator having an improved heat exchanger
US4735775A (en) * 1984-02-27 1988-04-05 Baxter Travenol Laboratories, Inc. Mass transfer device having a heat-exchanger
US4934996A (en) * 1984-02-27 1990-06-19 Boston Scientific Corporation Pressure-controlled intermittent coronary sinus occlusion apparatus and method
US4954317A (en) * 1975-06-06 1990-09-04 Baxter International, Inc. Blood oxygenator
US4969470A (en) * 1984-02-27 1990-11-13 Boston Scientific Corporation Heart analysis using pressure-controlled intermittent coronary sinus occlusion
US5421405A (en) * 1993-12-07 1995-06-06 Avecor Cardiovascular, Inc. Heat exchanger
US5514335A (en) * 1993-10-25 1996-05-07 Minnesota Mining And Manufacturing Company Blood oxygenation system and reservoir and method of manufacture
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
WO1998008555A1 (en) * 1996-08-30 1998-03-05 Minntech Corporation Improved oxigenator priming method
US5747138A (en) * 1995-11-30 1998-05-05 Minnesota Mining And Manufacturing Company Multilayer hollow-fiber body and method of making
US5762868A (en) * 1995-11-30 1998-06-09 Minnesota Mining And Manufacturing Company Blood oxygenator and heat exchanger
US5976463A (en) * 1996-01-25 1999-11-02 Shigehisa Amano Pump-oxygenator
US6113782A (en) * 1998-07-28 2000-09-05 Terumo Cardiovascular Systems Corporation Potting of tubular bundles in housing
US6224829B1 (en) 1998-12-30 2001-05-01 Cadiovention, Inc. Integrated blood oxygenator and pump system having means for reducing fiber breakage
US6368557B1 (en) 1998-12-30 2002-04-09 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing manifold flooding
US6379618B1 (en) * 1998-12-30 2002-04-30 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing microbubble generation
US6454999B1 (en) 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
US6503450B1 (en) 1998-12-30 2003-01-07 Cardiovention, Inc. Integrated blood oxygenator and pump system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8406507L (sv) * 1983-12-27 1985-06-28 American Hospital Supply Corp Blodvermevexlare

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183509A (en) * 1937-12-30 1939-12-12 Fedders Mfg Co Inc Water cooler
US2440245A (en) * 1944-03-13 1948-04-27 Standard Telephones Cables Ltd Cooling of high-temperature bodies
US3058464A (en) * 1957-04-22 1962-10-16 Baxter Laboratories Inc Oxygenator
US3087490A (en) * 1959-05-25 1963-04-30 Baxter Laboratories Inc Oxygenator
US3112746A (en) * 1956-09-18 1963-12-03 Baxter Laboratories Inc Oxygenator
US3256883A (en) * 1963-08-08 1966-06-21 Wall Richard A De Oxygenator with heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB844881A (en) * 1956-08-27 1960-08-17 Ferrosan As Improvements in or relating to devices for the artificial oxygenation of blood
FR1283603A (fr) * 1960-03-14 1962-02-02 Abbott Lab Appareil pour le traitement du sang
US3103928A (en) * 1960-11-14 1963-09-17 Cyrus R Broman Flow device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2183509A (en) * 1937-12-30 1939-12-12 Fedders Mfg Co Inc Water cooler
US2440245A (en) * 1944-03-13 1948-04-27 Standard Telephones Cables Ltd Cooling of high-temperature bodies
US3112746A (en) * 1956-09-18 1963-12-03 Baxter Laboratories Inc Oxygenator
US3058464A (en) * 1957-04-22 1962-10-16 Baxter Laboratories Inc Oxygenator
US3087490A (en) * 1959-05-25 1963-04-30 Baxter Laboratories Inc Oxygenator
US3256883A (en) * 1963-08-08 1966-06-21 Wall Richard A De Oxygenator with heat exchanger

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615238A (en) * 1969-09-11 1971-10-26 Donald J Bentley Oxygenator
US3870470A (en) * 1970-07-24 1975-03-11 Fumitake Yoshida Bubble-type blood oxygenator with baffles
US3898045A (en) * 1972-10-06 1975-08-05 Intech Corp Blood oxygenator
US3960657A (en) * 1972-10-06 1976-06-01 Intech, Inc. Method for oxygenating blood
US3892534A (en) * 1974-01-02 1975-07-01 Baxter Laboratories Inc Rigidly mounted bubble-type blood oxygenator having flexible flow channels
US4073622A (en) * 1974-03-25 1978-02-14 Libero Luppi Blood oxygenator with heat exchanger
US4282180A (en) * 1975-06-06 1981-08-04 Bentley Laboratories, Inc. Blood oxygenator
US4623518A (en) * 1975-06-06 1986-11-18 Baxter-Travenol Laboratories, Inc. Blood oxygenator
US4954317A (en) * 1975-06-06 1990-09-04 Baxter International, Inc. Blood oxygenator
US4268476A (en) * 1975-06-06 1981-05-19 Bentley Laboratories, Inc. Blood oxygenator
US4297318A (en) * 1975-06-06 1981-10-27 Bentley Laboratories, Inc. Blood oxygenator
US4372914A (en) * 1975-06-06 1983-02-08 Bentley Laboratories, Inc. Blood oxygenator
US4047563A (en) * 1976-01-27 1977-09-13 Japan Medical Supply Co., Ltd. Heat exchanger for artificial heart and lung devices
US4067696A (en) * 1976-02-03 1978-01-10 Swiley Laboratories, Inc. Blood oxygenator
US4182739A (en) * 1976-02-03 1980-01-08 Shiley Incorporated Blood oxygenator
US4138464A (en) * 1976-05-10 1979-02-06 Lewin John E Blood oxygenator with integral heat exchanger
US4138288A (en) * 1976-05-10 1979-02-06 Shiley Scientific Incorporated Method and apparatus for oxygenating and regulating the temperature of blood
US4065264A (en) * 1976-05-10 1977-12-27 Shiley Laboratories, Inc. Blood oxygenator with integral heat exchanger for regulating the temperature of blood in an extracorporeal circuit
US4282861A (en) * 1977-06-28 1981-08-11 Roark Charles F Water heating system using solar energy
US4158693A (en) * 1977-12-29 1979-06-19 Texas Medical Products, Inc. Blood oxygenator
US4180896A (en) * 1977-12-29 1980-01-01 Texas Medical Products, Inc. Blood oxygenator assembly method
US4440723A (en) * 1981-07-10 1984-04-03 Bentley Laboratories, Inc. Blood oxygenator
US4469659A (en) * 1982-04-26 1984-09-04 Cobe Laboratories, Inc. Sampling device for blood oxygenator
US4637917A (en) * 1983-10-14 1987-01-20 Reed Charles C Bubble oxygenator
US4735775A (en) * 1984-02-27 1988-04-05 Baxter Travenol Laboratories, Inc. Mass transfer device having a heat-exchanger
US4934996A (en) * 1984-02-27 1990-06-19 Boston Scientific Corporation Pressure-controlled intermittent coronary sinus occlusion apparatus and method
US4969470A (en) * 1984-02-27 1990-11-13 Boston Scientific Corporation Heart analysis using pressure-controlled intermittent coronary sinus occlusion
US4585056A (en) * 1984-04-18 1986-04-29 Norton Company Heat exchanger
US4645645A (en) * 1985-04-04 1987-02-24 Renal Systems, Inc. Oxygenator having an improved heat exchanger
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
US5753173A (en) * 1993-10-25 1998-05-19 Minnesota Mining And Manufacturing Company Method of manufacturing a blood oxygenation system
US5514335A (en) * 1993-10-25 1996-05-07 Minnesota Mining And Manufacturing Company Blood oxygenation system and reservoir and method of manufacture
US5421405A (en) * 1993-12-07 1995-06-06 Avecor Cardiovascular, Inc. Heat exchanger
WO1995016174A1 (en) * 1993-12-07 1995-06-15 Avecor Cardiovascular Inc. Heat exchanger
US5888611A (en) * 1995-11-30 1999-03-30 Leonard; Ronald J. Multilayer hollow fiber body and method of making
US5747138A (en) * 1995-11-30 1998-05-05 Minnesota Mining And Manufacturing Company Multilayer hollow-fiber body and method of making
US5762868A (en) * 1995-11-30 1998-06-09 Minnesota Mining And Manufacturing Company Blood oxygenator and heat exchanger
US5976463A (en) * 1996-01-25 1999-11-02 Shigehisa Amano Pump-oxygenator
US5863501A (en) * 1996-08-30 1999-01-26 Minntech Corporation Oxygenator priming method
WO1998008555A1 (en) * 1996-08-30 1998-03-05 Minntech Corporation Improved oxigenator priming method
US6113782A (en) * 1998-07-28 2000-09-05 Terumo Cardiovascular Systems Corporation Potting of tubular bundles in housing
US6224829B1 (en) 1998-12-30 2001-05-01 Cadiovention, Inc. Integrated blood oxygenator and pump system having means for reducing fiber breakage
US6368557B1 (en) 1998-12-30 2002-04-09 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing manifold flooding
US6379618B1 (en) * 1998-12-30 2002-04-30 Cardiovention, Inc. Integrated blood oxygenator and pump system having means for reducing microbubble generation
US6454999B1 (en) 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
US6503450B1 (en) 1998-12-30 2003-01-07 Cardiovention, Inc. Integrated blood oxygenator and pump system

Also Published As

Publication number Publication date
JPS4943432B1 (ja) 1974-11-21
DE1491658B1 (de) 1970-12-10
JPS5340839B1 (ja) 1978-10-30
GB1105001A (en) 1968-03-06

Similar Documents

Publication Publication Date Title
US3468631A (en) Blood oxygenator with heat exchanger
US3768977A (en) Integral blood oxygenator and heat exchanger
CA1191415A (en) Rigid shell expansible blood reservoir, heater and hollow fiber membrane oxygenator assembly
EP0306613B1 (en) Hollow fiber-type artificial lung
US2972349A (en) Capillary oxygenator
US5084244A (en) Artificial lung assembly
CA1067372A (en) Dual chamber reservoir
EP0378681B1 (en) Blood storage tank
EP0080610B1 (en) Blood circulating circuit for membrane-type artificial lung, and reservoir for use in blood circulating circuit
US3640283A (en) Disposable blood-warming container
US3175555A (en) Apparatus for treating blood
US3615238A (en) Oxygenator
JPH0260344B2 (ja)
US4280981A (en) Blood oxygenator
US4637917A (en) Bubble oxygenator
EP0524662B1 (en) Method for manufacturing a medical heat exchanger
WO1989000055A1 (en) Blood storage tank
JPS6237992B2 (ja)
JPS5957661A (ja) 中空糸型人工肺
JP3233682B2 (ja) 医療用液体処理装置
USRE27100E (en) Oxygenator with heat exchanger
JPH0819602A (ja) 血液リザーバ
JPS6237994B2 (ja)
EP0292396B1 (en) Extracorporeal blood circulating apparatus
JPH042063B2 (ja)

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMERICAN HOSPITAL SUPPLY CORPORATION ONE AMERICAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMERICAN BENTLEY INC., A CORP OF DE;REEL/FRAME:004285/0263

Effective date: 19840627