US3461841A - Apparatus for coating a thin,uniform thickness stripe on a substrate - Google Patents

Apparatus for coating a thin,uniform thickness stripe on a substrate Download PDF

Info

Publication number
US3461841A
US3461841A US609171A US3461841DA US3461841A US 3461841 A US3461841 A US 3461841A US 609171 A US609171 A US 609171A US 3461841D A US3461841D A US 3461841DA US 3461841 A US3461841 A US 3461841A
Authority
US
United States
Prior art keywords
die
stripe
substrate
coating
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US609171A
Other languages
English (en)
Inventor
Michael A Marchese
Lewis G Taft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Application granted granted Critical
Publication of US3461841A publication Critical patent/US3461841A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/303Extrusion nozzles or dies using dies or die parts movable in a closed circuit, e.g. mounted on movable endless support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/9145Endless cooling belts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/633Record carriers characterised by the selection of the material of cinematographic films or slides with integral magnetic track

Definitions

  • a flat stripe coating apparatus including a stripe material reservoir communicating with a die with an adjustable size, a substantially rectilinear die opening, the die having an upper crowned portion, the curvature of which is the arc of a circle of given radius.
  • the magnetic stripe material also has been laid down directly from a nozzle rather than by the use of an extrusion die, in which case the nozzle is provided with a crosssectional shape other than rectilinear to prevent the entrapping of air as the material is being applied to the substrate.
  • the present invention is directed to an apparatus for the die extrusion of magnetic material in stripe form onto a moving substrate including a reservoir for supplying the stripe material to the die.
  • the die opening is substantially rectilinear and has an arcuate upper face to ensure the controlled extrusion of magnetic material of initial maximum thickness at the center of the stripe, whereby, upon subsequent drying, the stripe is characterized by a flat surface of uniform cross-section.
  • the crowned die of the present invention advantageously consists of a central, adjustable die member movable vertically between spaced guide members. Adjustment of the center, curved section of the crown die assembly varies the thickness of the stripe while maintaining uniform cross-sectional thickness of the dried stripe.
  • an upper concave, horizontal extrusion surface which constitutes an arc of a circle of a given radius ensures uniformity in variance of an initial thickness of the stripe deposit.
  • the radius of curvature may be readily varied depending upon the viscosity of the material being coated, and the width of the stripe being applied.
  • FIGURE 1 is a front elevational view, partially in section, of a preferred form of the improved die extrusion apparatus of the present invention for depositing a flat magnetic stripe onto a moving substrate.
  • FIGURE 2 is a side elevation, in section, taken about lines 2-2 of the apparatus shown in FIGURE 1.
  • FIGURE 3 is an elevation, in section, of a portion of the apparatus shown in FIGURE 2 taken about lines 33.
  • FIG. 1 DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 A reciprocatvalue member of like configuration in the form of a plunger 22 is shown in closed position preventing magnetic stripe material from passing downwardly through nozzle 24.
  • the valve plunger 22 is supported by means (not shown) and movement of valve stem 26 upwardly, unseats valve 22, allowing the magnetic material within the hopper 10' to pass downwardly through the lower nozzle opening 28 into moving substrate 30, (shown in dotted line form).
  • Substrate 30 passes longitudinally through the apparatus in the direction indicated by arrow (FIGURE 2).
  • the hopper 10 is fixedly supported on a base or table member 34, including lower and upper sections 36 and 38, respectively.
  • the lower base member 36 is recessed at 37 and cooperates with recess 40 carried by the upper table section 38 to define a longitudinally extending cavity 42. Further, the upper table section 38 is centrally recessed at 44 to receive adjustable extrusion die assembly 12.
  • the extrusion die assembly cooperates with a vertically adjustable support block 46.
  • Block 46 is fluid biased by a pair of spaced fluid motors 48 and 50 (indicated in dotted lines, FIGURE 1).
  • the fluid motors form a part of block member 52 which is positioned within the lower part of the working cavity 42.
  • the fluid motors include, respectively, vertically adjustable pistons 54 and 56, having their upper ends rigidly coupled to the bottom of the support block 46 at spaced points.
  • the support block 46 moves upwardly in response to the application of a biasing fluid to the fluid motors through a common fluid inlet 57.
  • the block member 46 moves upwardly to a point defined by the thickness of the substrate member 30 and the position of die assembly 12.
  • the transversely extending pin 58 carried within block 52 limits the movement of the support block 40 to the vertical direction under the influence of the fluid motors 48 and 50.
  • a pair of bracket members 60 hold vertical support blocks 62 and transversely extending support block 64 at the rear of the apparatus.
  • the blocks 62 and 64 form the support assembly for the vertically adjustable extrusion die assembly 12.
  • the tranverse support block 64 is bored centrally at 66 to fixedly receive an internally bored and threaded, flanged sleeve member 68.
  • the sleeve member 68 receives a threaded bolt 70 which is also threadably received within upper die carrier 72.
  • the die assembly 12 further includes opposed, spaced guide members 74 and 76, which may be fixedly coupled both to support member 62 and to the upper table section 38 within recess 44.
  • the guide members 74 and 76 With the guide members 74 and 76 fixed to the stationary support members, the guide members define a narrow passageway for the moving elements of the die assembly 12.
  • the upper movable die carrier 72 is coupled to a lower movable die carrier 78 by means of a pair pins 80.
  • the lower movable die carrier 78 holes, as an element thereof, a generally rectangular die element 82 including a concave bottom surface 84.
  • the concave surface 84 forming the crowned die, in cross-section, is defined by an arc of a circle of a given radius.
  • the lower face 84 of the die cooperates with a pair of spaced carbide guide rails 86 and 88 to define in conjunction with the substrate surface a generally rectilinear die opening 90 having a uniform and closely controlled height varying from the center of the die opening outwardly, to accurately control the deposit of coating material onto the substrate 30 as it moves through the apparatus.
  • Adjusting screws 92 are carried by the fixed main guide members 74 and 76, to fix the carbide guide rails within recesses 93 formed within respective main guide members 74 and 76.
  • FIGURE 3 It is noted in FIGURE 3 that there is a slight vertical gap at 94 between the bottom of the guide rails 86 and 88 and the top surface of substrate 30. In actual practice, this gap disappears upon the application of fluid pressure to fluid motors 48 and 50 which causes the support block 46 to move upwardly. This also prevents the escape of fluid magnetic recording material from the die area except in an axial or forward direction.
  • the stripe deposit has a cross-sectional configuration of like form to that presented by guide rails 86 and 88 and the crowned die member 82.
  • suitable, elongated slots 96 in die carriers 78 and 98 in die carrier 72 allow the die assembly, including sections 72, 78 and 80, to be adjusted vertically regardless of the transversely extending screw members 100, 102 and 104, which join the main guide sections 74 and 76 together at points spaced vertically of the assembly.
  • the die extrusion apparatus in the vicinity where the substrate makes it entry to the working area, is provided with curved or relieved surfaces so that the substrate, as it enters, does not come into abrupt contact with the support block or pressure pad 46.
  • the front edge 106 of the block member 46 (FIGURE 2) is rounded or curved.
  • the back dam member 108 fixed to the upper table section 38 is further provided with a curved or tapered front edge 110 for the same purposes.
  • the back darn 108 does not extend rearwardly to the extent of the movable die assembly 12, but terminates to form an area 112, above the substrate which receives fluid magnetic material.
  • the side walls of the extrusion apparatus are so machined that the material to be extruded can pass only through the opening defined by the guide members 86, 88, crowned die 82 and the substrate.
  • the edges 116 of the support block or pressure pad 46 are kept sharp as is the bottom rear edge 118 of the extrusion die member 82. This is important in order to achieve the exact dimensions of the stripe which otherwise might be lost if the substrate were deflected in the area of the crowned die.
  • the to be striped substrate 30 is urged against the die by the support block 46.
  • the pressure pad or support block 46 comes into physical contact with the area exactly beneath the carbide rails 86 and 88 so that a discrete stripe of accurate width may be formed.
  • an adjustable guide member carried by block 52, cooperates with a fixed guide member on the opposite side of the crown die.
  • a spring-biased adjustable guide 120 rectangular in cross-section, is positioned on the top of the block member 52 with its position being vertically determined by screw member 122.
  • the coil spring 124 tends to bias the block to the right such that a rectangular recess 126 formed on the right-hand face receives the lefthand edge of the moving substrate web 30 (FIGURE 2).
  • the right-hand edge of the same substrate is merely abutted against the outer edge fixed guide block 128 which is coupled to the bottom face of the upper table member 38 by a suitable mounting screw 130.
  • the concave surface 84 forming the crown die is defined as an arc of a circle of a given radius.
  • greater or lesser curvature is given to the adjustable die element.
  • a crown die having a radius of curvature in the order of to inches is quite adequate to ensure, after drying, the formation of a stripe of uniform cross-sectional thickness.
  • a radius of curvature for the crown die in the order of about 60 inches will provide the desired results, assuming, of course, that the viscosity of material being applied remains the same. If widths of up to about one inch are desired, the curvature of the arched upper face of the die opening may be the arc of a circle of on the order of about 200 inches. Further, in the use of the above described apparatus with a magnetic material composition, the speed of coating may be varied within the range of 30 feet per minute to about 200 feet per minute.
  • the desired curvature to the crown die is necessitated by rheological or flow properties of the viscous fluid through the die. These flow properties are similar to laminar flow, such as any viscous material experiences as it flows near a solid boundary. Thus, a narrower stripe requires a greater amount of curvature to allow more of the ink in the center portion where there will be a substantially more rapid flow than in a wider stripe. Conversely, where a wider stripe is desired, there would be less of a variation of flow in the center portion of the stripe and thus, would require less additional ink to fill it out. While the preferred material was used at a viscosity of from 2,000 to 5,000 cps, viscosities of up to about 10,000 cps. can be utilized with appropriate modification of the die and radius of the crown of the die.
  • the crown die is slidably mounted between the carbide guide rails on each side. This allows for the vertical adjustment of the die as desired.
  • the height of the crown die above the substrate is determined substantially by the height of the carbide rails at their point of contact with the lowest portion of the crown die. This height is calibrated with a tenth indicator (not shown) from the flat surface of the carbide rail, which will come in contact with the substrate to the lowest corner of the crown die.
  • only one rail need be calibrated as the two side rails are parallel, being mounted so within the recesses of the stationary die elements 74 and 76.
  • the preferred height of the die is four to five mils which results in a stripe, approximately .5 mil in thickness being deposited.
  • the overall apparatus forms one element in the production of magnetic recording media.
  • An oven (not shown) is turned on and the fans within it start to bring the oven up to a desired drying temperature for the stripe after it is coated.
  • the web which, for instance, may constitute Mylar polyester, is started moving through the apparatus at a predetermined speed, such as 100 feet per minute.
  • the plunger element 22 of the apparatus is lifted. This allows the magnetic ink (not shown) to flow out of the hopper container down into the crown and die section entering area 112. After the flow of ink has started, a bank of ink builds up within the car-bide rails between the front portion of the crown die 82 and the back darn 108.
  • the composition flows out or escapes through the die opening '90 in the desired stripe configuration onto the substrate 30.
  • a continuing supply of ink allows a continuous stripe to be formed.
  • the magnetic particles may be oriented by an external magnetic field, the oriented media then passing into a preheated drying oven where the solvent is removed by evaporation. After drying, the substrate may be readily wound onto a reel for additional processing, as desired.
  • Apparatus for coating a flat stripe of coating material having a viscosity on the order of 1000 cps. to about 6000 cps. onto a relatively fiat surface of a moving substrate comprising: an upper die member, a support block for maintaining said moving substrate in contact with said upper die member, said upper die member and said substrate defining a die opening including a bottom surface formed by said substrate and opposed side faces and a curved upper surface formed by said upper die member, said die opening having a width between side faces on the order of one-eight inch to one inch and a radius of curvature for said upper surface on the order of to 200' inches, and means for supplying said coating material to said die opening.
  • Coating apparatus for coating a flat stripe of magnetic coating material having a viscosity on'the order of 1000 cps. to about 6000 cps. onto a relatively flat surface of a moving substrate, said apparatus comprising: an upper die member, a support block for maintaining said moving substrate in contact with said upper die member, said upper die member and said substrate defining a die opening including a bottom surface formed by said substrate and opposed side faces and a curved upper surface formed by said upper die member, said die opening having a width on the order of one-fourth to one-half inch and a radius of curvature for said upper surface on the order of inches to inches, and means for supplying said coating material to said die opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating Apparatus (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
US609171A 1967-01-13 1967-01-13 Apparatus for coating a thin,uniform thickness stripe on a substrate Expired - Lifetime US3461841A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US60917167A 1967-01-13 1967-01-13

Publications (1)

Publication Number Publication Date
US3461841A true US3461841A (en) 1969-08-19

Family

ID=24439634

Family Applications (1)

Application Number Title Priority Date Filing Date
US609171A Expired - Lifetime US3461841A (en) 1967-01-13 1967-01-13 Apparatus for coating a thin,uniform thickness stripe on a substrate

Country Status (7)

Country Link
US (1) US3461841A (de)
CH (1) CH490130A (de)
DE (1) DE1652343A1 (de)
FR (1) FR1553979A (de)
GB (1) GB1166234A (de)
NL (1) NL6800568A (de)
SE (1) SE306688B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638608A (en) * 1969-04-10 1972-02-01 Standard Register Co Trailing blade striping apparatus
EP0260674A2 (de) * 1986-09-19 1988-03-23 E.I. Du Pont De Nemours And Company Giessverfahren für Oberflächen
US4810527A (en) * 1986-09-19 1989-03-07 E. I. Du Pont Nemours And Company Free surface casting method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2133737B (en) * 1983-01-15 1986-10-15 Plessey Co Plc Improvements relating to the manufacture of magnetic sensing optical devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2357992A (en) * 1944-01-28 1944-09-12 Charles M Banghart Portable wallpaper paste applicator
US2573097A (en) * 1951-10-30 Epstein
US2748016A (en) * 1950-12-21 1956-05-29 Audio Devices Inc Production of magnetic sound tape
US2779307A (en) * 1955-04-01 1957-01-29 Dominick G Foresta Adhesive applicator for wall joint tapes
US3203393A (en) * 1963-02-18 1965-08-31 Burroughs Corp Apparatus for applying stripes of low viscosity coating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573097A (en) * 1951-10-30 Epstein
US2357992A (en) * 1944-01-28 1944-09-12 Charles M Banghart Portable wallpaper paste applicator
US2748016A (en) * 1950-12-21 1956-05-29 Audio Devices Inc Production of magnetic sound tape
US2779307A (en) * 1955-04-01 1957-01-29 Dominick G Foresta Adhesive applicator for wall joint tapes
US3203393A (en) * 1963-02-18 1965-08-31 Burroughs Corp Apparatus for applying stripes of low viscosity coating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638608A (en) * 1969-04-10 1972-02-01 Standard Register Co Trailing blade striping apparatus
EP0260674A2 (de) * 1986-09-19 1988-03-23 E.I. Du Pont De Nemours And Company Giessverfahren für Oberflächen
EP0260674A3 (en) * 1986-09-19 1988-11-09 E.I. Du Pont De Nemours And Company Free surface casting method
US4810527A (en) * 1986-09-19 1989-03-07 E. I. Du Pont Nemours And Company Free surface casting method

Also Published As

Publication number Publication date
NL6800568A (de) 1968-07-15
SE306688B (de) 1968-12-02
DE1652343A1 (de) 1971-03-18
GB1166234A (en) 1969-10-08
CH490130A (de) 1970-05-15
FR1553979A (de) 1969-01-17

Similar Documents

Publication Publication Date Title
US4106437A (en) Apparatus for multiple stripe coating
US4299186A (en) Method and apparatus for applying a viscous fluid to a substrate
US5368893A (en) Method and apparatus for coating a material web, especially a paper web or cardboard web
US3272176A (en) Air knife
US4675230A (en) Apparatus and method for coating elongated strip articles
US5224996A (en) Curtain coater
US3470848A (en) Web coating apparatus
US2774327A (en) Apparatus for production of coated tape
US4324816A (en) Method for forming a stripe by extrusion coating
US3886898A (en) Multiple, contiguous stripe, extrusion coating apparatus
GB1582109A (en) Dual surface film coating of running web
US4109611A (en) Coating device
US5031569A (en) Apparatus for coating a travelling web
DE3927627A1 (de) Verfahren und vorrichtung zum trocknen einer auf einem bewegten traegermaterial aufgebrachten fluessigkeitsschicht
CA2209930A1 (en) Multiple layer coating method
US4041897A (en) Cascade coater
US3461841A (en) Apparatus for coating a thin,uniform thickness stripe on a substrate
US3551201A (en) Method for coating a thin,uniform thickness stripe on a substrate
US3795474A (en) Molten thermoplastic web quenching apparatus
JPH078879A (ja) 流体塗布装置
US3203393A (en) Apparatus for applying stripes of low viscosity coating material
US5209954A (en) Method for applying a coating liquid to a web
US3908044A (en) Apparatus and method for coating a web
DE2055405B2 (de) Vorrichtung zum Auftragen von Beschi chtungsmassen auf bahnförmige Trager
JPS6010785B2 (ja) テ−プ状担体材料を被覆物質で被覆するための流しかけ塗布機