US3447502A - Marine vessel - Google Patents

Marine vessel Download PDF

Info

Publication number
US3447502A
US3447502A US653429A US3447502DA US3447502A US 3447502 A US3447502 A US 3447502A US 653429 A US653429 A US 653429A US 3447502D A US3447502D A US 3447502DA US 3447502 A US3447502 A US 3447502A
Authority
US
United States
Prior art keywords
hull
marine vessel
underwater
vessel
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US653429A
Other languages
English (en)
Inventor
Reuven Leopold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Guidance and Electronics Co Inc
Original Assignee
Litton Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Litton Systems Inc filed Critical Litton Systems Inc
Application granted granted Critical
Publication of US3447502A publication Critical patent/US3447502A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH

Definitions

  • a marine vessel which consists of three major portions: an underwater hull portion, an above water hull portion and a connecting hull portion.
  • the underwater portion is a buoyant member which supports the above water portion in the form of a deck platform on a pair of streamlined connecting hulls, which render in part a fraction of the total buoyancy. This configuration greatly reduces the wave-making resistance of the ship because the member which renders the major portion of buoyancy is submerged and the waterplane area of the hull is reduced to a minimum.
  • This invention relates to a mobile marine vessel of a unique configuration which combines the advantages of both a submarine and that of a conventional, generally V-shaped surface ship.
  • One of the main features of the improved marine vessel of the present invention is that it overcomes the biggest problem facing surface vessels, that is wave-making resistance. This is accomplished by lowering the underwater portion of the vessel as far under water as possible (without limiting the draft in terms of entrance to harbors) and elevating over the waters surface the above water portion as high as possible to avoid seakeeping problems associated with slamming and wetness while, at the same time, allowing no excessive heights which could be detrimental from a structural point of View.
  • an object of the present invention is to provide an improved marine vessel which overcomes the speed barrier plaguing, conventional displacement-type surface ships and includes better space utilization resulting in a smaller ship for the same load-carrying capacity.
  • a further object of the present invention is to provide a marine vessel having a pair of submerged displacement members, each having a squashed cylindrical cross section and gentle form change in the fore and aft direction to reduce form drag and a pair of streamlined hull sections having a reduced waterplane area to reduce both the form drag and the wave-making resistance of the vessel.
  • a marine vessel which has three major portions: at least one underwater hull portion, an above water hull portion and at least two intermediate connecting portions.
  • the underwater portion is comprised of at least one elongated buoyant member having fore and aft tapered ends
  • the above water portion is comprised of a support hull structure adapted to carry cargo and personnel
  • the connecting hull portions is comprised of at least a pair of streamlined slender hulls, each affixed to the underwater portion and to the above water portion.
  • FIG. 1 is a perspective view of one embodiment of the improved marine vessel constructed in accordance with the principles of the present invention.
  • FIG. 2 is a perspective view of the marine vessel of FIG. 1 looking towards the stern of the vessel.
  • FIG. 3 is a bottom view of the marine vessel of FIG. 1 with the superstructure omitted for clarity;
  • FIG. 4 is a side elevational view of the marine vessel of FIG. 3 with the addition of additional rudders shown on the underwater hull portion, at the bow section;
  • FIG. 5 is a transverse sectional view taken along the lines 5-5 in FIG. 4;
  • FIG. 6 is a transverse sectional view, taken at the bow section, of a second embodiment of a marine vessel constructed according to the principles of the present invention.
  • FIG. 7 is a transverse sectional view, taken at the bow section, of a third embodiment of a marine vessel con structed in accordance with the principles of the present invention showing a single underwater hull portion;
  • FIG. 8 is a perspective view of a modification of the third embodiment, illustrated in FIG. 7, looking from the stern and showing the single underwater hull portion having twin pod-like ends along with an airfoil-like shaped trailing edge of the midpart of the underwater hull portion;
  • FIG. 9 is a perspective view of a fourth embodiment of the improved marine vessel constructed in accordance with the principles of the present invention, showing each underwater hull portion having two separate connecting hull portions;
  • FIG. 10 is a perspective view of a fifth embodiment of the improved marine vessel, looking towards the stern of the vessel, showing four separate connecting and underwater hull portions;
  • FIG. 11 is a bottom view of the marine vessel of FIG. with the superstructure omitted for clarity.
  • FIG. 12 is a side elevational view of a sixth embodiment of the improved marine vessel with the superstructure omitted ⁇ for clarity, showing that the vessel may have more than four connecting and underwater portions and that the underwater hulls can have an airfoil shape;
  • FIG. 13 is a transverse sectional view of a seventh embodiment of the improved marine vessel, with the superstructure omitted for clarity, showing that the underwater hull portion may have a shape other than elliptical.
  • the improved marine vessel of the present invention comprises an above water hull portion 10, an underwater hull portion 12 and a connecting hull portion 14.
  • the above water portion 10 may 'be generally of practically any shape. Shown in FIG. 1, the above Water hull portion is configured with a generally flat upper surface for carrying and launching aircraft and has a substantially rectangular shape with a tapered bow section 11 and a substantially perpendicular stern section 13. As discussed in great detail later, since the above water portion 10 does not engage the water, it does not have a conventional V-shaped configuration; however, as shown in FIG. 5, it may have a slightly tapered bottom surface 16. This tapered surface 16 is introduced for seakeeping purposes specifically to divert water waves reaching the bottom part of the above Water portion of the hull.
  • An above water hull portion 10, shaped as an aircraft carrier has been shown for exemplary purposes only since the principles of the present invention can be applied to passenger and cargo vessels and to other marine vessel types "as well without varying from the scope of the invention.
  • the underwater portion 12 comprises one or more elongated buoyant displacement bodies or members 18 which, as shown in FIGS. 4 and 5, have elliptical or other squashed cylindrical shapes and have lengths substantially the same as that of the above water portion 10. If the buoyant members 18 are not substantially elliptical in shape, but rather cylindrical, they will have an increased vertical dimension resulting in an upper surface 20 being too close to the surface of the water or, in some cases, actually piercing the waters surface. Therefore, instead of achieving the reduction of wavemaking resistance, the problem becomes even more acute. While the above noted problem could be eliminated 'by submerging the buoyant members 18 to a greater depth, this would result in excessive draft of the vessel, thereby limiting its entrance to most commercial ports. The fore and aft ends of the buoyant members are tapered, thus reducing their form drap in Water. While not critical, it is desirable to have the buoyant members parallel and in the same horizontal plane.
  • the connecting hull portion 14, as shown in FIG. 4, is a pair of hull members 14 having a streamlined shape, such as concaving the outer surface into a parabolic shape.
  • the hull members 14 are of a length greater than half the length of the buoyant members 18 but still not as great a the entire length of such members, thus permitting the fore and aft ends of the buoyant members 18 to extend beyond the ends of the connecting hulls 14.
  • the connecting hulls 14 have a streamlined shape to reduce their surface-piercing area, thus in this fashion increasing the seakeeping qualities and seaworthiness of of the vessel.
  • the hulls have a maximum width less than the maximum diameter of the elliptical buoyant members however, as shown in FIG.
  • the connecting hulls 14 need not be symmetrically positioned about the center line of the buoyant members 18 nor have streamlined surfaces of the same curvature.
  • the eccentric location of the hulls 14 renders a higher stability measure with the same waterplane area.
  • the connecting hulls 14 may have surfaces of any number of streamlined shapes which may be curves of various configurations as shown in FIG. 6, or one or both surfaces substantially vertical, as shown in FIGS. 7 and 8.
  • the ship would include at least one pair of rudders 24 which may be movably afiixed to the upper surfaces of the below water hull portion 12 near the aft end, and propellers 26 movably afiixed to the below water hull portion and operated by a power plant (not shown) to propel the ship through the Water.
  • a second pair of rudders 24 may be provided near the forward end of the below water hull portion 12. This is shown in FIG. 4.
  • this novel structure combines the quality of very low wave-making resistance with the very low form drag for the majority of the displacement. Therefore, for the submerged part of thi ship, the resistance is mostly due to frictional resistance.
  • the streamlined surfaces of the connecting hulls also result in very small wave-making resistance and practically no form drag for connecting hulls, again mostly frictional resistance. This fact naturally results in low powering requirement and thus lower weight for the main power plant and the fuel for a specified endurance.
  • the buoyant members 18 have an elliptical cross section with a major axis of 32 feet, minor axis of 17 feet, and are 800 feet long.
  • the buoyant members are connected to the deck structure by a single 700-foot long streamlined hull on each side, and optimum stiffened cylinders with parabolically bivariate struts. These dimensions were particularly chosen to increase stability by making an increase in waterplane area a function of heel and pitch angles.
  • the struts are connected at the top by 800-foot longitudinal girders of box construction, ten feet sequare and reinforced.
  • the deck transverse members are, in addition, connected to the vertical strut strength members by reinforced brackets.
  • the cargo stowage deck structure is 40 feet high and 106 feet in beam with a length of 800 feet.
  • the bow has a somewhat ship bow shape to avoid wetness and slamming and the bottom part of the box structure has a deadrise of five feet for seakeeping reasons.
  • FIGS. 7 and 8 Shown in FIGS. 7 and 8 is a third embodiment of the invention wherein the buoyant members rather than comprising a pair of elliptically-shaped bodies are a single rectangular buoyant body 30 substantially of the same width as the above water portion 10.
  • the single underwater hull 30, as shown in FIG. 8, may have twin podlike ends 32 and a trailing edge 34 shaped like an airfoil on the portion of the hull between the pods 32.
  • Each of the twin pods 32 functions to develop collect flow into the propeller race associated with the pod and the airfoilshaped trailing edge 34 increases the dynamic lift of the underwater hull, thereby reducing resistance.
  • the rudders and propellers have been omitted from the embodiment for clarity; however, these elements would be located or shown in FIGS. 1 and 4.
  • the primary tradeoff which applies both to the single 7 and to the double buoyant member configurations i a tradeofr between wave-making resistance and frictional resistance.
  • the differential of Wave-making resistance is so large that even through the wetted surface of this improved vessel is larger than the wetted surface of a conventional ship of the same displacement, the total resistance will be less, thus overcoming a great barrier to increased speed of surface ships.
  • FIGS. 9l2 include additional embodiments of the principles of this invention.
  • the below water hull portion and the connecting hull portion of all of these embodiments develop the reduced wave-making resistance and form drag that are characteristic of this invention.
  • the connecting hull portion is shown comprising two separated segments 42, each aflixed to the same underwater hull portion 12. This configuration is desirable for long ships to decrease the wetted surface and thereby reduced resistance.
  • FIGS. 10 and 11 divide each of the underwater hull portions into two separate bodies 50 and each of these bodies 50 supports a connecting hull portion 52.
  • This configuration is particularly adaptable to long ships where the displacement does'not require an underwater hull portion of the same length as the above water hull portion.
  • FIG. 12 illustrates a sixth embodiment which divides the underwater and connecting hulls into more than two segments, shown as 60 and 62 respectively, and further illustrates the shaping of the underwater hull portions 60 into longitudinal airfoils such as those shaped like an aircraft wing. This configuration is desirable to gain increased dynamic lift, thereby reducing resistance.
  • FIG. 13 is a transverse sectional view of a seventh embodiment which has been included to illustrate that the underwater hull portions need not be elliptical but may have any squashed cylindrical shape.
  • the underwater hull portion 70 includes one generally flat side and a curved upper surface. This shape has been included only by way of example, since within the principles of this invention the underwater hull portion may have many other shapes.
  • a marine vessel consisting of:
  • buoyant submerged underwater hull portion having a noncylindrical cross section
  • a connecting hull portion including a plurality of elongated hull members affixed to said underwater hull portion and to said above water hull portion for uniting said hull portions into a floatable marine vessel, said connecting hull portion having at least one concave side of a curvature defining the minimum horizontal cross-sectional area of said connecting hull portion to be substantially coincidental with the minimum water plane area of the connecting hull portion at predetermined operating speeds of said vessel wherein as said vessel is propelled through the water it developes less resistance at high speeds than a conventional ship having a substantially V- shaped hull.
  • the marine vessel of claim 1 wherein the underwater portion is a pair of totally submerged elongated, noncylindrically-shaped buoyant members, each aflixed to a different one of said elongated hull members.
  • buoyant members are arranged in a horizontal plane and with their longitudinal axis extending parallel to each other.
  • connecting hull portion includes a pair of elongated streamlinedshaped hulls, each having concave sides.
  • each of the two streamlined elongated connecting hull members have at least one surface shaped substantially like a segment of a parabola.
  • each connecting hull member has different parabolic shapes and the longitudinal centerline of each of the hulls is not coaxial with the minor axis of a different one of the buoyant members.
  • buoyant submerged underwater portion is a rectangular-shaped buoyant body having the elongated connecting hull portions aflixed to the same major surface thereof.
  • the marine vessel of claim 8 wherein the rectangular-shaped buoyant body includes pod-like ends and a tapered trailing edge.
  • each of the underwater portions includes a plurality of separate parts each individually coupled to the above water portion by said streamlined connecting hulls.
  • each of the underwater portions is longitudinally shaped like an airfoil.
  • each of the pair of streamlined hulls includes at least two separate parts, each affixed to the underwater hull portion and to the above water hull portion.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Paper (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Farming Of Fish And Shellfish (AREA)
US653429A 1967-07-14 1967-07-14 Marine vessel Expired - Lifetime US3447502A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US65342967A 1967-07-14 1967-07-14

Publications (1)

Publication Number Publication Date
US3447502A true US3447502A (en) 1969-06-03

Family

ID=24620857

Family Applications (1)

Application Number Title Priority Date Filing Date
US653429A Expired - Lifetime US3447502A (en) 1967-07-14 1967-07-14 Marine vessel

Country Status (6)

Country Link
US (1) US3447502A (zh)
JP (1) JPS5149117B1 (zh)
DE (1) DE1756676B1 (zh)
FR (1) FR1574361A (zh)
GB (2) GB1232688A (zh)
SE (1) SE353055B (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623444A (en) * 1970-03-17 1971-11-30 Thomas G Lang High-speed ship with submerged hulls
US3653354A (en) * 1970-03-02 1972-04-04 Flume Stabilization Syst Catamaran stabilizer
US3835800A (en) * 1968-02-13 1974-09-17 Santa Fe Drilling Co Twin hull semi-submersible derrick barge
US3841249A (en) * 1971-05-14 1974-10-15 D Equipement Mecaniques & Hydr Floating systems of the barge type, especially for drilling in deep water
US3897744A (en) * 1971-11-18 1975-08-05 Thomas G Lang High speed semisubmerged ship with four struts
US3988994A (en) * 1974-06-14 1976-11-02 Aktiengesellschaft "Weser" Catamaran
US4345533A (en) * 1979-02-20 1982-08-24 Mitsui Engineering And Shipbuilding Co. Ltd. Semi-submerged ship
US4372240A (en) * 1980-07-23 1983-02-08 Michael Farid Y Surface ship having improved speed and maneuverability
JPS6064089A (ja) * 1983-09-20 1985-04-12 Mitsui Eng & Shipbuild Co Ltd 半没水型双胴船
US4557211A (en) * 1984-04-20 1985-12-10 Lockheed Missiles & Space Co., Inc. Form stabilized low water plane area twin hull vessels
WO1987002958A1 (en) * 1985-11-08 1987-05-21 Lockheed Missiles & Space Company, Inc. Form stabilized low water plane area twin hull vessels
US4802427A (en) * 1986-08-04 1989-02-07 Tri-Albi Corporation Ship hull construction
US4919063A (en) * 1988-03-28 1990-04-24 Swath Ocean Systems, Inc. Hull construction for a swath vessel
US4936237A (en) * 1988-11-28 1990-06-26 Victor Walters Dual boat hull
WO1991011359A1 (en) * 1990-01-23 1991-08-08 Hydro Corporation High stability displacement hull device
US5269245A (en) * 1991-01-30 1993-12-14 Stena Rederi Aktiebolag Hull structure for multi-hull ships
WO1997010989A1 (en) * 1995-09-18 1997-03-27 Kverndokk & Eldøy A/S Marine multi-hull work platform
US5655472A (en) * 1992-11-30 1997-08-12 Finnyards Oy Asymmetric bridge
US5787828A (en) * 1996-11-27 1998-08-04 Service Marine Industries, Inc. Swath cargo ship
US6009820A (en) * 1998-03-31 2000-01-04 Kellog; Stanley Groedecke Semi-submersible vessel
US6260502B1 (en) 1998-03-31 2001-07-17 Owen Kratz Semi-submersible vessel
US6789490B2 (en) 2002-02-19 2004-09-14 Lockheed Martin Corporation Ship constructions for achieving stability at high speed through the use of multiple, low wave-making resistance, submerged hullform pods and control fins
US20050000399A1 (en) * 2001-11-30 2005-01-06 Van Dijk Jac W Multi-hulled vessel
US20050115484A1 (en) * 2003-03-12 2005-06-02 Kellogg Brown And Root, Inc. Semisubmersible trimaran
US20080022911A1 (en) * 2006-07-31 2008-01-31 Kevin Sullivan Self-leveling pontoon boat assembly
JP2008505006A (ja) * 2004-07-01 2008-02-21 ロッキード マーティン コーポレーション プロペラを中央に搭載した複数の艇体を有する船舶
WO2009084950A1 (en) * 2007-12-29 2009-07-09 Heerema Marine Contractors Nederland B.V. Semi-submersible vessel without braces
US20100224114A1 (en) * 2006-02-27 2010-09-09 Heerema Marine Contractors Nederland B.V. Semi-Submersible Vessel, Method For Operating A Semi-Submersible Vessel And Method For Manufacturing A Semi-Submersible Vessel
CN102060084A (zh) * 2009-11-18 2011-05-18 抚顺抚运安仪救生装备有限公司 抢险救援艇船体
WO2011097684A1 (en) 2010-02-11 2011-08-18 Austal Ships Pty Ltd Vessel configured for pitch reduction
US20120192781A1 (en) * 2011-02-01 2012-08-02 Stefano Brizzolara Watercraft device
EP2706006A1 (fr) 2012-09-11 2014-03-12 Constructions Mécaniques de Normandie Navire à deux flotteurs de type catamaran asymétrique
WO2014070125A1 (en) 2012-10-29 2014-05-08 Reshetar Oleg K Vessel with submerged pontoon
RU2601464C1 (ru) * 2015-07-02 2016-11-10 Александр Поликарпович Лялин Судно с малой площадью ватерлинии

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4802428A (en) * 1987-03-17 1989-02-07 Lang Thomas G Planing catamaran vessel
SE501457C2 (sv) * 1993-03-11 1995-02-20 Wintria Ab Fartyg med ett centralt huvudskrov och två sidoskrov
US6073569A (en) * 1998-02-26 2000-06-13 Murata Electric Boatworks Llc Advantageous use of battery mass in electric watercraft
US6273015B1 (en) 1998-02-26 2001-08-14 Maruta Electric Boatworks Llc Stabilized electric watercraft for high speed cruising, diving and sailing
BE1012579A4 (nl) * 1999-03-31 2000-12-05 Hendriks P J Een zeewaardig schip dat meer veiligheid, snelheid en ruimte biedt dan conventionele schepen.
DE10000271C1 (de) * 2000-01-05 2001-08-16 Abeking & Rasmussen Schiffs Un SWATH-Schiff
CN100354180C (zh) * 2003-04-06 2007-12-12 周锦宇 具有潜水浮体推进装置的高速船舶

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1817780A (en) * 1929-10-24 1931-08-04 Henry K Stack Construction in water craft
US1846602A (en) * 1931-03-13 1932-02-23 Lake Thomas A Edison Pontoon-hydroplane boat
US1861338A (en) * 1927-07-08 1932-05-31 John G Faust Marine vessel
US2890672A (en) * 1957-05-01 1959-06-16 Jr Harold Boericke Watercraft hydrofoil device
US3326163A (en) * 1965-02-08 1967-06-20 Worthington Corp Centrifugal jet propulsion pump
US3347197A (en) * 1964-09-10 1967-10-17 Paul A Scherer Foil systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD55565A (zh) *
FR824885A (fr) * 1937-07-28 1938-02-17 Navire
US3063397A (en) * 1959-08-27 1962-11-13 Jr Harold Boericke Sub-surface craft
US3279407A (en) * 1963-05-28 1966-10-18 Stenger Jacob Johannes Surface vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1861338A (en) * 1927-07-08 1932-05-31 John G Faust Marine vessel
US1817780A (en) * 1929-10-24 1931-08-04 Henry K Stack Construction in water craft
US1846602A (en) * 1931-03-13 1932-02-23 Lake Thomas A Edison Pontoon-hydroplane boat
US2890672A (en) * 1957-05-01 1959-06-16 Jr Harold Boericke Watercraft hydrofoil device
US3347197A (en) * 1964-09-10 1967-10-17 Paul A Scherer Foil systems
US3326163A (en) * 1965-02-08 1967-06-20 Worthington Corp Centrifugal jet propulsion pump

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3835800A (en) * 1968-02-13 1974-09-17 Santa Fe Drilling Co Twin hull semi-submersible derrick barge
US3653354A (en) * 1970-03-02 1972-04-04 Flume Stabilization Syst Catamaran stabilizer
US3623444A (en) * 1970-03-17 1971-11-30 Thomas G Lang High-speed ship with submerged hulls
US3841249A (en) * 1971-05-14 1974-10-15 D Equipement Mecaniques & Hydr Floating systems of the barge type, especially for drilling in deep water
US3897744A (en) * 1971-11-18 1975-08-05 Thomas G Lang High speed semisubmerged ship with four struts
US3988994A (en) * 1974-06-14 1976-11-02 Aktiengesellschaft "Weser" Catamaran
US4345533A (en) * 1979-02-20 1982-08-24 Mitsui Engineering And Shipbuilding Co. Ltd. Semi-submerged ship
US4372240A (en) * 1980-07-23 1983-02-08 Michael Farid Y Surface ship having improved speed and maneuverability
JPS6064089A (ja) * 1983-09-20 1985-04-12 Mitsui Eng & Shipbuild Co Ltd 半没水型双胴船
US4557211A (en) * 1984-04-20 1985-12-10 Lockheed Missiles & Space Co., Inc. Form stabilized low water plane area twin hull vessels
WO1987002958A1 (en) * 1985-11-08 1987-05-21 Lockheed Missiles & Space Company, Inc. Form stabilized low water plane area twin hull vessels
US4802427A (en) * 1986-08-04 1989-02-07 Tri-Albi Corporation Ship hull construction
US4919063A (en) * 1988-03-28 1990-04-24 Swath Ocean Systems, Inc. Hull construction for a swath vessel
US4936237A (en) * 1988-11-28 1990-06-26 Victor Walters Dual boat hull
WO1991011359A1 (en) * 1990-01-23 1991-08-08 Hydro Corporation High stability displacement hull device
US5269245A (en) * 1991-01-30 1993-12-14 Stena Rederi Aktiebolag Hull structure for multi-hull ships
AU648634B2 (en) * 1991-01-30 1994-04-28 Stena Rederi Aktiebolag A hull structure for multi-hull ships
US5655472A (en) * 1992-11-30 1997-08-12 Finnyards Oy Asymmetric bridge
WO1997010989A1 (en) * 1995-09-18 1997-03-27 Kverndokk & Eldøy A/S Marine multi-hull work platform
US5787828A (en) * 1996-11-27 1998-08-04 Service Marine Industries, Inc. Swath cargo ship
US6009820A (en) * 1998-03-31 2000-01-04 Kellog; Stanley Groedecke Semi-submersible vessel
US6260502B1 (en) 1998-03-31 2001-07-17 Owen Kratz Semi-submersible vessel
US20050000399A1 (en) * 2001-11-30 2005-01-06 Van Dijk Jac W Multi-hulled vessel
US7047896B2 (en) 2001-11-30 2006-05-23 Van Dijk Jac W Multi-hulled vessel
US6789490B2 (en) 2002-02-19 2004-09-14 Lockheed Martin Corporation Ship constructions for achieving stability at high speed through the use of multiple, low wave-making resistance, submerged hullform pods and control fins
US20050115484A1 (en) * 2003-03-12 2005-06-02 Kellogg Brown And Root, Inc. Semisubmersible trimaran
US6912965B2 (en) * 2003-03-12 2005-07-05 Kellogg Brown & Root, Inc. Semisubmersible trimaran
JP2008505006A (ja) * 2004-07-01 2008-02-21 ロッキード マーティン コーポレーション プロペラを中央に搭載した複数の艇体を有する船舶
US20100224114A1 (en) * 2006-02-27 2010-09-09 Heerema Marine Contractors Nederland B.V. Semi-Submersible Vessel, Method For Operating A Semi-Submersible Vessel And Method For Manufacturing A Semi-Submersible Vessel
US8752496B2 (en) * 2006-02-27 2014-06-17 Heerema Marine Contractors Nederland Se Semi-submersible vessel, method for operating a semi-submersible vessel and method for manufacturing a semi-submersible vessel
US20080022911A1 (en) * 2006-07-31 2008-01-31 Kevin Sullivan Self-leveling pontoon boat assembly
WO2009084950A1 (en) * 2007-12-29 2009-07-09 Heerema Marine Contractors Nederland B.V. Semi-submersible vessel without braces
CN102060084A (zh) * 2009-11-18 2011-05-18 抚顺抚运安仪救生装备有限公司 抢险救援艇船体
WO2011097684A1 (en) 2010-02-11 2011-08-18 Austal Ships Pty Ltd Vessel configured for pitch reduction
US20120192781A1 (en) * 2011-02-01 2012-08-02 Stefano Brizzolara Watercraft device
US8820260B2 (en) * 2011-02-01 2014-09-02 Stefano Brizzolara Watercraft device
EP2706006A1 (fr) 2012-09-11 2014-03-12 Constructions Mécaniques de Normandie Navire à deux flotteurs de type catamaran asymétrique
WO2014070125A1 (en) 2012-10-29 2014-05-08 Reshetar Oleg K Vessel with submerged pontoon
RU2601464C1 (ru) * 2015-07-02 2016-11-10 Александр Поликарпович Лялин Судно с малой площадью ватерлинии

Also Published As

Publication number Publication date
DE1756676B1 (de) 1972-10-12
FR1574361A (zh) 1969-07-11
GB1232688A (zh) 1971-05-19
GB1232687A (zh) 1971-05-19
SE353055B (zh) 1973-01-22
JPS5149117B1 (zh) 1976-12-24

Similar Documents

Publication Publication Date Title
US3447502A (en) Marine vessel
US5592895A (en) Small waterplane area high speed ship
US4174671A (en) Semisubmerged ship
US6311635B1 (en) Monohull having stern stabilizers for a high speed ship
AU2005291367B2 (en) An improved convertible vessel
US2464957A (en) Boat
US3995575A (en) Semidisplacement hydrofoil ship
US7207285B2 (en) Variable hybrid catamaran air cushion ship
FI109984B (fi) Alus ja menetelmä sen kuljettamiseksi
US4919063A (en) Hull construction for a swath vessel
US4763596A (en) Semisubmerged water surface navigation ship
US5522333A (en) Catamaran boat with planing pontoons
US5191848A (en) Multihull vessels, including catamarans, with wave piercing hull configuration
US5794558A (en) Mid foil SWAS
US3898946A (en) Sea-going high-commercial-speed displacement vessel
US5645008A (en) Mid foil SWAS
US6263819B1 (en) Low drag submerged displacement hull
EP2571750B1 (en) Double-ended trimaran ferry
US6058872A (en) Hybrid hull for high speed water transport
US7013826B2 (en) Hybrid catamaran air cushion ship
US4079688A (en) Displacement hull
US20120132124A1 (en) SPAR Based Maritime Access Vehicle
US5433161A (en) SWAS vessel
US3296992A (en) Ships
US3870005A (en) Houseboat hull