US3420374A - Method and device for controlling feed in a centrifugal separator - Google Patents
Method and device for controlling feed in a centrifugal separator Download PDFInfo
- Publication number
- US3420374A US3420374A US630044A US3420374DA US3420374A US 3420374 A US3420374 A US 3420374A US 630044 A US630044 A US 630044A US 3420374D A US3420374D A US 3420374DA US 3420374 A US3420374 A US 3420374A
- Authority
- US
- United States
- Prior art keywords
- lever
- basket
- detecting
- centrifugal separator
- cake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 11
- 239000002002 slurry Substances 0.000 description 31
- 239000007787 solid Substances 0.000 description 18
- 239000000126 substance Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 12
- 238000000926 separation method Methods 0.000 description 7
- 241001247986 Calotropis procera Species 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012840 feeding operation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B11/00—Feeding, charging, or discharging bowls
- B04B11/04—Periodical feeding or discharging; Control arrangements therefor
- B04B11/043—Load indication with or without control arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B11/00—Feeding, charging, or discharging bowls
- B04B11/04—Periodical feeding or discharging; Control arrangements therefor
Definitions
- a detecting device for a centrifugal separator capable of detecting the thickness of a cake in a basket after having reached a predetermined value by detecting ultrasonic waves emanated upon contact of a detecting lever with the cake when the cake has grown up to a predetermined thickness.
- the present invention relates to a centrifugal separator and more particularly to a method and a device for controlling feed of liquid or slurry into the centrifugal separator.
- the working ratio of the separator will be lowered when feeding of the mixture is stopped before the cake formed as a result of separation has reached a predetermined value, whereas the centrifugal separator will be overloaded when feeding of the mixture is not stopped even after the amount of the cake has exceeded a tolerable limit.
- variation in amount of the solid substance in each batch will result in lowering of efiiciency in the succeeding step, e.g. the step of drying the separated solid substance.
- Another device which has been proposed heretofore is one in which feeding of a slurry is stopped by the action of a microswitch which is adapted to be actuated by a rocking detector lever provided in a basket in such a manner that it is displaced from its normal position by 3,420,374 Patented Jan. 7, 1969 the slurry in the basket when the surface of the slurry has reached a predetermined level.
- the device of this type however, has the same drawback as that possessed by the preceding device using electrodes, since the feeding of the slurry is controlled by detecting the liquid level in the basket, and the further drawback that the contruction is rendered complicated due to the existence of moving parts.
- the primary object of the present invention to eliminate the aforementioned drawbacks of the conventional devices.
- the term ultrasonic as used herein is intended to include audible sonic.
- FIGURE 1 is a vertical cross section of a centrifugal separator illustrating an embodiment of the present invention
- FIGURE 2 is a schematic diagram illustrating an embodiment of the feed control system used in the present invention
- FIGURE 3 is an enlarged cross section showing a detecting unit of the type using no vibration-preventive rubber.
- FIGURE 4 is an enlarged cross section showing a detecting unit provided with means by which a detecting lever is moved from an actuating position to a nonactuating position immediately after detecting a cake having reached a predetermined thickness.
- a centrifugal separator generally indicated at 1 includes a fixedly supported casing 2 and a separation basket 3 rotatably mounted within said casing 2.
- the basket 3 is secured to the top end of a drive shaft 4, extending through the center of the casing 2, by a key or other suitable means, so that it is driven from a suitable power source (not shown) through said drive shaft 4.
- the casing 2 has a feed port (not shown) for a slurry. The slurry introduced into the basket 3 through the feed port is rotated, for the basket is rotating at high speeds. Thus, the slurry is pressed against a cylindrical screen 3a of the basket 3 due to the centrifugal force developed therein.
- a solid substance in the slurry which has a greater mass than the liquid, is gathered in a radially outside portion of the basket 3 as indicated at 5 in FIG. 1, while the liquid remains in a radially inside portion as indicated at 6 in said figure.
- the layer or cake 5 of the solid substance formed in the basket 3 has reached a predetermined thickness, supply of the slurry is interrupted, with the basket 3 rotating continuously. As a result, the liquid only is discharged from the basket 3 radially outwardly through the cake 5 which is prevented from moving in a radially outward direction by the screen 3a.
- the liquid discharged from the basket 3 conflicts against the peripheral side wall of the casing 2, flows downwardly on the side wall and drains to the outside through a drain hole (not shown) in the casing after flowing through a passage 2a formed at the bottom of the casing 2.
- a drain hole (not shown) in the casing after flowing through a passage 2a formed at the bottom of the casing 2.
- the cake is scraped down by means of a scraping blade (not shown) while rotating the basket 3 slowly and removed from the basket through a discharge port 3b in the lower portion of the basket.
- the centrifugal separator according to the present invention is provided with a detector for detecting the thickness of the cake 5 after having reached a predetermined value, which detector is generally indicated by numeral 7 in FIG. 1.
- the detector 7 includes a housing 9 fitted to a cover 8 for the casing 2 of the centrifugal separator and a detecting lever 11 held in the housing 9 through a vibration-preventive rubber bush 10.
- the detecting lever 11 is extending downwardly from the lower end of the housing 9 and flexed into L-shape with its end extremity arranged for contact with the surface of the cake 5 in the basket 3 when the cake has grown up to a predetermined thickness.
- the upper end of the detecting lever 11 is protruding upwardly from the rubber bush and with a piezo-electric unit fixed thereto, said piezo-electric unit 15 consisting of a piezo-electric element 12 and electrodes 13 and 14 attached to both sides thereof.
- the electrodes 13 and 14 have lead wires 16 and 17 connected thereto respectively.
- the solid substance constituting the cake 5 comes in contact with the end extremity of the lever 11, emanating ultrasonic waves.
- the ultrasonic waves are transmitted through the lever 11 to the piezo-electric unit 15.
- a voltage is developed in the piezo-electric unit 15 and this voltage is taken out through the lead wires 16 and 17 in the form of an electric signal indicating that the thickness of the cake has reached a predetermined value.
- the electric signal is amplified in a known manner to actuate the feed control system and thus the feeding of the slurry is interrupted.
- FIG. 2 An embodiment of the control system for controlling feeding of the slurry in response to the electric signal from the piezo-electric unit 15 is schematically shown in FIG. 2.
- an electric signal from the detecting unit 7 is fed to an amplifier 18 through a line 19, wherein it is amplified and sent to a hydraulic control valve 21 through a line to act on the same.
- the control valve 21, therefore, is actuated by the output from the amplifier 18 and connects a hydraulic circuit 22 with a line 23.
- a pressure oil from a pressure source (not shown) is thus led into a shut-off valve 24 to close the same and consequently the slurry being fed through a line 26 is interrupted.
- the detecting lever 11 is preferably made of a metal but may be made of any other material which is capable of conducting ultrasonic waves. It is also preferable that the detecting lever 11 is shaped into such a configuration as to provide a small fluid resistance so as to avoid scattering of the slurry.
- the ultrasonic waves generated by the rotation of the basket 3 of the centrifugal separator will be transmitted to the detector unit 7 through the casing 2, however the Waves from the casing 2 to the lever 11 will be substantially absorbed by the vibration-preventive rubber bush 10 and extremely attenuated.
- the rubber bush 10 is not always necessarily used in the position shown but the same effect may be obtained, for example, by interposing an absorber between the cover 8 and the casing 2. Such an arrangement is advantageous in avoiding rocking of the lever caused by a solid substance abutting thereagainst, due to the fact that the lever 11 is fixed to the housing 9 with a high rigidity at the joint.
- the ultrasonic generated upon contact of the cake 5 with the lever 11 generally has an amplitude far larger 1 2 2 1 that generated by the rotation of the basket 3 and conducted through the casing 2. Therefore, the ultrasonic from the lever 11 is sufficiently detectable without using the vibration-preventive rubber.
- FIG. 3 An embodiment of the detector unit wherein a detecting lever is fixed without using a vibration-preventive rubber is shown in FIG. 3.
- the detector unit 30 has a flange 31 for securing said detector unit to the cover 8, and a detecting lever 32 similar to the detecting lever 11 is formed integrally with the flange 31.
- a piezoelectric unit 33 Provided at the top end of the lever 32 is a piezoelectric unit 33, similar to the piezo-electric unit 15, which is mounted thereto by means of a stud 34.
- a housing 35 is provided integrally with the flange 31 and covers the piezo-electric unit 33. Electric wires from said piezo-electric unit are led to the outside through an aperture 37 formed in the housing 35.
- FIG. 4 shows another form of the detector unit.
- a pneumatic cylinder 42 having a floating piston 43 therein is fixedly mounted on the top surface of a housing 41 of the detector unit 40 and a detecting lever 44 is carried for rotation with respect to the housing 41 and the cylinder 42.
- a piezo-electric unit 45 is the same as that shown in FIG. 3.
- the piston 43 in the cylinder 42 has a skirt portion 43a having a pair of spiral cam slots 43b provided at the diametrically opposed position. Each slot 43b is engaged with a cam follower pin 42a secured on the cylinder 42. Between the slots 43b, the skirt 43a of the piston 43 is formed with a pair of opposed cam slots 430 (only one of which is shown in FIGURE 4), each of which is engaged with a pin portion (not shown) formed at each end of a transverse member 44a fixed on the lever 44.
- the slots 430 are similar to the slots 43b but their direction of spiral is reverse to that of the latter, so that, when the piston 43 is moved vertically, the lever 44 is rotated.
- the cylinder 42 has ports 49 and 50 connected thereto through which a compressed air is introduced into or discharged from the chambers formed above and below the piston 43.
- a method of automatically controlling feeding of a slurry into a centrifugal separator by detecting a cake of a solid substance having grown up to a predetermined thickness in a rotary basket in said centrifugal separator comprising the steps of converting an ultrasonic wave generated upon contact of the tip end of a detelcting lever, fixed in a predetermined position in the centrifugal separator, with the solid substance into an electric signal and amplifying said signal to actuate slurry feed control means.
- a centrifugal separator comprising a fixed casing, a separation basket rotatably mounted in said fixed casing, means to rotate said basket, means to feed a slurry into said basket and means to detect the amount of a cake formed of a solid substance in the slurry upon separation from a liquid in the basket and having reached a predetermined value
- said detecting means including a housing mounted on a fixed portion of the centrifugal separator and a detecting member retained in said housing, one end of said detecting member being positioned at a location at which it is engageable with said cake as said cake has grown up to a predetermined thickness, and said detecting member being combined with means to convert ultrasonic waves generated upon contact of said one end of the detecting member with said cake into an electric signal and provided with means to control said slurry feed means in response to said electric signal.
- a centrifugal separator in which said converting means is a piezo-electric unit having a piezo-electric element.
- a centrifugal separator in which the housing of said detecting means is mounted on the top cover of said fixed casing and said detecting member consisting of a L-shaped lever extending downwardly from the housing of said detecting means and then radially outwardly with its tip end located at a point a predetermined distance spaced radially inwardly from a cylindrical screen in said separation basket.
- a centrifugal separator according to claim 4 in which said L-shaped lever is supported by said housing through the intermediary of butter means.
- a centrifugal separator in which said L-shaped lever is arranged within said housing so as to be rotatable about its vertical axis and there being provided means to turn said lever after the ultrasonic waves are generated upon contact of the tip end of said lever with the cake and to move the tip end of said lever into an inoperative position in which it will not come in contact with the cake.
- said means to move said lever into the inoperative position comprises a cylinder fixed to the housing of said detecting means, a piston disposed axially movably and rotatably in said cylinder, cam means for rotating the lever upon axial movement of the piston, and means to selectively introduce a compressed air into chambers formed within the cylinder at both sides of said piston.
- a detecting device for detecting the amount of solid substance separated from a slurry and having reached a predetermined value in a centrifugal separator comprising a separation basket, said device comprising a detecting member capable of transmitting ultrasonic waves, a housing for retaining and suspending said detecting member into said basket, the distal end of said detecting member being positioned at a location at which it is engageable with said solid substance as said solid substance has grown up to a predetermined thickness in said basket, means combined with said detecting member to convert the ultrasonic waves transmitted to said detecting member upon contact of the distal end of said ,member with said solid substance, into an electric signal, and means controlling the fiow of said slurry to said centrifugal separator responsive to said electric signal.
- a detecting device in which said detecting member is an L-shaped lever extending from one end of said housing and said converting means includes a piezo-electric unit having a piezo-electric element.
- a detecting device in which said lever is supported by said housing through the intermediary of buffer-means.
- a detecting device in which said lever is fixed directly to said housing.
Landscapes
- Centrifugal Separators (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41023453A JPS497539B1 (enrdf_load_stackoverflow) | 1966-04-13 | 1966-04-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3420374A true US3420374A (en) | 1969-01-07 |
Family
ID=12110904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US630044A Expired - Lifetime US3420374A (en) | 1966-04-13 | 1967-04-11 | Method and device for controlling feed in a centrifugal separator |
Country Status (3)
Country | Link |
---|---|
US (1) | US3420374A (enrdf_load_stackoverflow) |
JP (1) | JPS497539B1 (enrdf_load_stackoverflow) |
GB (1) | GB1128714A (enrdf_load_stackoverflow) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623657A (en) * | 1968-07-08 | 1971-11-30 | Pennwalt Corp | Centrifuge apparatus |
WO1980001542A1 (en) * | 1979-02-05 | 1980-08-07 | Western States Machine Co | Method and apparatus for determining the thickness of a charge wall formed in a centrifugal basket |
US4305817A (en) * | 1979-06-29 | 1981-12-15 | Westfalia Separator Ag | Self-emptying clarifying drum |
DE3726227A1 (de) * | 1987-08-07 | 1989-02-16 | Krauss Maffei Ag | Vorrichtung zum ergebnisabhaengigen steuern einer filterzentrifuge |
EP0348639A3 (de) * | 1988-07-01 | 1991-01-23 | Laboratorium Prof. Dr. Rudolf Berthold | Verfahren und Vorrichtung zur Ausscheidung von flüssigen Anteilen und Feinkornanteilen aus einer Zuckersuspension |
US5897786A (en) * | 1997-03-24 | 1999-04-27 | The Western States Machine Company | Method and apparatus for determining thickness of a charge wall being formed in a centrifugal machine |
US5900156A (en) * | 1997-06-04 | 1999-05-04 | Savannah Foods And Industries | Ultrasonic loading control for centrifuge basket |
US6213928B1 (en) * | 1999-08-17 | 2001-04-10 | Shrinivas G. Joshi | Method and apparatus for measuring the thickness of sludge deposited on the sidewall of a centrifuge |
US6296774B1 (en) | 1999-01-29 | 2001-10-02 | The Western States Machine Company | Centrifuge load control for automatic infeed gate adjustment |
US20060175242A1 (en) * | 2005-02-07 | 2006-08-10 | Hanuman Llc | Method and apparatus for preparing platelet rich plasma and concentrates thereof |
US20060175244A1 (en) * | 2005-02-07 | 2006-08-10 | Hanuman Llc | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US20080011684A1 (en) * | 2005-02-07 | 2008-01-17 | Dorian Randel E | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US20090221075A1 (en) * | 2008-02-29 | 2009-09-03 | Biomet Manufacturing Corp. | System And Process For Separating A Material |
US20090289014A1 (en) * | 2008-05-23 | 2009-11-26 | Biomet Biologics, Llc | Blood Separating Device |
US20110014705A1 (en) * | 2009-07-16 | 2011-01-20 | Biomet Biologics, Llc | Method and apparatus for separating biological materials |
US20110056893A1 (en) * | 2002-05-24 | 2011-03-10 | Biomet Biologics, LLC. | Apparatus and Method for Separating and Concentrating Fluids Containing Multiple Components |
US8187475B2 (en) | 2009-03-06 | 2012-05-29 | Biomet Biologics, Llc | Method and apparatus for producing autologous thrombin |
US8950586B2 (en) | 2002-05-03 | 2015-02-10 | Hanuman Llc | Methods and apparatus for isolating platelets from blood |
US8992862B2 (en) | 2009-04-03 | 2015-03-31 | Biomet Biologics, Llc | All-in-one means of separating blood components |
US9114334B2 (en) | 2002-05-24 | 2015-08-25 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US9138664B2 (en) | 2007-04-12 | 2015-09-22 | Biomet Biologics, Llc | Buoy fractionation system |
US9239276B2 (en) | 2011-04-19 | 2016-01-19 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
CN105363572A (zh) * | 2015-12-08 | 2016-03-02 | 江苏赛德力制药机械制造有限公司 | 一种可上下升降的进料管 |
US9533090B2 (en) | 2010-04-12 | 2017-01-03 | Biomet Biologics, Llc | Method and apparatus for separating a material |
US9556243B2 (en) | 2013-03-15 | 2017-01-31 | Biomet Biologies, LLC | Methods for making cytokine compositions from tissues using non-centrifugal methods |
US9642956B2 (en) | 2012-08-27 | 2017-05-09 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US9649579B2 (en) | 2007-04-12 | 2017-05-16 | Hanuman Llc | Buoy suspension fractionation system |
US9701728B2 (en) | 2008-02-27 | 2017-07-11 | Biomet Biologics, Llc | Methods and compositions for delivering interleukin-1 receptor antagonist |
US9713810B2 (en) | 2015-03-30 | 2017-07-25 | Biomet Biologics, Llc | Cell washing plunger using centrifugal force |
CN107138295A (zh) * | 2017-06-22 | 2017-09-08 | 合肥通用机械研究院 | 一种用于离心脱水机的气液组合式刮刀结构 |
US9757721B2 (en) | 2015-05-11 | 2017-09-12 | Biomet Biologics, Llc | Cell washing plunger using centrifugal force |
US9897589B2 (en) | 2002-05-24 | 2018-02-20 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US9895418B2 (en) | 2013-03-15 | 2018-02-20 | Biomet Biologics, Llc | Treatment of peripheral vascular disease using protein solutions |
CN107930862A (zh) * | 2017-12-14 | 2018-04-20 | 淮北五星铝业有限公司 | 铝银浆生产中的自动固液沉降分离方法 |
US9950035B2 (en) | 2013-03-15 | 2018-04-24 | Biomet Biologics, Llc | Methods and non-immunogenic compositions for treating inflammatory disorders |
US10143725B2 (en) | 2013-03-15 | 2018-12-04 | Biomet Biologics, Llc | Treatment of pain using protein solutions |
US10576130B2 (en) | 2013-03-15 | 2020-03-03 | Biomet Manufacturing, Llc | Treatment of collagen defects using protein solutions |
CN115193597A (zh) * | 2022-05-31 | 2022-10-18 | 苏州盛天力离心机制造有限公司 | 应用于拉袋离心机的交替拉扭机构 |
CN115193596A (zh) * | 2022-07-11 | 2022-10-18 | 苏州盛天力离心机制造有限公司 | 一种锥篮离心机积压滤饼刮除装置及一种锥篮离心机 |
RU2787814C2 (ru) * | 2018-09-05 | 2023-01-12 | Яра Интернэшнл Aсa | Способ контроля потока в центробежном сепараторе |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2524579A (en) * | 1946-11-09 | 1950-10-03 | Taylor Maurice Kenyon | Detection of phenomena capable of setting up vibration |
US2912110A (en) * | 1957-05-29 | 1959-11-10 | Duriron Co | Filter press |
US3044625A (en) * | 1957-11-04 | 1962-07-17 | Ametek Inc | Load indicator for centrifugal separator |
US3141846A (en) * | 1962-04-05 | 1964-07-21 | Western States Machine Co | Load control unit for cyclical centrifugal installation |
-
1966
- 1966-04-13 JP JP41023453A patent/JPS497539B1/ja active Pending
-
1967
- 1967-04-11 US US630044A patent/US3420374A/en not_active Expired - Lifetime
- 1967-04-13 GB GB17104/67A patent/GB1128714A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2524579A (en) * | 1946-11-09 | 1950-10-03 | Taylor Maurice Kenyon | Detection of phenomena capable of setting up vibration |
US2912110A (en) * | 1957-05-29 | 1959-11-10 | Duriron Co | Filter press |
US3044625A (en) * | 1957-11-04 | 1962-07-17 | Ametek Inc | Load indicator for centrifugal separator |
US3141846A (en) * | 1962-04-05 | 1964-07-21 | Western States Machine Co | Load control unit for cyclical centrifugal installation |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3623657A (en) * | 1968-07-08 | 1971-11-30 | Pennwalt Corp | Centrifuge apparatus |
WO1980001542A1 (en) * | 1979-02-05 | 1980-08-07 | Western States Machine Co | Method and apparatus for determining the thickness of a charge wall formed in a centrifugal basket |
US4229298A (en) * | 1979-02-05 | 1980-10-21 | The Western States Machine Company | Method and apparatus for determining the thickness of a charge wall formed in a centrifugal basket |
US4305817A (en) * | 1979-06-29 | 1981-12-15 | Westfalia Separator Ag | Self-emptying clarifying drum |
DE3726227A1 (de) * | 1987-08-07 | 1989-02-16 | Krauss Maffei Ag | Vorrichtung zum ergebnisabhaengigen steuern einer filterzentrifuge |
US4900453A (en) * | 1987-08-07 | 1990-02-13 | Krause-Maffei Aktiengesellschaft | Filter centrifuge control |
EP0348639A3 (de) * | 1988-07-01 | 1991-01-23 | Laboratorium Prof. Dr. Rudolf Berthold | Verfahren und Vorrichtung zur Ausscheidung von flüssigen Anteilen und Feinkornanteilen aus einer Zuckersuspension |
US5897786A (en) * | 1997-03-24 | 1999-04-27 | The Western States Machine Company | Method and apparatus for determining thickness of a charge wall being formed in a centrifugal machine |
US5900156A (en) * | 1997-06-04 | 1999-05-04 | Savannah Foods And Industries | Ultrasonic loading control for centrifuge basket |
US6296774B1 (en) | 1999-01-29 | 2001-10-02 | The Western States Machine Company | Centrifuge load control for automatic infeed gate adjustment |
US6213928B1 (en) * | 1999-08-17 | 2001-04-10 | Shrinivas G. Joshi | Method and apparatus for measuring the thickness of sludge deposited on the sidewall of a centrifuge |
US8950586B2 (en) | 2002-05-03 | 2015-02-10 | Hanuman Llc | Methods and apparatus for isolating platelets from blood |
US10183042B2 (en) | 2002-05-24 | 2019-01-22 | Biomet Manufacturing, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US10393728B2 (en) | 2002-05-24 | 2019-08-27 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US8808551B2 (en) | 2002-05-24 | 2014-08-19 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US9897589B2 (en) | 2002-05-24 | 2018-02-20 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US9114334B2 (en) | 2002-05-24 | 2015-08-25 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US20110056893A1 (en) * | 2002-05-24 | 2011-03-10 | Biomet Biologics, LLC. | Apparatus and Method for Separating and Concentrating Fluids Containing Multiple Components |
US7824559B2 (en) | 2005-02-07 | 2010-11-02 | Hanumann, LLC | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US8133389B2 (en) | 2005-02-07 | 2012-03-13 | Hanuman, Llc | Method and apparatus for preparing platelet rich plasma and concentrates thereof |
US20080011684A1 (en) * | 2005-02-07 | 2008-01-17 | Dorian Randel E | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US20110042296A1 (en) * | 2005-02-07 | 2011-02-24 | Hanuman Llc | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US20100206798A1 (en) * | 2005-02-07 | 2010-08-19 | Hanuman Llc | Method And Apparatus For Preparing Platelet Rich Plasma And Concentrates Thereof |
US7987995B2 (en) | 2005-02-07 | 2011-08-02 | Hanuman, Llc | Method and apparatus for preparing platelet rich plasma and concentrates thereof |
US7708152B2 (en) | 2005-02-07 | 2010-05-04 | Hanuman Llc | Method and apparatus for preparing platelet rich plasma and concentrates thereof |
US8096422B2 (en) | 2005-02-07 | 2012-01-17 | Hanuman Llc | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US8105495B2 (en) | 2005-02-07 | 2012-01-31 | Hanuman, Llc | Method for preparing platelet rich plasma and concentrates thereof |
US7866485B2 (en) | 2005-02-07 | 2011-01-11 | Hanuman, Llc | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US20060175242A1 (en) * | 2005-02-07 | 2006-08-10 | Hanuman Llc | Method and apparatus for preparing platelet rich plasma and concentrates thereof |
US20060175244A1 (en) * | 2005-02-07 | 2006-08-10 | Hanuman Llc | Apparatus and method for preparing platelet rich plasma and concentrates thereof |
US9649579B2 (en) | 2007-04-12 | 2017-05-16 | Hanuman Llc | Buoy suspension fractionation system |
US9138664B2 (en) | 2007-04-12 | 2015-09-22 | Biomet Biologics, Llc | Buoy fractionation system |
US9701728B2 (en) | 2008-02-27 | 2017-07-11 | Biomet Biologics, Llc | Methods and compositions for delivering interleukin-1 receptor antagonist |
US11725031B2 (en) | 2008-02-27 | 2023-08-15 | Biomet Manufacturing, Llc | Methods and compositions for delivering interleukin-1 receptor antagonist |
US10400017B2 (en) | 2008-02-27 | 2019-09-03 | Biomet Biologics, Llc | Methods and compositions for delivering interleukin-1 receptor antagonist |
US8801586B2 (en) * | 2008-02-29 | 2014-08-12 | Biomet Biologics, Llc | System and process for separating a material |
US8337711B2 (en) | 2008-02-29 | 2012-12-25 | Biomet Biologics, Llc | System and process for separating a material |
US20090221075A1 (en) * | 2008-02-29 | 2009-09-03 | Biomet Manufacturing Corp. | System And Process For Separating A Material |
US9719063B2 (en) | 2008-02-29 | 2017-08-01 | Biomet Biologics, Llc | System and process for separating a material |
US20130196425A1 (en) * | 2008-02-29 | 2013-08-01 | Biomet Biologics, Llc | System and Process for Separating a Material |
US20090289014A1 (en) * | 2008-05-23 | 2009-11-26 | Biomet Biologics, Llc | Blood Separating Device |
US8012077B2 (en) | 2008-05-23 | 2011-09-06 | Biomet Biologics, Llc | Blood separating device |
US8783470B2 (en) | 2009-03-06 | 2014-07-22 | Biomet Biologics, Llc | Method and apparatus for producing autologous thrombin |
US8187475B2 (en) | 2009-03-06 | 2012-05-29 | Biomet Biologics, Llc | Method and apparatus for producing autologous thrombin |
US8992862B2 (en) | 2009-04-03 | 2015-03-31 | Biomet Biologics, Llc | All-in-one means of separating blood components |
US20110014705A1 (en) * | 2009-07-16 | 2011-01-20 | Biomet Biologics, Llc | Method and apparatus for separating biological materials |
US9011800B2 (en) | 2009-07-16 | 2015-04-21 | Biomet Biologics, Llc | Method and apparatus for separating biological materials |
US9533090B2 (en) | 2010-04-12 | 2017-01-03 | Biomet Biologics, Llc | Method and apparatus for separating a material |
US9239276B2 (en) | 2011-04-19 | 2016-01-19 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US9642956B2 (en) | 2012-08-27 | 2017-05-09 | Biomet Biologics, Llc | Apparatus and method for separating and concentrating fluids containing multiple components |
US10208095B2 (en) | 2013-03-15 | 2019-02-19 | Biomet Manufacturing, Llc | Methods for making cytokine compositions from tissues using non-centrifugal methods |
US10576130B2 (en) | 2013-03-15 | 2020-03-03 | Biomet Manufacturing, Llc | Treatment of collagen defects using protein solutions |
US11957733B2 (en) | 2013-03-15 | 2024-04-16 | Biomet Manufacturing, Llc | Treatment of collagen defects using protein solutions |
US9950035B2 (en) | 2013-03-15 | 2018-04-24 | Biomet Biologics, Llc | Methods and non-immunogenic compositions for treating inflammatory disorders |
US10143725B2 (en) | 2013-03-15 | 2018-12-04 | Biomet Biologics, Llc | Treatment of pain using protein solutions |
US9556243B2 (en) | 2013-03-15 | 2017-01-31 | Biomet Biologies, LLC | Methods for making cytokine compositions from tissues using non-centrifugal methods |
US9895418B2 (en) | 2013-03-15 | 2018-02-20 | Biomet Biologics, Llc | Treatment of peripheral vascular disease using protein solutions |
US10441634B2 (en) | 2013-03-15 | 2019-10-15 | Biomet Biologics, Llc | Treatment of peripheral vascular disease using protein solutions |
US9713810B2 (en) | 2015-03-30 | 2017-07-25 | Biomet Biologics, Llc | Cell washing plunger using centrifugal force |
US9757721B2 (en) | 2015-05-11 | 2017-09-12 | Biomet Biologics, Llc | Cell washing plunger using centrifugal force |
CN105363572A (zh) * | 2015-12-08 | 2016-03-02 | 江苏赛德力制药机械制造有限公司 | 一种可上下升降的进料管 |
CN107138295A (zh) * | 2017-06-22 | 2017-09-08 | 合肥通用机械研究院 | 一种用于离心脱水机的气液组合式刮刀结构 |
CN107930862A (zh) * | 2017-12-14 | 2018-04-20 | 淮北五星铝业有限公司 | 铝银浆生产中的自动固液沉降分离方法 |
RU2787814C2 (ru) * | 2018-09-05 | 2023-01-12 | Яра Интернэшнл Aсa | Способ контроля потока в центробежном сепараторе |
CN115193597A (zh) * | 2022-05-31 | 2022-10-18 | 苏州盛天力离心机制造有限公司 | 应用于拉袋离心机的交替拉扭机构 |
CN115193596A (zh) * | 2022-07-11 | 2022-10-18 | 苏州盛天力离心机制造有限公司 | 一种锥篮离心机积压滤饼刮除装置及一种锥篮离心机 |
Also Published As
Publication number | Publication date |
---|---|
JPS497539B1 (enrdf_load_stackoverflow) | 1974-02-21 |
GB1128714A (en) | 1968-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3420374A (en) | Method and device for controlling feed in a centrifugal separator | |
SU577946A3 (ru) | Центробежный сепаратор | |
US3437209A (en) | Continuous centrifugal filter construction | |
KR101495906B1 (ko) | 협잡물 탈수성능을 향상시킨 협잡물 처리기 | |
US4781823A (en) | Pre-filtering apparatus for use in continuous press | |
EP0879091A1 (en) | Solids scraping assembly for a centrifuge | |
JPS5823126B2 (ja) | 濾過ケ−クの除去方法およびこれに用いるキャンドル型濾過装置 | |
EP0056511A3 (en) | Improved centrifuge and method of cleaning a centrifuge drum | |
US2593278A (en) | Centrifuge for separating a liquid from solid material | |
US3623613A (en) | Centrifuge | |
US3126338A (en) | Hermetically sealable mounting means | |
US4206871A (en) | Leakage indicator for centrifuge | |
US2271493A (en) | Centrifugal separator | |
GB918386A (en) | Improvements in continuous acting sieve centrifuges | |
SU988177A3 (ru) | Центрифуга с вибрационной выгрузкой осадка дл обезвоживани угл | |
CN212943522U (zh) | 一种新型出渣防磨损的离心机 | |
US3044625A (en) | Load indicator for centrifugal separator | |
US3563453A (en) | Method and apparatus for indicating sludge level in sludge centrifuge | |
JP2727411B2 (ja) | 分離板型遠心分離機 | |
JP5127908B2 (ja) | 遠心分離機 | |
US2234332A (en) | Centrifugal separator | |
PL107681B1 (pl) | Wirowka stozkowa do pracy ciaglej | |
US2100669A (en) | Centrifugal separating machine and method of treating sludges | |
JP2554908B2 (ja) | 遠心分離機の運転方法 | |
SU874202A1 (ru) | Центрифуга дл разделени суспензий |