US3403312A - Circuitry for timekeeping instruments - Google Patents
Circuitry for timekeeping instruments Download PDFInfo
- Publication number
- US3403312A US3403312A US514971A US51497165A US3403312A US 3403312 A US3403312 A US 3403312A US 514971 A US514971 A US 514971A US 51497165 A US51497165 A US 51497165A US 3403312 A US3403312 A US 3403312A
- Authority
- US
- United States
- Prior art keywords
- coil
- transistor
- base
- impulse
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/28—Modifications for introducing a time delay before switching
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/02—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a pendulum
- G04C3/027—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a pendulum using electromagnetic coupling between electric power source and pendulum
- G04C3/0278—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a pendulum using electromagnetic coupling between electric power source and pendulum the pendulum controlling the gear-train by means of static switches, e.g. transistor circuits
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/04—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
- G04C3/06—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
- G04C3/065—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
- G04C3/069—Driving circuits using a single coil for detection and driving purposes
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/08—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
- G04C3/10—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
- G04C3/108—Driving circuits
Definitions
- a battery-driven timepiece includes a mechanical oscillator as its time base.
- the oscillator is driven by the interaction of a magnet and a coil.
- the coil is pulsed by a free running multivibrator circuit having a pair of complementary transistors.
- the coil is in series with the collector-emitter pairs of both transistors and the battery.
- the present invention relates to timekeeping instruments, and more particularly to a battery drlven watch.
- U.S. Patent 3,046,- 460 an oscillative coil acts as a pick-up coil and drive coil and cooperates with several stationary, permanent magnets.
- This coil is a part of a monostable multlvlbrator circuit.
- This circuitry shows two transistors arranged complementary to each other, i.e. PNP and NPN, and a battery source.
- both transistors are continuously blocked in the rest position of the vibrator. Therefore, this system is not self-starting.
- both transistors are opened by the impulse generated in the coil, however, the coil current flows only through one transistor. Another current flows through the other transistor parallel to it which is useless for the impulse, in a considerable amount of at least 20% or more of the total current. This means that a specific battery has a shorter lifetime or that for a determined lifetime a larger battery has to be used.
- the timepiece of this invention includes at least one permanent magnet and an oscillating coil acting as a pick-up coil as well as a drive coil.
- the coils are part of a multivibrator circuitry-consisting of two complementary transistors, one RC network and a current source.
- the magnet and the coil are part of an oscillating system and causes its impulse.
- the total coil current flows through the exit sides of both transistors and only a very small part is branched off for triggering and does not impulse the coil. Thereby one obtains an optimum efliciency and a maximum lifetime of the battery, which is an important advantage for wrist watches.
- a damping condenser can be provided which preferably will be in parallel with the coil for the suppression of vibrations of high frequency.
- the self-starting and also the vibration impulse of the circuitry are particularly favorable when the resistor is a multiple of the ohmic resistance of the coil.
- the frequency of the free running, unstable multivibrator should be lower (at maximum equal) than the inherent mechanical frequency of the vibrating system.
- a permanent magnet, 10 is fixed on the free end of a spring 12.
- the oposite end of the spring is firmly connected with a stationary part.
- the magnet 10 vibrates forwards and backwards, corresponding to the double arrow A.
- the magnet 10 cooperates with a stationary coil 14 which serves simultaneously as a pickup coil and drive (impulse) coil.
- a stationary coil 14 which serves simultaneously as a pickup coil and drive (impulse) coil.
- One end of the coil 14 is connected to the plus termial of a DC. (battery) source 16.
- the minus terminal of the DC. source is connected over the collector-emitter path of a PNP transistor 18.
- the emitter-collector path of an NPN transistor 20 is connected with the other end of the coil 14. Both transistors 18 and 20 can be exchanged against each other, only the battery terminals would then have to be changed correspondingly.
- Another current circuit leads from the plus terminal to the DC. source over a resistor 22 to the base of the transistor 20, from there over the emitter of the transistor 20, the emitter of the transistor 18, the base of the transistor 18 and finally over a resistor 24 to the minus terminal of the current source.
- the base of the transistor 18 is connected over a condenser 26 with the collector of the transistor 20 and with one end of the coil 14.
- Another condenser 30, shown by a dash dotted line, may be provided which suppresses high frequency current. It is arranged parallel to the coil 14.
- Condenser 26 begins to charge over the charging circuit formed by the coil 14 and the resistor 24, the condensor 26 can be charged up to the voltage of the current source. A negative voltage is therefore placed on the base of the transistor 18, which means the DC. voltage acts on the collector so that the transistor 18 becomes conductive.
- the base of the transistor 20 has applied to it the full positive voltage of the current source 16, so that the base and the collector have the same voltage, which means the transistor 20 is open (is ready to conduct).
- the condensor 26 can be discharged through the emitter-base-path of the transistor 18. Due to the transistor 18 the vibration avalanches at the full height of the impulse. After the discharge of the condenser 26 the impulse collapses avalanche like. By this relative motion'between coil and magnet and the mechanical inherent frequency of the vibrating system, a control impulse is induced in the coil.
- the transistor 18 When no impulse is induced in the coil 14 after the mechanical start of vibration, the transistor 18 is blocked because the base of transistor 18 is more positive than the collector, The same is true of the transistor 20, since at the closed transistor 18 no governing current can flow through the base. With the presence of the resistor 22 the transistor is also blocked because its base is more negative than the collector.
- the dimensioning of the particular components is such that from the entrance (base of the transistor 18) up to the exit (collector of the transistor 20) the phase will be rotated for 360 so that the general condition of vibration will be satisfied.
- the length of impulse is determined by the characteristic of the rate of discharge of the condenser 26, which is discharged over both transistors. After the discharge of the condenser the preceding condition appears again, this means the more positive base compared to the collector blocks the transistor 18, and, by that, also the transistor 20.
- the interval between the electric impulses is determined by the characteristic of the rate of charge of the condenser.
- the condenser is chosen so that its discharge is longer, or at most equal, to the period of the mechanical vibration system. The synchronization and triggering of the impulse circuitry will therefore occur by the mechanical vibration system.
- the resistor 24 is relatively large e.g. in the magnitude of 1M ohm and the resistor 22 is of a smaller magnitude, for example of 100K ohm.
- the capacitor 26 is in the magnitude of microfarad.
- a timepiece including at least one permanent magnet, a single coil having a first and a second end, said coil acting as a pick-up coil and as a drive coil, means to physically oscillate the magnet relative to the coil, a source of direct current, and a multivibrator circuit consisting of first and second complementary transistors, wherein the magnet and the coil are part of a mechanical oscillating system and drive said system, means to transmit impulses from the coil to the base of the first transistor, the collector of the second transistor being connected to said second end of the coil, the collector of the first transistor being connected to the current source, and the first end of the coil being connected to said current source, said coil being in series with the collectoremitter paths of said transistors and with said current source.
- a timepiece as in claim 1 wherein the means to transmit impulses from the coil to the base of the first transistor includes a capacitor connected between said base and said first side of said coil.
- a timepiece including a permanent magnet, a single coil having a first and a second end,.said coil acting as a pick-up and a drive coil, means to physically oscillate the magnet relative to the coil, a source of direct current, and a circuit having substantially zero phase shift, including first and second complementary transistors, said first transistor being arranged in a common-collector configuration with zero phase shift, said second transistor being arranged in a common-base configuration with zero phase shift, and means to provide a pick-up signal from the coil to the first transistor, wherein the coil, the direct current source and the emitter-collector paths of the first and second transistors are in series in regard to current.
- a timepiece as in claim 7, wherein the means to provide the pick-up signal to the first transistor is a capacitor connected between the coil and the base of the first transistor.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electric Clocks (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEU11336A DE1244069B (de) | 1965-01-02 | 1965-01-02 | Antriebsschaltung fuer zeithaltende Geraete |
Publications (1)
Publication Number | Publication Date |
---|---|
US3403312A true US3403312A (en) | 1968-09-24 |
Family
ID=7567597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US514971A Expired - Lifetime US3403312A (en) | 1965-01-02 | 1965-12-20 | Circuitry for timekeeping instruments |
Country Status (6)
Country | Link |
---|---|
US (1) | US3403312A (de) |
JP (1) | JPS4811918B1 (de) |
CH (1) | CH539875A (de) |
DE (1) | DE1244069B (de) |
FR (1) | FR1461286A (de) |
GB (1) | GB1128050A (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3496391A (en) * | 1967-12-07 | 1970-02-17 | Clarence Hunter Mcshan | Resonant device |
US3539888A (en) * | 1968-07-24 | 1970-11-10 | Aeroprojects Inc | Automatic frequency control circuit for use with ultrasonic systems |
US3711754A (en) * | 1969-03-28 | 1973-01-16 | K Nemoto | Circuit for driving a moving element |
US3750386A (en) * | 1969-12-17 | 1973-08-07 | Hermle F & Sohn Uhrenfab | Pendulum controlled electrodynamic clockwork |
US3762155A (en) * | 1971-12-23 | 1973-10-02 | Gen Electric | Simulated pendulum clock |
US3762154A (en) * | 1971-12-23 | 1973-10-02 | Gen Electric | Simulate pendulum clock |
US4728871A (en) * | 1985-11-01 | 1988-03-01 | Andrews Roger W | Novelty electric motor |
US20080167194A1 (en) * | 1998-10-16 | 2008-07-10 | Xencor, Inc. | Protein Design Automation for Protein Libraries |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5922177U (ja) * | 1982-07-30 | 1984-02-10 | 株式会社タカラ | 飛び出し立体ゲ−ム盤 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3046460A (en) * | 1958-06-14 | 1962-07-24 | Durowe A G | Mechanical oscillating elements for timepieces and the like, and electronic actuating means therefor |
US3061796A (en) * | 1958-09-03 | 1962-10-30 | Durowe A G | Electric drive device for driving a mechanical oscillatory system |
GB921948A (en) * | 1960-04-28 | 1963-03-27 | Suisse Horlogerie | Improvements in or relating to timepieces |
US3100278A (en) * | 1958-01-10 | 1963-08-06 | Reich Robert Walter | Electromagnetic pendulum drive |
US3124731A (en) * | 1964-03-10 | Electronic time pieces | ||
US3131362A (en) * | 1960-05-31 | 1964-04-28 | Ibm | Balanced transistor multivibrator |
US3238431A (en) * | 1965-01-25 | 1966-03-01 | Omega Brandt & Freres Sa Louis | Oscillating resonator for a timepiece with synchronized driving oscillator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2909732A (en) * | 1954-11-06 | 1959-10-20 | Philips Corp | Device for maintaining mechanical oscillations |
DE1166705B (de) * | 1958-09-03 | 1964-03-26 | Durowe Deutsche Uhren Rohwerke | Kontaktlos ueber elektronische Mittel gesteuerter mechanischer Schwinger als Gangordner eines zeithaltenden elektrischen Geraetes |
-
1965
- 1965-01-02 DE DEU11336A patent/DE1244069B/de active Pending
- 1965-12-14 CH CH1724165A patent/CH539875A/de unknown
- 1965-12-20 US US514971A patent/US3403312A/en not_active Expired - Lifetime
- 1965-12-24 FR FR43633A patent/FR1461286A/fr not_active Expired
- 1965-12-31 JP JP41000095A patent/JPS4811918B1/ja active Pending
- 1965-12-31 GB GB55462/65A patent/GB1128050A/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124731A (en) * | 1964-03-10 | Electronic time pieces | ||
US3100278A (en) * | 1958-01-10 | 1963-08-06 | Reich Robert Walter | Electromagnetic pendulum drive |
US3046460A (en) * | 1958-06-14 | 1962-07-24 | Durowe A G | Mechanical oscillating elements for timepieces and the like, and electronic actuating means therefor |
US3061796A (en) * | 1958-09-03 | 1962-10-30 | Durowe A G | Electric drive device for driving a mechanical oscillatory system |
GB921948A (en) * | 1960-04-28 | 1963-03-27 | Suisse Horlogerie | Improvements in or relating to timepieces |
US3131362A (en) * | 1960-05-31 | 1964-04-28 | Ibm | Balanced transistor multivibrator |
US3238431A (en) * | 1965-01-25 | 1966-03-01 | Omega Brandt & Freres Sa Louis | Oscillating resonator for a timepiece with synchronized driving oscillator |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3496391A (en) * | 1967-12-07 | 1970-02-17 | Clarence Hunter Mcshan | Resonant device |
US3539888A (en) * | 1968-07-24 | 1970-11-10 | Aeroprojects Inc | Automatic frequency control circuit for use with ultrasonic systems |
US3711754A (en) * | 1969-03-28 | 1973-01-16 | K Nemoto | Circuit for driving a moving element |
US3750386A (en) * | 1969-12-17 | 1973-08-07 | Hermle F & Sohn Uhrenfab | Pendulum controlled electrodynamic clockwork |
US3762155A (en) * | 1971-12-23 | 1973-10-02 | Gen Electric | Simulated pendulum clock |
US3762154A (en) * | 1971-12-23 | 1973-10-02 | Gen Electric | Simulate pendulum clock |
US4728871A (en) * | 1985-11-01 | 1988-03-01 | Andrews Roger W | Novelty electric motor |
US20080167194A1 (en) * | 1998-10-16 | 2008-07-10 | Xencor, Inc. | Protein Design Automation for Protein Libraries |
Also Published As
Publication number | Publication date |
---|---|
CH539875A (de) | 1973-09-14 |
JPS4811918B1 (de) | 1973-04-17 |
CH1724165A4 (de) | 1968-04-11 |
DE1244069B (de) | 1967-07-06 |
GB1128050A (en) | 1968-09-25 |
FR1461286A (fr) | 1966-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3403312A (en) | Circuitry for timekeeping instruments | |
US3238431A (en) | Oscillating resonator for a timepiece with synchronized driving oscillator | |
US3375423A (en) | Synchronous motor, especially for electric clocks | |
US2852725A (en) | Electrically-maintained vibratory oscillator | |
US3359473A (en) | Self-starting electronic oscillating device for clockworks | |
US3225536A (en) | Electric clock | |
US3218793A (en) | Pulse timer | |
US3509437A (en) | Timepiece drive | |
US3318084A (en) | Transistor alarm clock | |
US3447052A (en) | Oscillating motor drive system | |
US3699762A (en) | Synchronized contact watch | |
US3061796A (en) | Electric drive device for driving a mechanical oscillatory system | |
US3711754A (en) | Circuit for driving a moving element | |
GB1262764A (en) | Improvements in and relating to battery-powered clocks | |
US3524119A (en) | Electrical self-starting time keeping apparatus | |
US3818376A (en) | Method and apparatus for synchronizing the balance system of clocks or wrist watches | |
US3062057A (en) | Indicating instrument antifriction device | |
US3481138A (en) | Drive for a balance in an electric timepiece | |
US3596461A (en) | Electromagnetic driving system for timepieces | |
GB1104071A (en) | Improvements in or relating to horological instruments | |
US3892066A (en) | Synchronized watch movement | |
US3609487A (en) | Dc motor and constant-speed control circuit | |
US3616639A (en) | Pulse generator | |
US3859781A (en) | Synchronization system for watches | |
US3807163A (en) | Electronic switching circuit for electrically driven timepieces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CHASE MANHATTAN BANK, N.A., THE Free format text: SECURITY INTEREST;ASSIGNORS:TIMEX CORPORATION, A DE CORP.;TIMEX COMPUTERS LTD., A DE CORP.;TIMEX CLOCK COMPANY, A DE CORP.;AND OTHERS;REEL/FRAME:004181/0596 Effective date: 19830331 |