US3351563A - Production of hydrogen-rich synthesis gas - Google Patents
Production of hydrogen-rich synthesis gas Download PDFInfo
- Publication number
- US3351563A US3351563A US285672A US28567263A US3351563A US 3351563 A US3351563 A US 3351563A US 285672 A US285672 A US 285672A US 28567263 A US28567263 A US 28567263A US 3351563 A US3351563 A US 3351563A
- Authority
- US
- United States
- Prior art keywords
- steam
- carbon
- naphtha
- carbon dioxide
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/388—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the heat being generated by superheated steam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/384—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/26—Fuel gas
Definitions
- a process has been developed which features the cracking and partial thermal reforming of naphtha vapor, by reaction with superheated steam under controlled conditions of temperature and reaction time.
- the formation and accumulation of free carbon is avoided by limiting the reaction time prior to catalysis to prevent attainment of reaction equilibrium, while the formation of lower hydrocarbons by thermal cracking is also controlled and becomes a transient phenomenon.
- the final process gas stream contains only a negligible proportion of unreacted lower hydrocarbons.
- Nap'htha is a relatively volatile petroleum refining product or intermediate, which is generally defined in terms of boiling range.
- naphtha is defined as follows: Naphtha content (of crude oil) is the total distillate recovered in the U.S. Bureau of Mines routine analysis at a vapor temperature of 392 F.
- a more detailed definition of naphtha appears in Petroleum Refining With Chemical by Kalichevsky & Kobe (1956).
- a discussion of naphtha on pp. 21-23 of this text indicates that different naphthas may have boiling ranges from a low point of 122 F. to a maximum of 400 F.
- naphtha is defined as a general term which is applied to fractions boiling in the gasoline or low kerosene range.
- naphtha is a low-boiling and readily volatilized liquid hydrocarbon cut, derived from crude oil distillation in petroleum refining. This material consists mostly of straight chain parafiinics in the C- to C-9 range, however, up to about 30% naphthenics together with up to aromatics and unsaturates may also be present.
- naphtha also generally contains a significant proportion of sulfur in the form of COS and mercaptans.
- Naphtha may be utilized in a variety of ways.
- crude naphtha may be further refined and upgraded to yield a variety of finished petroleum solvents.
- naphtha is reformed in the petroleum sense of the term.
- the crude naphtha is cracked, and hydrocarbon molecules are re-assembled in the presence of platinum-or other suitable catalyst, so as to yield a substantial proportion of branched chain or aromatics molecules.
- This material is then blended with other refinery cuts for gasoline usage.
- the word reforming has an entirely different meaning, as will appear infra.
- naphtha may also be utilized as a hydrocarbon raw material for the manufacture of hydrogen or synthesis gas which is employed in the catalytic synthesis of ammonia or methanol.
- synthesis gas There are two general approaches to the conversion of the various types of hydrocarbons to synthesis gas, namely, steam reforming and partial oxidation.
- steam reforming a normally gaseous hydrocarbon such as methane is mixed with steam, and the mixture is then passed through an externally heated bed of nickel-c0ntaining reform catalyst. An endothermic reaction takes place between the hydrocarbon and steam, resulting in the formation of a synthesis gas product stream containing principally hydrogen, carbon monoxide and carbon dioxide.
- a hydrocarbon raw material is reacted with oxygen or oxygen-enriched air at a highly elevated temperature.
- the product stream is then quenched, to yield a crude synthesis gas stream.
- a catalyst is not employed in conventional partial oxidation practice, since essentially complete reaction of the hydrocarbon is readily accomplished at the high temperature levels generated in this process.
- a variety of hydrocarbons may be employed in partial oxidation, including liquid or even powdered solid hydrocarbons as well as gases.
- a partial oxidation effect is obtained in a catalytic process by adding oxygen to a stream of hydrocarbon vapor or partially reformed gas, immediately before the stream is passed through a catalyst bed.
- the bed is not externally heated, instead the process is carried out in a refractory-lined chamber as in conventional partial oxidation. It will be evident that this procedure is subject to the principal economic drawback of all partial oxidation processes, namely, that an air separation plant is required.
- naphtha is catalytically steam reformed to produce a hydrogen-rich synthesis gas.
- carbon dioxide is employed together with process steam, to yield a synthesis gas having the proper ratio of hydrogen to carbon oxides for usage of the product gas stream in methanol synthesis.
- the process of the present invention depends on a unique balance of reaction conditions to achieve the catalytic steam reforming of naphtha, since this is accomplished without accumulated deposition of free carbon. Inaddition, no significant amount of unreacted hydrocarbon is present in the final synthesis gas. The process is carried out in two stages, a gasification-conditioning stage and a cata lytic steam reform stage.
- process streams of naphtha and steam are preheated and mixed.
- a partial reaction ensues, and the mixed process stream, now containing a variety of intermediate components but not in final reaction equilibrium, is passed through an externally heated bed of reform catalyst.
- a final process stream is produced by steam reforming of residual naphtha and intermediate lower hydrocarbons.
- This final process stream consists of a synthesis gas containing principally hydrogen, carbon monoxide, carbon dioxide and steam. The stream is essentially free of unreacted hydrocarbons or solid particulate carbon.
- a primary advantage is that naphtha is catalytically steam reformed to a hydrogen-rich synthesis gas, without the concomitant accumulation of free carbon or tars, and without the production of lower hydrocarbons as a significant component of the final process stream. Thus, no recycle or side stream disposal 1s required.
- the process is continuous rather than cyclic or intermittent.
- one major economic cost in partial oxidation processes namely an air separation plant or other source of free oxygen, is not required in the process of the present invention.
- conventional steam reformer apparatus rather than a special or costly apparatus design may be employed in the catalytic reforming stage of the present invention.
- Another object is to reform naphtha in a continuous process, without accumulated deposition of tars or free carbon.
- a further object is to reform naphtha by catalytic reaction with steam.
- An additional object is to react naphtha with steam by a two-stage mixing and catalytic reform process, whereby naphtha is completely reformed and a gas stream principally containing hydrogen, carbon monoxide, carbon dioxide and steam is produced.
- Still another object is to gasify and reform naphtha to a hydrogen-rich synthesis gas suitable for methanol synthesis using steam and carbon dioxide as process reactants.
- stream 1 is a liquid naphtha, derived from petroleum refining or other types of crude oil processing.
- stream 1 consists principally of paraffinic hydrocarbons in the C to C9 range, together with naphthentics as well as minor amounts of aromatics and sulfur compounds.
- the liquid stream 1 is vaporized and preheated in heater 2, to form naphtha vapor stream 3.
- Vapor stream 3 may be produced at any suitable temperature, ranging from the boiling point of naphtha up to about 1000 F. Above this temperature level the naphtha vapor may become unstable, and certain portions or components will readily crack to smaller molecules with concomitant carbon deposition.
- Stream 3 thus is preferably produced at a temperature ranging from 400 F. to 800 F.
- Stream 4 consists of highly superheated steam, preheated to a temperature above 1000 F., and preferably to the range of 1500 F. to 1800 F. Although lower ratios are feasible, it has been found that a range of molar steam/carbon ratios between 5 to 1 and 6 to 1 is desirable in proportioning the relative flow rates of streams 4 and 3, in order to prevent accumulated deposition of carbon under normal operating conditions.
- Optional stream 5 consists of carbon dioxide, preheated usually to a temperature above 1000 F.
- the proportion of carbon dioxide employed in the process is quite small, thus carbon dioxide is used only to provide a suitable molar ratio of hydrogen to carbon oxides in the final synthesis gas stream when methanol synthesis gas is the desired product.
- the molar ratio of carbon dioxide to naphtha carbon will generally be in the range of 0.1 to 1.0.
- the streams 4 and 5 are preferably combined, to form a mixed steam-carbon dioxide stream 6 at a temperature of at least 1500 F. Stream 6 is now combined with naphtha vapor stream 3, and the mixed stream 7 is immediately passed into residence or gas conditioning chamber 8.
- streams 3, 4 and 5 may be separately passed into chamber 8, however premixing of the carbon dioxide and steam to form stream 6 is a preferable procedure since this results in better and more rapid mixing of the several streams.
- stream 3 is more rapidly dispersed and diluted due to the mixing with stream 6, prior to entry of the naphtha vapor into residence chamber 8. Consequently, the possibility of transient carbon formation or deposition due to cracking of the naphtha is reduced by the pre-mixing step.
- the resultant gaseous stream 9 contains significant proportions of steam, hydrogen, carbon dioxide, carbon monoxide, unsaturated hydrocarbons (mostly ethylene), methane and ethane. It should be understood, however, that these components are present on a transient or instantaneous basis. If stream 9 is allowed to reach stable equilibrium under these process conditions, significant formation and accumulated deposition of free carbon will take place.
- the temperature in unit 8 may be in the range of 1450 F. to 1500 F. However, with such low reaction temperatures, the formation of free carbon may readily occur, unless the residence time is kept in the range of 0.05 to 0.33 second. With such short residence times, unreacted naphtha may passing to the following catalytic stage of the process, however, as will appear infra, the formation of free carbon is readily prevented in the catalytic stage by maintenance of a temperature level above 1600 F. In general, the residence time in chamber 8 must be kept below 1.0 second, and preferably in the range of 0.05 to 0.33 second, in order to achieve the desired reactions without carbon formation.
- the instantaneous mix temperature of stream 7 must be kept above 1000 F., since it has been found in practice that the various competing reactions will tend to form free carbon if the initial mix temperature is below 1000 F.
- This initial or instantaneous mixture temperature should preferably be in the range of 1400 F. to 1700 F., in order to preclude carbon formation due to process upsets.
- chamber 3 may actually, in terms of apparatus design, consist merely of an insulated pipe section extending between the point of mixing of the reactant streams and the entry of the conditioned gas stream into the catalyst bed section.
- Reformer 10 may be a unit of conventional design, such as shown in US. Patent 2,660,519.
- unit 10 is provided with a plurality of reformer tubes such as 11 having a bed or charge of reform catalyst 12, usually consisting of nickel or cobalt deposited on a suitable carrier.
- Tube 11 is externally heated by such means as combustion of fluid hydrocarbon streams 13 with air streams 14, with flue gas removal via 15.
- the temperature of the catalyst in bed 12 must generally be kept above 1600 F., in order to prevent carbon accumulation.
- the equivalent linear velocity of the process stream in the bed 12 is maintained above 5 ft./second.
- Equivalent linear velocity refers to the gas velocity which would exist at normal operating conditions, if the tube was not filled with catalyst. It has been determined that this linear velocity should preferably be in the range of 10 ft./sec. to 30 ft./sec., in order to effectively spread out the reforming reaction through the bed 12 and thereby effectively prevent carbon deposition.
- stream 16 contains essentially only hydrogen, carbon monoxide, carbon dioxide and steam.
- a typical analysis of stream 16 is as follows: 72.4% hydrogen, 14.7% carbon dioxide, 11.5% carbon monoxide, 1.0% methane and 0.0% unsaturates. This analysis was on a dry basis, the total product stream generally contained about 50% steam on a total volume basis.
- stream 16 is now processed by conventional technology, not shown. This will include the usual process steps of CO-oxidation, carbon dioxide removal, etc, if hydrogen gas is the desired final product. It will be understood that the process of the present invention may be carried out wtihout carbon dioxide as process reactant, when hydrogen gas is the desired product.
- the required minimum preheat temperatures of the reactant streams prior to chamber 8 will depend principally on the residence time in 8 prior to entry of the mixed stream via 9 into bed 12. With lower residence times in the range of 0.05 to 0.10 seconds, it has been found that the process may be successfully carried out with a residence chamber temperature in the range of 1450 F. to 1500 F. However, if a longer residence interval up to 1.0 seconds is required, then the initial streams 3, 4- and 5 must be preheated to higher levels so as to provide a temperature range of 1650 F. to 1690 F. in chamber 8, in order to prevent accumulated deposition of free carbon in actual operation of the process.
- the reactions of naphtha cracking and steam reform are carried out in the first stage of the process of the present invention. It has been determined that, by maintenance of reaction conditions within certain critical ranges, these reactions may be carried out without carbon accumulation.
- the resulting unstable process stream when passed to catalytic steam reforming before further reaction ensues, is successfully steam reformed to yield further hydrogen and carbon monoxide in a second stage without carbon accumulation.
- the present invention essentially accomplishes the steam reforming of naphtha by a process which partially gasifies the naphtha vapor using preheated steam.
- the resulting mixed gas stream may be successfully converted to a synthesis gas by conventional endothermic catalytic steam reforming without accumulated deposition of carbon, if the mixed gas stream is passed into contact with a catalyst bed. before final process equilibrium is reached.
- the critical features of the present invention essentially involve the maintenance of the several inter-related process variables within operating limits in which the new result of the present invention is achieved, namely the continuous steam reforming of naphtha.
- a naphtha feedstock was steam reformed to produce a synthesis gas of high hydrogen content in accordance with the present invention.
- the data was taken at above normal throughputs for units used in conventional practice. Catalyst bed volume was 1.5 cubic feet.
- the naphtha was successfully reformed in a continuous manner Without carbon formation. Following are the results obtained.
- the process of the present invention was also applied to the production of methanol synthesis gas.
- the final gas stream must have a lower hydrogen to carbon monoxide ratio than shown in Table 1' supra. This is accomplished by lowering the process steam ratio and injecting carbon dioxide into the feed stream. Following are the results obtained.
- a process for producing a hydrogen-rich synthesis gas suitable for methanol synthesis and containing essentially only hydrogen, carbon monoxide, carbon dioxide and steam, and substantially free of hydrocarbons from naphtha which consists of vaporizing and preheating naphtha to a temperature in the range of 400 F. to 800 F., superheating steam to a temperature in the range of 1500 F. to 1800 F., and preheating carbon dioxide to a temperature above 1000 F., combining said streams of naphtha vapor, carbon dioxide and steam to form a mixed gaseous stream at a temperature in the range of 1400 F. to 1700 F.
- said mixed stream consisting of a mixture of naphtha vapor, carbon dioxide and steam and having a molar steam to carbon ratio in the range of 5.0 to 6.0 and a molar carbon dioxide to carbon ratio in the range of 0.1 to 1.0, reacting said mixture non-catalytically for an interval in the range of 0.05 to 0.33 second, whereby said naphtha is simultaneously cracked to lower hydrocarbons and partially steam reformed without accumulated deposition of free carbon, and catalytically reform ing the resulting gas mixture in contact with a hydrocarbon reforming catalyst selected from the group consisting of nickel and cobalt deposited on a carrier, at a linear gas velocity in the range of 10 to 30 ft./sec., said catalyst being externally heated to maintain a reaction temperature of at least 1600 F., whereby a final reformed gas mixture is produced substantially free of hydrocarbons and containing essentially only hydrogen, carbon monoxide, carbon dioxide and steam, said reformed gas mixture being produced
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US285672A US3351563A (en) | 1963-06-05 | 1963-06-05 | Production of hydrogen-rich synthesis gas |
GB21989/64A GB1006745A (en) | 1963-06-05 | 1964-05-27 | Process for forming a hydrogen rich synthesis gas |
ES300406A ES300406A1 (es) | 1963-06-05 | 1964-05-30 | Un procedimiento para formar un gas de síntesis rico en hidrógeno |
FR976603A FR1400701A (fr) | 1963-06-05 | 1964-06-01 | Procédé pour le reformage catalytique à la vapeur d'eau de naphta, en vue de l'obtention d'un gaz de synthèse riche en hydrogène |
DE19641467004 DE1467004A1 (de) | 1963-06-05 | 1964-06-03 | Verfahren zur Herstellung eines wasserstoffreichen Synthesegases |
BE648834D BE648834A (es) | 1963-06-05 | 1964-06-04 | |
NL6406292A NL6406292A (es) | 1963-06-05 | 1964-06-04 | |
JP39031735A JPS4822597B1 (es) | 1963-06-05 | 1964-06-05 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US285672A US3351563A (en) | 1963-06-05 | 1963-06-05 | Production of hydrogen-rich synthesis gas |
Publications (1)
Publication Number | Publication Date |
---|---|
US3351563A true US3351563A (en) | 1967-11-07 |
Family
ID=23095238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US285672A Expired - Lifetime US3351563A (en) | 1963-06-05 | 1963-06-05 | Production of hydrogen-rich synthesis gas |
Country Status (7)
Country | Link |
---|---|
US (1) | US3351563A (es) |
JP (1) | JPS4822597B1 (es) |
BE (1) | BE648834A (es) |
DE (1) | DE1467004A1 (es) |
ES (1) | ES300406A1 (es) |
GB (1) | GB1006745A (es) |
NL (1) | NL6406292A (es) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3531267A (en) * | 1965-06-17 | 1970-09-29 | Chevron Res | Process for manufacturing fuel gas and synthesis gas |
US4400182A (en) * | 1980-03-18 | 1983-08-23 | British Gas Corporation | Vaporization and gasification of hydrocarbon feedstocks |
WO2011150217A3 (en) * | 2010-05-28 | 2012-05-31 | Greatpoint Energy, Inc. | Conversion of liquid heavy hydrocarbon feedstocks to gaseous products |
US8286901B2 (en) | 2008-02-29 | 2012-10-16 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8297542B2 (en) | 2008-02-29 | 2012-10-30 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8328890B2 (en) | 2008-09-19 | 2012-12-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
US8349039B2 (en) | 2008-02-29 | 2013-01-08 | Greatpoint Energy, Inc. | Carbonaceous fines recycle |
US8361428B2 (en) | 2008-02-29 | 2013-01-29 | Greatpoint Energy, Inc. | Reduced carbon footprint steam generation processes |
US8366795B2 (en) | 2008-02-29 | 2013-02-05 | Greatpoint Energy, Inc. | Catalytic gasification particulate compositions |
WO2013033812A1 (en) | 2011-09-08 | 2013-03-14 | Steve Kresnyak | Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment |
US8479833B2 (en) | 2009-10-19 | 2013-07-09 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8479834B2 (en) | 2009-10-19 | 2013-07-09 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8502007B2 (en) | 2008-09-19 | 2013-08-06 | Greatpoint Energy, Inc. | Char methanation catalyst and its use in gasification processes |
US8557878B2 (en) | 2010-04-26 | 2013-10-15 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with vanadium recovery |
US8647402B2 (en) | 2008-09-19 | 2014-02-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
US8648121B2 (en) | 2011-02-23 | 2014-02-11 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with nickel recovery |
US8652696B2 (en) | 2010-03-08 | 2014-02-18 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8652222B2 (en) | 2008-02-29 | 2014-02-18 | Greatpoint Energy, Inc. | Biomass compositions for catalytic gasification |
US8669013B2 (en) | 2010-02-23 | 2014-03-11 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8728183B2 (en) | 2009-05-13 | 2014-05-20 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US8728182B2 (en) | 2009-05-13 | 2014-05-20 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US8734548B2 (en) | 2008-12-30 | 2014-05-27 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed coal particulate |
US8733459B2 (en) | 2009-12-17 | 2014-05-27 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8734547B2 (en) | 2008-12-30 | 2014-05-27 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed carbonaceous particulate |
US8748687B2 (en) | 2010-08-18 | 2014-06-10 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US8889746B2 (en) | 2011-09-08 | 2014-11-18 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
US9012524B2 (en) | 2011-10-06 | 2015-04-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US9034061B2 (en) | 2012-10-01 | 2015-05-19 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US9034058B2 (en) | 2012-10-01 | 2015-05-19 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US20150191352A1 (en) * | 2014-01-07 | 2015-07-09 | Advanced Cooling Technologies, Inc. | Fuel reforming system and process |
US9115324B2 (en) | 2011-02-10 | 2015-08-25 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation |
US9127221B2 (en) | 2011-06-03 | 2015-09-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US9156691B2 (en) | 2011-04-20 | 2015-10-13 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process |
US9169443B2 (en) | 2011-04-20 | 2015-10-27 | Expander Energy Inc. | Process for heavy oil and bitumen upgrading |
US9212319B2 (en) | 2012-05-09 | 2015-12-15 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
US9234149B2 (en) | 2007-12-28 | 2016-01-12 | Greatpoint Energy, Inc. | Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock |
US9266730B2 (en) | 2013-03-13 | 2016-02-23 | Expander Energy Inc. | Partial upgrading process for heavy oil and bitumen |
US9273260B2 (en) | 2012-10-01 | 2016-03-01 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US9315452B2 (en) | 2011-09-08 | 2016-04-19 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment |
US9328291B2 (en) | 2013-05-24 | 2016-05-03 | Expander Energy Inc. | Refinery process for heavy oil and bitumen |
US9328920B2 (en) | 2012-10-01 | 2016-05-03 | Greatpoint Energy, Inc. | Use of contaminated low-rank coal for combustion |
US9353322B2 (en) | 2010-11-01 | 2016-05-31 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
US10557391B1 (en) | 2017-05-18 | 2020-02-11 | Advanced Cooling Technologies, Inc. | Incineration system and process |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321131A (en) * | 1981-04-15 | 1982-03-23 | Union Carbide Corporation | Process for heat carrier generation |
AU573439B2 (en) * | 1985-03-25 | 1988-06-09 | Schick, J.H. | Process for the production of heat energy from synthetic gas |
US6846404B2 (en) | 2002-04-09 | 2005-01-25 | Chevron U.S.A. Inc. | Reducing CO2 levels in CO2-rich natural gases converted into liquid fuels |
US6693138B2 (en) * | 2002-04-09 | 2004-02-17 | Chevron U.S.A. Inc. | Reduction of carbon dioxide emissions from Fischer-Tropsch GTL facility by aromatics production |
ES2386802T3 (es) | 2006-09-08 | 2012-08-31 | Gelato Corporation N.V. | Procedimiento para la preparación de gas de síntesis |
CN112850643B (zh) * | 2021-01-29 | 2023-01-06 | 天津闪速炼铁技术有限公司 | 一种高效的二氧化碳转化方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2056911A (en) * | 1931-01-17 | 1936-10-06 | Ig Farbenindustrie Ag | Production of hydrogen from hydrocarbons |
US2524840A (en) * | 1945-02-06 | 1950-10-10 | Hercules Powder Co Ltd | Hydrogen production |
US2550742A (en) * | 1946-06-28 | 1951-05-01 | Standard Oil Dev Co | Conversion of hydrocarbon gases to hydrogen and carbon monoxide |
US2565395A (en) * | 1947-06-17 | 1951-08-21 | Standard Oil Dev Co | Production of hydrogen from hydrocarbon gases |
USRE24311E (en) * | 1947-12-10 | 1957-05-07 | Oxygen | |
US2801159A (en) * | 1951-05-04 | 1957-07-30 | Grande Paroisse Azote Et Prod | Method for the catalytic decomposition of hydrocarbons by steam |
US2940840A (en) * | 1956-12-31 | 1960-06-14 | Hercules Powder Co Ltd | Hydrocarbon conversion process |
US3262886A (en) * | 1961-12-20 | 1966-07-26 | Chemical Construction Corp | Process for naphtha reforming |
-
1963
- 1963-06-05 US US285672A patent/US3351563A/en not_active Expired - Lifetime
-
1964
- 1964-05-27 GB GB21989/64A patent/GB1006745A/en not_active Expired
- 1964-05-30 ES ES300406A patent/ES300406A1/es not_active Expired
- 1964-06-03 DE DE19641467004 patent/DE1467004A1/de active Pending
- 1964-06-04 BE BE648834D patent/BE648834A/xx unknown
- 1964-06-04 NL NL6406292A patent/NL6406292A/xx unknown
- 1964-06-05 JP JP39031735A patent/JPS4822597B1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2056911A (en) * | 1931-01-17 | 1936-10-06 | Ig Farbenindustrie Ag | Production of hydrogen from hydrocarbons |
US2524840A (en) * | 1945-02-06 | 1950-10-10 | Hercules Powder Co Ltd | Hydrogen production |
US2550742A (en) * | 1946-06-28 | 1951-05-01 | Standard Oil Dev Co | Conversion of hydrocarbon gases to hydrogen and carbon monoxide |
US2565395A (en) * | 1947-06-17 | 1951-08-21 | Standard Oil Dev Co | Production of hydrogen from hydrocarbon gases |
USRE24311E (en) * | 1947-12-10 | 1957-05-07 | Oxygen | |
US2801159A (en) * | 1951-05-04 | 1957-07-30 | Grande Paroisse Azote Et Prod | Method for the catalytic decomposition of hydrocarbons by steam |
US2940840A (en) * | 1956-12-31 | 1960-06-14 | Hercules Powder Co Ltd | Hydrocarbon conversion process |
US3262886A (en) * | 1961-12-20 | 1966-07-26 | Chemical Construction Corp | Process for naphtha reforming |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3531267A (en) * | 1965-06-17 | 1970-09-29 | Chevron Res | Process for manufacturing fuel gas and synthesis gas |
US4400182A (en) * | 1980-03-18 | 1983-08-23 | British Gas Corporation | Vaporization and gasification of hydrocarbon feedstocks |
US9234149B2 (en) | 2007-12-28 | 2016-01-12 | Greatpoint Energy, Inc. | Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock |
US8366795B2 (en) | 2008-02-29 | 2013-02-05 | Greatpoint Energy, Inc. | Catalytic gasification particulate compositions |
US8286901B2 (en) | 2008-02-29 | 2012-10-16 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8652222B2 (en) | 2008-02-29 | 2014-02-18 | Greatpoint Energy, Inc. | Biomass compositions for catalytic gasification |
US8349039B2 (en) | 2008-02-29 | 2013-01-08 | Greatpoint Energy, Inc. | Carbonaceous fines recycle |
US8361428B2 (en) | 2008-02-29 | 2013-01-29 | Greatpoint Energy, Inc. | Reduced carbon footprint steam generation processes |
US8297542B2 (en) | 2008-02-29 | 2012-10-30 | Greatpoint Energy, Inc. | Coal compositions for catalytic gasification |
US8502007B2 (en) | 2008-09-19 | 2013-08-06 | Greatpoint Energy, Inc. | Char methanation catalyst and its use in gasification processes |
US8647402B2 (en) | 2008-09-19 | 2014-02-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
US8328890B2 (en) | 2008-09-19 | 2012-12-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
US8734547B2 (en) | 2008-12-30 | 2014-05-27 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed carbonaceous particulate |
US8734548B2 (en) | 2008-12-30 | 2014-05-27 | Greatpoint Energy, Inc. | Processes for preparing a catalyzed coal particulate |
US8728183B2 (en) | 2009-05-13 | 2014-05-20 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US8728182B2 (en) | 2009-05-13 | 2014-05-20 | Greatpoint Energy, Inc. | Processes for hydromethanation of a carbonaceous feedstock |
US8479833B2 (en) | 2009-10-19 | 2013-07-09 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8479834B2 (en) | 2009-10-19 | 2013-07-09 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8733459B2 (en) | 2009-12-17 | 2014-05-27 | Greatpoint Energy, Inc. | Integrated enhanced oil recovery process |
US8669013B2 (en) | 2010-02-23 | 2014-03-11 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8652696B2 (en) | 2010-03-08 | 2014-02-18 | Greatpoint Energy, Inc. | Integrated hydromethanation fuel cell power generation |
US8557878B2 (en) | 2010-04-26 | 2013-10-15 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with vanadium recovery |
US8653149B2 (en) | 2010-05-28 | 2014-02-18 | Greatpoint Energy, Inc. | Conversion of liquid heavy hydrocarbon feedstocks to gaseous products |
WO2011150217A3 (en) * | 2010-05-28 | 2012-05-31 | Greatpoint Energy, Inc. | Conversion of liquid heavy hydrocarbon feedstocks to gaseous products |
US8748687B2 (en) | 2010-08-18 | 2014-06-10 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US9353322B2 (en) | 2010-11-01 | 2016-05-31 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US9115324B2 (en) | 2011-02-10 | 2015-08-25 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation |
US8648121B2 (en) | 2011-02-23 | 2014-02-11 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with nickel recovery |
US9732281B2 (en) | 2011-04-20 | 2017-08-15 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process |
US9156691B2 (en) | 2011-04-20 | 2015-10-13 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process |
US9169443B2 (en) | 2011-04-20 | 2015-10-27 | Expander Energy Inc. | Process for heavy oil and bitumen upgrading |
US9127221B2 (en) | 2011-06-03 | 2015-09-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US8889746B2 (en) | 2011-09-08 | 2014-11-18 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
WO2013033812A1 (en) | 2011-09-08 | 2013-03-14 | Steve Kresnyak | Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment |
US9315452B2 (en) | 2011-09-08 | 2016-04-19 | Expander Energy Inc. | Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment |
US9012524B2 (en) | 2011-10-06 | 2015-04-21 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock |
US9212319B2 (en) | 2012-05-09 | 2015-12-15 | Expander Energy Inc. | Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment |
US9273260B2 (en) | 2012-10-01 | 2016-03-01 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US9034061B2 (en) | 2012-10-01 | 2015-05-19 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US9034058B2 (en) | 2012-10-01 | 2015-05-19 | Greatpoint Energy, Inc. | Agglomerated particulate low-rank coal feedstock and uses thereof |
US9328920B2 (en) | 2012-10-01 | 2016-05-03 | Greatpoint Energy, Inc. | Use of contaminated low-rank coal for combustion |
US9266730B2 (en) | 2013-03-13 | 2016-02-23 | Expander Energy Inc. | Partial upgrading process for heavy oil and bitumen |
US9340732B2 (en) | 2013-05-24 | 2016-05-17 | Expander Energy Inc. | Refinery process for heavy oil and bitumen |
US9328291B2 (en) | 2013-05-24 | 2016-05-03 | Expander Energy Inc. | Refinery process for heavy oil and bitumen |
US9595726B2 (en) * | 2014-01-07 | 2017-03-14 | Advanced Cooling Technologies, Inc. | Fuel reforming system and process |
US20150191352A1 (en) * | 2014-01-07 | 2015-07-09 | Advanced Cooling Technologies, Inc. | Fuel reforming system and process |
US10557391B1 (en) | 2017-05-18 | 2020-02-11 | Advanced Cooling Technologies, Inc. | Incineration system and process |
US10464872B1 (en) | 2018-07-31 | 2019-11-05 | Greatpoint Energy, Inc. | Catalytic gasification to produce methanol |
US10344231B1 (en) | 2018-10-26 | 2019-07-09 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization |
US10435637B1 (en) | 2018-12-18 | 2019-10-08 | Greatpoint Energy, Inc. | Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation |
US10618818B1 (en) | 2019-03-22 | 2020-04-14 | Sure Champion Investment Limited | Catalytic gasification to produce ammonia and urea |
Also Published As
Publication number | Publication date |
---|---|
ES300406A1 (es) | 1964-11-16 |
NL6406292A (es) | 1964-12-07 |
JPS4822597B1 (es) | 1973-07-06 |
DE1467004A1 (de) | 1968-12-19 |
GB1006745A (en) | 1965-10-06 |
BE648834A (es) | 1964-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3351563A (en) | Production of hydrogen-rich synthesis gas | |
US20030070808A1 (en) | Use of syngas for the upgrading of heavy crude at the wellhead | |
US6730285B2 (en) | Production of hydrogen and carbon monoxide containing synthesis gas by partial oxidation | |
US3644100A (en) | Apparatus for reforming heavy hydrocarbons | |
US3252774A (en) | Production of hydrogen-containing gases | |
EP0164864B1 (en) | Process for producing synthesis gas by partial combustion of hydrocarbons | |
WO2001083405A1 (en) | Process for the catalytic oxidation of hydrocarbons | |
WO2014111310A1 (en) | Process for the preparation of synthesis gas | |
US5554351A (en) | High temperature steam reforming | |
US6433234B1 (en) | Process for the production of olefins | |
US3545926A (en) | Production of synthesis gas and hydrogen | |
JPH0416512B2 (es) | ||
US3262886A (en) | Process for naphtha reforming | |
US3201215A (en) | Production of combustible gas | |
JPS59152992A (ja) | 炭化水素からオレフインを製造するための熱分解法 | |
US5866745A (en) | Catalytic/oxidative promoted hydrocarbon pyrolysis | |
US3468641A (en) | Conversion of liquid hydrocarbons into fuel gas or water gas by a thermal or catalytic splitting | |
RU2266946C2 (ru) | Способ для получения газа, обогащенного водородом и/или окисью углерода | |
EA008210B1 (ru) | Способ получения олефинов | |
US3103423A (en) | Steam reforming of hydrocarbons | |
CN115151625B (zh) | 将原油直接提质为氢和化学品的系统和工艺 | |
US3996256A (en) | Methanation catalyst | |
US3857685A (en) | Synthetic natural gas production using a plug-flow reactor | |
US1888998A (en) | Process for the synthesis of hydrocarbon fuels, and for the cracking and hydrogenation of heavy hydrocarbons | |
US1919857A (en) | Destructive hydrogenation of coals, tars, mineral oils, and the like |