US3332083A - Cassegrain antenna with offset feed - Google Patents

Cassegrain antenna with offset feed Download PDF

Info

Publication number
US3332083A
US3332083A US369752A US36975264A US3332083A US 3332083 A US3332083 A US 3332083A US 369752 A US369752 A US 369752A US 36975264 A US36975264 A US 36975264A US 3332083 A US3332083 A US 3332083A
Authority
US
United States
Prior art keywords
reflector
antenna
horn
focus
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US369752A
Other languages
English (en)
Inventor
Broussaud Georges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
CSF Compagnie Generale de Telegraphie sans Fil SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSF Compagnie Generale de Telegraphie sans Fil SA filed Critical CSF Compagnie Generale de Telegraphie sans Fil SA
Application granted granted Critical
Publication of US3332083A publication Critical patent/US3332083A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/192Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with dual offset reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/191Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface wherein the primary active element uses one or more deflecting surfaces, e.g. beam waveguide feeds

Definitions

  • the present invention relates to parabolic antennas i.e. to antennas comprising a parabolic reflector and a source. As is known, this source is generally positioned at or near the paraboloid focus.
  • One of the essential problems which arise with this general type of antennas is that of obtaining a good illuminating of the reflector by the source while avoiding any diffraction.
  • paraboloid antennas there is a spherical wave between the radiator or receiver element placed at the focus of the paraboloid and the reflector.
  • the coupling between the reflector and the radiator generally results in diffraction and parasitic radiations.
  • the radiator is a horn and its mouth is so sized as to insure that energy is concentrated in the spherical wave portion necessary to illuminate the reflector.
  • horns whose aperture is l to 3 A broad, A being the operating wavelength, which is not enough to avoid parasitic radiations.
  • FIG. 1 shows a conventional parabolic antenna with the radiator horn placed at the focus of a paraboloid reflector
  • FIG. 2 shows a known parabolic antenna wherein the radiator horn is at the focus of the reflector, but the respective axes of the radiator and the reflector do not coincide;
  • FIGS. 3 and 4 show horns of a of a known type
  • FIG. 5 shows an antenna of the Cassegrainian type
  • FIG. 6 shows in section an embodiment of the invention
  • FIG. 7 shows in perspective the horn used in the systems of FIG. 6.
  • FIG. 8 shows, in section, a still further embodiment of the invention.
  • parabolic antennas are sometimes used, wherein the radiator is not at the focus of the reflector or is at the focus, but is not coaxial with the reflector.
  • FIG. 1 shows a conventional parabolic antenna with a horn CR placed at the focus of the reflector P.
  • horn CR is still at the focus of the reflector P.
  • the respective axes of reflector P and of horn CR make an angle 0, the masking effect being thus avoided.
  • the horn axis is at right angles with the paraboloid axis, as shown in FIG. 3. It can be readily seen in this figure that the horn aperture surface nearly equals the surface of the paraboloid reflector.
  • the advantages of this antenna are well know: the parasitic radiation and the standing wave ratio are low and the pass-band is broad. However, this is obtained at the costs of the increase of the dimensions, which is due in particular to the fact that the horn flare angle is to be of the order of 20 to 30.
  • Another system devised for improving the operation of the parabolic antenna is that derived from the Cassegrainian mirror. It is shown in FIG. 5.
  • the horn of FIG. 1 is replaced by an hyperboloidal reflector H, one focus of which coincides with that of the paraboloid P, which is coaxial with reflector H.
  • Reflector H is illuminated by a horn whose phase center is at the second focus of hyperboloid H.
  • This arrangement has, over that of FIG. 1, the advantage that the radiation horn is more directive and is forwardly directed so that its most important parasitic radiations are located in the vicinity of the axis, i.e. where side lobes level due to the main reflector is itself relatively appreciable (-20 db to -30 db).
  • the antenna according to the invention combines the advantages of the off-set parabolic antenna and of the Cassegrainian antenna.
  • FIG. 6 shows in section a horn CR integrally associated with an hyperboloid H, thus forming a reflector horn, shown in perspective in FIG. 7.
  • the reflected waves propagate through aperature O.
  • the focus F of paraboloid P is also the focus of the hyperboloid.
  • the axes of the paraboloid P and of the hyperboloid H are respectively X and Y
  • the surface of the hyperboloid has to be large enough for the level of its parasitic radiations to be lower than that of the parasitic radiations of paraboloid P. Any masking of the parabolic surface is avoided.
  • the antenna obtained has a better performance than the Cassegrainian system from the triple point of view of parasitic radiations, standing wave ratio and pass-band, these advantages being obtained at the expense of a small increase in overall dimensions.
  • the hyperboloid can be positioned so that the axis X thereof is normal to the paraboloid axis Y
  • the maser is advantageously placed in a fixed position, for example in the vicinity of the rotating joint.
  • FIG. 8 shows an antenna according to the invention mounted for rotation on a frame 1.
  • the antenna comprises a parabolic reflector 2 and a born 3, having an elbow 50 and an aperture 6 terminated by a hyperboloid 4.
  • the antenna is shown in two different positions.
  • Reflector 2 and horn 6 are mounted on a rotating joint 5, for example for scanning space in azimuth.
  • the antenna is covered by a radome 7 and is supported on a circular track by rollers 9.
  • the paraboloid may have a diameter up to 20 meters, the horn dimension crosswise being 1.25 rm. and the hyperbolic rnirror having a 3.25 m. aperture.
  • An antenna for radiating ultra-high frequency energy comprising: a first reflector having a first focus and a first axis, a second reflector'having a second axis and a second focus coinciding With said first focus, said axis of said reflectors, being substantially inclined to each other,
  • An antenna for radiating ultra-high frequency energy comprising: a first parabolic reflector having a first focus and a first axis,'a second reflector having a second axis and a second focus coinciding with said first focus, said axis of said reflectors being substantially inclined to each other and a horn directed for illuminating said'second reflector, said horn having a lateral aperture and a mouth closed by said second reflector.
  • An antenna for radiating ultra-high frequency energy comprising: a first parabolic reflector having a first focus and a first axis, a second hyperbolic reflector having a second axis and a second focus coinciding with said first focus, said axis ofv said reflectors being substantially inclined to each other and a horn directed for illuminating said second reflector, said horn having a lateral aperture and a mouth closed by said second reflector.
  • An antenna for radiating ultra-high frequency energy comprising: a first parabolic reflector having a first focus and a first axis; an hyperbolic reflector having a second axis and a second focus coinciding with said first focus, said axis of said reflectors being substantially inclined to each other; a horn directed for illuminating .said hyperbolic reflector; said horn having a lateral aperture and a mouth closed by said second reflector; said ture and a mouth closed by said second reflector; said reflectors being solid with each other; and a rotating joint for rotating said antenna and feeding said horn, said horn including an elbow between said joint and said hyperbolic reflector.

Landscapes

  • Aerials With Secondary Devices (AREA)
US369752A 1963-06-14 1964-05-25 Cassegrain antenna with offset feed Expired - Lifetime US3332083A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR938124A FR1368820A (fr) 1963-06-14 1963-06-14 Aérien de hautes performances

Publications (1)

Publication Number Publication Date
US3332083A true US3332083A (en) 1967-07-18

Family

ID=8806061

Family Applications (1)

Application Number Title Priority Date Filing Date
US369752A Expired - Lifetime US3332083A (en) 1963-06-14 1964-05-25 Cassegrain antenna with offset feed

Country Status (4)

Country Link
US (1) US3332083A (de)
DE (1) DE1266363B (de)
FR (1) FR1368820A (de)
GB (1) GB1072959A (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3500419A (en) * 1966-09-09 1970-03-10 Technical Appliance Corp Dual frequency,dual polarized cassegrain antenna
US3510874A (en) * 1966-07-02 1970-05-05 Mitsubishi Electric Corp Pyramidal horn reflector antenna
US3530476A (en) * 1966-07-04 1970-09-22 Post Office Multiple reflector antenna with offset feed
US3550142A (en) * 1968-03-18 1970-12-22 Maremont Corp Horn reflector antenna
US3641577A (en) * 1968-03-12 1972-02-08 Comp Generale Electricite Scanning antenna having a spherical main reflector with moveable subreflector
US3792480A (en) * 1968-01-02 1974-02-12 R Graham Aerials
DE2511833A1 (de) * 1974-03-19 1975-09-25 Thomson Csf Antenne
US3914768A (en) * 1974-01-31 1975-10-21 Bell Telephone Labor Inc Multiple-beam Cassegrainian antenna
US4223316A (en) * 1977-03-25 1980-09-16 Thomson-Csf Antenna structure with relatively offset reflectors for electromagnetic detection and space telecommunication equipment
US4298877A (en) * 1979-01-26 1981-11-03 Solar Energy Technology, Inc. Offset-fed multi-beam tracking antenna system utilizing especially shaped reflector surfaces
EP0088901A1 (de) * 1982-03-16 1983-09-21 ANT Nachrichtentechnik GmbH Exzentrische Parabolantenne mit geringer Kreuzpolarisation
US4638322A (en) * 1984-02-14 1987-01-20 The Boeing Company Multiple feed antenna
US4792811A (en) * 1985-04-19 1988-12-20 Thomson-Csf Device for reflecting the electromagnetic waves of a polarization and a method of construction of said device
US6094175A (en) * 1998-11-17 2000-07-25 Hughes Electronics Corporation Omni directional antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB577939A (en) * 1941-06-06 1946-06-06 Harry Melville Dowsett Improvements in the directive propagation of electro-magnetic waves
US3243805A (en) * 1963-07-30 1966-03-29 Jr Ira D Smith Zenith tracking radar
US3255455A (en) * 1961-07-31 1966-06-07 Siemens Ag Cassegrain antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB577939A (en) * 1941-06-06 1946-06-06 Harry Melville Dowsett Improvements in the directive propagation of electro-magnetic waves
US3255455A (en) * 1961-07-31 1966-06-07 Siemens Ag Cassegrain antenna
US3243805A (en) * 1963-07-30 1966-03-29 Jr Ira D Smith Zenith tracking radar

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510874A (en) * 1966-07-02 1970-05-05 Mitsubishi Electric Corp Pyramidal horn reflector antenna
US3530476A (en) * 1966-07-04 1970-09-22 Post Office Multiple reflector antenna with offset feed
US3500419A (en) * 1966-09-09 1970-03-10 Technical Appliance Corp Dual frequency,dual polarized cassegrain antenna
US3792480A (en) * 1968-01-02 1974-02-12 R Graham Aerials
US3641577A (en) * 1968-03-12 1972-02-08 Comp Generale Electricite Scanning antenna having a spherical main reflector with moveable subreflector
US3550142A (en) * 1968-03-18 1970-12-22 Maremont Corp Horn reflector antenna
US3914768A (en) * 1974-01-31 1975-10-21 Bell Telephone Labor Inc Multiple-beam Cassegrainian antenna
DE2511833A1 (de) * 1974-03-19 1975-09-25 Thomson Csf Antenne
US4223316A (en) * 1977-03-25 1980-09-16 Thomson-Csf Antenna structure with relatively offset reflectors for electromagnetic detection and space telecommunication equipment
US4298877A (en) * 1979-01-26 1981-11-03 Solar Energy Technology, Inc. Offset-fed multi-beam tracking antenna system utilizing especially shaped reflector surfaces
EP0088901A1 (de) * 1982-03-16 1983-09-21 ANT Nachrichtentechnik GmbH Exzentrische Parabolantenne mit geringer Kreuzpolarisation
US4638322A (en) * 1984-02-14 1987-01-20 The Boeing Company Multiple feed antenna
US4792811A (en) * 1985-04-19 1988-12-20 Thomson-Csf Device for reflecting the electromagnetic waves of a polarization and a method of construction of said device
US6094175A (en) * 1998-11-17 2000-07-25 Hughes Electronics Corporation Omni directional antenna

Also Published As

Publication number Publication date
DE1266363B (de) 1968-04-18
GB1072959A (en) 1967-06-21
FR1368820A (fr) 1964-08-07

Similar Documents

Publication Publication Date Title
US4626863A (en) Low side lobe Gregorian antenna
US3983560A (en) Cassegrain antenna with improved subreflector for terrestrial communication systems
US3195137A (en) Cassegrainian antenna with aperture blocking correction
US3332083A (en) Cassegrain antenna with offset feed
US3949404A (en) Highly efficient antenna system using a corrugated horn and scanning hyperbolic reflector
US20080094298A1 (en) Antenna with Shaped Asymmetric Main Reflector and Subreflector with Asymmetric Waveguide Feed
US4673945A (en) Backfire antenna feeding
US3936837A (en) Corrugated horn fed offset paraboloidal reflector
US3792480A (en) Aerials
US3176301A (en) Plural horns at focus of parabolic reflector with shields to reduce spillover and side lobes
JPS5991708A (ja) アンテナ装置
US4223316A (en) Antenna structure with relatively offset reflectors for electromagnetic detection and space telecommunication equipment
US3276022A (en) Dual frequency gregorian-newtonian antenna system with newtonian feed located at common focus of parabolic main dish and ellipsoidal sub-dish
US3133284A (en) Paraboloidal antenna with compensating elements to reduce back radiation into feed
US2556087A (en) Directive antenna system
CN107069225B (zh) 一种卡赛格伦天线馈源结构及卡赛格伦天线
US4335387A (en) Radar antenna with rotating linear polarization designed to reduce jamming
US3392397A (en) Cassegrain antenna for scanning with elliptically shaped beam
US3255455A (en) Cassegrain antenna
US2644092A (en) Antenna
US4058812A (en) Dish antenna with impedance matched splash plate feed
US3530476A (en) Multiple reflector antenna with offset feed
GB2120858A (en) Radome-covered reflector antennas
US4356494A (en) Dual reflector antenna
US3747116A (en) Radiating cone antenna