US3321802A - Spinnerets - Google Patents
Spinnerets Download PDFInfo
- Publication number
- US3321802A US3321802A US442857A US44285765A US3321802A US 3321802 A US3321802 A US 3321802A US 442857 A US442857 A US 442857A US 44285765 A US44285765 A US 44285765A US 3321802 A US3321802 A US 3321802A
- Authority
- US
- United States
- Prior art keywords
- arms
- spinneret
- orifice
- bore
- tip portions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/253—Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
Definitions
- Spinnerets for the manufacture of filaments having a non-circular cross-section contain orifices which frequently take the form of at least one arm and more usually three or more such arms, each of the said arms interconnecting with at least one other arm.
- orifices we have those which take the form of thin rectangular slots for the production of elliptical crosssection filaments, Y-shaped orifices for the production of trilobular and the like cross-section filaments, cruciform-shaped orifices for the production of tetralobular and the like cross-section filaments and orifices in the form of a hollow E for the production of essentially crescent-shaped filaments.
- a feature common to the aforementioned and related types of orifices is that they all have at least two extended tips.
- the spinning material can be preferentially supplied to the tips of the orifice arms without changing the shape of the extrusion orifice by the provision of one or more counterbores extending transversely of the tips of the said arms.
- the counterbores may be arranged either to supply a greater volume of spinning material to the tips of the arms relatively to the centre portion, or as the only means for supplying the spinning material to the orifices.
- a spinneret for the manufacture of artificial filaments having a non-circular cross-section comprising a spinneret plate having a front and back face and containing therein an extrusion orifice consisting of at least two interconnecting slot-like arms there being provided at least one bore communicating with the tip portions of the slot-like arms of the extrusion orifice, which bore is formed in the back face of the plate and extends towards, but does not reach, the front face thereof.
- the extrusion orifices will extend through the spinneret plate from the back face, or from a counterbore formed therein, to the front face.
- the invention also includes the case where the orifice extends from the front face of the spinneret plate to some point within the plate and communicates with the back face,
- the bore, or bores will have a depth equal to at least half the capilliary depth of the arms of the extrusion orifice.
- bore as used in this specification includes channels which communicate with the tip portions of two or more arms of an extrusion orifice.
- the term includes a straight channel between the tip portions of the extending arms of a hollow E orifice, a roughly semicircular channel connecting the tip portions of the arms of a T-shaped orifice having three arms of equal length, and a circular channel connecting the tip portions of, for example, a Y-shaped orifice.
- the front face of the spinneret is that portion through which the spinning material is extruded in filament form and the back face of the spinneret is that portion through which the spinning material is introduced to the extrusion orifice.
- the capillary depth of the arms of an orifice is the depth to which the arms extend from the front face of the spinneret towards the back face thereof.
- FIGURES 1 through 6 show, diagrammatically, plan views and cross-sectional fragments of three embodiments of one aspect of the invention
- FIGURES 7 and 8 show, diagrammatically, a plan view and a crosssection of a fragment of one embodiment of another aspect of this invention.
- FIGURES 1 through 3 represent fragments of plan views of the back faces of spinnerets containing Y-shaped orifices and FIGURES 4 through 6 cross-sections of the fragments taken along the line A-A.
- the Y-shaped extrusion orifice comprises three uniform equi-length arms 1 radiating symmetrically from a central point 2.
- the orifice extends fromthe front face 3 of the spinneret to communicate with a counter bore 4 which is formed in the back face 5 of the spinneret.
- a counter bore 4 which is formed in the back face 5 of the spinneret.
- an annular bore 6 is formed within the counter bore 4 and extends from the circumference thereof to a point along the length of the arms 1 of the orifice thus reducing the capillary depth of the arms 1 at their tips and leaving a plateau between each of the arms of the orifice.
- annular bore 8 is formed within the counter bore 4 and extends from the circumference thereof to the tips of the arms 1 thus reducing the effective capillary depth of the arms 1 at their extreme tips.
- the plateau 9 which is thereby formed between each-of the arms of the orifice is chamfered to allow a smooth flow of the spinning material towards the outermost side of the annular bore 8.
- bores 10 having diameters greater than the width of arms 1 are formed at tips of arms 1 to reduce the capillary depth of the arms at those points. These bores may, of course, be formed as extensions to the tips of the arms provided that they retain communication therewith.
- molten polymer flows from the top face 5 of the spinneret into the counter bore 4 and thence into the arms 1 of the extrusion orifice and is extruded into a filament.
- the effect of the bores 6, d and 10 which, as aforesaid, reduce the capillary depth of arms l at their tip regions, is to provide a greater flow of polymer to the extrusion orifice at these points.
- the filament which is thus extruded will, immediately after extrusion, have a substantially trilobular cross-section but with slightly bulbous tips to the lobes.
- FIGURE 7 represents a fragment of a plan view of the back face of a spinneret containing a Y-shaped extrusion orifice and 2a is a cross-section of the fragment taken along the line B-B.
- the Y-shaped extrusion orifice comprises three uniform equi-length arms 11 radiating from a central point 12.
- the orifice extends from the front face 13 of the spinneret to some point within the spinneret plate.
- a counter bore 14 is formed in the back face 15 of the spinneret plate and coaxially with the extrusion orifice but does not extend sufficiently far into the spinneret to communicate with it.
- Bores 16 are formed in the base of the counter bore 14 to communicate with tips of the arms 11 and to reduce the capillary depth of the arms at these points.
- the molten polymer flows into the counter bore 14 and thence through the bores 16 into the tips of the arms 11 filling up the remainder of the orifices as it flows therethrough.
- a filament is thus produced having a substantially trilobular cross-section but with a slight excess of polymer at the lobe tips, which excess is drawn away during the attenuation Which takes place prior to solidification, thus reducing the tendency of the lobe tips to be drawn into centre of the filament.
- bores 16 may be joined together to form a single annular bore of the type designated 6 in FIGURES 1 and 4, or that they may be formed as extensions to the tips of the arms 11 provided they retain communication therewith.
- orifices of this invention may be referred to as tip feed" orifices.
- Example 1 A spinneret for use in the melt spinning of polyamides into a filament having an essentially trilobal cross-section contains an orifice of the type described with reference to FIGURES 3 and 6.
- the counterbore 4 has a diameter of 0.130" and is formed in the back face 5 of the spinneret to extend to within 0.020" of the front face 3 of the said spinneret.
- Three circular bores of 0.012" diameter and having their centres 0.005" from tips of the arms 1 and 0.015" from the centre of the orifice are formed in the bottom of the counter bore 4 and extend to within 0.010 of the front face 3 of the spinneret.
- the capillary length of the orifice arms 1, 0.020", is thus reduced to 0.010" for a distance of 0.011" from the tips.
- the effect of these bores 10 is to allow a greater flow of polymer to be supplied to the tip areas of the arms of the orifice.
- Example 2 A spinneret plate containing 6 extrusion orifices identical with the one described in Example 1, in which the orifices were formed in the base of a straight channel across the plate and having, in addition, cross-channels to ensure uniform flow of molten polymer to the orifices, was used in cooperation with a normal melt spinning apparatus to produce a yarn having filaments of trilobal cross-section from polyhexamethylene adipamide polymer.
- the polymer had a relative viscosity of 43.5 and was spun, using a spinneret temperature of 270 G, into a 9 d.p.f. yarn at a spinning speed of 3930 ft./min.
- Example 3 A spinneret plate similar to that employed in Example 2 except that the capillary length of the tips of the arms of the orifices was reduced to 0.005 by the provision of longer bores (10 in FIGURES 3 and 6), was used to spin, under the same conditions as described in Example 2, filaments haivng a trilobal cross-section from the polymer of Example 2. The modification ratio of the undrawn filaments in this case was 2.63 compared with 2.40 for filaments spun through standard orifices.
- Example 4 A second spinneret for use in the melt spinning of polyamides into a filament having an essentially trilobular cross-section contains an orifice of the type described with reference to FIGURES 7 and 8.
- the counter bore 14 is formed in the back face 15 of the spinneret plate to extend to within 0.030 of the front face 13.
- An orifice having the same dimensions as that described in Example 1 is formed in the front face 13 of the spinneret coaxially with the bore 13 and extends to within 0.040", of the back face thereof, i.e. to within 0.010" of the counter bore 14.
- Three circular bores 16 of 0.012" diameter are formed in the bottom of the counter bore 14 such that their axes are on a line passing through the arms 11 of the orifice at points 0.005 from the tips 0.015 from the centre of the orifice, and extend to within 0.010 of the front face of the spinneret thus intersecting the tips of the arms 11 of the orifice and reducing the capillary length of the orifice from 0.02 0" to 0.010" for a distance of 0.011" along the arms thereof.
- the bores 16 thus provide the polymer supply means to the orifice from the counter bore and to allow a greater flow of polymer to the tip areas of the orifice, thus allowing the production of better shaped filaments than can be obtained using conventional orifices.
- a spinneret for use in spinning artificial filaments having non-circular cross-sections comprising a spinneret plate having a front and back face and containing therein an extrusion orifice consisting of at least two interconnecting slot-like arms having tip portions, said tip portions of said slot-like arms having at least one bore communicating with said tip portions of said extrusion orifice, said bore being of such depth as to avoid reaching said front face of said spinneret.
- a spinneret according to claim 2 wherein the extrusion orifice comprises three or more slot-like arms radiating from a point, the tip portions of the said arms being circumscribed by a counter bore having an annular shape.
- a spinneret according to claim 10 wherein the extrusion orifice comprises three or more slot-like arms radiating from a point, the tip portions of the said arms being circumscribed by an annular bore.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Prostheses (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB13327/64A GB1096316A (en) | 1964-03-31 | 1964-03-31 | Improvements in or relating to spinnerets |
Publications (1)
Publication Number | Publication Date |
---|---|
US3321802A true US3321802A (en) | 1967-05-30 |
Family
ID=10020930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US442857A Expired - Lifetime US3321802A (en) | 1964-03-31 | 1965-03-26 | Spinnerets |
Country Status (7)
Country | Link |
---|---|
US (1) | US3321802A (fr) |
BE (1) | BE661885A (fr) |
CH (1) | CH421372A (fr) |
DE (1) | DE1660195B2 (fr) |
GB (1) | GB1096316A (fr) |
LU (1) | LU48277A1 (fr) |
NL (1) | NL6504058A (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3438087A (en) * | 1965-06-15 | 1969-04-15 | Ici Ltd | Spinnerets |
US3478389A (en) * | 1967-10-19 | 1969-11-18 | Monsanto Co | Spinneret |
US6099288A (en) * | 1997-03-20 | 2000-08-08 | Mp6, L.L.C. | Pellet forming extrusion apparatus |
CN103981584A (zh) * | 2014-06-04 | 2014-08-13 | 徐伯琴 | 中空异型复合喷丝板 |
US20140271745A1 (en) * | 2013-03-15 | 2014-09-18 | The Procter & Gamble Company | Personal Care Article Comprising Dissolvable Fibers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB865843A (en) * | 1959-07-02 | 1961-04-19 | Johnson Matthey Co Ltd | Improvements in and relating to the spinning of synthetic filaments or fibres, and to spinnerets for this purpose |
US3006026A (en) * | 1957-03-02 | 1961-10-31 | Glanzstoff Ag | Spinneret with orifice insert |
US3041894A (en) * | 1959-12-17 | 1962-07-03 | Ii John A Cupler | Spinnerette production method |
US3109195A (en) * | 1961-02-13 | 1963-11-05 | Du Pont | Spinneret plate |
US3174364A (en) * | 1960-09-26 | 1965-03-23 | Monsanto Co | Process for the manufacture of spinnerets for melt spinning |
US3230582A (en) * | 1963-02-27 | 1966-01-25 | Black Clawson Co | Plastic pelletizer |
-
1964
- 1964-03-31 GB GB13327/64A patent/GB1096316A/en not_active Expired
-
1965
- 1965-03-26 US US442857A patent/US3321802A/en not_active Expired - Lifetime
- 1965-03-29 LU LU48277A patent/LU48277A1/xx unknown
- 1965-03-30 DE DE1660195A patent/DE1660195B2/de active Pending
- 1965-03-30 CH CH435365A patent/CH421372A/de unknown
- 1965-03-31 NL NL6504058A patent/NL6504058A/xx unknown
- 1965-03-31 BE BE661885A patent/BE661885A/xx unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3006026A (en) * | 1957-03-02 | 1961-10-31 | Glanzstoff Ag | Spinneret with orifice insert |
GB865843A (en) * | 1959-07-02 | 1961-04-19 | Johnson Matthey Co Ltd | Improvements in and relating to the spinning of synthetic filaments or fibres, and to spinnerets for this purpose |
US3041894A (en) * | 1959-12-17 | 1962-07-03 | Ii John A Cupler | Spinnerette production method |
US3174364A (en) * | 1960-09-26 | 1965-03-23 | Monsanto Co | Process for the manufacture of spinnerets for melt spinning |
US3109195A (en) * | 1961-02-13 | 1963-11-05 | Du Pont | Spinneret plate |
US3230582A (en) * | 1963-02-27 | 1966-01-25 | Black Clawson Co | Plastic pelletizer |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3438087A (en) * | 1965-06-15 | 1969-04-15 | Ici Ltd | Spinnerets |
US3478389A (en) * | 1967-10-19 | 1969-11-18 | Monsanto Co | Spinneret |
US6099288A (en) * | 1997-03-20 | 2000-08-08 | Mp6, L.L.C. | Pellet forming extrusion apparatus |
US20140271745A1 (en) * | 2013-03-15 | 2014-09-18 | The Procter & Gamble Company | Personal Care Article Comprising Dissolvable Fibers |
CN103981584A (zh) * | 2014-06-04 | 2014-08-13 | 徐伯琴 | 中空异型复合喷丝板 |
Also Published As
Publication number | Publication date |
---|---|
DE1660195A1 (de) | 1970-07-16 |
GB1096316A (en) | 1967-12-29 |
NL6504058A (fr) | 1965-10-01 |
DE1660195B2 (de) | 1973-10-25 |
BE661885A (fr) | 1965-09-30 |
CH421372A (de) | 1966-09-30 |
LU48277A1 (fr) | 1965-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3457342A (en) | Method and apparatus for spinning heterofilaments | |
US5256050A (en) | Method and apparatus for spinning bicomponent filaments and products produced therefrom | |
US4376743A (en) | Melt spinning process | |
US3387327A (en) | Filament spinning apparatus | |
US3272901A (en) | Textile filament having apparent variable denier | |
GB1393351A (en) | Method for producing mixed filaments | |
GB1035831A (en) | Production of multi-component artificial filaments and multi-component artificial yarns | |
US3321802A (en) | Spinnerets | |
US4357290A (en) | Splittable conjugate yarn | |
GB1150399A (en) | Spinning of Conjugate Filaments | |
KR870000456A (ko) | 멀티필라멘트 광섬유의 제조방법 | |
US3640670A (en) | Spinnerette for extruding t-shaped filaments | |
US3487142A (en) | Processes and apparatus for the spinning of synthetic fiber-forming polymers | |
GB1060337A (en) | Production of multi-component fibres | |
US3438087A (en) | Spinnerets | |
GB1258760A (fr) | ||
JP3546635B2 (ja) | 芯鞘複合繊維紡糸用口金板及び口金装置 | |
GB965729A (en) | Improvements relating to the manufacture of filaments | |
CN104153016A (zh) | 一种“井”字型中空纤维的喷丝板 | |
CN2503080Y (zh) | 一种适合生产异型中空长丝的喷丝板 | |
CN2503079Y (zh) | 高速纺中空长丝纤维用喷丝板 | |
EP0434448A2 (fr) | Procédé et dispositif pour le filage de filaments bicomposés et produits fabriqués avec ces filaments | |
CN204023015U (zh) | 一种“井”字型中空纤维的喷丝板 | |
KR940002374B1 (ko) | 3성분계 2중 심초형 복합섬유용 방사구금장치 | |
CN216585331U (zh) | 一种双变径喷丝板 |