US3312621A - Lubricants having a high viscosity index - Google Patents

Lubricants having a high viscosity index Download PDF

Info

Publication number
US3312621A
US3312621A US399866A US39986664A US3312621A US 3312621 A US3312621 A US 3312621A US 399866 A US399866 A US 399866A US 39986664 A US39986664 A US 39986664A US 3312621 A US3312621 A US 3312621A
Authority
US
United States
Prior art keywords
viscosity
oil
percent
lubricating oil
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US399866A
Other languages
English (en)
Inventor
Darrell W Brownawell
John E Engelhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US399866A priority Critical patent/US3312621A/en
Priority to FR28359A priority patent/FR1458320A/fr
Priority to GB35051/65A priority patent/GB1088227A/en
Priority to DE19651594426 priority patent/DE1594426A1/de
Application granted granted Critical
Publication of US3312621A publication Critical patent/US3312621A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/12Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing conjugated diene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/14Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing non-conjugated diene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol-fuelled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • the present invention concerns hydrocarbon oil compositions whose viscosity-temperature relationships have been improved by adding thereto certain stereo-oriented polymers of butadiene and related C or C diolefins.
  • V.I. viscosity index
  • the V.I. indicates the relation which the viscosity of a particular oil at 100 F. bears to the viscosities of a representative Pennsylvania oil and a representative Coastal oil at 100 R, where all three oils have the same viscosity at 210 F.
  • viscosity index improvers that have been used in the prior art are included various olefin polymers, e.g. polyisobutylene, as well as various polymers of other unsaturated organic compounds such as aliphatic esters of unsaturated monocarboxylic or polycarboxylic acids, e.g. methacrylic esters, fumaric or maleic acid esters, alkylene esters of fatty acids, e.g. vinyl acetate, and the like.
  • aliphatic esters of unsaturated monocarboxylic or polycarboxylic acids e.g. methacrylic esters, fumaric or maleic acid esters
  • alkylene esters of fatty acids e.g. vinyl acetate, and the like.
  • One major advantage that is obtained by using a satisfactory V.I. improver in a crankcase lubricant is that it makes available an oil that meets the specifications of more than one SAE viscosity grade, i.e. a combined SAE and SAE oil or one bridging the SAE 10, SAE 20, and SAE 30 grades.
  • a multigraded oil that spans the grades from 5W through SAE 30 is particularly desirable because it enables the motorist to employ a single grade of crankcase lubricant through all seasons of the year, even in regions that have fairly severe weather.
  • An acceptable all-weather lubricant must meet three basic requirements: it must have a sufficiently low viscosity at the starting temperature of the engine; it must have a sufficiently high viscosity at the high operating temperature; and it must have a relatively low volatility at the operating temperature in order to minimize oil consumption.
  • To produce a lubricant oil having a high viscosity index of the order of 130 to 150 usually requires a low viscosity base oil along with a considerable amount of V.I. improver.
  • the low viscosity base oils are relatively volatile and thus increase oil consumption.
  • a higher viscosity base stock with the same amount of V.I. improver will give an oil composition having lower volatility, but the oil will then be too viscous at a lower temperature, for example, at 0 F. If less viscosity improver is employed in a thicker base stock, the cold starting characteristics will be improved, but because of the lower viscosity index of such a blend, there will be a lower viscosity at the operating temperature, which is also undesirable.
  • V.I. improver having a suflicient potency to maintain the oil at a satisfactory operating temperature viscosity, while at the same time affording an acceptable low temperature 3,312,621 Patented Apr. 4, 1967 starting viscosity.
  • polymers of C or C conjugated diolefins are outstanding in V.I. improver potency, and thus are highly suitable for the preparation of lubricating oil compositions for internal combustion engines.
  • the polymers used in this invention are those that predominate in a 1,4-addition configuration and in which the 1,2-addition configuration does not exceed 10 percent.
  • the polymers used in this invention have number-average molecular weights in the range of from about 75,000 to about 300,000.
  • Particularly preferable for use in this invention are polymers of the type described that have molecular weights in the range of from about 150,000 to about 250,000.
  • the polymers are formed from conjugated diolefins having 4 to 5 carbon atoms and no more than one methyl side chain. While butadiene is preferred, isoprene and 1,3-pentadiene may also be used, as well as copolymers of any of these diolefins.
  • 1,2-polybutadiene l K fin (“3H on) CH2 CH2 CH2 11 3 cis lA-polybutadiene trans-1,4-polybutadiene and 40 to 60 percent trans-1,4 configuration the V.I.
  • potency is slightly reduced, but the stability to shear breakdown is enhanced. From a commercial standpoint V.I. potency is the more valuable property; accordingly, polymers having to percent cis-1,4 configuration are particularly preferred.
  • the processes for the polymerization of conjugated diolefins to high molecular weight polymers in which the mode of polymerization is predominantly of a 1,4 configuration are well known in the art.
  • the catalysts for such polymerization may comprise metallic lithium or lithium alkyls such as ethyl lithium, n-butyl lithium, hexyl lithium, or the like, as taught in Australian patent specification 223,817. They may also comprise lithium dihydrocarbon amide as taught in US. Patent 2,849,432.
  • Complexes of titanium tetrachloride and aluminum trialkyls, e.g. aluminum triisobutyl, may also be used.
  • the polymerization is conveniently conducted in solution using a nonpolar, nonacidic organic solvent, as for example, C to C straight chain, branched or cyclic paraffin hydrocarbon.
  • a nonpolar, nonacidic organic solvent as for example, C to C straight chain, branched or cyclic paraffin hydrocarbon.
  • Polymerization temperatures may range from 0 to about C.
  • the diolefins Prior to polymerization the diolefins must be dried, as for example, by treatment with silica gel, alumina, or the like.
  • the polymers are employed in concentrations in the range of from about 0.1 to about 3 weight percent in hydrocarbon lubricating oil base stocks havingviscosities in the range of about 75 to about 325 SUS at 100 F. More generally they will be used in crankcase lubricants in concentrations ranging from about 0.5 to about 2 weight percent. Conveniently they may be dissolved in to weightpercent concentration in a solvent refined neutral mineral lubricating oil of say 100 or 150 SUS viscosity for ease in blending back to the desired concentration in a finished lubricating oil formulation.
  • the preparation of the concentrate simply involves'cornminuting the polymer and stirring it into the lubricating oil at a suitable temperature, e.g. 140 to 180 F.,- for a suflicient time to eifect complete solution.
  • V.I. potency of the diolefin polymer's may be used not only as the sole V.I. improver in a composition, but also in conjunction with conventional V.I. improvers. These include; polyisobutylene; copolymers of vinyl acetate, maleic anhydride and aliphatic alcohol fumarates; alkyl methacrylates; copolymers of alkyl methacrylates and alkyl fumarates; and the like.
  • Conventional lubricating oil additives including antioxidants, extreme pressure additives, antiwear additives, pour point depressants, detergents and dispersants, etc. may also be present in the lubricating oil compositions of this invention.
  • the hydrocarbon lubricating oil base stocks may comprise synthetic hydrocarbons as well as the usual mineral lubricating oils derived from parafiinic, naphthenic, asphaltic or mixed base crude oils by suitable refining methods.
  • EXAMPLE 1 Three separate commercially available high molecular weight polybutadienes were blended into separate portions of a refined paraffinic lubricating oil having a viscosity of 43 SUS at 210 F. by stirring the blends fora 12 to 24 hour period at 150 F.
  • a fourth blend also prepared in the same manner, consisted of 2 weight percent of polyisobutylene in the same base oil.
  • the molecular weights or each of the polymers, the measured viscosities, the calculated viscosity indexes, and the extent of viscosity loss in the sonic breakdown test for each blend are given in Table I.
  • the sonic breakdown test is a measure of shear stability and is conducted according to the procedure described in ASTM Standards,volume I (1961), page 1160, Test for Shear Stability of Polymer-Containing Oils.
  • Blends of the three polybutadienes employed in Example 1 were also prepared in a base oil consisting of 92.8 weight percent of a refined neutral mineral oil of 100 SUS viscosity at 100 F., having a viscosity index of 118, 4.5 weight percent of a poly-amine derivative ashless dispersant, 1.5 Weight percent of an overbased calcium petroleum sulfonate dispersant, 1.0 weight percent of a Zinc dialkyl dithiophosphate wear inhibitor derived from isobutanol and mixed amyl alcohols and 0.2 weight percent of a pour point depressant.
  • the polyamine derivative ashless dispersant was prepared by heating 36 pounds of polyisobutylene with 4.5 pounds of maleic anhydride for 24 hours at 450 F. to form polyisobutenyl succinic anhydride, adding to the product suificient light mineral lubricating oil (150 SUS viscosity at 100 F.) to form a weight percent concentrate in oil, adding there-after 3.5 pounds of tetraethylene pentamine and 1.1 pounds of acetic acid, heating the mixture at 300 F. with nitrogen blowing until water evolution ceased (about 10 hours reaction time) and filtering the product.
  • the viscosities of each of these blends were measured at 100 F. and at 210 F., and the viscosity indexes were calculated.
  • the viscosity of each of the blends at 0 F. was also measured, using the Ferranti-Shirley viscosirneter and converting the values to Saybolt seconds. The data thereby obtained are given in Table II.
  • EXAMPLE 3 Formulations similar to those of Example 2 were prepared using as the base oil a refined neutral mineral oil of 150 SUS viscosity at F. and 109 viscosity index, together with the same detergent, dispersant, antiwear and pour point depressant additives and in the same concentrations as in Example 2.
  • the measured viscosities at 210 F., the calculated viscosity indexes, and the comparative measured vis-cosities at F. are given in Table III.
  • crankcase lubricant was prepared consisting of 1.2 weight percent of Ameripol polybutadiene, 1.3 weight percent of the antiwear additives used in Example 2, about 3.8 weight percent and about 1 weight percent of the ashless dispersant and calcium sulfonate additives, respectively, used in Example 2, about 0.5 weight percent of the same pour point depressant as used in that example, and about 92.2 weight percent of a mineral lubricating oil base stock.
  • the latter was a blend of refined mineral lubricating oils, of which about 81 percent was a 100 viscosity oil, about 10 percent a 150 viscosity oil, and about 9 percent a 450 viscosity oil, the viscosity numbers in each instance being SUS viscosities at 100 F.
  • the blended lubricant gave a bearing weight loss of 43 mg. (passing is 50 mg. weight loss) and a varnish merit rating of 10.
  • the CRC-L-38 test is described in Federal Test Methods, Standard No. 3,407.
  • crankcase oil was also subjected to a Cyclic Temperature Sludge Test which, from prior experience, has been shown to give sludge deposits similar to those obtained in stop-and-go driving such as would be experienced in taxicab operation. Briefly described, in this test a Ford 6-cylinder engine is run on a dynamometer stand through alternate cycles, the first cycle lasting hours, at 1,500 r.p.m., and the second cycle lasting 2 hours, at the same operating speed, with the oil sump and water jacket temperatures being slightly higher in the second cycle than in the first. The two cycles are alternated in sequence until the desired total test time has elapsed. Make-up oil is added as required so as to maintain the oil level in the crankcase at all times between about 3 /2 and 4 quarts.
  • the engine is inspected by disassembling it sufiiciently to permit visual examination of several of the parts, including the rocker arm assembly, the rocker arm cover, the cylinder head, the push rod, chamber and its cover, the crankshaft and the oil pan.
  • These parts are visually and quantitatively rated for sludge deposits, using a CRC Sludge Merit rating system in which a numerical rating of represents a perfectly clean part, and the numerical scale decreases to a minimum value representing a part covered with the maximum amount of sludge possible.
  • the several merit ratings are averaged to give an overall engine merit rating.
  • the formulated oil gave a merit rating of 9.5 after 105 hours, a merit rating of 9.13 after 126 hours, and a merit rating of 6.1 after 147 hours, these results being at least as good as those obtained with a comparable blend employing the conventional polyisobutylene V.I. improver, and -in dicating that the double bonds in the polybutadiene do not contribute to any degradation of the additive in actual service use.
  • EXAMPLE 5 A blend is prepared 'by adding 1 weight percent of polyisoprene having a number-average molecular weight of about 240,000 and about 93 percent cis 1,4-configuration to a refined lubricating oil base stock of 100 SUS viscosity measured at 100 F., impartingthereto a V1. of about 151.
  • a lubricating oil composition of enhanced viscositytemperature characteristics which comprises a major proportion of a hydrocarbon lubricating oil and from about 0.1 to about 3 weight percent of a polymer of a conjugated diolefin of from 4 to 5 carbon atoms, said polymer having a number-average molecular weight in the range of from 75,000 to 300,000 and having at least percent 1,4 configuration.
  • a lubricating oil composition as defined by claim 1 which also contains in the range of 0.5 to 1.5 weight percent of polyisobutylene having a number-average molecular weight in the range of from about 40,000 to about 160,000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
US399866A 1964-09-28 1964-09-28 Lubricants having a high viscosity index Expired - Lifetime US3312621A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US399866A US3312621A (en) 1964-09-28 1964-09-28 Lubricants having a high viscosity index
FR28359A FR1458320A (fr) 1964-09-28 1965-08-13 Huiles lubrifiantes à indices de viscosité élevés
GB35051/65A GB1088227A (en) 1964-09-28 1965-08-16 Lubricants having a high viscosity index
DE19651594426 DE1594426A1 (de) 1964-09-28 1965-08-18 Schmiermittel mit hohem Viskositaetsindex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US399866A US3312621A (en) 1964-09-28 1964-09-28 Lubricants having a high viscosity index

Publications (1)

Publication Number Publication Date
US3312621A true US3312621A (en) 1967-04-04

Family

ID=23581282

Family Applications (1)

Application Number Title Priority Date Filing Date
US399866A Expired - Lifetime US3312621A (en) 1964-09-28 1964-09-28 Lubricants having a high viscosity index

Country Status (3)

Country Link
US (1) US3312621A (de)
DE (1) DE1594426A1 (de)
GB (1) GB1088227A (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378492A (en) * 1966-06-30 1968-04-16 Exxon Research Engineering Co Diene polymers grafted with dienophile monomers as oil additives
US3446740A (en) * 1967-10-25 1969-05-27 Sinclair Research Inc Mineral oil improved in pour point by hydrogenated hydroxy diene polymer
US3488704A (en) * 1966-05-27 1970-01-06 Exxon Research Engineering Co Lubricity agents
US3547821A (en) * 1967-11-13 1970-12-15 Texaco Inc Hydrocarbon lubricating oil containing a polymer of a conjugated diolefin as a viscosity index improver
US3887633A (en) * 1972-08-16 1975-06-03 Nippon Zeon Co Polymer oils and process for preparing same
DE2716390A1 (de) * 1976-04-19 1977-11-10 Exxon Research Engineering Co Schmieroelzusammensetzung
US4073738A (en) * 1976-01-28 1978-02-14 Basf Aktiengesellschaft Lubricating oil compositions containing alkyl acrylate or methacrylate polymers and copolymers of styrene and conjugated diene
EP0318848A2 (de) * 1987-12-04 1989-06-07 BASF Aktiengesellschaft Schmieröl, enthaltend hydrierte Polydiolefinblockpolymere
EP0351964A1 (de) 1988-06-24 1990-01-24 Exxon Chemical Patents Inc. Synergische Additivzusammensetzung, verwendbar in Kraftübertragungszusammensetzungen
US5118875A (en) * 1990-10-10 1992-06-02 Exxon Chemical Patents Inc. Method of preparing alkyl phenol-formaldehyde condensates
US5262508A (en) * 1990-10-10 1993-11-16 Exxon Chemical Patents Inc. Process for preparing alkyl phenol-sulfur condensate lubricating oil additives
US5310490A (en) * 1991-03-13 1994-05-10 Exxon Chemical Products Inc. Viscosity modifer polymers
US5310814A (en) * 1991-03-15 1994-05-10 Exxon Chemical Patents Inc. Viscosity modifier polybutadiene polymers
EP0611818A1 (de) 1990-07-31 1994-08-24 Exxon Chemical Patents Inc. Gemischte, Phosphor und Schwefel enthaltende Reaktionsprodukte hergestellt unter niedrigen Druck, verwendbar in Kraftübertragungszusammensetzungen und Verfahren zu deren Herstellung
WO1999036491A1 (en) 1998-01-13 1999-07-22 Exxon Chemical Patents Inc. Automatic transmission fluids of improved viscometric properties
US20040187686A1 (en) * 2003-02-07 2004-09-30 Robert Amin Removing contaminants from natural gas
EP3378877A1 (de) 2017-02-28 2018-09-26 Evonik Oil Additives GmbH Als schmiermitteladditive nützliche hydrierte polybutadiene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2151382A (en) * 1937-07-13 1939-03-21 Du Pont Diolefin polymerization process
US3166541A (en) * 1960-03-01 1965-01-19 Cabot Corp Surface treated carbon black as polymerization catalyst and method of polymerizationtherewith
US3178402A (en) * 1955-10-17 1965-04-13 Phillips Petroleum Co Rubbery polymer of 1, 3-butadiene having a high cis 1, 4-addition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2151382A (en) * 1937-07-13 1939-03-21 Du Pont Diolefin polymerization process
US3178402A (en) * 1955-10-17 1965-04-13 Phillips Petroleum Co Rubbery polymer of 1, 3-butadiene having a high cis 1, 4-addition
US3166541A (en) * 1960-03-01 1965-01-19 Cabot Corp Surface treated carbon black as polymerization catalyst and method of polymerizationtherewith

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3488704A (en) * 1966-05-27 1970-01-06 Exxon Research Engineering Co Lubricity agents
US3378492A (en) * 1966-06-30 1968-04-16 Exxon Research Engineering Co Diene polymers grafted with dienophile monomers as oil additives
US3446740A (en) * 1967-10-25 1969-05-27 Sinclair Research Inc Mineral oil improved in pour point by hydrogenated hydroxy diene polymer
US3547821A (en) * 1967-11-13 1970-12-15 Texaco Inc Hydrocarbon lubricating oil containing a polymer of a conjugated diolefin as a viscosity index improver
US3887633A (en) * 1972-08-16 1975-06-03 Nippon Zeon Co Polymer oils and process for preparing same
US4073738A (en) * 1976-01-28 1978-02-14 Basf Aktiengesellschaft Lubricating oil compositions containing alkyl acrylate or methacrylate polymers and copolymers of styrene and conjugated diene
DE2716390A1 (de) * 1976-04-19 1977-11-10 Exxon Research Engineering Co Schmieroelzusammensetzung
EP0318848A2 (de) * 1987-12-04 1989-06-07 BASF Aktiengesellschaft Schmieröl, enthaltend hydrierte Polydiolefinblockpolymere
EP0318848A3 (en) * 1987-12-04 1989-08-16 Basf Aktiengesellschaft Lubricating oil comprising hydrogenated polydiolefin block polymers
EP0351964A1 (de) 1988-06-24 1990-01-24 Exxon Chemical Patents Inc. Synergische Additivzusammensetzung, verwendbar in Kraftübertragungszusammensetzungen
EP0611818A1 (de) 1990-07-31 1994-08-24 Exxon Chemical Patents Inc. Gemischte, Phosphor und Schwefel enthaltende Reaktionsprodukte hergestellt unter niedrigen Druck, verwendbar in Kraftübertragungszusammensetzungen und Verfahren zu deren Herstellung
US5118875A (en) * 1990-10-10 1992-06-02 Exxon Chemical Patents Inc. Method of preparing alkyl phenol-formaldehyde condensates
US5262508A (en) * 1990-10-10 1993-11-16 Exxon Chemical Patents Inc. Process for preparing alkyl phenol-sulfur condensate lubricating oil additives
US5310490A (en) * 1991-03-13 1994-05-10 Exxon Chemical Products Inc. Viscosity modifer polymers
US5310814A (en) * 1991-03-15 1994-05-10 Exxon Chemical Patents Inc. Viscosity modifier polybutadiene polymers
US5703171A (en) * 1991-03-15 1997-12-30 Exxon Chemical Patents Inc Viscosity modifier polybutadiene polymers
US5945485A (en) * 1991-03-15 1999-08-31 Exxon Chemical Patents Inc Viscosity modifier polybutadiene polymers
WO1999036491A1 (en) 1998-01-13 1999-07-22 Exxon Chemical Patents Inc. Automatic transmission fluids of improved viscometric properties
US20040187686A1 (en) * 2003-02-07 2004-09-30 Robert Amin Removing contaminants from natural gas
US7152431B2 (en) * 2003-02-07 2006-12-26 Shell Oil Company Removing contaminants from natural gas
EP3378877A1 (de) 2017-02-28 2018-09-26 Evonik Oil Additives GmbH Als schmiermitteladditive nützliche hydrierte polybutadiene
US10787623B2 (en) 2017-02-28 2020-09-29 Evonik Operations Gmbh Hydrogenated polybutadienes useful as lubricant additives

Also Published As

Publication number Publication date
DE1594426A1 (de) 1969-08-21
GB1088227A (en) 1967-10-25

Similar Documents

Publication Publication Date Title
US3312621A (en) Lubricants having a high viscosity index
US3772196A (en) Lubricating compositions
US9637702B2 (en) Lubricant composition for marine engine
US4158633A (en) Lubricating oil
CN104804812B (zh) 一种重负荷液化天然气发动机专用润滑油
US4032459A (en) Lubricating compositions containing hydrogenated butadiene-isoprene copolymers
JPS5936678B2 (ja) 濃縮添加剤
JP2000080388A (ja) 潤滑油組成物
US3761404A (en) Lubricant compositions
US3852204A (en) Lubricant compositions
US3873455A (en) Five-grade motor oil for internal combustion engines
US3821302A (en) Olefinic ketone imines and oil compositions containing them
US2628942A (en) Lubricating oils containing metal derivatives of cyclic imides
JPS59122595A (ja) タ−ボチヤ−ジヤ付エンジン用マルチグレ−ドエンジン油組成物
US5888948A (en) Two-cycle lubricating oil
EP0552554B1 (de) Schmierölzusammensetzungen
US3759862A (en) Lubricating oil composition
CN1136300C (zh) 一种柴油机油添加剂组合物
US4717489A (en) Heavy duty diesel engine oil blend
US3235494A (en) Two-cycle engine lubricating composition
GB754773A (en) Organic oleaginous compositions
US3306856A (en) Aryl keto acid pour-point depressants and dispersants for oleaginous compositions
US6455477B1 (en) Two-cycle lubricating oil with reduced smoke generation
AU696404B2 (en) Two-cycle lubricating oil
US3944491A (en) Lubricants