US3312304A - Multi-layered sound absorbing panel - Google Patents

Multi-layered sound absorbing panel Download PDF

Info

Publication number
US3312304A
US3312304A US416676A US41667664A US3312304A US 3312304 A US3312304 A US 3312304A US 416676 A US416676 A US 416676A US 41667664 A US41667664 A US 41667664A US 3312304 A US3312304 A US 3312304A
Authority
US
United States
Prior art keywords
plate
sound
sheet
mineral wool
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US416676A
Other languages
English (en)
Inventor
Chen Yian-Nian
Philipp Erich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer AG filed Critical Sulzer AG
Application granted granted Critical
Publication of US3312304A publication Critical patent/US3312304A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/86Sound-absorbing elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B1/8409Sound-absorbing elements sheet-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/0478Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like of the tray type
    • E04B9/0485Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like of the tray type containing a filling element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B2001/8263Mounting of acoustical elements on supporting structure, e.g. framework or wall surface
    • E04B2001/8281Flat elements mounted parallel to a supporting surface with an acoustically active air gap between the elements and the mounting surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8433Tray or frame type panels or blocks, with or without acoustical filling with holes in their face
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8442Tray type elements

Definitions

  • the present invention pertains to a construction for sound absorbent ⁇ material which can be used on space partitions, for example the walls or ceilings in rooms containing weaving machinery.
  • Minerahwools such as glass wool and rock wool are among the materials with which good sound absorption may be obtained.
  • the ceilings, and under certain circumstances the side walls of the space in which the sound is to be damped are fitted with stiff foraminous plates or sheets behind which mineral wool is disposed.
  • the invention provides a construction employing mineral wool, a synthetic film enveloping it, and also a foraminous plate (and hence possessing the resistance to moisture provided by the film and the structural strength provided by the plate), whi-ch possesses at least over the range from 1 to 6 kc. sound absorption properties as good as those heretofore available with the combination of a foraminous plate and mineral wool without the woolenveloping film or with the combination of mineral wool in an enveloping film but without the structurally desirable foraminous plate in front of it.
  • the sound absorbent material of the invention comprises a layer of mineral wool which is enclosed in a non-porous synthetic film for protection against humidity, and a foraminous plate on the side of the mineral wool facing the room from which sound is t-o be absorbed, and there is provided between the foil 'and the perforated plate a space amounting to at least half the diameter of the holes in the plate.
  • the sound absorbent material of the invention may be made up in panels of any. convenient size.
  • the spacing is preferably advantageously provided by ture throughout the several figures.
  • foam-like material such as polyurethane for example having open pores, or by means of a grid-like intermediate structure maintaining the spacing.
  • foam-like material with open pores is to be understood as meaning a foam-like material, for example a synthetic foam, or foam rubber, whose pores extend as small channels through the layer of foam, and which foam-like material is hence pervious toair.
  • a felt-like material may also be used ⁇ as the spacing element if the humidity is not too high in the space wherein sound absorption is to be achieved.
  • FIG. l is ⁇ a fragmentary transverse section through a sound-absorbent construction according to the invention, wherein however for punposes of generality the space between the sound-absorbent material and the foraminous plate has been left empty;
  • FIGS. 2 and 3 are sectional views similar to that of FIG. 1 showing two embodiments of the invention.
  • FIG. 4 is a diagram of sound absorption as a function of sound-Wave frequency.
  • the perforated or foraminous plate 1 has the form of a thin, flat sheet. It may be provided with perpendicular sides, as shown at 1 in FIGS. 1 and 2, to form a shallow open box. It may be made of customary building materials such as sheet metal, gypsum, reconstituted wood chips or synthetic material or the like.
  • the sheet l is provided with a multiplicity of holes 9, with either regular or virregular spacing between them. These holes may have a diameter of up to a few millimeters. The fraction of the surface area of the plate to be occupied by holes may be 15-30%.
  • a sound absorbent material such as mineral wool indicated at 2 is disposed behind this plate, this material being enveloped by means of a synthetic plastic film 3 as .a protection against humidity.
  • the thickness of the film may amount for example to a few hundredths of a millimeter whereas the thickness of the mineral wool layer 2 may be some l0 to 50 millimeters.
  • there is maintained a space between the foil 3 and the perforated plate 1 which amounts to at least half the diameter of the holes in the plate 1.
  • FIG. l this spacing is indicated as a simple air space 7, which however is shown in FIG. 2 as filled with an open pore foam material 5 and in FIG. 3 with a grid-like member 6 which may be made up of corrugated elements likewise made of synthetic material.
  • FIG. 3 in contrast to FIGS. l and 2, the plate 1 is shown simply as a flat sheet, without side walls such as are indicated at 1' in FIGS. l and 2.
  • the spacer element 5 of open pore foam material (FIG. 2) effects a supplementary lsound absorption by reason of the fact that the sound waves arriving thereat penetrate into a multitude of channels of small crosssection extending in different directions into Athe material 5.
  • the sound waves are thus split and fragmented, and are uniformly disposed over the surface, so that the energy of the sound waves is somewhat reduced in these channels before the waves reach the film 3 and the mineral wool 2.
  • Reference character 8 indicates the ceiling or wall of a room provided with sound absorbent panels according to the invention.
  • the panels, according to the invention may be made of any desired shape or dimensons, for example square asiasoal 3 posed behind the plate 1 plural-packings each comprising a layer of mineral wool 2 enclosed in a film 3. As shown in FIG. 2, plural film envelopes may be provided behind a single plate 1.
  • the incident sound waves produce minute air pistons in the holes 9 of the forminous plate 1, as shown in idealized form at reference character 4 in FIG. 1.
  • These air pistons operate as point sound sources for the sound propagating into the plate.
  • the film 3 lies directly against the plate and hence directly at the holes 9, theformation and oscillation of the air pistons 4 is largely prevented.
  • the lilm 3 is brought into local oscillation in the vicinity of the individual holes.
  • the open pore foam material 5 improves the sound absorption ,by reason of t-he fact that the sound waves spreading out therein from the holes 9 are divided into a large number of small channels. This also promotes the excitation of the film 3 to oscillation in large areas rather than locally.
  • the Scale of ordinates represents the absorption coefficient a obtained in a Kundts tube, with unity on this scale representing 100% absorption, 0.3 representing absorption, and so on.
  • the scale of abscissae represents frequencies in cycles per second, logarithmically presented.
  • the measured results for a .as shown in FIG. 4 were measured at a mineral wool layer 2 -of about 15 millimeters thickness.
  • the curve a shows the values of for the mineral wool alone, i.e. without enveloping lm and without the perforated plate 1, whereas the curve B shows the values for the same mineral wool layer enveloped in a polyethylene lm some microns thick,
  • the basio for this wide distribution of values lies in the fact that the position of the lilm 3 with respect to the perforated plate varied from measurement to measurement so that in these various measurements the air pistons v4 could to some extent be formed and thus affect the absorption coeicient a.
  • curve d shows the operationof the sound absorbent material of the invention in which the spacing between the foil 3 and the plate 1 was-lled with a foam material 5 (FIG. 2) having open pores and having a 5 thickness of about 3 millimeters.
  • the wool layer, lilm and plate of curve d were the same as the corresponding elements in the construction whose absorption is represented by the area c. It will be observed that the curve d at frequencies above about 1700 cycles per second 10 above the diagonally shaded area c, indicating forl curve d better sound absorption than was obtained with the combination of mineral wool, enveloping film and foraminous plate but without spacing of the plate from the film.
  • the location in ,frequency of the maximum for the :absorption coefficient a may be shifted by changing the fraction of the plate surface occupied by the holes.
  • the holes in the plate or sheet 1 need not be all of the same size; in such a case, the spacing between the foraminous plate 1 and the sound absorbent material7 s-uch as mineral wool enveloped in ra plastic film, should be at least one-half the diameter of the greatest iholes in the plate.
  • a sound absorbent construction material comprising a foraminous sheet, a layer of fibrous sound absorbent material disposed ⁇ adjacent the sheet and substantially parallel thereto, a synthetic film enveloping said layer,v
  • a sound absorbent structure comprising a sheet having multiple holes therein, a layer of mineral wool disposed adjacent the sheet and extending substantially parallel thereto, a non-porous synthetic plastic lm enclosing said layer, and means to space said layer from said plate by a distance amounting to 4at least half the average diameter of the holes in said sheet.
  • a sound absorbent structure comprising a sheet having multiple holes therein, a layer of mineral wool disposed adjacent the sheet and extending substantially parallel thereto, a non-porous synthetic plastic tilm enclosing said layer, 'and a layer of solid foam disposed between said mineral wool layer and sheet, said foam layer having a thickness amounting to at least half the average diameter of the holes in said sheet.
  • a sound absorbent structure comprising a sheet having multiple holes therein, a layer of mineral wool disposed adjacent the sheet and extending substantially parallel thereto, a non-porous synthetic plastic film enclosing said layer, and an open grid-shaped spacing element disposed between said mineral wool layer and sheet, said element having a thickness amounting to at least half the average diameter of the .holes in said sheet.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
US416676A 1963-11-21 1964-11-20 Multi-layered sound absorbing panel Expired - Lifetime US3312304A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1430463A CH406574A (de) 1963-11-21 1963-11-21 Element für einen schallabsorbierenden Belag

Publications (1)

Publication Number Publication Date
US3312304A true US3312304A (en) 1967-04-04

Family

ID=4399692

Family Applications (1)

Application Number Title Priority Date Filing Date
US416676A Expired - Lifetime US3312304A (en) 1963-11-21 1964-11-20 Multi-layered sound absorbing panel

Country Status (8)

Country Link
US (1) US3312304A (de)
AT (1) AT248658B (de)
BE (1) BE656022A (de)
CH (1) CH406574A (de)
DE (1) DE1484045A1 (de)
ES (1) ES306004A1 (de)
GB (1) GB1049419A (de)
NL (1) NL6411440A (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841434A (en) * 1973-01-31 1974-10-15 Aero Dyne Noise attenuator
US4194329A (en) * 1976-01-20 1980-03-25 Wendt Alan C Sound absorbing panels
US20070169990A1 (en) * 2006-01-26 2007-07-26 National Institute Of Advanced Industrial Science And Technology Jet engine
US20090090580A1 (en) * 2006-05-24 2009-04-09 Airbus Deutschland Gmbh Sandwich Element for the Sound-Absorbing Inner Cladding of Means of Transport, Especially for the Sound-Absorbing Inner Cladding of Aircraft
US20110100747A1 (en) * 2006-05-24 2011-05-05 Airbus Operations Gmbh Sandwich element for the sound-absorbing inner cladding of means of transport, especially for the sound-absorbing inner cladding of aircraft
US20130199872A1 (en) * 2010-10-07 2013-08-08 Lg Hausys, Ltd. Gypsum panel having outstanding sound-absorbing properties and a production method therefor
US9714630B2 (en) * 2015-10-07 2017-07-25 General Electric Company Noise baffle for a rotary machine and method of making same
US10508444B2 (en) 2016-06-30 2019-12-17 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US20200002938A1 (en) * 2018-06-28 2020-01-02 Usg Interiors, Llc Monolithic acoustical system
US11180916B2 (en) 2017-06-12 2021-11-23 Turf Design, Inc. Apparatus and system for dynamic acoustic ceiling system and methods thereof
US11199004B2 (en) 2016-06-30 2021-12-14 Turf Design, Inc. Apparatus and system for dynamic acoustic drop ceiling system and methods thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2137251A (en) * 1983-03-25 1984-10-03 New Zealand Guardian Trust Com Insulating panel
DK153899B (da) * 1984-02-24 1988-09-19 Rockwool Int Isolerende tagdaekning.
DE3410902C1 (de) * 1984-03-24 1985-10-24 Eberhard 4000 Düsseldorf Homberg Aus Einzelfasern bestehendes Fasermaterial für schallisolierende Maßnahmen
GB2157337B (en) * 1984-04-05 1987-05-13 Ici Plc Sound absorption panels
FR2577309B1 (fr) * 1985-02-13 1987-04-17 Sdecc Chaudiere a gaz modulante du type etanche a condensation, a fonctionnement silencieux.
GB2196356B (en) * 1986-06-25 1991-03-20 Robin Kenneth Mackenzie Sound attenuating floor construction
EP2357644A1 (de) * 2010-01-20 2011-08-17 Wilfried Beckervordersandforth Akustikelement und Verfahren zur Herstellung desselben

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2159488A (en) * 1935-08-01 1939-05-23 Johns Manville Perforated membrane
US2271929A (en) * 1942-02-03 Building interior construction
US2301538A (en) * 1938-06-04 1942-11-10 Waldorf Paper Prod Co Sound insulating construction
FR1138543A (fr) * 1955-12-12 1957-06-14 Barbier & Cie G Dalle préfabriquée chauffante calorifuge et absorbante du son

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2271929A (en) * 1942-02-03 Building interior construction
US2159488A (en) * 1935-08-01 1939-05-23 Johns Manville Perforated membrane
US2301538A (en) * 1938-06-04 1942-11-10 Waldorf Paper Prod Co Sound insulating construction
FR1138543A (fr) * 1955-12-12 1957-06-14 Barbier & Cie G Dalle préfabriquée chauffante calorifuge et absorbante du son

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841434A (en) * 1973-01-31 1974-10-15 Aero Dyne Noise attenuator
US4194329A (en) * 1976-01-20 1980-03-25 Wendt Alan C Sound absorbing panels
US20070169990A1 (en) * 2006-01-26 2007-07-26 National Institute Of Advanced Industrial Science And Technology Jet engine
US20090090580A1 (en) * 2006-05-24 2009-04-09 Airbus Deutschland Gmbh Sandwich Element for the Sound-Absorbing Inner Cladding of Means of Transport, Especially for the Sound-Absorbing Inner Cladding of Aircraft
US20110100747A1 (en) * 2006-05-24 2011-05-05 Airbus Operations Gmbh Sandwich element for the sound-absorbing inner cladding of means of transport, especially for the sound-absorbing inner cladding of aircraft
US20130199872A1 (en) * 2010-10-07 2013-08-08 Lg Hausys, Ltd. Gypsum panel having outstanding sound-absorbing properties and a production method therefor
US8739927B2 (en) * 2010-10-07 2014-06-03 Lg Hausys, Ltd. Gypsum panel having outstanding sound-absorbing properties and a production method therefor
US9714630B2 (en) * 2015-10-07 2017-07-25 General Electric Company Noise baffle for a rotary machine and method of making same
CN107023396A (zh) * 2015-10-07 2017-08-08 通用电气公司 用于旋转式机器的噪声隔板及其制作方法
US20230068791A1 (en) * 2016-06-30 2023-03-02 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US11199004B2 (en) 2016-06-30 2021-12-14 Turf Design, Inc. Apparatus and system for dynamic acoustic drop ceiling system and methods thereof
US11434636B2 (en) 2016-06-30 2022-09-06 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US10508444B2 (en) 2016-06-30 2019-12-17 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US11603661B2 (en) 2016-06-30 2023-03-14 Turf Design, Inc. Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
US11834827B2 (en) 2016-06-30 2023-12-05 Awi Licensing Llc Apparatus and system for dynamic acoustic drop ceiling system and methods thereof
US11913225B2 (en) * 2016-06-30 2024-02-27 Turf Design, Inc. Ceiling baffle apparatus and ceiling baffle system for a dynamic acoustic ceiling and methods thereof
US11933045B2 (en) 2016-06-30 2024-03-19 Turf Design, Inc. Ceiling system
US12000147B2 (en) 2016-06-30 2024-06-04 Turf Design, Inc. Apparatus and system for dynamic acoustic locking ceiling system and methods thereof
US11180916B2 (en) 2017-06-12 2021-11-23 Turf Design, Inc. Apparatus and system for dynamic acoustic ceiling system and methods thereof
US11773591B2 (en) 2017-06-12 2023-10-03 Turf Design, Inc. Apparatus and system for dynamic acoustic ceiling system and methods thereof
US20200002938A1 (en) * 2018-06-28 2020-01-02 Usg Interiors, Llc Monolithic acoustical system
US10982433B2 (en) * 2018-06-28 2021-04-20 Usg Interiors, Llc Monolithic acoustical system

Also Published As

Publication number Publication date
NL6411440A (de) 1965-05-24
AT248658B (de) 1966-08-10
GB1049419A (en) 1966-11-30
ES306004A1 (es) 1965-04-01
BE656022A (de) 1965-05-20
DE1484045A1 (de) 1968-11-21
CH406574A (de) 1966-01-31

Similar Documents

Publication Publication Date Title
US3312304A (en) Multi-layered sound absorbing panel
US2887173A (en) Sound absorbing and insulating panel
US2870857A (en) Translucent acoustical correction ceiling construction
US3380206A (en) Lay-in acoustical ceiling panel with flexible diaphragms
US3597891A (en) Interior absorptive panel
US3460299A (en) Luminous sound absorbing ceiling
US4194329A (en) Sound absorbing panels
US4441580A (en) Acoustical control media
US3513009A (en) Method of forming fissured acoustical panel
US2175630A (en) Heat and sound insulation
US3084402A (en) Acoustical panel
US2779429A (en) Sound absorbing structure
RU2721615C1 (ru) Звукопоглощающая конструкция и звукоизолированное помещение
US2276788A (en) Building construction
US3111188A (en) Acoustical tile
EP0013513B1 (de) Schalldämmende Struktur
Ford et al. The influence of absorbent linings on the transmission loss of double-leaf partitions
JP3072023B2 (ja) 遮音装置
US3247928A (en) Sound-insulating partition with porous deposit of agglomerated particles
JP2840130B2 (ja) 吸音体
US1782399A (en) Absorption of sound
Ford et al. Practical problems of partition design
GB858049A (en) Sound absorbing panels
US3080938A (en) Plate-shaped sound-absorbing element
IL23244A (en) Sound-absorbent coverings