US3302358A - Thermal insulation structures - Google Patents
Thermal insulation structures Download PDFInfo
- Publication number
- US3302358A US3302358A US325931A US32593163A US3302358A US 3302358 A US3302358 A US 3302358A US 325931 A US325931 A US 325931A US 32593163 A US32593163 A US 32593163A US 3302358 A US3302358 A US 3302358A
- Authority
- US
- United States
- Prior art keywords
- sheet
- extensible
- corrugations
- sheets
- individual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 26
- 239000002131 composite material Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 abstract description 10
- 239000011152 fibreglass Substances 0.000 abstract description 5
- 239000004800 polyvinyl chloride Substances 0.000 abstract description 4
- 229920000915 polyvinyl chloride Polymers 0.000 abstract description 4
- 239000010935 stainless steel Substances 0.000 abstract description 4
- 229910001220 stainless steel Inorganic materials 0.000 abstract description 4
- 229920005830 Polyurethane Foam Polymers 0.000 abstract description 2
- 239000011496 polyurethane foam Substances 0.000 abstract description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract 2
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000003466 welding Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- -1 eg. Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 241000845077 Iare Species 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
- E04B1/803—Heat insulating elements slab-shaped with vacuum spaces included in the slab
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/001—Thermal insulation specially adapted for cryogenic vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
- F17C3/027—Wallpanels for so-called membrane tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0329—Foam
- F17C2203/0333—Polyurethane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0337—Granular
- F17C2203/0341—Perlite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0345—Fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0354—Wood
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0358—Thermal insulations by solid means in form of panels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0391—Thermal insulations by vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
- F17C2203/0643—Stainless steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0646—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0648—Alloys or compositions of metals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
- F17C2203/0673—Polymers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2181—Metal working processes, e.g. deep drawing, stamping or cutting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/221—Welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/242—Slab shaped vacuum insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/10—Insulation, e.g. vacuum or aerogel insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/233—Foamed or expanded material encased
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/237—Noninterengaged fibered material encased [e.g., mat, batt, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/237—Noninterengaged fibered material encased [e.g., mat, batt, etc.]
- Y10T428/238—Metal cover or casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/239—Complete cover or casing
Definitions
- the thermal insulation structure comprises a dened sheet, which is an extensible sheet including an enclosed area bounded entirely by non-intersecting but meeting corrugations, the corrugations extending linearly beyond the enclosed area, a second sheet spaced a short distance from the extensible sheet, transversely spaced walls between said sheets for defining vacuum-tight enclosures between said sheets, and load bearing insulation contained in said enclosures.
- An extensible sheet is defined as a sheet which when under stress will be more extensible than allowed by the modulus of elasticity of the material itself, due, in eifect, to controlled bending of the sheet at areas of corrugation.
- corrugation includes simple folds.
- the adjacent corrugations form two sets of co'rrugations at right angles to one another.
- Opposite corrugations terminating in the periphery of an enclosed area are preferably parallel, i.e., the enclosed area is a rectangle, or preferably a square, although other polygonal shapes may be used, as shown in the above-mentioned copending application.
- FIG. l is a perspective view of a thermal insulation structure in which the extensible sheet has one enclosed area bounded by corrugations;
- FIG. 2 is a sectional side elevation of the structure of FIG. l taken vertically through line 2 2 of FIG. l;
- FIG. 3 is a sectional side elevation similar to FIG. 2, but of an alternative structure to that shown in FIG. l;
- FIG. 4 is a plan view of a thermal insulation structure in which the extensible sheet has five enclosed areas bounded by corrugations;
- FIG. 5 is a sectional side elevation of the structure of FIG. 4 taken vertically through line 5-5 of FIG. 4;
- FIG. 5a is a sectional view taken on line Sa--Sa of FIG. 4, of a modiiied form of the structure having a single tray;
- FIG. 6 is a perspective view of a modified form of the invention.
- FIG. 7 is a detail view in section showing the structure of the supporting pins.
- FIG. 7a is a detail view of a modified supporting pin.
- an extensible sheet ll of a suitable material eg., stainless steel
- the corrugations have in this case symmetrical proles, and in the center of the sheet the corrugations enclose a square area 6, whose plane lies in the plane of the extensible sheet.
- Opposite corrugations 2, 4 and 3, 5 respectively are offset as shown, and each of the corrugations 2, 3, 4, and 5 terminates in the periphery of square area 6.
- Extensible sheet I can suitably be fabricated as by bending and welding together suitable sections of stainless steel, and need not be heat treated after the welding.
- Blocks i0 of rigid open cell plastic material such as polyvinyl chloride are used as insulation and substantially fill the enclosures bounded by the extensible sheet and the trays.
- the enclosures are evacuated through nipples l2 which are thereafter sealed.
- the trays 8 and 9 are of a different shape, suitable for fabrication by stamping, and the enclosures are preferably substantially lled with stabilized particles of perlite as a thermal insulation.
- the top and bottom sheets may be provided with dimples, as shown at l5, or any other form of minor deformation, to relieve thermal stresses, and this may similarly b-e done with any of the forms of the invention.
- a corrugated bridging and sealing strip 4a may be secured, as by welding, between the bottoms of adjacent trays, to provide a continuous second wall, in effect.
- FIG. 4 an extensible sheet having four small enclosed areas 21, 22, 23 and 24, and one large enclosed area 25 is shown.
- the other areas 26, 27, 28, 29, 30, 31, 32 and 33 are bounded partially by the corrugations and partially by the edges of the sheet.
- the sheet is preferably supported by pins extending from the centers 7 of the respective areas as better shown in FIG. 7.
- FIG. 5 shows a structure similar to that of FIG. 5, but having a single tray 56 for a number of enclosed areas corresponding to the face structure of FIG. 4.
- FIG. 6 shows at i6 and 17 the manner in which the corrugations 4 may be curved outwardly of the enclosed area.
- FIG. 7 shows a preferred manner -of supporting the extensible sheets on a rigid backing 51, itself preferably made of insulating material such as balsa wood.
- Bushings 52 are inserted into the backing 51.
- Each bushing has an internal snap ring 52a for engagement in a circumferential recess in peg 53, there being one such peg extending from each point 7 at the center of area of each area 6, 2l, 25', etc.
- Pegs 53 may be made hollow, and used for evacuating the respective enclosures, after which they may be sealed in any usual or known manner.
- FIG. 7a shows a'modiiied form of pin construction in which the peg 53 extends through the tray 56 to the extensible sheet 57.
- This construction can ⁇ be used where there is only one tray (or second sheet) extending over a number of enclosed areas, in which case there will be only .one peg located in the middle of each such tray and in the middle of an enclosed area, so that there will be only one relative rotation between the extensible sheet and the tray.
- Adjacent corrugations can have any desired profile, which can by symmetrical or unsymmetrical, as shown for example in FIGS. 5 and 6 respectively.
- corrugations terminating within the sheet to form a corner have unsymmetric-al profi-les, they are arranged so that the same sides of the profile are in a clockwise direction and the other sides of the profiles are in the anti-clockwise direction.
- the area bounded by the corrugations can lie either in or out of the plane of the extensible sheet; that is, it can be bounded by the flanks or sides of the corrugations, or by the crests of the corrugations.
- the enclosed area can be a square or a square with triangular fianges. The enclosed area will rotate about its center of area when the extensible sheet is contracted or expanded by stresses.
- the enclosed area may be of any shape, having any number of sides. However, to minimize the stresses set up in the sheets when they contract at low temperatures, it is preferable if the sides of the enclosed areas are equal in length and also preferable if the enclosed area is in the center of a sheet. Preferred shapes are triangles or hexagons as shown in the above copending application, and especially quadrilaterals, eg., squares.
- the average of the ratios yof the length of each corrugation bounding each enc-losed area to the total length of each corrugation is preferably less than 1:2, e.g., about 1:4.
- the end portions of the coirugations may if desired by curved before meeting an adjacent corrugation, preferably curved outwardly of the enclosed area, as shown at I6 and 1i7 in FIG. 6.
- the curvature of the corrugations is for this purpose ignored, i.e., the sheet is considered to be of the same shape as the enclosed area except for the rounded corners.
- the c-orrugations should extend f linearly beyond the enclosed area to the sides of the sheet, or at least extend to nearly the sides of the sheet.
- the extensible sheet preferably metal
- the extensible metal sheet can be of any thickness appropriate to the stresses to be taken by it and to the degree of extensibility required.
- Preferred extensible metal sheets are fabricated from steels, but other metals possessing desired structural strengths can be used, for example aluminum or alloys of aluminum.
- the thermal insulation structures are such that the extensible sheet has a plurality of enclosed areas.
- Such sheets may -be either a composite extensible sheet comprising a plurality of defined sheets joined to one lanother and spaced in side-by-side and end-to-end relationship so that each of the corrugations of each of the defined sheets is in line with and meets a corrugation in a contiguous sheet, or may be an extensible sheet comprising a plurality of Zones, each having the features of, and corresponding to the defined sheet in which the Zones are placed in side-by-side and end-to-end relationship so that each of the corrugations of each zone is in line with, and meets a corrugation in a contiguous zone.
- the defined sheet or the zone corresponding to the defined sheet also has to be one which is substantially the same shape as its enclosed area, in which the corrugations extend to the sides of the sheet and in which the enclosed area is in the center ofthe sheet and has sides which are equal in length.
- the individaul defined sheets are preferably welded together.
- the extensible sheet comprising a plunality of Zones may be made by welding sheets together along Ithe corrugations.
- corrugations which are curved outwardly Vof the enclosed area before meeting an adjacent corrugation, as shown in FIG. 6, are ian advantage, because such sheets can be fabricated by ⁇ stamping and are therefore exactly the same in size and they can be welded together along the corrugations.
- the extensible sheets used in the thermal insulation structure of this invention may be provided with one or more, preferably a series, of protrusions, e.g., dimples, in its surface to further counteract the effect of contraction or expansion due to large temperature changes, as shown by way of example in FIG. 3.
- the second sheet i.e., the sheet which need not have an enclosed area, should preferably be fiexible.
- These second sheets are also preferably of metal, especially those me-tals which do not become embrittled at low temperatures, for example aluminum or stainless steel.
- Other materials, e.g., certain plastics such as Teflon (ifourinated hydrocarbons) or epoxy fiber glass, may also be used.
- the second sheet may be thinner or thicker than the first sheet.
- the sec-ond sheet will not normally undergo any excessive strains or stresses due to temperature changes.
- the extensible sheet is preferably spaced with respect to the second sheet or sheets so that the corrugated portions of the sheet project out of the extensible sheet in a direction :away from the second sheet or sheets.
- the transversely spaced walls may be separate strips as 8a, 8c, 9a, etc., secured to Iboth sheets so as to define the vacuum tight enclosures. In such cases, it is preferable if the strips are secured to the sheets at or near the region where the corrugations define the enclosed areas and around the perimeter of the extensible sheet. These strips should preferably be of thin sheet metal so as to minimize conduction of heat therethrough. The preferred method of securing the walls to the sheet is by welding.
- the transversely spaced walls are extensions of the second sheet as shown at 13, 14 in FIG. 3.
- these second sheets are in the form of trays of substantially the same area as the enclosed areas of the other sheet (extensible sheet) dened by the corrugations and by the corrugations and edges of the sheets.
- These trays are secured (e.g., by welding) onto the edges of the other sheet (extensible sheet) at or near the region where the corrugations define the enclosed areas of the sheet, and round the perimeter of the extensible sheets.
- the .trays may 'be ones in which the walls are substantially at right angles to the base of the tray, similar to FIG. 2.
- they may lbe ones in which the walls are rounded, curving outwardly from the base of the tray, the edges of the walls preferably being flattened out in a direction parallel to and away from the base of the tray, as shown in FIG. 3.
- each pair of adjacent tray bases e.g., by welding
- sealing strips of metal as shown at 4a in FIG. 3, each strip being provided with a protrusion such as a corrugation so as to bridge the gaps between each pair of adjacent tray bases.
- a protrusion such as a corrugation
- the extensible sheet having one or more enclosed areas should preferably have one or more protrusions (eg, dimples) on its surface. This is because the xing of the transverse walls to portions of the corrugations other than the enclosed areas of the sheet would tend to restrict the movement of the corrugations and so tend to prevent rotation of the enclosed areas. Consequently there should be one or more, e.g., a series, of protrusions in the surface of the enclosed areas to accommodate changes in the shape of the sheet. It is for this reasons therefore that it is preferable if the transverse walls are secured to or near the edges of the extensible sheet where the corrugations define the enclosed areas of the sheet.
- the load bearing insulation should be rigid to undergo compressive forces, due to air and uid pressure acting on the external surfaces of the insulation through the flexible metal.
- the insulation should also be preferably an open cell structure.
- suitable insulation examples include ⁇ open cell rigid plastics, e.g., polyvinyl chloride foams, polyurethane foams, urea foams, polyethylene foams or plystyrene foams.
- suitable load bearing insulating stabilized particles of silicious materials of low thermal conductivity eg., perlite (expanded lava) or vermiculite (expanded mica).
- fiber glass can be used.
- the general direction of the filaments is transverse to the shortest path between the sheets, eg., if the general direction is su'bstantially parallel to one or more sheets, and also if the filaments run in directions transverse to one another. In this way, the mass of fiber glass is capable ⁇ of absorbing any compressive forces.
- the vacuumtight enclosures should be evacuated, preferably through an aperture or nipple in the second sheet, which is thereafter sealed when the evacuation procedure is completed. If possible, .the evacuation should preferably be delayed until after any construction work is completed, so that there is little danger of the vacuum being substantially destroyed.
- One or more walls of a container suitable for the storage of a liquefied gas can be fabricated from any of the above-described thermal insulation structures of the invention.
- These containers may normally be used as a primary container supported by a secondary container of load bearing thermal insulating material.
- the methods used for constructing such containers are similar to those described in the above-mentioned copending application for constructing containers from the extensible sheets of that invention.
- the primary container is provided with pegs for rotatable securement in recesses of the walls of the secondary container, these pegs should be secured to the second sheet or sheets of the thermal insulation structure, care being taken not to impair the vacuum tightness of the enclosures.
- the material of the second sheet should be at least as thick and strong as that of the first sheet.
- the containers thus constructed may be used as storage tanks in the hold of a ship, or as land tanks for storing liquefied gases.
- a thermal insulation structure for use under conditions of great temperature change, comprising (a) a composite extensible sheet in which there are a plurality of individual extensible sheets,
- each individual extensible sheet comprising a number of substantially plane areas including an enclosed area of the same geometric shape as said individual sheet
- the second sheet elements and transversely spaced walls being in the form of trays of substantially the same base area as the substantially plane areas of the individual extensible sheets, the walls of each tray constituting the transversely spaced walls between the sheets defining vacuum tight enclosures;
- the second sheets are in the form of trays having walls which are rounded, curving outwardly from the base of the tray, the edges of the walls being flattened out in a direction parallel to and away from the base of the tray.
- sealing strips each provided with a corrugation, are welded to each pair of adjacent tray bases so as to bridge the gaps between each pair of adjacent tray bases.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Thermal Sciences (AREA)
- Acoustics & Sound (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Building Environments (AREA)
- Refrigerator Housings (AREA)
- Thermal Insulation (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB17834/63A GB1036144A (en) | 1963-05-06 | 1963-05-06 | Thermal insulation structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US3302358A true US3302358A (en) | 1967-02-07 |
Family
ID=10102036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US325931A Expired - Lifetime US3302358A (en) | 1963-05-06 | 1963-11-26 | Thermal insulation structures |
Country Status (8)
Country | Link |
---|---|
US (1) | US3302358A (fi) |
BE (1) | BE639626A (fi) |
DE (1) | DE1301833C2 (fi) |
ES (1) | ES292891A2 (fi) |
FI (1) | FI43473C (fi) |
FR (1) | FR84725E (fi) |
GB (1) | GB1036144A (fi) |
NL (1) | NL297976A (fi) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3380613A (en) * | 1964-09-09 | 1968-04-30 | Conch Int Methane Ltd | Containers for very cold or very hot liquids |
US3382821A (en) * | 1965-09-03 | 1968-05-14 | Shooting Equipment Inc | Stalls for shooting ranges |
US3392864A (en) * | 1965-02-03 | 1968-07-16 | Nasa Usa | Insulation system |
US3392866A (en) * | 1964-07-10 | 1968-07-16 | Technigaz | Insulation for fluid-tight enclosures |
US3408234A (en) * | 1966-10-24 | 1968-10-29 | Phillips Petroleum Co | Adjustable jacket for storage batteries |
US3476912A (en) * | 1968-03-13 | 1969-11-04 | Swenson Granite Co Inc John | Panel for composite wall structure |
US3486286A (en) * | 1967-04-25 | 1969-12-30 | Linde Ag | Yieldable wall assembly for the transportation of low-temperature fluids |
US3506412A (en) * | 1967-05-24 | 1970-04-14 | Linde Ag | Yieldable wall assembly for containers for the transportation of low-temperature fluids |
US3517850A (en) * | 1967-05-24 | 1970-06-30 | Anna Weigert | Yieldable wall assembly for containers for the transportation of low-temperature fluids |
US3525661A (en) * | 1965-06-28 | 1970-08-25 | Conch Int Methane Ltd | Thermal insulation structures |
US3800970A (en) * | 1970-03-19 | 1974-04-02 | Conch Int Methane Ltd | Integrated tank containers for the bulk storage of liquids |
US4146666A (en) * | 1977-08-08 | 1979-03-27 | Borg-Warner Corporation | Thermally expansible sheet |
US4269323A (en) * | 1978-02-03 | 1981-05-26 | Nippon Sanso Kabushiki Kaisha | Heat insulated tank |
US4335831A (en) * | 1978-01-16 | 1982-06-22 | Owens-Corning Fiberglas Corporation | Insulated cryogenic liquid container |
FR2500580A1 (fr) * | 1981-02-20 | 1982-08-27 | Technigaz | Reservoir de stockage de gaz cryogeniques liquides tels que notamment de l'hydrogene |
FR2535831A1 (fr) * | 1982-11-05 | 1984-05-11 | Gaz Transport | Procede pour ameliorer l'isolation thermique d'une cuve destinee au stockage d'un gaz liquefie et cuve correspondante |
US4646499A (en) * | 1984-10-13 | 1987-03-03 | F. G. Wilson (Engineering) Limited | Roofs |
US4760679A (en) * | 1986-05-08 | 1988-08-02 | Thompson Peter B | Roofing panel and method |
US4919366A (en) * | 1988-09-23 | 1990-04-24 | Mmi Incorporated | Heat resistive wall assembly for a space vehicle |
EP0391788A1 (fr) * | 1989-04-06 | 1990-10-10 | Haironville S.A. | Panneau d'isolation thermique et acoustique |
EP0463311A1 (de) * | 1990-06-22 | 1992-01-02 | Degussa Aktiengesellschaft | Vakuumisolationspanel mit asymmetrischem Aufbau |
US5252408A (en) * | 1990-09-24 | 1993-10-12 | Aladdin Industries, Inc. | Vacuum insulated panel and method of forming a vacuum insulated panel |
US5316816A (en) * | 1989-05-10 | 1994-05-31 | Degussa Aktiengesellschaft | Form body for heat insulation and vacuum insulation panel with asymmetric design |
US5445857A (en) * | 1992-12-28 | 1995-08-29 | Praxair Technology, Inc. | Textured vacuum insulation panel |
US5500305A (en) * | 1990-09-24 | 1996-03-19 | Aladdin Industries, Inc. | Vacuum insulated panel and method of making a vacuum insulated panel |
US5725925A (en) * | 1993-10-15 | 1998-03-10 | Shinagawa Refractories Co., Ltd. | Packing material for refractory |
US5773117A (en) * | 1994-05-13 | 1998-06-30 | Metecno S.P.A. | Deep ribbed sandwich panel and method for its manufacture |
WO1999031446A1 (en) * | 1997-12-18 | 1999-06-24 | The Dow Chemical Company | Evacuated insulation panel having non-wrinkled surfaces |
US6010762A (en) * | 1998-01-15 | 2000-01-04 | Cabot Corporation | Self-evacuating vacuum insulation panels |
FR2780767A1 (fr) * | 1998-07-01 | 2000-01-07 | Agence Spatiale Europeenne | Paroi pour reservoir cryogenique |
US6335073B1 (en) * | 1997-02-13 | 2002-01-01 | Faist Automotive Gmbh & Co. Kg. | Thermal shield for components made of thermoplastics |
EP1197714A3 (de) * | 2000-10-10 | 2002-09-04 | Hans Dr. Dr. Viessmann | Wandbauelement |
US6485805B1 (en) | 1998-01-15 | 2002-11-26 | Cabot Corporation | Multilayer insulation composite |
US6544618B1 (en) | 1999-05-06 | 2003-04-08 | Cabot Corporation | Thermally reflective layer-porous metal oxide film insulation composite |
US6964801B1 (en) * | 1997-01-10 | 2005-11-15 | Dana Corporation | Method for producing a heat shield and heat shield produced by this method |
WO2006047188A1 (en) * | 2004-10-21 | 2006-05-04 | Chicago Bridge & Iron Company | Cryogenic liquid storage structure |
EP1732828A1 (en) * | 2004-03-30 | 2006-12-20 | Hyundai Heavy Industries Co., Ltd. | Metal membrane panel of insulated lng cargo tank |
US20140008144A1 (en) * | 2012-07-06 | 2014-01-09 | C&D Zodiac, Inc. | Aircraft interior panel with acoustic materials |
FR3001945A1 (fr) * | 2013-02-14 | 2014-08-15 | Gaztransp Et Technigaz | Paroi etanche et thermiquement isolante pour cuve de stockage de fluide |
JP2016515986A (ja) * | 2013-04-11 | 2016-06-02 | ギャズトランスポルト エ テクニギャズ | 不浸透性バリアの波形の結合解除 |
US9771714B2 (en) * | 2010-06-17 | 2017-09-26 | Jerry Castelle | Vacuum insulation panel |
USD820647S1 (en) | 2017-05-16 | 2018-06-19 | Yeti Coolers, Llc | Insulating device |
USD820648S1 (en) | 2017-05-16 | 2018-06-19 | Yeti Coolers, Llc | Insulating device |
USD821157S1 (en) | 2017-05-16 | 2018-06-26 | Yeti Coolers, Llc | Insulating device |
USD821156S1 (en) | 2017-05-16 | 2018-06-26 | Yeti Coolers, Llc | Insulating device |
USD821155S1 (en) | 2017-05-16 | 2018-06-26 | Yeti Coolers, Llc | Insulating device |
US10012428B2 (en) * | 2014-09-01 | 2018-07-03 | Polyplastic Groep B.V. | Access door |
USD821824S1 (en) | 2017-05-16 | 2018-07-03 | Yeti Coolers, Llc | Insulating device |
US10676267B2 (en) | 2015-11-25 | 2020-06-09 | Yeti Coolers, Llc | Insulating container having vacuum insulated panels and method |
US20220064939A1 (en) * | 2020-08-27 | 2022-03-03 | Va-Q-Tec Ag | Temperature stable vacuum insulation element |
US20220178496A1 (en) * | 2019-03-07 | 2022-06-09 | Lattice Technology Co., Ltd. | Vacuum heat-insulation device for low-temperature tank |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2576698A (en) * | 1948-04-14 | 1951-11-27 | Johns Manville | Metal-sheathed insulating blanket and method of manufacture |
GB924803A (en) * | 1961-06-20 | 1963-05-01 | Conch Int Methane Ltd | Membrane tanks |
US3179549A (en) * | 1964-06-10 | 1965-04-20 | Gen Electric | Thermal insulating panel and method of making the same |
US3184094A (en) * | 1962-07-27 | 1965-05-18 | Conch Int Methane Ltd | Extensible metal sheets |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1070447A (fr) * | 1951-07-14 | 1954-07-26 | Thomson Houston Comp Francaise | Perfectionnements aux isolants thermiques fonctionnant sous vide |
NL247872A (fi) * | 1959-02-20 | |||
FR1307748A (fr) * | 1961-01-23 | 1962-10-26 | Conch Int Methane Ltd | Réservoir isolant du type à membrane |
NL285172A (fi) * | 1961-11-21 |
-
0
- NL NL297976D patent/NL297976A/xx unknown
- BE BE639626D patent/BE639626A/xx unknown
-
1963
- 1963-05-06 GB GB17834/63A patent/GB1036144A/en not_active Expired
- 1963-09-11 FI FI631761A patent/FI43473C/fi active
- 1963-09-17 DE DE1963C0030911 patent/DE1301833C2/de not_active Expired
- 1963-09-18 FR FR947930A patent/FR84725E/fr not_active Expired
- 1963-10-25 ES ES0292891A patent/ES292891A2/es not_active Expired
- 1963-11-26 US US325931A patent/US3302358A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2576698A (en) * | 1948-04-14 | 1951-11-27 | Johns Manville | Metal-sheathed insulating blanket and method of manufacture |
GB924803A (en) * | 1961-06-20 | 1963-05-01 | Conch Int Methane Ltd | Membrane tanks |
US3184094A (en) * | 1962-07-27 | 1965-05-18 | Conch Int Methane Ltd | Extensible metal sheets |
US3179549A (en) * | 1964-06-10 | 1965-04-20 | Gen Electric | Thermal insulating panel and method of making the same |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3392866A (en) * | 1964-07-10 | 1968-07-16 | Technigaz | Insulation for fluid-tight enclosures |
US3380613A (en) * | 1964-09-09 | 1968-04-30 | Conch Int Methane Ltd | Containers for very cold or very hot liquids |
US3392864A (en) * | 1965-02-03 | 1968-07-16 | Nasa Usa | Insulation system |
US3525661A (en) * | 1965-06-28 | 1970-08-25 | Conch Int Methane Ltd | Thermal insulation structures |
US3382821A (en) * | 1965-09-03 | 1968-05-14 | Shooting Equipment Inc | Stalls for shooting ranges |
US3408234A (en) * | 1966-10-24 | 1968-10-29 | Phillips Petroleum Co | Adjustable jacket for storage batteries |
US3486286A (en) * | 1967-04-25 | 1969-12-30 | Linde Ag | Yieldable wall assembly for the transportation of low-temperature fluids |
US3517850A (en) * | 1967-05-24 | 1970-06-30 | Anna Weigert | Yieldable wall assembly for containers for the transportation of low-temperature fluids |
US3506412A (en) * | 1967-05-24 | 1970-04-14 | Linde Ag | Yieldable wall assembly for containers for the transportation of low-temperature fluids |
US3476912A (en) * | 1968-03-13 | 1969-11-04 | Swenson Granite Co Inc John | Panel for composite wall structure |
US3800970A (en) * | 1970-03-19 | 1974-04-02 | Conch Int Methane Ltd | Integrated tank containers for the bulk storage of liquids |
US4146666A (en) * | 1977-08-08 | 1979-03-27 | Borg-Warner Corporation | Thermally expansible sheet |
US4335831A (en) * | 1978-01-16 | 1982-06-22 | Owens-Corning Fiberglas Corporation | Insulated cryogenic liquid container |
US4269323A (en) * | 1978-02-03 | 1981-05-26 | Nippon Sanso Kabushiki Kaisha | Heat insulated tank |
US4461398A (en) * | 1981-02-20 | 1984-07-24 | Technigaz | Storage tank for cryogenic liquefied gases such in particular as hydrogen |
FR2500580A1 (fr) * | 1981-02-20 | 1982-08-27 | Technigaz | Reservoir de stockage de gaz cryogeniques liquides tels que notamment de l'hydrogene |
EP0060169A1 (fr) * | 1981-02-20 | 1982-09-15 | Technigaz | Réservoir de stockage de gaz cryogéniques liquéfiés tels que, notamment, de l'hydrogène |
FR2535831A1 (fr) * | 1982-11-05 | 1984-05-11 | Gaz Transport | Procede pour ameliorer l'isolation thermique d'une cuve destinee au stockage d'un gaz liquefie et cuve correspondante |
US4646499A (en) * | 1984-10-13 | 1987-03-03 | F. G. Wilson (Engineering) Limited | Roofs |
US4760679A (en) * | 1986-05-08 | 1988-08-02 | Thompson Peter B | Roofing panel and method |
US4919366A (en) * | 1988-09-23 | 1990-04-24 | Mmi Incorporated | Heat resistive wall assembly for a space vehicle |
EP0391788A1 (fr) * | 1989-04-06 | 1990-10-10 | Haironville S.A. | Panneau d'isolation thermique et acoustique |
FR2645618A1 (fr) * | 1989-04-06 | 1990-10-12 | Haironville Forges | Panneau d'isolation thermique et acoustique |
US5316816A (en) * | 1989-05-10 | 1994-05-31 | Degussa Aktiengesellschaft | Form body for heat insulation and vacuum insulation panel with asymmetric design |
EP0463311A1 (de) * | 1990-06-22 | 1992-01-02 | Degussa Aktiengesellschaft | Vakuumisolationspanel mit asymmetrischem Aufbau |
US5500305A (en) * | 1990-09-24 | 1996-03-19 | Aladdin Industries, Inc. | Vacuum insulated panel and method of making a vacuum insulated panel |
US5252408A (en) * | 1990-09-24 | 1993-10-12 | Aladdin Industries, Inc. | Vacuum insulated panel and method of forming a vacuum insulated panel |
US5445857A (en) * | 1992-12-28 | 1995-08-29 | Praxair Technology, Inc. | Textured vacuum insulation panel |
US5725925A (en) * | 1993-10-15 | 1998-03-10 | Shinagawa Refractories Co., Ltd. | Packing material for refractory |
US5773117A (en) * | 1994-05-13 | 1998-06-30 | Metecno S.P.A. | Deep ribbed sandwich panel and method for its manufacture |
US6964801B1 (en) * | 1997-01-10 | 2005-11-15 | Dana Corporation | Method for producing a heat shield and heat shield produced by this method |
US6335073B1 (en) * | 1997-02-13 | 2002-01-01 | Faist Automotive Gmbh & Co. Kg. | Thermal shield for components made of thermoplastics |
WO1999031446A1 (en) * | 1997-12-18 | 1999-06-24 | The Dow Chemical Company | Evacuated insulation panel having non-wrinkled surfaces |
US6010762A (en) * | 1998-01-15 | 2000-01-04 | Cabot Corporation | Self-evacuating vacuum insulation panels |
US6485805B1 (en) | 1998-01-15 | 2002-11-26 | Cabot Corporation | Multilayer insulation composite |
FR2780767A1 (fr) * | 1998-07-01 | 2000-01-07 | Agence Spatiale Europeenne | Paroi pour reservoir cryogenique |
US6178754B1 (en) | 1998-07-01 | 2001-01-30 | Agence Spatiale Europeenne | Cryogenic tank wall |
US6544618B1 (en) | 1999-05-06 | 2003-04-08 | Cabot Corporation | Thermally reflective layer-porous metal oxide film insulation composite |
EP1197714A3 (de) * | 2000-10-10 | 2002-09-04 | Hans Dr. Dr. Viessmann | Wandbauelement |
EP1732828A1 (en) * | 2004-03-30 | 2006-12-20 | Hyundai Heavy Industries Co., Ltd. | Metal membrane panel of insulated lng cargo tank |
EP1732828A4 (en) * | 2004-03-30 | 2008-03-26 | Hyun Dai Heavy Ind Co Ltd | METAL MEMBRANE PLATE FOR INSULATED LNG FREIGHT CONTAINER |
WO2006047188A1 (en) * | 2004-10-21 | 2006-05-04 | Chicago Bridge & Iron Company | Cryogenic liquid storage structure |
US9771714B2 (en) * | 2010-06-17 | 2017-09-26 | Jerry Castelle | Vacuum insulation panel |
US9174722B2 (en) | 2012-07-06 | 2015-11-03 | C&D Zodiac, Inc. | Aircraft interior panel with acoustic materials |
US20140008144A1 (en) * | 2012-07-06 | 2014-01-09 | C&D Zodiac, Inc. | Aircraft interior panel with acoustic materials |
US8931592B2 (en) * | 2012-07-06 | 2015-01-13 | C&D Zodiac, Inc. | Aircraft interior panel with acoustic materials |
RU2631746C2 (ru) * | 2013-02-14 | 2017-09-26 | Газтранспорт Э Технигаз | Герметизирующая теплоизолирующая стенка резервуара для хранения текучей среды |
WO2014125186A1 (fr) * | 2013-02-14 | 2014-08-21 | Gaztransport Et Technigaz | Paroi, etanche et thermiquement isolante, pour cuve de stockage de fluide |
FR3001945A1 (fr) * | 2013-02-14 | 2014-08-15 | Gaztransp Et Technigaz | Paroi etanche et thermiquement isolante pour cuve de stockage de fluide |
CN104955722A (zh) * | 2013-02-14 | 2015-09-30 | 气体运输技术公司 | 用于存储液体的密封绝热壁 |
US10876687B2 (en) | 2013-02-14 | 2020-12-29 | Gaztransport Et Technigaz | Sealed and thermally insulating wall for a tank for storing fluid |
JP2016515986A (ja) * | 2013-04-11 | 2016-06-02 | ギャズトランスポルト エ テクニギャズ | 不浸透性バリアの波形の結合解除 |
US10012428B2 (en) * | 2014-09-01 | 2018-07-03 | Polyplastic Groep B.V. | Access door |
US11279546B2 (en) | 2015-11-25 | 2022-03-22 | Yeti Coolers, Llc | Insulating container having vacuum insulated panels and method |
US10676267B2 (en) | 2015-11-25 | 2020-06-09 | Yeti Coolers, Llc | Insulating container having vacuum insulated panels and method |
USD820647S1 (en) | 2017-05-16 | 2018-06-19 | Yeti Coolers, Llc | Insulating device |
USD821155S1 (en) | 2017-05-16 | 2018-06-26 | Yeti Coolers, Llc | Insulating device |
USD821824S1 (en) | 2017-05-16 | 2018-07-03 | Yeti Coolers, Llc | Insulating device |
USD821156S1 (en) | 2017-05-16 | 2018-06-26 | Yeti Coolers, Llc | Insulating device |
USD821157S1 (en) | 2017-05-16 | 2018-06-26 | Yeti Coolers, Llc | Insulating device |
USD910382S1 (en) | 2017-05-16 | 2021-02-16 | Yeti Coolers, Llc | Insulating device |
USD820648S1 (en) | 2017-05-16 | 2018-06-19 | Yeti Coolers, Llc | Insulating device |
USD992359S1 (en) | 2017-05-16 | 2023-07-18 | Yeti Coolers, Llc | Insulating device |
US20220178496A1 (en) * | 2019-03-07 | 2022-06-09 | Lattice Technology Co., Ltd. | Vacuum heat-insulation device for low-temperature tank |
US11835182B2 (en) * | 2019-03-07 | 2023-12-05 | Lattice Technology Co., Ltd. | Vacuum heat-insulation device for low-temperature tank |
US20220064939A1 (en) * | 2020-08-27 | 2022-03-03 | Va-Q-Tec Ag | Temperature stable vacuum insulation element |
Also Published As
Publication number | Publication date |
---|---|
BE639626A (fi) | |
FI43473C (fi) | 1971-04-13 |
FI43473B (fi) | 1970-12-31 |
GB1036144A (en) | 1966-07-13 |
DE1301833C2 (de) | 1973-04-05 |
ES292891A2 (es) | 1964-03-16 |
DE1301833B (de) | 1969-08-28 |
NL297976A (fi) | |
FR84725E (fr) | 1965-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3302358A (en) | Thermal insulation structures | |
TWI510419B (zh) | 包含一基座之密封絕緣槽 | |
US3150795A (en) | Membrane tanks | |
US3406858A (en) | Containers for cold liquids | |
US3339778A (en) | Insulated tank for liquids at low temperatures | |
US3215301A (en) | Expansible metal sheets | |
NO153049B (no) | Fremgangsmaate og reaktor for ammoniakk-syntese | |
US2961116A (en) | Thermally insulated wall structure | |
US11982405B1 (en) | Storage container for liquefied gas | |
US3441164A (en) | Cryogenic storage tanks | |
JP2005214372A (ja) | 密閉断熱構造体及び断熱壁面間補強方法 | |
US3525661A (en) | Thermal insulation structures | |
US3184094A (en) | Extensible metal sheets | |
US3337079A (en) | Stressed membrane liquified gas container | |
US3595430A (en) | Containers for liquefied gases having corrigated wall structure | |
KR101589118B1 (ko) | 액화가스 저장용 압력용기 | |
KR102426137B1 (ko) | 액화 화물 저장 탱크용 단열 패널 | |
KR20230059815A (ko) | 극저온 서비스가 가능한 탱크 | |
JPS6396395A (ja) | 真空−熱絶縁要素のための継目絶縁構造体 | |
US4099649A (en) | Apparatus for transporting fluids at low temperature | |
KR101556259B1 (ko) | 액화가스 화물창의 멤브레인 | |
US3755056A (en) | Cellular insulation for use with low temperature liquids | |
US2971667A (en) | Expansible-wall container for lowtemperature fluids | |
US3712500A (en) | Liner for cryogenic container | |
KR100457880B1 (ko) | 액화천연가스운반선의 항온 화물창 |