US3272901A - Textile filament having apparent variable denier - Google Patents
Textile filament having apparent variable denier Download PDFInfo
- Publication number
- US3272901A US3272901A US313375A US31337563A US3272901A US 3272901 A US3272901 A US 3272901A US 313375 A US313375 A US 313375A US 31337563 A US31337563 A US 31337563A US 3272901 A US3272901 A US 3272901A
- Authority
- US
- United States
- Prior art keywords
- filament
- component
- polymer
- orifice
- stream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/32—Side-by-side structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/20—Formation of filaments, threads, or the like with varying denier along their length
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/253—Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2929—Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
- Y10T428/2931—Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2976—Longitudinally varying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2978—Surface characteristic
Definitions
- the present invention relates to a novelty textile filament having an appearance resembling a variable denier filament together with the method and apparatus for producing the filament. More particularly, the novel filament according to the present invention has a substantially constant cross-sectional area but has a cross-sectional configuration which varies along its length.
- Variable denier yarns made according to the prior art presented several problems in processing the filaments into yarns and the yarns into fabrics.
- Such prior art filaments were typically produced by variably drawing the filaments, thus producing portions of the filaments which had been considerably stretched and leaving other portions substantially unstretched. The large portions occasionally would catch in a restricted area, such as the eye of a needle.
- the differences in physical properties resulting from the variable drawing produced undesirable non-uniform physical properties in the filaments.
- Such prior art filaments usually had to be further treated to provide high-contrast variable dye receptivity.
- a further object is to provide a filament of the above character in which the cross-sectional shape varies although the cross-sectional area remains constant along the filament.
- a further object is to facilitate provision of a selfcrimping filament wherein the crimping is random in kind and extent.
- a further object is to provide a filament of the above character which possesses random receptivity to dyeing.
- a further object is to provide a filament of the above character which imparts 'novel desirable handle, luster, and porosity to textile fabrics.
- a further object is to provide a novel method and apparatus for producing filaments of the above character.
- the invention accordingly comprises the several steps and the relation of one or more of said steps with respect to each of the others, and the article possessing the features, properties, and relation of elements which are exemplified in the following detailed disclosure and the scope of the invention will be indicated in the claims.
- FIGURE 1 is an enlarged plan view of a fragment of a spinneret
- FIGURE 2 is a perspective view of a portion of a novel filament according to the present invention.
- FIGURE 3 is a schematic cross-sectional view of particular apparatus for producing the novel filament of FIGURE 2;
- FIGURE 4 is a sectional view taken along line 44 of FIGURE 3.
- FIGURE 5 is a sectional view taken along line 5-5 of FIGURE 3.
- the cross-sectional shape of the solidified filament formed after extrusion through a given non-circular orifice is controlled primarily by the sheer viscosity and the dynamic surface tension of the extruding melt.
- surface tension acts to reduce the surface free energy to a minimum, corresponding to a circular cross-section; conversely, viscous forces resist flow within the molten filament.
- a filament of high viscosity polymer tends to retain the general cross-sectional configuration of the non-circular orifice, but a low viscosity molten filament tends to become circular before solid-ification.
- a filament having a substantially constant denier but a variable cross section.
- a filament is produced having a variable cross-sectional shape along the length of the filament, as illustrated in FIGURE 2.
- the filament 24 has an upper portion 26 which is substantially cruciform in shape, corresponding approximately to the shape of the spinneret orifice 22.
- the lower portion 2 8 of filament 24 has a substantially circular cross-sectional shape and is considerably smaller in diameter than the apparent width of portion 26, indicated in the circumscribing dotted projection at 30, although the cross-sectional areas of portions 26 and 28 are the same.
- Such a filament configuration has many applications as a novelty filament when the appearance of a variable denier or extended slub is desired.
- the variations in apparent thickness impart greater natural bulk to the filament and provide for substantial internfilament friction. Since the filament actually has an approximately constant denier throughout its length, its physical strength is substantially uniform.
- the filament may be readily drawn on conventional drawing equipment with only minor modifications without the likelihood of excessive breakage or other problems in handling.
- FIGURES 3-5 An exemplary apparatus for producing the novel filament shown in FIGURE 2 is illustrated in FIGURES 3-5.
- the spinneret block 20 includes a channel 32 communicating with the inlet of conventional constant-volume metering pump 33.
- a small channel 37 delivers polymer from the outlet of metering pump 33 to the back side of spinneret 18 from whence the polymer extrudes through non-circular orifice 22.
- a pair of tubular polymer supply channels 34 and 36 extend downwardly through block 20 and are alternately connected to channel 32 by a metering mechanism 38.
- the metering mechanism 38 in the exemplary form illustrated, includes a shaft 46 extending through and rotatably journaled in block 20, intersecting channels 34 and 36.
- a metering passage 42 extends through shaft 40 in alignment with channel 34, and connects this chanthe ploymer extrudes through non-circular orifice 22.
- a similar metering passage 44 is provided in shaft 40 for connecting channel 36 to channel 32 when channel 34 is not so connected.
- the axes of passages 42 and 44 are arranged at right angles to one another when viewed parallel to the axis of rod 40.
- Means is provided for rotating shaft 40, such as the illustrated gear 46, which may be driven by a motor, for example.
- channel 34 is connected to channel 32 by passage 42, while channel 36 is isolated from chamber 32 due to the relative orientation of passages 42 and 44.
- shaft 40 approximately 90, this situation will be reversed and the polymer in channel 36 will then be supplied through passage 44 to channel 32 for delivery to the inlet of metering pump 33.
- both channel 34 and channel 36 are connected to channel 32 but to differing extents, providing a supply of polymer at all times to metering pump 33.
- the entire spinning block assembly is surrounded by a heating jacket (not shown) to control temperature at the level required for proper flowing of the molten polymers.
- polymers having substantially differing ratios of viscosity to surface tension at the spinning temperature are supplied under pressure to channels 34 and 36 by suitable pumping equipment (not shown).
- the polymers should be compatible; i.e., they should be miscible so that a strong bond forms between the components.
- the polymer in channel 34 may have a relatively high ratio of viscosity to surface tension as compared to the polymer in channel 36.
- Metering shaft 40 is rotated, either at a constant or variable angular velocity, to alternately supply polymer to channel 32 from channel 34 and from channel 36.
- the stream extruded from orifice 22 will have portions composed primarily or entirely of the polymer from channel 34, and portions composed primarily or entirely of polymer from channel 36, together with intermediate or transition regions as shown at 48 having a composition across the section including polymer components from both supply channels.
- the stream thus extruded is cooled and solidified at an appropriate rate such that the polymer components from channel 34 tend to retain the shape of orifice 22 (see portion 26 in FIGURE 2), while the components from channel 36 tends to coalesce into a circular cross-section.
- the cooling may, for example, be provided by a stream of air directed onto the extruded polymer stream.
- various other means may be employed to ensure extrusion of a constant total volume of polymer in a given time.
- different pump pressures may be used for the polymers in channels 34 and 36, or metering passages 42 and 44 may have different cross-sections in order to compensate for differences in polymer viscosities.
- polymers are chosen that differ not only in the ratio of viscosity to surface tension, but also in the latent degree of shrinkage under the influence of heat or moisture,
- Self-crimping yarns have been produced heretofore by conjugate spinning under conditions which yield filaments of substantially constant cross-sectional shape.
- the present method of spinning through non-circular orifices provides distinct advantages over the conventional method, however, because the filament cross-sectional shape varies continually, and more importantly, the transitions from one polymer component to the other are predominantly axially asymmertical as illustrated at 48 in FIGURE 2. Therefore, the usual uniform helical crimp does not develop. Instead, the crimp is random both in kind and in extent: helical crimp may extend a few inches followed by saw-toothed convolutions that vary randomly in amplitude, period, and in axial plane. Bulk and interfilament cohesion of such self-crimping yarns will exceed that of conventional conjugate spun round filament yarns.
- polymers which differ not only in the ratio of viscosity to the surface tension, but in dye receptivity as well may be of a low viscosity stream of nylon 6 and a high viscosity stream of nylon 66. If these are extruded through a non-circular orifice, the nylon 6 will, in general, dye darker than the nylon 66 resulting in yarn with novel irregular streaks along the filaments; or nylon 66 polymer containing deep-dye additives may be combined with normal nylon 66 polymer.
- a similar variation would be to extrude streams of melt-colored polymers; e.g., one polymer stream colored with blue pigment may be combined with another which is colored white or is uncolored. The resultant yarn exhibits an attractive variegated blue and white coloration when it is converted into fabric.
- the novel method makes possible the production of a filament having an appearance resembling a variable denier although the denier actually remains substantially constant along its length.
- the use of ploymer components which differ in their latent degree of shrinkage under the influence of heart or moisture provides a self-crimping filament wherein the crimping is random in kind and extent.
- the combination of polymer components which vary in dye receptivity provides novel filaments having a desirable random variegated coloration.
- the filaments produced according to the present invention possess a novel desirable hand, luster and porosity when incorporated into a fabric and possess a substantial amount of interfilament friction.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Knitting Of Fabric (AREA)
- Multicomponent Fibers (AREA)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL300696D NL300696A (no) | 1962-11-21 | ||
BE640251D BE640251A (no) | 1962-11-21 | ||
US313375A US3272901A (en) | 1962-11-21 | 1963-10-02 | Textile filament having apparent variable denier |
GB44669/63A GB1033308A (en) | 1962-11-21 | 1963-11-12 | Artificial textile filament having apparent variable denier |
NO150820A NO117932B (no) | 1962-11-21 | 1963-11-14 | |
SE12745/63A SE303824B (no) | 1962-11-21 | 1963-11-19 | |
CH1424563A CH425077A (fr) | 1962-11-21 | 1963-11-20 | Procédé de fabrication d'une fibre à texture continue, fibre obtenue selon ce procédé et appareil pour la mise en oeuvre dudit procédé |
DE19631435568 DE1435568A1 (de) | 1962-11-21 | 1963-11-20 | Textilfaser sowie Verfahren und Vorrichtung zu ihrer Herstellung |
DK543463AA DK116463B (da) | 1962-11-21 | 1963-11-20 | Smeltespindingsfremgangsmåde til fremstilling af et systetisk filament med tilsyneladende varierende denier og apparat til brug ved fremgangsmåden. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US239189A US3138516A (en) | 1962-11-21 | 1962-11-21 | Textile filament having apparent variable denier |
US313375A US3272901A (en) | 1962-11-21 | 1963-10-02 | Textile filament having apparent variable denier |
Publications (1)
Publication Number | Publication Date |
---|---|
US3272901A true US3272901A (en) | 1966-09-13 |
Family
ID=26932358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US313375A Expired - Lifetime US3272901A (en) | 1962-11-21 | 1963-10-02 | Textile filament having apparent variable denier |
Country Status (9)
Country | Link |
---|---|
US (1) | US3272901A (no) |
BE (1) | BE640251A (no) |
CH (1) | CH425077A (no) |
DE (1) | DE1435568A1 (no) |
DK (1) | DK116463B (no) |
GB (1) | GB1033308A (no) |
NL (1) | NL300696A (no) |
NO (1) | NO117932B (no) |
SE (1) | SE303824B (no) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3371139A (en) * | 1964-12-22 | 1968-02-27 | Monsanto Co | Process and apparatus for producing self-texturing fibers |
US3453688A (en) * | 1967-02-28 | 1969-07-08 | Monsanto Co | Filament extrusion apparatus |
US3461515A (en) * | 1966-10-10 | 1969-08-19 | Erie Foundry Co | Continuous extrusion machine |
US3655314A (en) * | 1969-02-19 | 1972-04-11 | Barmag Barmer Maschf | Spinning apparatus composed of modular spinning units on common heating beam |
US4186239A (en) * | 1976-12-06 | 1980-01-29 | Berkley & Company, Inc. | Monofilament weed cutters |
US4185951A (en) * | 1976-05-19 | 1980-01-29 | Dynamit Nobel Ag | Apparatus for the extrusion of patterned sheets of thermoplastic synthetic resins |
US4259277A (en) * | 1978-05-18 | 1981-03-31 | The General Engineering Company (Radcliffe) Limited | Method and apparatus for the injection of additives into plastics material |
US4276250A (en) * | 1979-10-29 | 1981-06-30 | Sherwood Medical Industries, Inc. | Apparatus and method for producing tubular extrusions having axial sections of materials having different characteristics |
US4414276A (en) * | 1980-07-29 | 1983-11-08 | Teijin Limited | Novel assembly of composite fibers |
US4869055A (en) * | 1987-01-23 | 1989-09-26 | Omark Industries, Inc. | Star-shaped flexible cutting line |
US5200248A (en) * | 1990-02-20 | 1993-04-06 | The Procter & Gamble Company | Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein |
US5242644A (en) * | 1990-02-20 | 1993-09-07 | The Procter & Gamble Company | Process for making capillary channel structures and extrusion die for use therein |
US5368926A (en) * | 1992-09-10 | 1994-11-29 | The Procter & Gamble Company | Fluid accepting, transporting, and retaining structure |
US5430943A (en) * | 1992-12-10 | 1995-07-11 | Lee; Anthony L. | Unitary cutting attachment for vegetation cutting devices |
US5628736A (en) * | 1994-04-29 | 1997-05-13 | The Procter & Gamble Company | Resilient fluid transporting network for use in absorbent articles |
US20090176054A1 (en) * | 2008-01-03 | 2009-07-09 | The Boeing Company | Insulative Material And Associated Method Of Forming Same |
US20150240385A1 (en) * | 2012-10-22 | 2015-08-27 | Korea Institute Of Industrial Technology | Method and apparatus for fabricating conjugate fiber, and conjugate fiber fabricated thereby |
CN111235651A (zh) * | 2019-01-10 | 2020-06-05 | 光山县群力化纤有限公司 | 一种8d锦纶6超亮光三叶型单丝的生产方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2174779A (en) * | 1937-12-16 | 1939-10-03 | George Morrell Corp | Apparatus for extruding varicolored plastics |
US2803041A (en) * | 1953-02-11 | 1957-08-20 | Celanese Corp | Extrusion of plastic materials |
US2815033A (en) * | 1954-02-08 | 1957-12-03 | American Viscose Corp | Alternate flow control for fluid streams |
US2822574A (en) * | 1956-04-17 | 1958-02-11 | American Viscose Corp | Method and means for spinning a banded filament |
GB841327A (en) * | 1955-12-21 | 1960-07-13 | Snia Viscosa | Improvements in and relating to the production of filaments of synthetic linear polymers |
US3017686A (en) * | 1957-08-01 | 1962-01-23 | Du Pont | Two component convoluted filaments |
US3038235A (en) * | 1956-12-06 | 1962-06-12 | Du Pont | Textile fibers and their manufacture |
US3039141A (en) * | 1958-05-12 | 1962-06-19 | American Viscose Corp | Apparatus for producing artificial filaments |
GB930629A (en) * | 1961-02-22 | 1963-07-03 | Schweizerische Viscose | Process for the manufacture of spontaneously crimping composite filaments |
-
0
- NL NL300696D patent/NL300696A/xx unknown
- BE BE640251D patent/BE640251A/xx unknown
-
1963
- 1963-10-02 US US313375A patent/US3272901A/en not_active Expired - Lifetime
- 1963-11-12 GB GB44669/63A patent/GB1033308A/en not_active Expired
- 1963-11-14 NO NO150820A patent/NO117932B/no unknown
- 1963-11-19 SE SE12745/63A patent/SE303824B/xx unknown
- 1963-11-20 CH CH1424563A patent/CH425077A/fr unknown
- 1963-11-20 DK DK543463AA patent/DK116463B/da unknown
- 1963-11-20 DE DE19631435568 patent/DE1435568A1/de active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2174779A (en) * | 1937-12-16 | 1939-10-03 | George Morrell Corp | Apparatus for extruding varicolored plastics |
US2803041A (en) * | 1953-02-11 | 1957-08-20 | Celanese Corp | Extrusion of plastic materials |
US2815033A (en) * | 1954-02-08 | 1957-12-03 | American Viscose Corp | Alternate flow control for fluid streams |
GB841327A (en) * | 1955-12-21 | 1960-07-13 | Snia Viscosa | Improvements in and relating to the production of filaments of synthetic linear polymers |
US2822574A (en) * | 1956-04-17 | 1958-02-11 | American Viscose Corp | Method and means for spinning a banded filament |
US3038235A (en) * | 1956-12-06 | 1962-06-12 | Du Pont | Textile fibers and their manufacture |
US3017686A (en) * | 1957-08-01 | 1962-01-23 | Du Pont | Two component convoluted filaments |
US3039141A (en) * | 1958-05-12 | 1962-06-19 | American Viscose Corp | Apparatus for producing artificial filaments |
GB930629A (en) * | 1961-02-22 | 1963-07-03 | Schweizerische Viscose | Process for the manufacture of spontaneously crimping composite filaments |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3371139A (en) * | 1964-12-22 | 1968-02-27 | Monsanto Co | Process and apparatus for producing self-texturing fibers |
US3461515A (en) * | 1966-10-10 | 1969-08-19 | Erie Foundry Co | Continuous extrusion machine |
US3453688A (en) * | 1967-02-28 | 1969-07-08 | Monsanto Co | Filament extrusion apparatus |
US3655314A (en) * | 1969-02-19 | 1972-04-11 | Barmag Barmer Maschf | Spinning apparatus composed of modular spinning units on common heating beam |
US4185951A (en) * | 1976-05-19 | 1980-01-29 | Dynamit Nobel Ag | Apparatus for the extrusion of patterned sheets of thermoplastic synthetic resins |
US4186239A (en) * | 1976-12-06 | 1980-01-29 | Berkley & Company, Inc. | Monofilament weed cutters |
US4259277A (en) * | 1978-05-18 | 1981-03-31 | The General Engineering Company (Radcliffe) Limited | Method and apparatus for the injection of additives into plastics material |
US4276250A (en) * | 1979-10-29 | 1981-06-30 | Sherwood Medical Industries, Inc. | Apparatus and method for producing tubular extrusions having axial sections of materials having different characteristics |
US4414276A (en) * | 1980-07-29 | 1983-11-08 | Teijin Limited | Novel assembly of composite fibers |
US4568506A (en) * | 1980-07-29 | 1986-02-04 | Teijin Limited | Process for producing an assembly of many fibers |
US4869055A (en) * | 1987-01-23 | 1989-09-26 | Omark Industries, Inc. | Star-shaped flexible cutting line |
US5242644A (en) * | 1990-02-20 | 1993-09-07 | The Procter & Gamble Company | Process for making capillary channel structures and extrusion die for use therein |
US5200248A (en) * | 1990-02-20 | 1993-04-06 | The Procter & Gamble Company | Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein |
US5368926A (en) * | 1992-09-10 | 1994-11-29 | The Procter & Gamble Company | Fluid accepting, transporting, and retaining structure |
US5430943A (en) * | 1992-12-10 | 1995-07-11 | Lee; Anthony L. | Unitary cutting attachment for vegetation cutting devices |
US5862598A (en) * | 1992-12-10 | 1999-01-26 | Lee; Anthony L. | Unitary hub for vegetation cutting devices |
US6427341B1 (en) | 1992-12-10 | 2002-08-06 | Anthony L. Lee | Cutting blade for vegetation trimming device |
US5628736A (en) * | 1994-04-29 | 1997-05-13 | The Procter & Gamble Company | Resilient fluid transporting network for use in absorbent articles |
US20090176054A1 (en) * | 2008-01-03 | 2009-07-09 | The Boeing Company | Insulative Material And Associated Method Of Forming Same |
CN101917879A (zh) * | 2008-01-03 | 2010-12-15 | 波音公司 | 保温材料和形成保温材料的相关方法 |
US8349438B2 (en) | 2008-01-03 | 2013-01-08 | The Boeing Company | Insulative material and associated method of forming same |
CN101917879B (zh) * | 2008-01-03 | 2013-11-13 | 波音公司 | 保温材料和形成保温材料的相关方法 |
US20150240385A1 (en) * | 2012-10-22 | 2015-08-27 | Korea Institute Of Industrial Technology | Method and apparatus for fabricating conjugate fiber, and conjugate fiber fabricated thereby |
US10266967B2 (en) * | 2012-10-22 | 2019-04-23 | Korea Institute Of Industrial Technology | Method and apparatus for fabricating conjugate fiber, and conjugate fiber fabricated thereby |
CN111235651A (zh) * | 2019-01-10 | 2020-06-05 | 光山县群力化纤有限公司 | 一种8d锦纶6超亮光三叶型单丝的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CH425077A (fr) | 1966-11-30 |
DE1435568A1 (de) | 1969-03-13 |
DK116463B (da) | 1970-01-12 |
SE303824B (no) | 1968-09-09 |
BE640251A (no) | |
NL300696A (no) | |
GB1033308A (en) | 1966-06-22 |
NO117932B (no) | 1969-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3272901A (en) | Textile filament having apparent variable denier | |
US2278888A (en) | Artificial structure and process for producing same | |
US3117362A (en) | Composite filament | |
US4117194A (en) | Bicomponent filaments with a special cross-section | |
US2987797A (en) | Sheath and core textile filament | |
US3244785A (en) | Process for producing a composite sheath-core filament | |
US5458972A (en) | Multicomponent cross-section fiber | |
US3017686A (en) | Two component convoluted filaments | |
US3209402A (en) | Apparatus for producing multicom-ponent filaments and yarns | |
DE69107411T2 (de) | Verfahren und Vorrichtung zum Kombinieren von Fäden mit verschiedenen Farben um ein mehrfarbiges Garn zu machen. | |
US3408277A (en) | Process and apparatus for producing high-bulk synthetic yarns | |
US3853977A (en) | Method for producing mixed filaments | |
US3780149A (en) | Conjugate spinning process | |
US3541198A (en) | Process for manufacturing composite filaments | |
DE2408455B2 (de) | Mehrschichtige zusammengesetzte faser und verfahren zu deren herstellung | |
US5093061A (en) | Deep dyeing conjugate yarn processes | |
US4002795A (en) | Crimped yarns and method for making them | |
KR840000347B1 (ko) | 양모와 같은 촉감을 갖는 자체권축사의 제조방법 | |
US3138516A (en) | Textile filament having apparent variable denier | |
US3347738A (en) | Textile filament having apparent variable denier | |
US3388198A (en) | Method for producing iridescent filament | |
DE19746878B4 (de) | Verfahren zur Herstellung eines Mehrkomponentenfadens | |
US3439084A (en) | Thick and thin yarn and process for the preparation thereof | |
US3640670A (en) | Spinnerette for extruding t-shaped filaments | |
US3660993A (en) | Two-component composite filament and method of producing same |