US3347738A - Textile filament having apparent variable denier - Google Patents

Textile filament having apparent variable denier Download PDF

Info

Publication number
US3347738A
US3347738A US350443A US35044364A US3347738A US 3347738 A US3347738 A US 3347738A US 350443 A US350443 A US 350443A US 35044364 A US35044364 A US 35044364A US 3347738 A US3347738 A US 3347738A
Authority
US
United States
Prior art keywords
filament
channel
polymer
denier
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US350443A
Inventor
James G Sims
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US239189A external-priority patent/US3138516A/en
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US350443A priority Critical patent/US3347738A/en
Application granted granted Critical
Publication of US3347738A publication Critical patent/US3347738A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying

Definitions

  • the present invention relates to a novelty textile filament having an appearance resembling a variable denier filament together with the method and apparatus for producing the filament. More particularly, the novel filament according to the present invention has a substantially constant cross-sectional area but has a cross-sectional configuration which varies along its length.
  • Variable denier yarns made according to the prior art presented several problems in processing the filaments into yarns and the yarns into fabrics.
  • Such prior art filaments were typically produced by variably drawing the filaments, thus producing portions of the filaments which had been considerably stretched and leaving other portions substantially unstretched. The large portions occasionally would catch in a restricted area, such as the eye of a needle.
  • the differences in physical properties resulting from the variable drawing produced undesirable nonuniform physical properties in the filaments.
  • Such prior art filaments usually had to be further treated to provide high-contrast variable dye receptivity.
  • a further object is to provide a filament of the above character in which the cross-sectional shape varies although the cross-sectional area remains constant along the filament.
  • a further object is to facilitate provision of a selfcrimping filament wherein the crimping is random in kind and extent.
  • a further object is to provide a filament of the above character which possesses random receptivity to dyeing.
  • a further object is to provide a filament of the above character which imparts novel desirable handle, luster, and porosity to textile fabrics.
  • a further object is to provide a novel method and apparatus for producing filaments of the above character.
  • the invention accordingly comprises the several steps and the relation of one or more of said steps with respect to each of the others, and the article possessing the features, properties, and relation of elements which are exemplified in the following detailed disclosure and the scope of the invention will be indicated in the claims.
  • FIGURE 3 is a schematic cross-sectional view of particular apparatus for producing the novel filament of FIGURE 2;
  • FIGURE 4 is a sectional of FIGURE 3.
  • FIGURE 5 is a sectional of FIGURE 3.
  • a molten polymer after being extruded through a noncircular orifice such as shown at 22 becomes solidified to form a continuous filament. It has been found that the cross-Sectional shape of the solidified filament formed after extrusion through a given noncircular orifice is controlled primarily by the shear viscosity and the dynamic surface tension of the extruding melt. Within the constraints of the system, surface tension acts to reduce the surface free energy to a minimum, corresponding to a circular cross-section; conversely, viscous forces resist flow within the molten filament.
  • a filament of high viscosity polymer tends to retain the general cross-sectional configuration of the nonview taken along the line 4-4 view taken along the line 5-5 circular orifice, but a low viscosity molten filament tends to become circular beforev solidification.
  • a filament having a substantially constant denier but a variable cross section.
  • a filament is produced having a variable cross-sectional shape along the length of the filament, as illustrated in FIGURE 2.
  • the filament 24 has an upper portion 26 which is substantially cruciform in shape, corresponding approximately to the shape of the spinneret orifice 22.
  • the lower portion 28 of filament 24 has a substantially circular cross-sectional shape and is considerably smaller in diameter than the apparent width of portion 26, indicated in the circumscribing dotted projection at 30, although the cross-sectional areas of portions 26 and 28 are the same.
  • Such a filament configuration has many applications as a novelty filament when the appearance of a variable denier or extended slub is desired.
  • the variations in apparent thickness impart greater natural bulk to the filament and provide for substantial interfilament friction. Since the filament actually has an approximately constant denier throughout its length, its physical strength is substantially uniform.
  • the filament may be readily drawn on conventional drawing equipment with only minor modifications without the likelihood of excessive breakage or other problems in handling.
  • FIGURES 35 An exemplary apparatus for producing the novel filament shown in FIGURE 2 is illustrated in FIGURES 35.
  • the spinneret block 20 includes a channel 32 communicating with the inlet of conventional constant-volume metering pump 33.
  • a small channel 37 delivers polymer from the outlet of metering pump 33 to the back side of spinneret 18 from whence the polymer extrudes through noncircular orifice 22.
  • a pair of tubular polymer supply channels 34 and 36 extend downwardly through block 20 and are alternately connected to channel 32 by a metering mechanism 38.
  • the metering mechanism 38 in the exemplary form illustrated, includes a shaft 40 extending through and rotatably journaled in block 20, intersecting channels 34 and 36.
  • a metering passage 42 extends through shaft 40 in alignment with channel 34, and connects this channel to channel 32 when shaft 40 is properly oriented.
  • a similar metering passage 44 is provided in shaft 40 for connecting channel 36 to channel 32 when channel 34 is not so connected.
  • the axes of passages 42 and 44 are arranged at right angles to one another when viewed parallel to the axis of rod 40.
  • Means is provided for rotating shaft 40, such as the illustrated gear 46, which may be driven by a motor, for example.
  • channel 34 is connected to channel 32 by passage 42, while channel 36 is isolated from chamber 32 due to the relative orientation of passages 42 and 44.
  • shaft 40 approximately 90"
  • this situation will be reversed and the polymer in channel 36 will then be supplied through passage 44 to channel 32 for delivery to the inlet of metering pump 33.
  • both channel 34 and channel 36 are connected to channel 32 but to differing extents, providing a supply of polymer at all times to metering pump 33.
  • the entire spinning block assembly is surrounded by a heating jacket (not shown) to control temperature at the level required for proper flowing of the molten polymers.
  • polymers having substantially differing ratios of viscosity to surface tension at the spinning temperature are supplied under pressure to channels 34 and 36 by suitable pumping equipment (not shown).
  • the polymers should be compatible; i.e., they should be miscible so that a strong bond forms between the components.
  • the polymer in channel 34 may have a relatively high ratio of viscosity to surface tension as compared to the polymer in channel 36.
  • Metering shaft 40 is rotated, either at a constant or variable angular velocity, to alternately supply polymer to channel 32 from channel 34 and from channel 36.
  • the stream extruded from orifice 22 will have portions composed primarily or entirely of the polymer from channel 34, and portions composed primarily or entirely of polymer from channel 36, together with intermediate or transition regions as shown at 48 having a composition across the section including polymer components from both supply channels.
  • the stream thus extruded is cooled and solidified at an appropriate rate such that the polymer components from channel 34 tend to retain the shape of orifice 22 (see portion 26 in FIGURE 2), while the components from channel 36 tend to coalesce into a circular cross-section.
  • the cooling may, for example, be provided by a stream of air directed onto the extruded polymer stream.
  • various other means may be employed to ensure extrusion of a constant total volume of polymer in a given time.
  • different pump pressures may be used for the polymers in channels 34 and 36, or metering passages 42 and 44 may have different cross-sections in order to compensate for differences in polymer viscosities.
  • Self-crimping yarns have been produced heretofore by conjugate spinning under conditions which yield filaments of substantially constant crosssectional shape.
  • the present method of spinning through noncircular orifices provides distinct advantages over the conventional method, however, because the filament crosssectional shape varies continually, and more importantly, the transitions from one polymer component to the other are predominantly axially asymmetrical as illustrated at 48 in FIGURE 2. Therefore, the usual uniform helical crimp does not develop.
  • helical crimp may extend a few inches followed by saw-toothed convolutions that vary randomly in amplitude, period, and in axial plane. Bulk and interfilament cohesion of such self-crimping yarns will exceed that of conventional conjugate spun round filament yarns.
  • polymers which differ not only in the ratio of viscosity to the surface tension, but in dye receptivity as Well may be a low viscosity stream of nylon 6 and a high viscosity stream of nylon 66. If these are extruded through a noncircular orifice, the nylon 6 will, in generaly, dye darker than the nylon 66 resulting in yarn with novel irregular streaks along the filaments; or nylon 66 polymer containing deep-dye additives may be combined with normal nylon 66 polymer.
  • a similar variation would be to extrude streams of melt-colored polymers; e.g., one polymer stream colored with blue pigment may be combined with another which is colored white or is uncoiored.
  • the resultant yarn exhibits an attractive variegated blue and white coloration when it is converted into fabric.
  • the novel method makes possible the production of a filament having an appearance resembling a variable denier although the denier actually remains substantially constant along its length.
  • the use of polymer components which differ in their latent degree of shrinkage under the influence of heat or moisture provides a self-crimping filament wherein the crimping is random in kind and extent.
  • the combination of polymer components which vary in dye receptivity provides novel filaments having a desirable random variegated coloration.
  • the filaments produced according to the present invention possess a novel desirable hand, luster and porosity when incorporated into a fabric and possess a substantial amount of interfilament friction.
  • a continuous filament of substantially constant denier, said filament comprising in combination:
  • a continuous filament of substantially constant denier, said filament comprising in combination:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

J. G. SiMS Get. 17, E967 TEXTILE FILAMENT HAVING APPARENT VARIABLE DENIER Original Filed Nov. 21, 1962 INVENTOR. J.G. SIMS ATTOR NE'Y United States Patent 3,347,738 TEXTILE FILAMENT HAVING APPARENT VARIABLE DENIER James G. Sims, Pensacola, Fla., assignor to Monsanto Company, St. Louis, Mo., a corporation of Delaware Original application Nov. 21, 1962, Ser. No. 239,189, now
Patent No. 3,138,516, dated June 23, 1964. Divided and this application Mar. 9, 1964, Ser. No. 350,443
6 Claims. (Cl. 161179) ABSTRACT OF THE DISCLOSURE A macroscopically nonhomogeneous mixture of polymers is extruded through a noncircular spinneret orifice, producing a filament composed of alternate polymer portions along its length.
This application is a division of my copending application Serial Number 239,189, filed November 21, 1962.
The present invention relates to a novelty textile filament having an appearance resembling a variable denier filament together with the method and apparatus for producing the filament. More particularly, the novel filament according to the present invention has a substantially constant cross-sectional area but has a cross-sectional configuration which varies along its length.
Variable denier yarns made according to the prior art presented several problems in processing the filaments into yarns and the yarns into fabrics. Such prior art filaments were typically produced by variably drawing the filaments, thus producing portions of the filaments which had been considerably stretched and leaving other portions substantially unstretched. The large portions occasionally would catch in a restricted area, such as the eye of a needle. Furthermore, the differences in physical properties resulting from the variable drawing produced undesirable nonuniform physical properties in the filaments. Such prior art filaments usually had to be further treated to provide high-contrast variable dye receptivity.
Accordingly, it is an object of the invention to provide a constant denier filament having an apparent variable denier and an actual variable covering power.
A further object is to provide a filament of the above character in which the cross-sectional shape varies although the cross-sectional area remains constant along the filament.
A further object is to facilitate provision of a selfcrimping filament wherein the crimping is random in kind and extent.
A further object is to provide a filament of the above character which possesses random receptivity to dyeing.
A further object is to provide a filament of the above character which imparts novel desirable handle, luster, and porosity to textile fabrics.
A further object is to provide a novel method and apparatus for producing filaments of the above character.
Other objects of the invention will in part be obvious and will in part appear hereinafter.
The invention accordingly comprises the several steps and the relation of one or more of said steps with respect to each of the others, and the article possessing the features, properties, and relation of elements which are exemplified in the following detailed disclosure and the scope of the invention will be indicated in the claims.
For a more complete understanding of the nature and objects of the invention, reference shouud be made to the following detailed description taken in connection with the drawing in which:
FIGURE 3 is a schematic cross-sectional view of particular apparatus for producing the novel filament of FIGURE 2;
FIGURE 4 is a sectional of FIGURE 3; and
FIGURE 5 is a sectional of FIGURE 3.
Referring now to FIGURE 1, a molten polymer after being extruded through a noncircular orifice such as shown at 22 becomes solidified to form a continuous filament. It has been found that the cross-Sectional shape of the solidified filament formed after extrusion through a given noncircular orifice is controlled primarily by the shear viscosity and the dynamic surface tension of the extruding melt. Within the constraints of the system, surface tension acts to reduce the surface free energy to a minimum, corresponding to a circular cross-section; conversely, viscous forces resist flow within the molten filament. Hence, a filament of high viscosity polymer tends to retain the general cross-sectional configuration of the nonview taken along the line 4-4 view taken along the line 5-5 circular orifice, but a low viscosity molten filament tends to become circular beforev solidification.
The above considerations permit the formation of a novel filament having a substantially constant denier but a variable cross section. Upon extruding a noncircular stream composed of macroscopically discrete polymer components differing widely in their respective ratios of viscosity to surface tension, a filament is produced having a variable cross-sectional shape along the length of the filament, as illustrated in FIGURE 2. As shown therein, the filament 24 has an upper portion 26 which is substantially cruciform in shape, corresponding approximately to the shape of the spinneret orifice 22. The lower portion 28 of filament 24 has a substantially circular cross-sectional shape and is considerably smaller in diameter than the apparent width of portion 26, indicated in the circumscribing dotted projection at 30, although the cross-sectional areas of portions 26 and 28 are the same.
Such a filament configuration has many applications as a novelty filament when the appearance of a variable denier or extended slub is desired. The variations in apparent thickness impart greater natural bulk to the filament and provide for substantial interfilament friction. Since the filament actually has an approximately constant denier throughout its length, its physical strength is substantially uniform. The filament may be readily drawn on conventional drawing equipment with only minor modifications without the likelihood of excessive breakage or other problems in handling.
An exemplary apparatus for producing the novel filament shown in FIGURE 2 is illustrated in FIGURES 35.
Referring to FIGURE 3, the spinneret block 20 includes a channel 32 communicating with the inlet of conventional constant-volume metering pump 33. A small channel 37 delivers polymer from the outlet of metering pump 33 to the back side of spinneret 18 from whence the polymer extrudes through noncircular orifice 22. A pair of tubular polymer supply channels 34 and 36 extend downwardly through block 20 and are alternately connected to channel 32 by a metering mechanism 38. The metering mechanism 38, in the exemplary form illustrated, includes a shaft 40 extending through and rotatably journaled in block 20, intersecting channels 34 and 36. A metering passage 42 extends through shaft 40 in alignment with channel 34, and connects this channel to channel 32 when shaft 40 is properly oriented. A similar metering passage 44 is provided in shaft 40 for connecting channel 36 to channel 32 when channel 34 is not so connected. The axes of passages 42 and 44 are arranged at right angles to one another when viewed parallel to the axis of rod 40. Means is provided for rotating shaft 40, such as the illustrated gear 46, which may be driven by a motor, for example.
In the position illustrated in FIGURE 3, channel 34 is connected to channel 32 by passage 42, while channel 36 is isolated from chamber 32 due to the relative orientation of passages 42 and 44. Upon rotation of shaft 40 approximately 90", this situation will be reversed and the polymer in channel 36 will then be supplied through passage 44 to channel 32 for delivery to the inlet of metering pump 33. At intermediate positions of rotation, both channel 34 and channel 36 are connected to channel 32 but to differing extents, providing a supply of polymer at all times to metering pump 33. The entire spinning block assembly is surrounded by a heating jacket (not shown) to control temperature at the level required for proper flowing of the molten polymers.
To form the novel textured filament of FIGURE 2, polymers having substantially differing ratios of viscosity to surface tension at the spinning temperature are supplied under pressure to channels 34 and 36 by suitable pumping equipment (not shown). The polymers should be compatible; i.e., they should be miscible so that a strong bond forms between the components. Thus, the polymer in channel 34 may have a relatively high ratio of viscosity to surface tension as compared to the polymer in channel 36.
Metering shaft 40 is rotated, either at a constant or variable angular velocity, to alternately supply polymer to channel 32 from channel 34 and from channel 36. Thus the stream extruded from orifice 22 will have portions composed primarily or entirely of the polymer from channel 34, and portions composed primarily or entirely of polymer from channel 36, together with intermediate or transition regions as shown at 48 having a composition across the section including polymer components from both supply channels.
The stream thus extruded is cooled and solidified at an appropriate rate such that the polymer components from channel 34 tend to retain the shape of orifice 22 (see portion 26 in FIGURE 2), while the components from channel 36 tend to coalesce into a circular cross-section. The cooling may, for example, be provided by a stream of air directed onto the extruded polymer stream.
If necessary, various other means may be employed to ensure extrusion of a constant total volume of polymer in a given time. Thus, different pump pressures may be used for the polymers in channels 34 and 36, or metering passages 42 and 44 may have different cross-sections in order to compensate for differences in polymer viscosities.
If polymers are chosen that differ not only in the ratio of viscosity to surface tension, but also in the latent degree of shrinkage under the influence of heat or moisture, a self-crimping yarn results. Self-crimping yarns have been produced heretofore by conjugate spinning under conditions which yield filaments of substantially constant crosssectional shape. The present method of spinning through noncircular orifices provides distinct advantages over the conventional method, however, because the filament crosssectional shape varies continually, and more importantly, the transitions from one polymer component to the other are predominantly axially asymmetrical as illustrated at 48 in FIGURE 2. Therefore, the usual uniform helical crimp does not develop. Instead, the crimp is random both in kind and in extent: helical crimp may extend a few inches followed by saw-toothed convolutions that vary randomly in amplitude, period, and in axial plane. Bulk and interfilament cohesion of such self-crimping yarns will exceed that of conventional conjugate spun round filament yarns.
Another useful variation is to choose polymers which differ not only in the ratio of viscosity to the surface tension, but in dye receptivity as Well. For example, the polymers extruded may be a low viscosity stream of nylon 6 and a high viscosity stream of nylon 66. If these are extruded through a noncircular orifice, the nylon 6 will, in generaly, dye darker than the nylon 66 resulting in yarn with novel irregular streaks along the filaments; or nylon 66 polymer containing deep-dye additives may be combined with normal nylon 66 polymer. A similar variation would be to extrude streams of melt-colored polymers; e.g., one polymer stream colored with blue pigment may be combined with another which is colored white or is uncoiored. The resultant yarn exhibits an attractive variegated blue and white coloration when it is converted into fabric.
As has been set forth above, the novel method makes possible the production of a filament having an appearance resembling a variable denier although the denier actually remains substantially constant along its length. The use of polymer components which differ in their latent degree of shrinkage under the influence of heat or moisture provides a self-crimping filament wherein the crimping is random in kind and extent. The combination of polymer components which vary in dye receptivity provides novel filaments having a desirable random variegated coloration. The filaments produced according to the present invention possess a novel desirable hand, luster and porosity when incorporated into a fabric and possess a substantial amount of interfilament friction.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in carrying out the above method and in the article set forth without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
Having described my invention, what I claim as new and desire to secure by Letters Patent is:
1. A continuous filament of substantially constant denier, said filament comprising in combination:
(a) a plurality of portions of varying length integrally connected by transition regions which are asymmetrical with respect to the axis of said filament;
(b) adjacent portions along the length of said filament having diiferent dye receptivities.
2. The filament defined in claim 1 wherein the lengths of said adjacent portions vary in a random fashion.
3. The filament defined in claim 1 wherein said adjacent portions have diiferent cross-sectional shapes and substantially the same cross-sectional area.
4. A continuous filament of substantially constant denier, said filament comprising in combination:
(a) a plurality of portions of varying length integrally connected by transition regions which are 'asymmetrical with respect to the axis of said filament;
(b) adjacent portions along the length of said filament having different colors.
5. The filament defined in claim 4 wherein the lengths of said adjacent portions vary in a random fashion.
6. The filament defined in claim 4 wherein said adjacent portions have different cross-sectional shapes and substantially the same cross-sectional area.
References Cited UNITED STATES PATENTS 9/1960 Egger 161-l79 6/1964 Sims 16l179

Claims (1)

1. A CONTINUOUS FILAMENT OF SUBSTANTIALLY CONSTANT DENIER, SAID FILAMENT COMPRISING IN COMBINATION: (A) A PLURALITY OF PORTIONS OF VARYING LENGTH INTEGRALLY CONNECTED BY TRANSITION REGIONS WHICH ARE ASYMMETRICAL WITH RESPECT TO THE AXIS OF SAID FILAMENT; (B) ADJACENT PORTIONS ALONG THE LENGTH OF SAID FILAMENT HAVING DIFFERENT DYE RECEPTIVITIES.
US350443A 1962-11-21 1964-03-09 Textile filament having apparent variable denier Expired - Lifetime US3347738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US350443A US3347738A (en) 1962-11-21 1964-03-09 Textile filament having apparent variable denier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US239189A US3138516A (en) 1962-11-21 1962-11-21 Textile filament having apparent variable denier
US350443A US3347738A (en) 1962-11-21 1964-03-09 Textile filament having apparent variable denier

Publications (1)

Publication Number Publication Date
US3347738A true US3347738A (en) 1967-10-17

Family

ID=26932359

Family Applications (1)

Application Number Title Priority Date Filing Date
US350443A Expired - Lifetime US3347738A (en) 1962-11-21 1964-03-09 Textile filament having apparent variable denier

Country Status (1)

Country Link
US (1) US3347738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470126A (en) * 1993-11-03 1995-11-28 Mascotech Automotive Systems Group, Inc. Retractable hardtop vehicle roof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953427A (en) * 1957-02-22 1960-09-20 Schweizerische Viscose Production of artificial filamentary materials
US3138516A (en) * 1962-11-21 1964-06-23 Monsanto Co Textile filament having apparent variable denier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2953427A (en) * 1957-02-22 1960-09-20 Schweizerische Viscose Production of artificial filamentary materials
US3138516A (en) * 1962-11-21 1964-06-23 Monsanto Co Textile filament having apparent variable denier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470126A (en) * 1993-11-03 1995-11-28 Mascotech Automotive Systems Group, Inc. Retractable hardtop vehicle roof

Similar Documents

Publication Publication Date Title
US3272901A (en) Textile filament having apparent variable denier
US2278888A (en) Artificial structure and process for producing same
US4117194A (en) Bicomponent filaments with a special cross-section
US2987797A (en) Sheath and core textile filament
US3244785A (en) Process for producing a composite sheath-core filament
US3500498A (en) Apparatus for the manufacture of conjugated sheath-core type composite fibers
US2968834A (en) Manufacture of voluminous yarns
US3408277A (en) Process and apparatus for producing high-bulk synthetic yarns
US3209402A (en) Apparatus for producing multicom-ponent filaments and yarns
US3095607A (en) Spinneret assembly
US3780149A (en) Conjugate spinning process
US5093061A (en) Deep dyeing conjugate yarn processes
US3161914A (en) Spinnerets for producing heterofilaments
KR840000347B1 (en) Continuous filament yarn with wool-like hand
US3347738A (en) Textile filament having apparent variable denier
US3138516A (en) Textile filament having apparent variable denier
US3529323A (en) Apparatus for producing yarn having individually and permanently twisted filaments
JP2001226828A (en) Yarn composed of core-sheath filament
US3861843A (en) Apparatus for forming laminar crimpable filaments
US3388198A (en) Method for producing iridescent filament
US3439084A (en) Thick and thin yarn and process for the preparation thereof
US3640670A (en) Spinnerette for extruding t-shaped filaments
US3049397A (en) Process of making space-dyed yarn
US3660993A (en) Two-component composite filament and method of producing same
GB1230991A (en)