US3170862A - Reinforced concrete structure in an electrolytic furnace house for producing aluminum - Google Patents
Reinforced concrete structure in an electrolytic furnace house for producing aluminum Download PDFInfo
- Publication number
- US3170862A US3170862A US144095A US14409561A US3170862A US 3170862 A US3170862 A US 3170862A US 144095 A US144095 A US 144095A US 14409561 A US14409561 A US 14409561A US 3170862 A US3170862 A US 3170862A
- Authority
- US
- United States
- Prior art keywords
- furnace
- pots
- sections
- walls
- reinforced concrete
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011150 reinforced concrete Substances 0.000 title claims description 16
- 229910052782 aluminium Inorganic materials 0.000 title claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 14
- 230000008093 supporting effect Effects 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000004567 concrete Substances 0.000 description 9
- 238000009413 insulation Methods 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000009416 shuttering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M5/00—Engine beds, i.e. means for supporting engines or machines on foundations
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
- C25C3/10—External supporting frames or structures
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H5/00—Buildings or groups of buildings for industrial or agricultural purposes
- E04H5/02—Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
Definitions
- Electrolytic furnaces used in the production of aluminum froma fluoride melt by the usual processes include essentially rectangular pots arranged in straight rows in a. furnace house and anode structures including anodes .dip-
- the pots may be situated at fioor levelv and are advantageously directly supported on foundations or: bracketsa'rranged under the floor. These foundations or brackets, and indeed the whole of the lower part of the building, normally" consists of reinforced concrete.
- the anode structures of the furnaces are'carried'by steel supports or by pillars of reinforced concrete, which may extend up from the floor or which may have their-foundations below the floor. V In modern electrolytic installations, a large number 0 furnaces, all requiring a current of 80,000 amperes and even more, are connected in series.
- One object of the present invention is to provide anew and improved reinforced concrete structure which supports the electrolytic furnaces ina furnace orpot'house V for the pro ductionaof aluminum, and which avoidsthe drawbacks of theprior art described above.
- the complete structure normally includes a sub-floor
- concretewtructure for; supportingthe" furnace is divided into. separate sections, which are electrically insulated in yer ti; call and-horizontal. direction fro'rn one another, from earth I one another. What is important is to divide the structure; a
- This sectionalized structure advantageously rests on foundation pedestals extending into the ground; and is separated fronrthe'se pedestals-by electrically in- "sulating layers.
- j j t The .sections may constitute is ds of reinforced'com' 'crete which are lvertically insulatedfzfrom one auother by the spacebetw een thernfthe furnace pots beingarr'ang'e'd between the islands.
- the floor may ib ey formed by cohjcret slabsl'garried by but electrically insulated from their that consists of the floor a nd the vertical supports into islands, and by bridging islands and electrically insulated from them.
- An island may support more than one floor slab and these slabs are; preferably electrically insulated from one another Such.
- slabs extending between the slabs onislands may be cast in situ or be pre-cast.
- the electrical insulation may be formed by layers of a a plastic, which may be an-epoxy-or polyester resin applied by pouring or spraying and which is preferably reinforced by glass fibres.
- a plastic which may be an-epoxy-or polyester resin applied by pouring or spraying and which is preferably reinforced by glass fibres.
- the slabs of the floor may,
- FIGURE 1 is a horizontal somewhat diagrammatic sec Y tion of a part of a furnace house embodying the present invention, taken on lines .11 of FIG. 2;
- FIGURE 2 is a somewhat diagrammatic section through the whole width of the furnace house, taken on the lines 22 of FIGURE 1;
- FIGURE? shows in section a modification of a portion of thestructure of the furnace house in accordance with the present invention.
- the furnace house shown has side walls 15 spanned by a floor 17 *which lies above abasernent chamber 13.
- TheI-girders 10 are carried by the. reinforced concrete structure which as a whole'rests on'a sub-structure comprising foundation pedestals. 11 extending into the ground.
- Thekanforced concrete structure comprises side-supports land centralf supports (1a built as separate islands with cantilever extensions 21 and withbrackets 8 forthe support of the girders It j' lhese brackets 8 are-constructed so that the[ pots ,2 can be-lowered between the brackets'an'd removed for repair Or eplacemenL,
- the reinforced concrete structure that 'supporfts' thefun naces is insulated from the substructurethatconsists 2 consi'sting VI of a polyester resin reinforcedby glass'fibr'e.
- Thecon- '1 i esse ntially"the pedestals 11 by"tfoughs nections between the reinforcedc'bncrete structure and the pedestals 11 may be formed by suspending each trough 12 in the shuttering in which the corresponding pedestal is formed, and pouring'the concrete herieath the trough toformthe corresponding pedestal.
- the pots 2 arearran ged in two, rows; and in each row'," f the openings that'receive the pots a're all connected with ⁇ one another, so that there is a continuous division of the i floor into three longitudinal parts 3a, 3b, 3c,electricallyseparated from one another. 4
- the brackets 8 have 1load-bearing'coverings 7 on which the girders 10 rest andeach covering 7 is electrically inthe remainder of the *bracket by insulation 127. i l V i 1
- the extensions 21 of the central vertical supports 101 have similar narrow ends projecting outwardly from the center line of the house into the same spaces.
- the floor 17 is composed in part of concrete slabs on the tops of the islands 1 and 1a separated by insulations 20 and in part of slabs 4 bridging the islands.
- the slabs 5 are formed on top of insulating layers 6 in the manner described above, and in the parts of the floor between the rows of furnace pots 2, these slabs 5 do not wholly cover the tops of the islands but extend short of the sides of these islands to define ledges on these islands to receive the ends of the slabs 4, which are prefabricated.
- Insulation 22 is interposed betweenthe slabs 4 and these ledges.
- Pillars 13 provided to support the anodic parts of the furnaces rest on the cantilever extensions with the interposition of insulation 14. These pillars 13 carry the anodes 19 in the usual way, the anodes being fed with current through bus bars 23 and conductors 24.
- the furnace house includes a superstructure including walls and a roof not shown and this is insulated from the structure that carries the furnace pots 2 by the insulating layer 6.
- the walls 15 may be of a metal framework 16 with a covering, as shown in FIGURE 3, and in such a case a trough 25, similar to the trough 12 may be let into the top of the structure immediately below the wall, and steel pins and plates 26 may then be concreted into the trough to form supports for the framework 16.
- the reinforcing rods will tend to conduct current and destroy the effect of the insulation, such as that shown at 14.
- the reinforcing rods may be coated with a firmly adherent coating of an electrical insulating plastic, to which grains of sand may be bonded, all as described and claimed in copending application Serial No. 120,624 filed June 29, 1961, now abandoned.
- the different insulations referred to may comprise a resin, such as an epoxy resin, or a polyester resin reinforced with glass fibres, as described.
- a furnace house for furnace pots used in the electrolytic production of aluminum comprising side walls, and means for supporting a plurality of furnace pots between said walls comprising a foundation structure, a floor supporting reinforced concrete structure supported on said foundation structure and constituting a plurality of sections extending between said walls and said furnace pots, means for supporting the furnace pots on saidsections, and means electrically insulating said sections in all directions from eachother, from the earth, from said foundation structure and from said furnace walls.
- a furnace house for furnace pots used in the electrolytic production of aluminum comprising side walls, and means for supporting a plurality of furnace pots between said walls arranged end to end substantially in a row along one of said walls and comprising .a foundation structure, a floor supporting reinforced concrete structure supported on said foundation structure and constituting a plurality of sections, at least some of which are arranged along said wall and extend from the Vicinity of said wall inwardly towards the vicinity of said row of furnace pots, means for supporting the furnace pots on said sections, and means electrically insulating said sections in all directions from each other, from the earth, from said foundation structure and from said furnace walls.
- a furnace house for furnace pots having anodic parts and used in the electrolytic production of aluminum comprising side walls, and means for supporting a plurality of furnace pots in a row end to end between said walls comprising a foundation structure, a floor supporting reinforced concrete structure supported on said foundation structure and constituting a plurality of sections extending in spaced relationship along said row of pets on opposite sides of said row and extending into the regions between the ends of said pots, means for supporting the furnace'pots on said sections, means for supporting said anodic parts on said sections in the regions between the ends of said pots, and means electrically insulating said sections in all directions from each other, from the earth, from said foundation structure, from said furnace walls and from said anodic parts.
- a furnace house'for furnace pots used in the electrolytic production of aluminum comprising side walls, and means for supporting between said walls a plurality of furnace pots arranged in substantially parallel rows and comprising a foundation structure, a floor supporting reinforced concrete structure supported on said'foundation structure and constituting a plurality ofsections, some of which extend from some of said furnace walls inwardly towards the adjacent rows of pots and others of which .extend between the rows of pets, means for supporting the furnace pots on said sections, and means electrically ported on said foundation structure and constituting a plurality of sections extending in spaced relationship along said row of pots on opposite sides of said row and extending into the regions between the end of the pots, means i for supporting the furnace pots on said sections, and
- said foundation structure comprises foundation pedestals extending into the ground and said sections have supports seated on said pedestals but separated therefrom by electrically insulating layers.
- a furnace house for furnace pots used in the electrolytic production of aluminum comprising side walls on .said sections, means electrically insulating said sec.-
- a furnace house for furnace pots having anodic parts and used in the electrolytic production of aluminum comprising side walls, means for supporting between said walls a plurality of furnace pots arranged in a plurality of substantially parallel rows with the pots in each row extending end to end comprising a foundation structure, a floor supporting reinforced concrete structure supported on saidfoundation structure and constituting a plurality of sections, some of which are spaced along the rows of pots and extend from some of said furnace walls inwardly towards the adjacent rows of pots into the regions between of the pots in the latter roWs of pets, means for supporting the furnace pots on said sections, means for supporting the anodic parts on said sections between the ends of the pots, and means electrically insulating said sections in all directions fiom each other, from the earth, from said foundation structure, from said furnace wall, from said anodic parts and from said pots, and floor slabs
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Electrolytic Production Of Metals (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Building Environments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1152260A CH381409A (de) | 1960-10-14 | 1960-10-14 | Eisenbetonkonstruktion zur Aufnahme von Elektrolyseöfen für die Herstellung von Aluminium |
Publications (1)
Publication Number | Publication Date |
---|---|
US3170862A true US3170862A (en) | 1965-02-23 |
Family
ID=4374295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US144095A Expired - Lifetime US3170862A (en) | 1960-10-14 | 1961-10-10 | Reinforced concrete structure in an electrolytic furnace house for producing aluminum |
Country Status (6)
Country | Link |
---|---|
US (1) | US3170862A (en(2012)) |
CH (1) | CH381409A (en(2012)) |
DE (1) | DE1136496B (en(2012)) |
ES (1) | ES271088A1 (en(2012)) |
GB (1) | GB929822A (en(2012)) |
SE (1) | SE318116B (en(2012)) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3421995A (en) * | 1965-06-18 | 1969-01-14 | Pechiney Prod Chimiques Sa | Means for preventing deformation and raising of baths for igneous electrolysis |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3127859C2 (de) * | 1981-07-15 | 1985-04-11 | Schweizerische Aluminium Ag, Chippis | Verfahren und Anlage zum Auswechseln von Schmelzflußelektrolysezellen |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2830940A (en) * | 1952-03-28 | 1958-04-15 | Monsanto Chemicals | Production of metals |
US2874103A (en) * | 1957-02-26 | 1959-02-17 | Aluminium Ind Ag | Method for replacing the pot of an electrolytic cell for the production of aluminum |
US2980596A (en) * | 1956-12-27 | 1961-04-18 | George E Conway | Electrolytic reduction furnace constructions and method |
US3042604A (en) * | 1960-03-29 | 1962-07-03 | Aluminium Ind Ag | Furnaces for electrolytic production of aluminum |
-
1960
- 1960-10-14 CH CH1152260A patent/CH381409A/de unknown
- 1960-12-15 DE DEA36292A patent/DE1136496B/de active Pending
-
1961
- 1961-09-29 GB GB35319/61A patent/GB929822A/en not_active Expired
- 1961-10-10 ES ES271088A patent/ES271088A1/es not_active Expired
- 1961-10-10 SE SE10049/61A patent/SE318116B/xx unknown
- 1961-10-10 US US144095A patent/US3170862A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2830940A (en) * | 1952-03-28 | 1958-04-15 | Monsanto Chemicals | Production of metals |
US2980596A (en) * | 1956-12-27 | 1961-04-18 | George E Conway | Electrolytic reduction furnace constructions and method |
US2874103A (en) * | 1957-02-26 | 1959-02-17 | Aluminium Ind Ag | Method for replacing the pot of an electrolytic cell for the production of aluminum |
US3042604A (en) * | 1960-03-29 | 1962-07-03 | Aluminium Ind Ag | Furnaces for electrolytic production of aluminum |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3421995A (en) * | 1965-06-18 | 1969-01-14 | Pechiney Prod Chimiques Sa | Means for preventing deformation and raising of baths for igneous electrolysis |
Also Published As
Publication number | Publication date |
---|---|
CH381409A (de) | 1964-08-31 |
ES271088A1 (es) | 1962-03-01 |
GB929822A (en) | 1963-06-26 |
SE318116B (en(2012)) | 1969-12-01 |
DE1136496B (de) | 1962-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4573303A (en) | Method of casting floors and ceilings of buildings and a panel for use therein | |
US3510997A (en) | Building system of preformed units | |
US2618146A (en) | Reinforced concrete column, bracket, and beam joint | |
EP0292449B1 (en) | Fire resistant steel beam coacting with concrete | |
BG49725A3 (bg) | Сглобяем строителен модул и метод за изграждане на строителни конструкции с него | |
US3170862A (en) | Reinforced concrete structure in an electrolytic furnace house for producing aluminum | |
RU2040646C1 (ru) | Конструктивный элемент для строительства зданий | |
US2211513A (en) | Reinforced structure | |
CN209099833U (zh) | 配电站及其gis配电装置室 | |
US3042604A (en) | Furnaces for electrolytic production of aluminum | |
US1855082A (en) | Building construction and means for wiring alpha building | |
AT222894B (de) | Eisenbetonkonstruktion zur Aufnahme von Elektrolyseöfen für die Herstellung von Aluminium | |
EP0487675B1 (en) | A method for fixing an electrode arrangement to be used in the cathodic protection of concrete structures and a fixing element | |
KR940008307B1 (ko) | 콘크리트플로어링베이스및그시공방법 | |
FI954634A0 (fi) | Lattiarakenne, joka sisältää lattiayksikköelementtejä | |
SU962527A1 (ru) | @ Пол цеха электролиза алюмини | |
SU1765330A1 (ru) | Способ возведени сборно-монолитных железобетонных конструкций | |
AT221283B (de) | Anlage zur Aufnahme von Elektrolyseöfen für die Herstellung von Aluminium | |
SU378612A1 (ru) | Площадка для обслуживания технологического | |
SU1240852A1 (ru) | Способ возведени многоэтажного каркасного здани методом подъема перекрытий | |
NO163524B (no) | Sementblanding for legging under vann. | |
CN110952584B (zh) | 一种主变基础与建筑物基础相连的变电站建筑结构 | |
SU802481A1 (ru) | Многоэтажное сейсмостойкое здание | |
JPH02277785A (ja) | コンクリート構造物に不溶性電極を設置する方法 | |
SU61378A1 (ru) | Способ сооружени зданий дл электрических распределительных устройств |