US3152070A - Removal of odor by hydrogenation and oxidation - Google Patents
Removal of odor by hydrogenation and oxidation Download PDFInfo
- Publication number
- US3152070A US3152070A US151176A US15117661A US3152070A US 3152070 A US3152070 A US 3152070A US 151176 A US151176 A US 151176A US 15117661 A US15117661 A US 15117661A US 3152070 A US3152070 A US 3152070A
- Authority
- US
- United States
- Prior art keywords
- odor
- products
- treatment
- hydrogenation
- hydrocarbon mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005984 hydrogenation reaction Methods 0.000 title description 10
- 230000003647 oxidation Effects 0.000 title 1
- 238000007254 oxidation reaction Methods 0.000 title 1
- 238000000034 method Methods 0.000 claims description 42
- 229930195733 hydrocarbon Natural products 0.000 claims description 30
- 150000002430 hydrocarbons Chemical class 0.000 claims description 30
- 239000004215 Carbon black (E152) Substances 0.000 claims description 26
- 238000011282 treatment Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 22
- 239000007864 aqueous solution Substances 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 6
- 230000009965 odorless effect Effects 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 3
- 230000003197 catalytic effect Effects 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- 239000000047 product Substances 0.000 description 26
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000009835 boiling Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 9
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 230000001590 oxidative effect Effects 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 239000012286 potassium permanganate Substances 0.000 description 5
- 239000012266 salt solution Substances 0.000 description 5
- 235000011121 sodium hydroxide Nutrition 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 150000003464 sulfur compounds Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- -1 alkaline earth metal acids Chemical class 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 150000002019 disulfides Chemical class 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000012042 active reagent Substances 0.000 description 1
- PCUXAGHYTREZMN-UHFFFAOYSA-M azanium;copper(1+);diacetate Chemical compound [NH4+].[Cu+].CC([O-])=O.CC([O-])=O PCUXAGHYTREZMN-UHFFFAOYSA-M 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- XOROUWAJDBBCRC-UHFFFAOYSA-N nickel;sulfanylidenetungsten Chemical compound [Ni].[W]=S XOROUWAJDBBCRC-UHFFFAOYSA-N 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940059867 sulfur containing product ectoparasiticides Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/12—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including oxidation as the refining step in the absence of hydrogen
Definitions
- This invention relates to a new and improved process for treating various light petroleum streams to produce certain finished products which have relatively innocuous odor properties.
- the invention is particularly usefully applied to petroleum fractions boiling in the white spirit boiling range that have been desulfurized by hydrogenation.
- a preferred catalyst comprises the combined oxides of cobalt and molybdenum supported on alumina.
- Hydrofining comprises a mild hydrogenation using a fixed bed of a suitable catli filfi l atented Oct.
- alyst such as cobalt molybdate or moybdenum on alumina or nickel-tungsten sulfide
- alyst that operates at temperatures in the range of 260-370 C.
- pressures from to 1000 p.s.i.g. with recycle hydrogen rates in the order of 200 to 100 standard cubic feet per barrel of oil charged.
- Particularly useful hydrofining conditions comprise pressure in the neighborhood of 200 p.s.i.g. at about 1 v./v./ hr. and around 3l6-343 C., using cobalt molybdate on alumina catalyst and consuming in the region of 1000 c.f./b. hydrogen.
- Heavy metals or heavy metal compounds preferably oxides or salts have been proposed as the second process phase, after the catalytic hydrogenation treatment.
- Copper or iron oxides for example, are recommended as active reagents with vaporous hydrocarbons, whereas sodium plumbite, lead acetate and copper ammonium acetate have been used in liquid phase treatments.
- a drawback of the vapor phase processes is that they have to be continuous and require very expensive equipment, so that they are hardly suitabble for smaller throughputs.
- difficulties occur in the regeneration or removal of the heavy metalcontaining waste products. Undesirable discoloration of the resultant products and storage instability is frequently encountered.
- Another process proposed for producing gasolines of the highest grade of purity with acceptable odor properties includes a combination of soda washings, hypochlorite treatment, hydrogenation and sulfuric acid refining. This process is considered technically and economically impracticable due to the extremely large amounts of chemicals required and work entailed; it does, however, clearly show the practical difliculties involved in the manufacture of odorless hydrocarbon mixtures.
- Potassium permanganate has been found to be a particularly suitable oxidant for the second process step of the invention.
- This substance has the additional advan- 3O tage that the problem of waste product removal can be technically solved in a very favorable manner.
- the spent pyrolusite-containing neutral or weakly alkaline waste water according to the invention can be readily subjected to the usual waste water purification, i.e., flocculation of 5 the oleaginous waste Water with hydroxide slurries, settlement and subsequent filtration.
- the catalytic hydrogenation step may be carried out according to 'the conventional methods described above.
- the conditions of hydrogenation are preferably selected 40 so as to obtain the most drastic possible desulfurization.
- the aqueous solutions of oxidizing salts used in the second step of the process should not be too highly concentrated as the oxidative attack on the hydrocarbon mixture would otherwise be too intense and again lead to odor deterioration.
- the optimum concentration of the salt solution depends on the nature of the hydrocarbons to be treated; it generally varies from 0.5 to 6% by weight, preferably from 1 to 3% by weight.
- Neutral aqueous solutions of the said salts or of salts with an additional content of free alkali, such as sodium hydroxide, of up to approximately 3% by weight, have been found particularly suitable. Acidified solutions are slightly inferior with respect to odor improvement.
- the quantity of salt solutions required for treatment of the hydrogenated hydrocarbon is generally in the range suitable for refining with liquid refining agents, i.e., from 0.5 to about 3% by volume, based on the quantity of hydrocarbon mixture to be treated, and preferably about 1% by volume. It has been found that smaller amounts of relatively higher concentrated solutions are more advan tageous than correspondingly larger amounts of weaker solutions; for instance, 1% by volume of 3% potassium permanganate solution yielded a product having a better, i.e., weaker, odor than 3% by volume of a 1% solution. On the Whole, therefore, surprisingly small quantities of the salt solution are used in the second step of the instant process.
- the second step of the process of the invention may be carried out batchwise or continuously.
- the duration of either type of treatment depends on the specific operating conditions required. In the treatment of separate batches in stirred containers, it is obvious that the entire contents of the container should be thoroughly mixed, approximately 1-3 hours being required, depending on the power and dimensions of the stirrer.
- the hydrogenated hydrocarbons are treat ed with an aqueous solution of the oxidizing salts of metal acids having a high oxygen content in a rotating disc contactor as described in US. Patent 2,601,674 to Reman, issued June 24, 1952. Excessively long processing periods should be avoided as they again result in odor deterioration. After settlement and separation of the spent salt solutions, the treated hydrocarbon mixture should be thoroughly rewashed.
- Step (1) Catalytic hydrogenation Step (2) Caustic soda Plumbite Hypochlorite Permanganate Chromate Hydrogen washings sweetening treatment treatment treatment treatment peroxide Ozone treatment treatment REFINING AGENTS or THE SECOND srnr F0rmula Pb(NaOz) NaClO KMDO4 K2Cl'207 H202 ()3.
- Quantity 2 x 10% by 10% by volume 0.5% by volume..-" 1% by volume- 1% by vol- 1% by vol- Up to -5 times the volume. ume. ume. theoretical oxygen requirement.
- the ozone required was prepared from dry oxygen with the aid of an ozonizer and introduced into the hydrocarbon mixture with a hit.
- the theoretical oxygen requirement; of the hydrocarbon mixture was calculated from the KMI104 consumption during titration.
- reaction conditions were: temperature, about 330 C.; pressure, about 34 atm.; molar ratio of hydrogenoil, about 1:7; space velocity, about 4 liters of liquid starting material per cu. dm. of catalyst per hour.
- reaction conditions were: temperature, about 330 C.; pressure, about 34 atm.; molar ratio of hydrogenoil, about 1:7; space velocity, about 4 liters of liquid starting material per cu. dm. of catalyst per hour.
- the treatment was effected at room tempereature.
- the treatment after the second step invariably consisted of intensive washings.
- the several treating methods were tested on several special gasolines and one test gasoline having boiling ranges of from 150-190 C. All materials responded in practically the same way to the separate treating agents so that th results of the comparative experiments listed in the table are generally characteristic of the entire range of light hydrocarbon mixtures.
- a further example of the process according to the invention is as follows: A mineral oil fraction having a boiling range of from about C. to about 200 C. was desulfurized by a catalytic oxygen treatment until the residual sulfur content was from about 2 to 7 p.p.m., with the following reaction conditions being observed: temperature, 330 C. to 360 C.; pressure, 30 to atm. gauge; molar ratio of hydrogen/ oil, 1.5-2.0; space velocity, 3 to 5 liters of liquid starting material per cu. dm. of catalyst per hour. The product was then decomposed into a broad lighter fraction, and three to four higher boiling fractions having narrower boiling ranges. These fractions were separately treated in stirred containers at normal temperatures with 1% by volume of neutral potassium permangate solution.
- the finished products obtained had a barely preceptible, mild odor which was unchanged after months of storage in tanks or even in daylight. No appreciable deterioration of the odor occured even when the products were heated at approximately C. for 48 hours.
- a process for the production of odorless or weakly odorous hydrocarbon mixtures from odoriferous hydrocarbon mixtures comprising catalytic hydrogenation of the odoriferous hydrocarbon mixtures and subsequent treatment of the hydrogenated material in the liquid phase with an aqueous solution of salts of metal acids having a high oxygen content wherein the metal is selected from the group consisting of alkali and alkaline earth metal and the anion is selected from the group consisting of permanganates, chromates and dichrornates.
- a process according to claim 1 wherein the aqueous solution has a salt content from about 0.5 to about 5% by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DES73711A DE1228360B (de) | 1961-04-27 | 1961-04-27 | Verfahren zur Desodorierung von Kohlenwasserstoffgemischen |
Publications (1)
Publication Number | Publication Date |
---|---|
US3152070A true US3152070A (en) | 1964-10-06 |
Family
ID=7504120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US151176A Expired - Lifetime US3152070A (en) | 1961-04-27 | 1961-11-09 | Removal of odor by hydrogenation and oxidation |
Country Status (5)
Country | Link |
---|---|
US (1) | US3152070A (en, 2012) |
BE (1) | BE616852A (en, 2012) |
DE (1) | DE1228360B (en, 2012) |
GB (1) | GB942860A (en, 2012) |
NL (1) | NL277643A (en, 2012) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252893A (en) * | 1963-07-03 | 1966-05-24 | Sun Oil Co | Purification of mineral oils contaminated with catalyst particles |
US3380915A (en) * | 1965-09-29 | 1968-04-30 | Exxon Research Engineering Co | Process for desulfurization with regenerable salts of weak acids |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2034197A (en) * | 1931-12-19 | 1936-03-17 | Universal Oil Prod Co | Treatment of hydrocarbon oils |
US2755227A (en) * | 1954-03-22 | 1956-07-17 | Pure Oil Co | Removing corrosive sulfur from naphtha with anhydrous copper sulfate |
US2843528A (en) * | 1955-08-02 | 1958-07-15 | Pure Oil Co | Production of non-corrosive naphthas |
US2897142A (en) * | 1956-07-02 | 1959-07-28 | Pure Oil Co | Hydrodesulfurization of naphthas followed by treatment with either metallic copper or silver |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2083253A (en) * | 1934-03-22 | 1937-06-08 | Budowski Issar | Method for refining hydrocarbons |
GB813331A (en) * | 1954-08-12 | 1959-05-13 | Du Pont | Improvements in molecular orientation of tetrafluoroethylene polymer films, fibres or filaments |
US2916445A (en) * | 1956-09-18 | 1959-12-08 | Exxon Research Engineering Co | Hydrotreating hydrocarbon solvents to improve odor and color |
-
0
- BE BE616852D patent/BE616852A/xx unknown
- NL NL277643D patent/NL277643A/xx unknown
-
1961
- 1961-04-27 DE DES73711A patent/DE1228360B/de active Pending
- 1961-11-09 US US151176A patent/US3152070A/en not_active Expired - Lifetime
-
1962
- 1962-04-25 GB GB15766/62A patent/GB942860A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2034197A (en) * | 1931-12-19 | 1936-03-17 | Universal Oil Prod Co | Treatment of hydrocarbon oils |
US2755227A (en) * | 1954-03-22 | 1956-07-17 | Pure Oil Co | Removing corrosive sulfur from naphtha with anhydrous copper sulfate |
US2843528A (en) * | 1955-08-02 | 1958-07-15 | Pure Oil Co | Production of non-corrosive naphthas |
US2897142A (en) * | 1956-07-02 | 1959-07-28 | Pure Oil Co | Hydrodesulfurization of naphthas followed by treatment with either metallic copper or silver |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3252893A (en) * | 1963-07-03 | 1966-05-24 | Sun Oil Co | Purification of mineral oils contaminated with catalyst particles |
US3380915A (en) * | 1965-09-29 | 1968-04-30 | Exxon Research Engineering Co | Process for desulfurization with regenerable salts of weak acids |
Also Published As
Publication number | Publication date |
---|---|
DE1228360B (de) | 1966-11-10 |
GB942860A (en) | 1963-11-27 |
NL277643A (en, 2012) | |
BE616852A (en, 2012) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0097055B1 (en) | Process for purifying hydrocarbonaceous oils | |
US2853432A (en) | Regeneration of used alkaline reagents by oxidizing the same in the presence of a phthalocyanine catalyst | |
NO144127B (no) | Fremgangsmaate for styring av en bevegelig sugeanordning samt anordning for utoevelse av fremgangsmaaten | |
US3063936A (en) | Desulfurization of hydrocarbon oils | |
US2779715A (en) | Process for removing arsenic from a hydrocarbon feed oil used in a reforming process employing a noble metal as a catalyst | |
US2779711A (en) | Refining of lubricating oils | |
US2591946A (en) | Sweetening high-boiling petroleum distillates | |
US3152070A (en) | Removal of odor by hydrogenation and oxidation | |
US3413307A (en) | Desulfurization process | |
US2575989A (en) | Treatment of petroleum distillates | |
JPS62253690A (ja) | ジ−ゼル燃料油のセタン価の向上法 | |
US4207173A (en) | Sweetening of hydrocarbon distillates utilizing a tetra-alkyl guanidine with phthalocyanine catalyst | |
US2472473A (en) | Conversion of hydrosulfides to neutral sulfur substances | |
US5340465A (en) | Use of a metal oxide solid solution for sweetening a sour hydrocarbon fraction | |
US3320157A (en) | Desulfurization of residual crudes | |
US2319738A (en) | Refining mineral oils | |
US2361651A (en) | Desulphurizing hydrocarbon distillates | |
US2755226A (en) | Method for producing naphthas of improved characteristics by treating them with copper chromite or copper molybdate | |
US3162597A (en) | Process for color stabilization and hydrodesulfurization or cracked gas oils | |
US2755227A (en) | Removing corrosive sulfur from naphtha with anhydrous copper sulfate | |
US2645602A (en) | Sweetening hydrocarbon distillates | |
US2769764A (en) | Method for producing napthas of improved characteristics from highly refined naphthas by treating the highly refined naphthas with a copper acetate | |
US2915461A (en) | Multi-stage sweetening process employing an alkaline hypochlorite solution | |
US2057629A (en) | Treatment of hydrocarbon oils | |
US3072564A (en) | Hydrofining process |