US2624164A - Method of and apparatus for encapsulating liquid and semiliquid substances and the like - Google Patents

Method of and apparatus for encapsulating liquid and semiliquid substances and the like Download PDF

Info

Publication number
US2624164A
US2624164A US195967A US19596750A US2624164A US 2624164 A US2624164 A US 2624164A US 195967 A US195967 A US 195967A US 19596750 A US19596750 A US 19596750A US 2624164 A US2624164 A US 2624164A
Authority
US
United States
Prior art keywords
nozzle
pockets
substance
pocket
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US195967A
Other languages
English (en)
Inventor
Alfonso M Donofrio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE507104D priority Critical patent/BE507104A/xx
Priority to NL77818D priority patent/NL77818C/xx
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US195967A priority patent/US2624164A/en
Priority to GB26056/51A priority patent/GB708458A/en
Priority to CH299872D priority patent/CH299872A/fr
Application granted granted Critical
Publication of US2624164A publication Critical patent/US2624164A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use

Definitions

  • This invention relates to the art of encapsulating liquid, semi-liquid and paste substances in soft capsules formed from edible gelatins or similar thin elastic sheet materials and, in particular, is most useful in the manufacture of edible gelatin capsules for the administration of medicines, drugs, vitamins and the like.
  • the present invention consists in an improvement on the method disclosed in Patent No. 2,513,852 as well as including an improvement on the apparatus disclosed in my copending application Serial No. 126,026, which apparatus is particularly designed for the performing of the process also disclosed herein in the commercial production of soft gelatin capsules containing various liquid, paste, and semi-liquid substances or powders and fine granules which transmit hydrostatic force.
  • the principal object of this invention to provide a novel method and apparatus for the filling of preformed pockets of precise volume with charges of precise volume of liquid or semi-liquid materials capable of transmitting hydrostatic force and subsequent completion oi symmetrical, generally ellipsoidal capsules of definite content.
  • liquid and .semi-liquid are used to denominate any substances capable of transmitting hydrostatic force.
  • Such substances include liquids of high and low viscosity, oleaginous substances, pastes, powders. fine granular material, etc., excepting only solid objects which transmit purely mechanical force.
  • ellipsoidal are used herein to mean shapes formed by revolving symmetrical curves on their axes and include, without limitation, the shapes resulting from the revolution of semi-circles on their diameters, ellipses on either their longer or shorter axes, parabolas on either axis and other similar modified curves revolved either on shorter or longer axes to produce solid forms generally ellipsoidal" in shape and generally symmetrical on opposite sides of generally median planes.
  • the precise shapes of resulting capsules can be controlled by the control of the relative tensions and strains introduced into the two sheets of capsulating material by their mechanical, chemical and thermal histories and by the selection of the original shape of the unfilled half-capsules.
  • Fig. 1 is a fragmentary view in elevation of the principal components of a machine consisting of apparatus embodying the invention, shown on a relatively small scale and in somewhat sim- Plified form.
  • Fig. 2 is an enlarged fragmentary view in e employersioln taken substantially on the line 2-2 of Fig. 8 is a fragmentary enlarged view, parts being broken away, taken substantially along the line 8-4 of Pig. 1.
  • Fig. 4 is a vertical sectional view taken substantially on the line H of Fig. 3 and illustrating the formation of generally ellipsoidal. symmetrical capsules from "half-capsule" pockets of substantially hemispherical shape.
  • Fig. 5 is a detailed enlarged view in elevation of a rotary cam designed to control in carefully timed relationship the operation of other elements of the apparatus disclosed in Fig. 1.
  • Fig. 6 is a detailed view. partly in elevation and partly in cross section, showing the appearance of one face of the cam shown in Fig. 5.
  • Fig. I is a projection of the outline of the cam trackofthecam showninFigs.5and6and ditically illustrating the operation of the elements controlled by the cam.
  • FIGs. 8, 9, 10 and 11 are greatly enlarged fragmentary views illustrating the progression of the filling of a single "half-capsule" depression with the substance to be encapsulated.
  • Fig. 12 is a fragmentary detailed view taken substantially from the position indicated by the line [2-42 mm. 1.
  • a machine embodying the invention and designed for the fabrication of capsules in the practice of the process embodying the invention comprises among other parts a main frame fl on which a die roll Ii is rotatably mounted by means of bearings 22 in a bracket.
  • a pressure roll 24 is mounted in bearings II in the end of a pair of arms II pivoting around pivot bearings 21 to adjust the position of the pressure roll ll toward and away from the die roll II.
  • are placed in contact (see also Fig. 4) during the operation of the machine.
  • a first sheet of encapsulating material II which usually is formed from edible gelatin by a mechanism not shown, is led up over an idler roller 29 and around the periphery of the die roll II between the pressure roll 24 and the die roll II.
  • a second sheet of similar material ll similarly formed is led over an idler roller ll and over the top and around the pressure roll I converging with the sheet 28 between the pressure roll 24 and the die roll II.
  • the machine is equipped with a pump I2 driven in synchronism with the rotation of the die roll 2i and the feeding of the sheets of capsulating material 28 and Ill.
  • the pump 32 is provided with a bank of pump pistons (not shown) and with valve means (notshown) for directing charges of the substance to be encapsulated to selected ones of a plurality of feeder lines II.
  • Each of the feeder lines ll is connected to one of a plurality of charging nozzles ll (see also Fig. 4) which are pivotally mounted by a pin 8! and extend into the converging space between the two sheets of gelatin 2! and ill.
  • the nozzles I. are arranged in two banks "A and "B.” alternate nozzles being associated in each bank as shown in Fig. 3.
  • Each of the nozzles 34 is associated with a circumferentially extending row of die pockets II.
  • the die pockets 36 are arranged in a plurality of circumferentlally extending rows and spaced circumferentially in two series of axially aligned pockets corresponding to banks A and B of the males ll.
  • alternate circumferential rows of pockets 88 comprise each of the groups of rows associated with each bank of nozzlm. In Fig. 3 counting from the left.
  • rows i. I, I. I, I and ii are associated with the nozzles in bank "A" rows 2, l, I, I, It and I: are associated with in bank “B.” It also canbeseeninl'ig.3thatthepocketsintherows associated with bank “A” are all aligned axially and thus all pass beneath the ends of the nozzles It in bank “A” at the same time during the rotation of the die roll 2!. Similarly. the pockets in the rows associated with the bank "13 simulv taneously pass beneath the ends of the nozzles 34 in that bank.
  • Each of the nonles 34 has a rearwardly extending tongue 31 or 8
  • the upper ends of the pull rods II and 42 are provided with spherical surface washers II which are engaged in loose sockets 4
  • the "walking beam II is pinned or otherwise secured on the end of a horizontal rocker shaft I! mounted by bearing brackets I! on the main frame I0. At the other end of the rocker shaft I! there is secured a crank II on the end of which is mounted a cam engaging roller II.
  • the cam engaging roller 40 is engaged in a cam track 50 formed in the surface of a rotary cam 5
  • the cam ii is secured on the end of ashaft it which is driven by the same mechanism that drives the pump 32. in synchronism with the rotation of the die roll 2
  • the cam track as can be most easil seen in the projected view in Fig. 7, has two neutral levels It and 54, two filling levels ll corresponding to bank "A" of the nozzles, and It corresponding to bank 3" of nozzles, and sharply inclined lower and lift" surfaces 61, it, 58. and ll extending between and connecting the neutral surfaces and the filling surfaces of the cam.
  • the cam roller .8 travels along the track I. and swings, as shown by the broken line ll in Figs. 5 and 12, in response thereto. This oscillates the shaft 48 swinging the "walking beam II as shown in Fig. 12 and lifting and lowering the pull rods II and I2 and the banks of nozzles 34.
  • Each of the nozzles 34 (see Fig. 4) consists in an elongated body Ii at the rear of which is attached the associated tongue I! or it and to the front of which there is connected a nozzle tube 62.
  • the associated one of the feeder lines it is secured by a plug 63 in a threaded hole communicating with an interior passageway $4 in the interior of the nozzle body II.
  • the passage is in communication with a. valve socket II having a conical seat 88 against which a ball I! is urged by a spring 88. This forms a ball check valve which permits movement of material out of the passage 64 but not back into the passage I.
  • a socket for the spring I is formed by an opening 89 in a plug II which is threaded in the end of the nozzle body ii.
  • the plug it also has a cone end ll against which the end of the nozzle tube 62 is flared and sealed by a sealing nut 12.
  • the far end of the nozzle tube if is turned over and downwardly having an open end.
  • is generally cylindrical in shape and is surrounded by an annular lip I! raised above the general level of the periphery of the die roll II and surrounding its pockets 36.
  • Each of the pockets 36 is connected by a center passageway I4 to manifolding 15 drilled through the die roll 2
  • Fig. 4 where one of the peripheral rows of die pockets 36 is shown in section, it can be seen that the passageways 14 in any one of the axially extending rows of die pockets 36 are all connected to a single manifold 15.
  • air can be exhausted simultaneously from all of the pockets in each of the axial rows of pockets 35 or can be injected into the pockets in each of the axial rows.
  • an arcuate heater [6 may extend near the surface of the pressure roll 14 to heat the sheet of gelatin 3
  • the machine also may be equipped with a capsule ejection assembly 11 (Fig. 1) and with gelatin web feeding rollers 18 for pulling away the waste web of gelatin from which the formed capsules are severed.
  • Fig. 8 shows one of the nozzle tubes 62 just after it has moved downwardly into one of the formed pockets I9 in the gelatin 23.
  • the pressure in the material created by the pump piston displaces the ball 61 from its seat 66 allowing a measured quantity of material to be ejected from the feeder tube 62.
  • the flow from the feeder tube continues as long as the pump piston discharges which is during the time when the cam roller is engaged in the filling" surface of the cam and thus the tube 62 is down in a pocket.
  • the pump continues to discharge and as long as the material being pumped by the assoelated piston has a. pressure greater than that exerted on the ball 81 by its spring 83, material continues to flow into the pocket 13 in the gelatin sheet 23.
  • the lower end of the feeder tube 82 is inserted into the pocket 13 to an extent such that, as shown in Fig. 9, the level of the substance being filled into the pocket 13 is substantially above the lower end of the feeder tube 32 before the feeder tube 82 is withdrawn.
  • the feeder tube 62 is lifted a sumcient distance so that the hour-glass shaped stringer of substance to be encapsulated breaks away from the lower portion, allowing the lower portion to return to the mass in the pocket and the upper portion, by the action of surface tension in the material, forming a meniscus dro on the end of the feeder tube 82.
  • roller 43 has reached the beginning of the neutral level 53 of the cam.
  • the pump pistons have begun their cylinder filling stroke to pull substance to be encapsulated from a supply source into the pump cylinders and no rows of pockets are in line beneath the ends of any of the feeder tubes 62.
  • the function of the ball check valve comprising the ball 31, its conical seat 66 and its spring 33 is two-fold.
  • the ball check valve By afiording resistance to the passage of the substance to be encapsulated through the tubing, it maintains any entrapped air in the column of substance in the feeder line under a certain pressure so that when a pump piston discharges into the feeder line, the same quantity of material discharged into one end of the feeder line by the pump piston passes the ball check valve at the other end of the feeder line and the same quantity is discharged from the corresponding feeder tube II. Furthermore. the ball check valve.
  • the capsules II are retained in the web 80 as the web leaves the periphery of the die roll II and passes downwardly between the rollers in the assembly 11.
  • the rollers in the assembly l1 bend the web III in opposite directions electing the capsules Ii which tumble down into a receptacle (not shown).
  • the web It passes downwardly from the assembly l'l between a pair of oppositely driven rough surface web feeding rollers 18, which are driven at a linear speed faster than that of the web thus stretching the web and assist in ejecting the capsules ll while passing through the assembly 'll.
  • the process of filling capsules according to the method of this invention consists in the improvement in the substance depositing step which comprises the insertion of a nozzle beneath the level of the top of a depression. discharging from the nozzle 9. quantity of substance such that it reaches a level above the bottom edge of the nozzle and thus so that the bottom edge of the nozzle is immersed in the liquid and then the rapid withdrawal of the nozzle from beneath the surface of the liquid at the same instance that the feeding of the liquid is stopped. It is this action of rapid withdrawal at the instance of cessation of feeding that causes the substance iust fed through the nozzle to be pulled into the hour-glass shape shown in Fig.
  • the process consists in filling open topped depressions or pockets with a measured charge of a liquid or semi-liquid substance or the like. by carrying out the steps of inserting a charging nozzle into the open topped pocket to a point below the horizontal level of the top edge of the depression, discharging a measured charge of substance into the depression to a level above the bottom edge of the nozzle and in a volume exactly equal to the volume of the depression, and withdrawing the nozzle from beneath the surface of the semi-liquid or liquid substance at theprecise moment that the discharge from the nozzle stops whereby the combined action of cessation of discharging and withdrawal of the end of the nozzle from beneath the surface of the substance just discharged results in the nozzle pulling up from the surface of the substance.
  • a machine for producing symmetrical generally ellipsoidal capsules each containing a measured volume of substance enclosed between opposed sheets of elastic capsulatlng material sealed around said substance along a generally median plane comprising, in combination. means for periodically discharging a predetermined volume of substance; feeder means, to receive and conduct said volume to a pocket, connected to said discharge means and having an open nozzle-like end; means for feeding a pair of sheets of capsulating material along cofiverging paths; means for deforming a defined area of one of said sheets to form an upwardly open pocket of definite volume; means operating in timed relationship with said discharging means for inserting the open end of said feeder means into said pocket beneath the level of the upper edge thereof at the beginning of a discharge.
  • Apparatus for forming symmetrical generally ellipsoidal capsules. each containing a definite volume of substance enclosed between opposed, mated. substantially equally deformed sheets of elastic capsule-ting material sealed around such substance comprising. in combination, a pump having a timed cycle of discharge strokes; a feeder tube connected to said pump and having an open nozzle end; a die roll having a horizontal axis and a row of circumferentially spaced die pockets; means torotate said die roll; means for feeding a.
  • Apparatus for forming. filling and sealing capsules comprising, in combination, means for feeding a pair of sheets of capsule-ting material along converging paths, one of said sheets lying generally horizontally along a part of its path, means for deforming a defined area of said sheet while horizontal to form an open topped pocket therein having a definite volume, a discharge nozzle mounted above said sheet and movable to be inserted into and removed from said pocket. means operated in timed relation to said deforming means and to the movement of said nozzle for causing the discharge of a quantity of substance to be encapsulated equal in volume to the volume of said pocket from said nozzle with the discharge thereof starting when said nozzle is inserted into said pocket, continuing until said pocket is filled to a.
  • Apparatus for forming, filling and sealing capsules comprising, in combination, means for feeding a pair of sheets of capsulating material along converging paths, one of said sheets lying generally horizontally long a part of its path. means for successively deforming defined areas of said sheet to form a row of spaced open topped pockets of definite volume therein. a pivotably mounted discharge nozzle having a downwardly turned end mounted above sa d sheet of capsuiating material with said end in line with said row of pockets.
  • a pump for delivering a measured charge of substance equal in volume to the volume of one of said pockets at each stroke and being connected to said discharge nozzle, means actuated by said pump in timed relation to the formation of said pockets for pivoting said nozzle to insert said end into a pocket beneath the upper edge thereof at the start of a discharge, retaining said end therein until the level of substance is above said end and withdrawing said end at the end of a discharge and means for laying the second sheet of said capsulating material over the top of the filled ocket and for sealing said sheets together around the edge of said pocket and severing the filled sealed capsule from the sheets of capsulatlng material.
  • a machine for encapsulating liquid, semiiiquid and the like substances in elastic gelatin that comprises, in combination, a. rotatable, horizontal axis -die roll having a plurality of halfcapsule shaped die pockets in its periphery. and raised annular lips around each of said die pockets, a smooth surface pressure roll rotating in contact with said lips on said die roll, means for feeding a first sheet of elastic gelatin over the surface thereof and between said die roll and said pressure roll. means for drawing the gelatin into said die pockets as each die pocket approaches the top of said die roll to form pockets of definite volume in said gelatin.
  • filling nozzle for depositing substance in each of said pockets as such pocket reaches the top of said die roll means timed in sequence with the rotation of said die roll for dipping said nozzle into the pocket to be filled below the rim thereof, pump means for discharging a measured charge of substance equal in volume to the charge of substance desired in the finished capsule into said pocket while said nozzle is dipped therein and thus to a level above the end of said nozzle, means also timed in sequence with said die roll ⁇ or rapidly removing aid nozzle out of the substance just discharged at the cessation of discharge.
  • Apparatus for producing generally symmetrical capsules consisting in two opposed, mated, bulged. sheets of soft elastic gelatin, meeting along a generally median plane and closely containing a measured charge of a liquid, semiliquid or the like substance, that comprises.
  • a power source and power transmission in combination, a generally cylindrical, horizontal axis, die roll, said die roll having a plurality of die pockets in its surface, each of said die pockets having a radially extending rim raised above the surrounding surface of said die roll and circumscribing said die pocket, a cylindrical, smooth periphery pressure roll running in contact with the peripheral surfaces of said raised lips, means for feeding a first sheet of elastic gelatin over the periphery of said die roll and a second sheet of elastic gelatin over the periphery of said pressure roll in converging paths between said die roll and said pressure roll.
  • said die roll being driven by said transmission to move said gelatin sheets toward each other; means for depressing said gelatin into said die pockets as said die pockets approach the upper surface of said die roll and thus forming pockets of definite volume in said gelatin; a discharge nozzle mounted above said sheet and movable to be inserted into and removed from each of said pockets.
  • Apparatus for depositing a measured charge of a substance to be encapsulated in an open topped pocket having a volume equal to the volume of the charge comprising, in combination, a pump for delivering such charge, feeder means connected to the output of said pump, a nomle pivotally mounted above said pocket and connected to said pump by said feeder means. means operable in timed relation to the operation of said pump for pivoting said nozzle to insert said nozzle into said pocket at the beginning of a discharge, to hold said nozzle in such position until the level of the substance discharged rises above the end of said nozzle and for quickly removing said nozzle from said pocket at the cessation of discharge therefrom. whereby the movement of said nozzle out of such substance cleanly breaks the flow of substance therefrom as said discharge ceases.
  • a method of forming a symmetrical, generally ellipsoidal capsule that comprises deforming a defined area in a sheet of elastic capsulating material to create a pocket having a definite volume. inserting the end of a mule into said pocket and beneath the level of the upper edge thereof, discharging through said nozzle a measured charge of substance to be encapsulated equal in volume to the volume of said pocket, thus filling the pocket to a level above the end of said nozzle, withdrawing said nozzle at the instant of is 2,562,815
  • Apparatus for forming, filling and sealing capsules comprising in combination means for feeding a pair of sheets of capsulating material along converging paths, one of said sheets lying generally horizontally along a part of its path, means for successively deforming defined areas of said sheet to form a plurality of rows of spaced open topped pockets of definite volume therein, a movably mounted discharge nozzle having a downwardly extending end above each of the rows of pockets, pump means for delivering a measured charge of substance equal in volume to the charge of substance desired in the finished capsule to each of said discharge nozzles, means actuated in timed relation to the passing of said pockets beneath each nozzle to insert said end into a pocket beneath the upper edge thereof, and retain said end therein until the level of the substance is above said end, and withdraw said end after the completion of discharge. andmeans for laying the second sheet of said capsulating material over the top of the filled pockets and for sealing said sheets together around the edge of said pockets and severing the filled sealed capsules from the sheets of capsulating
  • a method of forming symmetrical, generally ellipsoidal capsules which comprises deforming a plurality of defined areas in a sheet of elastic capsulating material to create a plurality of rows of pockets each having a definite volume, inserting the end of a nomle into each of said pockets and beneath the level of the upper edge thereof, dischar ing through said nozzle into each of said cavities a measured charge of substance to be encapsulated equal in volume to the charge of substance desired in the finished capsule, thus filling the pockets to a level above the end of said nozzle, withdrawing said nozzle after the cessation of discharge of substance therefrom, placing a second sheet of capsulating material over the filled pockets, sealing the two sheets of material together around the margin of the pockets, and severing the thus formed sealed capsules from the sheets of material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Basic Packing Technique (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)
US195967A 1950-11-16 1950-11-16 Method of and apparatus for encapsulating liquid and semiliquid substances and the like Expired - Lifetime US2624164A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BE507104D BE507104A (xx) 1950-11-16
NL77818D NL77818C (xx) 1950-11-16
US195967A US2624164A (en) 1950-11-16 1950-11-16 Method of and apparatus for encapsulating liquid and semiliquid substances and the like
GB26056/51A GB708458A (en) 1950-11-16 1951-11-07 Improvements relating to apparatus for forming capsules
CH299872D CH299872A (fr) 1950-11-16 1951-11-13 Procédé de fabrication d'une capsule et appareil pour la mise en oeuvre de ce procédé.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US195967A US2624164A (en) 1950-11-16 1950-11-16 Method of and apparatus for encapsulating liquid and semiliquid substances and the like

Publications (1)

Publication Number Publication Date
US2624164A true US2624164A (en) 1953-01-06

Family

ID=22723576

Family Applications (1)

Application Number Title Priority Date Filing Date
US195967A Expired - Lifetime US2624164A (en) 1950-11-16 1950-11-16 Method of and apparatus for encapsulating liquid and semiliquid substances and the like

Country Status (5)

Country Link
US (1) US2624164A (xx)
BE (1) BE507104A (xx)
CH (1) CH299872A (xx)
GB (1) GB708458A (xx)
NL (1) NL77818C (xx)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736150A (en) * 1952-02-28 1956-02-28 Packaging apparatus
US2754069A (en) * 1945-04-16 1956-07-10 Bendix Aviat Corp Recording and measuring instrument
DE1036154B (de) * 1953-02-12 1958-08-07 Hoechst Ag Vorrichtung zum Verpacken von fluessigen bis pastenfoermigen Stoffen in Beuteln aus weichgestellter Kunststoffolie
US2878630A (en) * 1954-12-13 1959-03-24 American Cyanamid Co Machine for stripping capsules
US2928221A (en) * 1955-11-08 1960-03-15 Henry R Smith Packaging machine
US2936493A (en) * 1955-06-16 1960-05-17 Scherer Corp R P Method of making plastic capsules
US2952105A (en) * 1957-08-06 1960-09-13 Olin Mathieson Wrapping device
US3124840A (en) * 1964-03-17 taylor etal
US3129545A (en) * 1960-10-11 1964-04-21 Oscar Mayer & Company Inc Package forming apparatus and components thereof
US3303629A (en) * 1964-02-03 1967-02-14 Gould National Batteries Inc Packaging with thermoplastic materials
US3377660A (en) * 1961-04-20 1968-04-16 Norton Co Apparatus for making crystal abrasive
US3465496A (en) * 1966-12-23 1969-09-09 American Cyanamid Co Capsule forming apparatus with fluid metering valve
US3545171A (en) * 1967-11-16 1970-12-08 Jacob Salomon Heat-sealing apparatus
US3744214A (en) * 1971-09-28 1973-07-10 Smith Kline French Lab Capsule salvage machine
US4154636A (en) * 1975-08-27 1979-05-15 Freund Industrial Co., Ltd. Method of film-coating medicines
US4375146A (en) * 1979-06-11 1983-03-01 International Automated Machinery, Inc. Continuous rotary machine and method for forming, filling, and sealing package of laminated sheet material
US4453909A (en) * 1982-03-26 1984-06-12 International Flavors & Fragrances Inc. Apparatus for making soap with perfumed insert
US5682733A (en) * 1996-05-09 1997-11-04 Perrone; Aldo Apparatus for enrobing tablets
US5761886A (en) * 1996-02-09 1998-06-09 Parkhideh; Shahrooz Apparatus and method for manufacturing encapsulated products
WO2019073259A1 (en) * 2017-10-13 2019-04-18 Nottingham University Hospitals Nhs Trust METHODS OF FORMING SOLID OR LIQUID CHARGED CAPSULES
US11248596B2 (en) * 2013-11-22 2022-02-15 Rheonix, Inc. Channel-less pump, methods, and applications thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0020964D0 (en) * 2000-08-25 2000-10-11 Reckitt & Colmann Prod Ltd Improvements in or relating to containers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US992886A (en) * 1909-05-03 1911-05-23 Henry Laval Capsule-filler.
US2497212A (en) * 1945-10-31 1950-02-14 Alfonso M Donofrio Method of manufacturing capsules
US2513852A (en) * 1946-12-26 1950-07-04 Alfonso M Donofrio Method for encapsulating
US2562815A (en) * 1947-05-15 1951-07-31 Boots Pure Drug Co Ltd Apparatus for filling tubes with liquids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US992886A (en) * 1909-05-03 1911-05-23 Henry Laval Capsule-filler.
US2497212A (en) * 1945-10-31 1950-02-14 Alfonso M Donofrio Method of manufacturing capsules
US2513852A (en) * 1946-12-26 1950-07-04 Alfonso M Donofrio Method for encapsulating
US2562815A (en) * 1947-05-15 1951-07-31 Boots Pure Drug Co Ltd Apparatus for filling tubes with liquids

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124840A (en) * 1964-03-17 taylor etal
US2754069A (en) * 1945-04-16 1956-07-10 Bendix Aviat Corp Recording and measuring instrument
US2736150A (en) * 1952-02-28 1956-02-28 Packaging apparatus
DE1036154B (de) * 1953-02-12 1958-08-07 Hoechst Ag Vorrichtung zum Verpacken von fluessigen bis pastenfoermigen Stoffen in Beuteln aus weichgestellter Kunststoffolie
US2878630A (en) * 1954-12-13 1959-03-24 American Cyanamid Co Machine for stripping capsules
US2936493A (en) * 1955-06-16 1960-05-17 Scherer Corp R P Method of making plastic capsules
US2928221A (en) * 1955-11-08 1960-03-15 Henry R Smith Packaging machine
US2952105A (en) * 1957-08-06 1960-09-13 Olin Mathieson Wrapping device
US3129545A (en) * 1960-10-11 1964-04-21 Oscar Mayer & Company Inc Package forming apparatus and components thereof
US3377660A (en) * 1961-04-20 1968-04-16 Norton Co Apparatus for making crystal abrasive
US3303629A (en) * 1964-02-03 1967-02-14 Gould National Batteries Inc Packaging with thermoplastic materials
US3465496A (en) * 1966-12-23 1969-09-09 American Cyanamid Co Capsule forming apparatus with fluid metering valve
US3545171A (en) * 1967-11-16 1970-12-08 Jacob Salomon Heat-sealing apparatus
US3744214A (en) * 1971-09-28 1973-07-10 Smith Kline French Lab Capsule salvage machine
US4154636A (en) * 1975-08-27 1979-05-15 Freund Industrial Co., Ltd. Method of film-coating medicines
US4375146A (en) * 1979-06-11 1983-03-01 International Automated Machinery, Inc. Continuous rotary machine and method for forming, filling, and sealing package of laminated sheet material
US4453909A (en) * 1982-03-26 1984-06-12 International Flavors & Fragrances Inc. Apparatus for making soap with perfumed insert
US5761886A (en) * 1996-02-09 1998-06-09 Parkhideh; Shahrooz Apparatus and method for manufacturing encapsulated products
US5682733A (en) * 1996-05-09 1997-11-04 Perrone; Aldo Apparatus for enrobing tablets
US11248596B2 (en) * 2013-11-22 2022-02-15 Rheonix, Inc. Channel-less pump, methods, and applications thereof
WO2019073259A1 (en) * 2017-10-13 2019-04-18 Nottingham University Hospitals Nhs Trust METHODS OF FORMING SOLID OR LIQUID CHARGED CAPSULES

Also Published As

Publication number Publication date
CH299872A (fr) 1954-06-30
GB708458A (en) 1954-05-05
BE507104A (xx)
NL77818C (xx)

Similar Documents

Publication Publication Date Title
US2624164A (en) Method of and apparatus for encapsulating liquid and semiliquid substances and the like
US2387747A (en) Machine for and a method of making filled capsules
US2350971A (en) Method for forming pressed articles from powders
US2514486A (en) Molding machine
CN104512850B (zh) 一种灌装瓶纠正推挤涮洗递进输送灌装运盖旋盖贴标系统
CN105410093B (zh) 一种灌汤水饺制作方法
CN107410406A (zh) 包馅食品成型机
CN104445025B (zh) 一种灌装瓶纠正推挤涮洗输送灌装冲挤旋盖贴标系统
CN107821511A (zh) 一种切料式自动送模蛋挞机
US3555652A (en) Assembling apparatus for making containers
CN104554855B (zh) 一种糖果包装机
US2449008A (en) Means for forming pressed articles from powders
CN105410097B (zh) 环形工位的多重馅料成型装置
CN105410090B (zh) 直线工位的多重馅料成型装置
CN105410091A (zh) 一种双层面皮多重馅料包馅食品成型方法
US2774988A (en) Capsule forming gelatin film stripping
CN113022903B (zh) 一种可多工位集中封装的中药包塑封装置
US2513581A (en) Capsulator
JP2005535375A (ja) カプセル充填機械
US2339286A (en) Method and machine for making capsules
US2902802A (en) Encapsulating die roll system
CN105729780A (zh) 一种双层进给式片材吸塑成型机
CN105613645B (zh) 多重馅料成型装置
CN205284822U (zh) 直线工位的多重馅料成型装置
CN104445015B (zh) 一种灌装瓶纠正推挤涮洗输送灌装运盖旋盖贴标打码方法