US2464596A - Chemical method of coating aluminum - Google Patents

Chemical method of coating aluminum Download PDF

Info

Publication number
US2464596A
US2464596A US578134A US57813445A US2464596A US 2464596 A US2464596 A US 2464596A US 578134 A US578134 A US 578134A US 57813445 A US57813445 A US 57813445A US 2464596 A US2464596 A US 2464596A
Authority
US
United States
Prior art keywords
coating
per cent
weight
aluminum
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US578134A
Inventor
Ralph B Mason
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Howmet Aerospace Inc
Original Assignee
Aluminum Company of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE474285D priority Critical patent/BE474285A/xx
Application filed by Aluminum Company of America filed Critical Aluminum Company of America
Priority to US578134A priority patent/US2464596A/en
Priority to GB21635/46A priority patent/GB614671A/en
Priority to FR948260D priority patent/FR948260A/en
Priority to CH264921D priority patent/CH264921A/en
Priority to ES0179130A priority patent/ES179130A1/en
Priority to DEP29457A priority patent/DE810097C/en
Application granted granted Critical
Publication of US2464596A publication Critical patent/US2464596A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • C23C22/67Treatment of aluminium or alloys based thereon with solutions containing hexavalent chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon

Definitions

  • Aluminum surfaces by which term the surfaces of aluminum and aluminum base alloys containing about '70 per cent or more by weight of that metal are herein collectively referred to, may by means of various processes be provided with an artificially produced coating which consists, in substantial part, of aluminum oxide. The process by which such a coating is produced may result in a coating which contains other components which may or may not alter specific characteristics of the coating.
  • oxide coatings In the art such coatings are referred to as oxide coatings and, in various degrees depending upon the particular coating, they exhibit as general properties a thickness greater than the natural film of oxide which appears on all aluminum surfaces, some resistance to corrosion and abrasion, an ability to respond to treatment with organic dyes or inorganic coloring agents to form colored surfaces, permean bility and a capacity to adsorb or absorb moisture or liquids.
  • oxide coatings By various treatments imposed after the oxide coatings have been formed, they may be adapted to widely varyin specific purposes, or the natural qualities and properties of the coating may be improved, modified or enhanced.
  • These useful oxide coatings may be produced on aluminum surfaces by a large choice of methods, some of which are superior to others, but such methods, regardless of their general desirability, usually fall in one of two classes.
  • the aluminum surface is made anode in an electrolytic cell, the electrolyte of which is a selected coating forming solution, and electrical current is passed to cause, or help cause, the formation of the coating on the aluminum surface.
  • the oxide coating is formed on the aluminum surface by chemical reaction and without the application of external electrical energy. In this case the aluminum surface is immersed in, or otherwise con-.
  • aqueous solutions used to chemically form such oxide coatings on aluminum surfaces those containing an alkali metal carbonate as the principal active constituent have proved to be the most useful in the commercial arts.
  • These solutions usually contain about 0.5 to 6 per cent by weight of alkali metal carbonate, preferably sodium carbonate.
  • alkali metal carbonate preferably sodium carbonate.
  • the nature of oxide coatings chemically formed on aluminum surfaces by the use of these alkali metal carbonate solutions can be considerably improved if there is present in the coating forming solution an amount of polyvinyl alcohol.
  • the addition of the polyvinyl alcohol to the solution promotes the formation of an oxide coating which is more adherent and more resistant to abrasion than the coating usually formed by the use of the alkali carbonate solution without the presence therein of polyvinyl alcohol.
  • the amount of polyvinyl alcohol present in the coating forming solution may vary' from about 0.2 to about 5 per cent by weight of the total solution, but I prefer to use amounts of about 0.2 to 3 per cent by weight.
  • the metal surface to be treated is merely immersed in the solution, which may be agitated if desired, and is left therein for a period of time which will vary depending upon the nature of the aluminum surface being treated and the concentration of the solution. Generally speaking, good coatings may be produced in about 30 minutes if the temperature range of the solution is between about and C I have further determined that when the concentration of the alkali" metal carbonate and the polyvinyl alcohol are substantially equal, as expressed in per cent by weight of the total solution, the best coatings are usually obtained, although this particular rule does not hold as to all surfaces treated. I have obtained an aluminum alloy, the principal alloying con-:
  • commercially pure aluminum was treated for 30 minutes, at 87 C. in a solution containing 1 per cent by weight of sodium carbonate, 1 per cent by weight of polyvinyl alcohol, and 0.1 per cent by weight of sodium chromate.
  • the oxide coated surface thus produced was then treated with a hot solution of sulphonated castor oil, and this treatment was followed by a further 15 minute treatment in a 5 per cent solution of sodium ohromate, these after-treatments being treatments applied to oxide coated aluminum surfaces to improve their service characteristics.
  • the coatings produced by the practice ofthis invention respond to treatment with organic polyvinyl alcohol.
  • the method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface with an aqueous solution containing, as the active coating formers, 0.5 to 6 per cent by weight of alkali metal carbonate and 0.2 to 3 per cent by weight of polyvinyl alcohol.
  • the method of chemically forming an oxide coating on aluminum surfaces which comprises treatingsaid surface with an aqueous solution containing, as the active coating formers, 0.5 to 3 per cent by weight of sodium carbonate and 0.2 to 3 per cent by weight of polyvinyl alcohol.
  • the method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface-with an aqueous solution containing, as the active coatingformers, 0.5 to 6 per cent by weight of alkali metal carbonate, 0.05 to 0.5 per cent by weight of alkali metal chromate and 0.2 to 3 per cent by weight of 4.
  • the method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface with an aqueous solution containing, as the active coating formers, 0.5 to 6 per cent by weight of alkali metal carbonate and 0.2 to, 3 per cent by weight of polyvinyl alcohol, the content of alkali metal carbonate being at least equal to the content of polyvinyl alcohol.
  • the method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface with an aqueous solution containing, as the active coating formers 0.5 to 6 per cent by weight of alkali metal carbonate and 0.2 to 5 per cent by weight of polyvinyl alcohol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

Patented Mar. 15,1949 f Ralph B. Mason, New Kensington, Pa., assignor to Aluminum Company of America, Pittsburgh, Pa.', a corporation of Pennsylvania No Drawing. Application February 15, 1945, Serial No. 578,134
Claims. l
Aluminum surfaces, by which term the surfaces of aluminum and aluminum base alloys containing about '70 per cent or more by weight of that metal are herein collectively referred to, may by means of various processes be provided with an artificially produced coating which consists, in substantial part, of aluminum oxide. The process by which such a coating is produced may result in a coating which contains other components which may or may not alter specific characteristics of the coating. In the art such coatings are referred to as oxide coatings and, in various degrees depending upon the particular coating, they exhibit as general properties a thickness greater than the natural film of oxide which appears on all aluminum surfaces, some resistance to corrosion and abrasion, an ability to respond to treatment with organic dyes or inorganic coloring agents to form colored surfaces, permean bility and a capacity to adsorb or absorb moisture or liquids. By various treatments imposed after the oxide coatings have been formed, they may be adapted to widely varyin specific purposes, or the natural qualities and properties of the coating may be improved, modified or enhanced.
These useful oxide coatings may be produced on aluminum surfaces by a large choice of methods, some of which are superior to others, but such methods, regardless of their general desirability, usually fall in one of two classes. In one class of methods'the aluminum surface is made anode in an electrolytic cell, the electrolyte of which is a selected coating forming solution, and electrical current is passed to cause, or help cause, the formation of the coating on the aluminum surface. In the other class of methods the oxide coating is formed on the aluminum surface by chemical reaction and without the application of external electrical energy. In this case the aluminum surface is immersed in, or otherwise con-.
tacted by, the coating forming solution.
These chemical, or non elec'trolytic, methods of forming oxide coatings are usually less expensive in operation and do not require the use of the special implements required in connection with the production of electrolytic oxide coatings. However, the coating produced by the chemical treatment is usually not as hard, adherent and compact as those produced by properly operated electrolytic treatments l Despite the well known disadvantages of these chemical oxide coatings,
iii)
they have found widespread application in the I art in many instances where, because of size, shape and relative cost of the product to be coated. the existing facilities of manufacture, the
amount of material to be coated'at a given time and similar or related factors, the electrolytic type of coating cannot be economically used. There are likewise instances where the relative disadvantages of chemically formed oxide coatings are not of controlling importance, as where the coated aluminum surface is to be put to uses which do not place severe demands upon the coating.
Of the aqueous solutions used to chemically form such oxide coatings on aluminum surfaces, those containing an alkali metal carbonate as the principal active constituent have proved to be the most useful in the commercial arts. These solutions usually contain about 0.5 to 6 per cent by weight of alkali metal carbonate, preferably sodium carbonate. In the use of such solutions it is sometimes preferred, depending upon the ultimate characteristics desired in the coating, to provide in the coating forming solution a quantity of soluble chromium, i. e. hexavalent chromium, best present as alkali metal chromate, a term which is used herein to include and describe the equivalent alkali metal dichromates.
I have found that the nature of oxide coatings chemically formed on aluminum surfaces by the use of these alkali metal carbonate solutions can be considerably improved if there is present in the coating forming solution an amount of polyvinyl alcohol. The addition of the polyvinyl alcohol to the solution promotes the formation of an oxide coating which is more adherent and more resistant to abrasion than the coating usually formed by the use of the alkali carbonate solution without the presence therein of polyvinyl alcohol. The amount of polyvinyl alcohol present in the coating forming solution may vary' from about 0.2 to about 5 per cent by weight of the total solution, but I prefer to use amounts of about 0.2 to 3 per cent by weight. In forming the coating, the metal surface to be treated is merely immersed in the solution, which may be agitated if desired, and is left therein for a period of time which will vary depending upon the nature of the aluminum surface being treated and the concentration of the solution. Generally speaking, good coatings may be produced in about 30 minutes if the temperature range of the solution is between about and C I have further determined that when the concentration of the alkali" metal carbonate and the polyvinyl alcohol are substantially equal, as expressed in per cent by weight of the total solution, the best coatings are usually obtained, although this particular rule does not hold as to all surfaces treated. I have obtained an aluminum alloy, the principal alloying con-:
stituent of which was about 4% per cent copper, I have observed that a tough, smooth, glossy coating was-best obtained when the treating solution contained about 3 per cent by weight of polyvinyl alcohol and 3 per cent by weight of sodium carbonate. Using a coating solution containing 1 per cent by weight of sodium carbonate.'1 per centlby weight of polyvinyl alcohol and 0.1 per cent by weight of sodium chromate, I have produced very useful coatings on the surface of slide fasteners made of aluminum containing as the principal alloying component about 5 per cent of magnesium. In all cases I have observed that the coatings produced are more resistant to chip-'- plng or flaking or wear under normal .abrasive conditions than are the coatings produced in alkali metal carbonate solutions in which the polyvinyl alcohol is not present.
As an example of the abrasion-resistant characteristics of coatings formed in accordance with this invention, I may cite certain abrasion tests made on oxide coated aluminum surfaces produced under comparable conditions. In one instance commercially pure aluminum was treated for 30 minutes, at 87 C. in a solution containing 1 per cent by weight of sodium carbonate, 1 per cent by weight of polyvinyl alcohol, and 0.1 per cent by weight of sodium chromate. The oxide coated surface thus produced was then treated with a hot solution of sulphonated castor oil, and this treatment was followed by a further 15 minute treatment in a 5 per cent solution of sodium ohromate, these after-treatments being treatments applied to oxide coated aluminum surfaces to improve their service characteristics. Another aluminum sample of commercial purity was similarly coated, with the exception that the solution did not contain polyvinyl alcohol. Thereafter it was submitted to the same treatments in sulphonated castor oil and sodium chromate. The two samples were then submitted to an abrasion machine which produced the rubbing type of abrasion, in which a polished steel wheel under pressure is rotated against the revolving surface of the oxide coated sample. The sample prepared in accordance with this invention was, as measured by the results of this abrasion test, more than ten times as resistant to the abrasion as the sample coated in a solution in which polyvinyl alcohol was not present.
The coatings produced by the practice ofthis invention respond to treatment with organic polyvinyl alcohol.
\ 4 dyes, inorganic coloring agents, or similar and other after-treatments normally applied to oxide coatings formed on aluminum.
Having thus described the invention, I claim:
1. The method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface with an aqueous solution containing, as the active coating formers, 0.5 to 6 per cent by weight of alkali metal carbonate and 0.2 to 3 per cent by weight of polyvinyl alcohol.
2. The method of chemically forming an oxide coating on aluminum surfaces which comprises treatingsaid surface with an aqueous solution containing, as the active coating formers, 0.5 to 3 per cent by weight of sodium carbonate and 0.2 to 3 per cent by weight of polyvinyl alcohol.
3. The method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface-with an aqueous solution containing, as the active coatingformers, 0.5 to 6 per cent by weight of alkali metal carbonate, 0.05 to 0.5 per cent by weight of alkali metal chromate and 0.2 to 3 per cent by weight of 4. The method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface with an aqueous solution containing, as the active coating formers, 0.5 to 6 per cent by weight of alkali metal carbonate and 0.2 to, 3 per cent by weight of polyvinyl alcohol, the content of alkali metal carbonate being at least equal to the content of polyvinyl alcohol.
5. The method of chemically forming an oxide coating on aluminum surfaces which comprises treating said surface with an aqueous solution containing, as the active coating formers 0.5 to 6 per cent by weight of alkali metal carbonate and 0.2 to 5 per cent by weight of polyvinyl alcohol.
RALPH B. MASON.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,946,150 Tosterud Feb. 6, 1934 2,129,071 Rowell Sept. 6, 1938 2,137,988 Hempel Nov. 22, 1938 2,171,545 Edwards et a1. Sept. 5, 1939 2,279,252 Slunder Apr. 7, 1942 FOREIGN PATENTS Number Country Date 455,412 Great Britain Oct. 20, 1936
US578134A 1945-02-15 1945-02-15 Chemical method of coating aluminum Expired - Lifetime US2464596A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BE474285D BE474285A (en) 1945-02-15
US578134A US2464596A (en) 1945-02-15 1945-02-15 Chemical method of coating aluminum
GB21635/46A GB614671A (en) 1945-02-15 1946-07-19 Improvements in or relating to the formation of oxide coatings on aluminium surfaces
FR948260D FR948260A (en) 1945-02-15 1947-06-20 Improvements to the formation of oxide coatings on aluminum surfaces
CH264921D CH264921A (en) 1945-02-15 1947-07-21 Process for the production of oxide layers on surfaces of aluminum and aluminum alloys.
ES0179130A ES179130A1 (en) 1945-02-15 1947-07-29 A PROCEDURE OF CHEMICALLY FORMING A LAYER OF OXIDE ON AN ALUMINUM SURFACE
DEP29457A DE810097C (en) 1945-02-15 1949-01-01 Process for the production of an oxide coating on aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US578134A US2464596A (en) 1945-02-15 1945-02-15 Chemical method of coating aluminum

Publications (1)

Publication Number Publication Date
US2464596A true US2464596A (en) 1949-03-15

Family

ID=24311580

Family Applications (1)

Application Number Title Priority Date Filing Date
US578134A Expired - Lifetime US2464596A (en) 1945-02-15 1945-02-15 Chemical method of coating aluminum

Country Status (7)

Country Link
US (1) US2464596A (en)
BE (1) BE474285A (en)
CH (1) CH264921A (en)
DE (1) DE810097C (en)
ES (1) ES179130A1 (en)
FR (1) FR948260A (en)
GB (1) GB614671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2504434A (en) * 1947-01-28 1950-04-18 Aluminum Co Of America Forming oxide coatings on aluminum
US2573320A (en) * 1949-03-18 1951-10-30 Pyrene Mfg Co Fire extinguisher
US3073760A (en) * 1959-05-05 1963-01-15 Kaiser Aluminium Chem Corp Sealing of anodized coatings
US3189489A (en) * 1960-10-10 1965-06-15 Amchem Prod Method and solutions for treating metal surfaces
US4512818A (en) * 1983-05-23 1985-04-23 Shipley Company Inc. Solution for formation of black oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE961587C (en) * 1951-06-28 1957-04-11 Basf Ag Process for the production of a dense oxide coating on objects made of aluminum or aluminum alloys

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1946150A (en) * 1931-05-15 1934-02-06 Aluminum Co Of America Coating of aluminum
GB455412A (en) * 1935-01-08 1936-10-20 Max Schenk Improvements relating to the process of manufacturing protective layers on aluminium and its alloys
US2129071A (en) * 1935-10-31 1938-09-06 Addressograph Multigraph Planographic printing plate
US2137988A (en) * 1936-10-21 1938-11-22 Heresite & Chemical Company Adherent aluminum compound
US2171545A (en) * 1936-06-12 1939-09-05 Aluminum Co Of America Protective coating for aluminum and its alloys
US2279252A (en) * 1937-12-23 1942-04-07 Aluminum Co Of America Treating aluminum surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1946150A (en) * 1931-05-15 1934-02-06 Aluminum Co Of America Coating of aluminum
GB455412A (en) * 1935-01-08 1936-10-20 Max Schenk Improvements relating to the process of manufacturing protective layers on aluminium and its alloys
US2129071A (en) * 1935-10-31 1938-09-06 Addressograph Multigraph Planographic printing plate
US2171545A (en) * 1936-06-12 1939-09-05 Aluminum Co Of America Protective coating for aluminum and its alloys
US2137988A (en) * 1936-10-21 1938-11-22 Heresite & Chemical Company Adherent aluminum compound
US2279252A (en) * 1937-12-23 1942-04-07 Aluminum Co Of America Treating aluminum surfaces

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2504434A (en) * 1947-01-28 1950-04-18 Aluminum Co Of America Forming oxide coatings on aluminum
US2573320A (en) * 1949-03-18 1951-10-30 Pyrene Mfg Co Fire extinguisher
US3073760A (en) * 1959-05-05 1963-01-15 Kaiser Aluminium Chem Corp Sealing of anodized coatings
US3189489A (en) * 1960-10-10 1965-06-15 Amchem Prod Method and solutions for treating metal surfaces
US4512818A (en) * 1983-05-23 1985-04-23 Shipley Company Inc. Solution for formation of black oxide

Also Published As

Publication number Publication date
ES179130A1 (en) 1947-10-01
BE474285A (en) 1900-01-01
FR948260A (en) 1949-07-27
GB614671A (en) 1948-12-20
DE810097C (en) 1951-09-03
CH264921A (en) 1949-11-15

Similar Documents

Publication Publication Date Title
Ardelean et al. Surface treatments for aluminium alloys
NO119299B (en)
GB495190A (en) An improved electrolytic method of coating surfaces of iron or steel
WO1988006639A1 (en) A method of forming a corrosion resistant coating
US2464596A (en) Chemical method of coating aluminum
US1965682A (en) Coating aluminum
NO141523B (en) DEVICE FOR LAYING A LONG, FLEXIBLE AND CONNECTED PIPE PIPE
US3532608A (en) Method of treating steel and electrolyte therefor
US3398010A (en) Masking composition for galvanized metal
US1946152A (en) Protecting aluminum from corrosion
US2290364A (en) Surface treatment of aluminum or aluminum alloys
US2499231A (en) Method of producing surface conversion coatings on zinc
US2230602A (en) Method of coating metals with lead
US3376143A (en) Corrosion inhibiting and sealing composition
US2431728A (en) Treatment of ferrous metals to improve resistance to rusting
US2450509A (en) Tin plate treatment
US3785940A (en) Method for electrolytically treating the surface of a steel plate with a chromate solution
US2322205A (en) Method of treating magnesium and its alloys
US2445155A (en) Protection of cupriferous surfaces
US3007818A (en) Protective coatings on metals
US3567599A (en) Electrochemical treatment of ferrous metal
US3755091A (en) Process for reducing discoloration of electrochemically treated chromium plated ferrous metal strip
US3840442A (en) Titanium or titanium alloys having an anodized surface layer and method of forming
US2450508A (en) Tin plate treatment
US3732152A (en) Anodized magnesium and magnesium alloys