US2120823A - Coupling means for thermionic valve circuits - Google Patents
Coupling means for thermionic valve circuits Download PDFInfo
- Publication number
- US2120823A US2120823A US73310A US7331036A US2120823A US 2120823 A US2120823 A US 2120823A US 73310 A US73310 A US 73310A US 7331036 A US7331036 A US 7331036A US 2120823 A US2120823 A US 2120823A
- Authority
- US
- United States
- Prior art keywords
- valve
- resistance
- anode
- condenser
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008878 coupling Effects 0.000 title description 24
- 238000010168 coupling process Methods 0.000 title description 24
- 238000005859 coupling reaction Methods 0.000 title description 24
- 230000010355 oscillation Effects 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 6
- 238000005513 bias potential Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 241000907661 Pieris rapae Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/34—DC amplifiers in which all stages are DC-coupled
- H03F3/36—DC amplifiers in which all stages are DC-coupled with tubes only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/42—Modifications of amplifiers to extend the bandwidth
- H03F1/48—Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers
- H03F1/50—Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers with tubes only
Definitions
- the present invention relates to coupling valve is so arranged as to introduce a measure of means for thermionic valve circuits. compensation for the increase in effective anode It is the object of the present invention to proload at low frequencies.
- vide improved coupling means capable of transcoupling components should have in the triode 5 mitting with substantially uniform attenuation case can be readily arrived at by calculation in oscillations covering a wide range of frequencies well-known manner. including zero frequency or direct current. It is an object of the present invention to pro- A thermionic valve circuit is known in which vide improved coupling means which are parthe anode of a screen grid amplifying valve, the ticularly suitable, for example, for coupling thercathode of which is at earth potential, is conmionic valve amplifying stages in cascade.
- the present invention provides a circuit arrent having its negative terminal earthed, rangement comprising a first thermionic valve through two resistances in series, a decoupling coupled in cascade to asecond thermionic valve, condenser being connected between the join of in which the anode load impedance of said first these resistances and earth.
- a circuit arrent having its negative terminal earthed, rangement comprising a first thermionic valve through two resistances in series, a decoupling coupled in cascade to asecond thermionic valve, condenser being connected between the join of in which the anode load impedance of said first these resistances and earth.
- the two resistvalve together with the anode impedance of ances, that connected to the anode serves as the that valve, can be represen OVeI' a o n anode load resistance of the valve, while the other range of frequency down to and including zero acts as a decoupling resistance.
- the decoupling frequency by a pure resistance R in series with an condenser becomes less effective as the frequency impedance Z, in which the anode of said first of the oscillations applied to the control grid devalve is coupled to the Control grid Sa d S nd 20 creases, with the result that the effective anode valvethrough a oupling imped and in load impedance increases and the lower frequenwhich a leak resistance R is connected between cies are accentuated.
- the input circuit of a valve if desired through a suitable source of negsucceeding valve is usually coupled to the valve ative bias potential, characterized in that, in or- 25 referred to in the preceding paragraph by means der to ensure that the ratio of the amplitude of of a condenser and a resistance connected in sean oscillation applied to the control grid of said ries between the anode and cathode of the first first valve to the amplitude of an oscillation set valve, the input to the second valve being taken up at the control grid of said second valve is subfrom the ends of this resistance.
- a triode valve differs from tion in which the first valve is a screen grid valve, screen grid and like valves in that the anode cur- Figs. 2 and 3 are circuits which are equivalent rent varies markedly with variations in anode to that of Fig. 1, voltage, the relationships between the Values of Fig. 4 is an equivalent circuit of an arrange- 50 the coupling elements are relatively more commentof the kind illustrated in Fig. 1, but employplex.
- a screen grid valve V1 has its anode connected through anode load resistance R2 and decoupling resistance R2 in series to the positive terminal of a source B of anode current, the negative terminal of which is returned to the cathode of valve V1.
- Decoupling or by-pass condenser C is connected between the join of resistances R2 and R3 and the cathode of valve V1.
- valve V1 is coupled to the control grid of a second valve V2 through a condenser C"2, the latter being provided with leak resistance R's.
- 'Resistance R2 is connected'in shunt with condenser '2, and a resistance R1 is connected between the cathode of valve V2 and the negative terminal of source B. Oscillations to be amplified are applied to input terminals I;
- valve V2 acts as a so-called cathode follower valve, and the output of the device is taken from terminals 0.
- Z+Z where ia. is the change of current in the plate circuit of valve V1 for unit change in the instantaneous potential of the control grid of valve V1.
- V is also constant.
- V has its maximum value when m is much greater than 1, and R is accordingly preferably made much greater than, say several times, R.
- the impedance Z is constituted by a resistance R2 shunted by a condenser C2, and in order that the relationship (I) above shall be satisfied, the coupling condenser C2 and coupling resistance R2 are iven the values and mR2 respectively. In these circumstances,
- R2C2 is equal to the time constant C2R2, and it can readily be shown in View of this equality that The static positive bias on the control grid of valve V2 due to its conductive connection to the anode of valve V1 may be neutralized by a suitable choice of the value of R4, or means such as a bias battery or the like may be provided for biasing the cathode of valve V2 to a suitable positive potential.
- Fig. 3 is an equivalent circuit of the arrangement of Fig. 1, the resistances RA, RB and the capacity CA being given by the expressions must be substantially satisfied, where Rv is the anode impedance of valve V1.
- Fig. 5 shows an arrangement of the kind shown in Fig. 1, but modified by the use of an additional decoupling resistance R5 shunted by a further decoupling condenser 0:.
- the condenser C2 may be regarding as effectively in shunt with both resistances R2 and R5.
- Fig. 5 The circuit of Fig. 5 can be redrawn in the form shown in Fig. 2, and in order that 7 should again equal an additional coupling condenser C'5 and a further coupling resistance R5 in shunt are provided, resistance R's being arranged in series with resistance R2, and both resistances being shunted by condenser '2.
- condenser 0'5 and resistance R's are given the values and mRs respectively, so that As in the arrangement of Fig. 1, it is arranged that the following time constant equalities also hold:
- Fig. 5 may be modified by the use of a triode first valve, the method of calculating the values of the circuit elements being similar to that outlined with reference to Figs. 3 and 4.
- a circuit arrangement comprising a first valve having a cathode, a control grid, a screen grid and an anode, a second valve having a cathode, a control grid and an anode, a source of potential difference having its negative terminal connected to the cathode of said first valve, a load resistance and a decoupling resistance connected in series between the anode of said first valve and the positive terminal of said source, a decoupling condenser effectively in shunt with said decoupling resistance, a leak resistance connected between the control grid and cathode of said second valve through a source of bias potential, and connected in shunt between the anode of said first valve and the control grid of said second valve, a coupling resistance and a coupling condenser of such values that the time constant of said load resistance and said decoupling condenser is substantially equal to the time constant of said coupling condenser and said leak resistance, and the time constant of said decoupling resistance and decoupling condenser is substantially equal to
- an amplifying circuit capable of transmitting with substantially uniform attenuation oscillations covering a wide range of frequencies including zero frequency or direct current, a pair of electronic tubes connected in cascade, each of said tubes being provided with at least an anode, a grid electrode and a cathode, a source of space current for said tubes, said source having a positive terminal and a negative terminal, means for impressing the oscillations to be amplified between the grid electrode of the first tube and the cathode thereof including a pair of input terminals adapted to be connected to a source of signal energy oscillations, a connection between the anode of the first tube and.
- the positive terminal of the source including a load impedance and a filter impedance in series, a connection between the negative terminal of the source and the oathode of the first tube whereby the anode of the first tube is maintained at a positive potential with respect to the cathode thereof, a filter condenser conneced between the cathode of the first tube and a point of said first named connection intermediate the two impedances, means connecting the anode of the second thermionic tube to the positive terminal of the source, means including a resistor element connecting the oathode of the second tube to the negative terminal of the source, a circuit for transferring energy from the first tube to the second tube comprising a connection between the anode of the first tube and the grid electrode of the second tube, said connection including a coupling condenser shunted by an impedance element, a leak resistance element connected between the grid electrode of the second tube and the cathode thereof, and means including a pair of output terminals for connecting
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
- Microwave Tubes (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB10394/35A GB456450A (en) | 1935-04-03 | 1935-04-03 | Improvements in and relating to coupling means for thermionic valve circuits |
Publications (1)
Publication Number | Publication Date |
---|---|
US2120823A true US2120823A (en) | 1938-06-14 |
Family
ID=9967010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US73310A Expired - Lifetime US2120823A (en) | 1935-04-03 | 1936-04-08 | Coupling means for thermionic valve circuits |
Country Status (4)
Country | Link |
---|---|
US (1) | US2120823A (de) |
DE (1) | DE757339C (de) |
FR (1) | FR804804A (de) |
GB (1) | GB456450A (de) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2419682A (en) * | 1942-02-11 | 1947-04-29 | Jr Victor Guillemin | Electrocardiotachometer |
US2435331A (en) * | 1943-10-04 | 1948-02-03 | Nasa | Vacuum tube amplifier |
US2464252A (en) * | 1942-11-28 | 1949-03-15 | James R Moore | Pulsed oscillator |
US2481870A (en) * | 1945-12-14 | 1949-09-13 | L S Brach Mfg Corp | Wide band amplifier |
US2494657A (en) * | 1944-03-11 | 1950-01-17 | Hartford Nat Bank & Trust Co | Amplifier coupling network |
US2514023A (en) * | 1947-10-10 | 1950-07-04 | Ibm | Voltage generator |
US2579528A (en) * | 1946-03-11 | 1951-12-25 | John E Williams | Differential electronic amplifier |
US2598326A (en) * | 1946-11-20 | 1952-05-27 | Emi Ltd | Negative feedback amplifier |
US2609446A (en) * | 1949-12-31 | 1952-09-02 | Honeywell Regulator Co | Electronic frequency eliminating apparatus |
US2689913A (en) * | 1949-01-18 | 1954-09-21 | Du Mont Allen B Lab Inc | Means for stabilizing oscillator circuit |
US2777905A (en) * | 1952-08-28 | 1957-01-15 | Dunford A Kelly | Low distortion amplifier |
DE975051C (de) * | 1946-01-25 | 1961-07-20 | Hazeltine Corp | Einrichtung zur selbsttaetigen Verstaerkungsregelung in Fernsehempfaengern fuer negativ modulierte Fernsehzeichen |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR804804A (de) * | 1935-04-03 | 1936-11-03 | ||
DE743491C (de) * | 1937-12-24 | 1943-12-27 | Opta Radio Ag | Kondensatorwiderstandsgekoppelter Verstaerker mit Verstaerkungsregelung |
FR881253A (fr) * | 1939-05-10 | 1943-04-20 | Emi Ltd | Perfectionnements aux circuits contenant des lampes thermioniques |
US2433378A (en) * | 1941-03-21 | 1947-12-30 | Standard Telephones Cables Ltd | Electrical oscillation generator |
US2688078A (en) * | 1946-02-21 | 1954-08-31 | Us Navy | Multivibrator |
DE1126448B (de) * | 1958-03-08 | 1962-03-29 | Fernseh Gmbh | Schaltungsanordnung zur UEbertragung von Spannungen oder Stroemen in elektronischen Verstaerkern fuer breite Frequenzbaender, insbesondere Fernsehverstaerkern od. dgl. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE632273C (de) * | 1933-10-25 | 1936-07-06 | Guenther Krawinkel Dr Ing | Verstaerker mit Einrichtungen zur Beseitigung von Stoerspannungen |
US2045316A (en) * | 1934-04-28 | 1936-06-23 | Rca Corp | Impedance coupled amplifier |
FR804804A (de) * | 1935-04-03 | 1936-11-03 |
-
0
- FR FR804804D patent/FR804804A/fr not_active Expired
-
1935
- 1935-04-03 GB GB10394/35A patent/GB456450A/en not_active Expired
-
1936
- 1936-04-04 DE DEE48203D patent/DE757339C/de not_active Expired
- 1936-04-08 US US73310A patent/US2120823A/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2419682A (en) * | 1942-02-11 | 1947-04-29 | Jr Victor Guillemin | Electrocardiotachometer |
US2464252A (en) * | 1942-11-28 | 1949-03-15 | James R Moore | Pulsed oscillator |
US2435331A (en) * | 1943-10-04 | 1948-02-03 | Nasa | Vacuum tube amplifier |
US2494657A (en) * | 1944-03-11 | 1950-01-17 | Hartford Nat Bank & Trust Co | Amplifier coupling network |
US2481870A (en) * | 1945-12-14 | 1949-09-13 | L S Brach Mfg Corp | Wide band amplifier |
DE975051C (de) * | 1946-01-25 | 1961-07-20 | Hazeltine Corp | Einrichtung zur selbsttaetigen Verstaerkungsregelung in Fernsehempfaengern fuer negativ modulierte Fernsehzeichen |
US2579528A (en) * | 1946-03-11 | 1951-12-25 | John E Williams | Differential electronic amplifier |
US2598326A (en) * | 1946-11-20 | 1952-05-27 | Emi Ltd | Negative feedback amplifier |
US2514023A (en) * | 1947-10-10 | 1950-07-04 | Ibm | Voltage generator |
US2689913A (en) * | 1949-01-18 | 1954-09-21 | Du Mont Allen B Lab Inc | Means for stabilizing oscillator circuit |
US2609446A (en) * | 1949-12-31 | 1952-09-02 | Honeywell Regulator Co | Electronic frequency eliminating apparatus |
US2777905A (en) * | 1952-08-28 | 1957-01-15 | Dunford A Kelly | Low distortion amplifier |
Also Published As
Publication number | Publication date |
---|---|
FR804804A (de) | 1936-11-03 |
GB456450A (en) | 1936-11-03 |
DE757339C (de) | 1953-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2120823A (en) | Coupling means for thermionic valve circuits | |
US2178985A (en) | Thermionic valve circuit | |
GB482740A (en) | Improvements in or relating to thermionic valve amplifying circuit arrangements | |
US2246331A (en) | Thermionic valve amplifier | |
US2590104A (en) | Direct-coupled amplifier | |
US2273997A (en) | Negative feedback amplifier | |
US2886659A (en) | Zero output impedance amplifier | |
US2324279A (en) | Amplifier | |
US2202522A (en) | Thermionic valve circuits | |
US2525632A (en) | Low-frequency amplifier | |
US2613285A (en) | Balanced input high-frequency amplifier | |
US2756283A (en) | Cathode input amplifiers | |
US2798905A (en) | Wide band amplifier using positive feedback | |
US2194180A (en) | Circuit for amplifying electrical oscillations | |
US2416334A (en) | Thermionic valve amplifier | |
US2243121A (en) | Amplifying system | |
US3299367A (en) | Feedback amplifier | |
US2579528A (en) | Differential electronic amplifier | |
US2400734A (en) | Direct coupled amplifier | |
US2760009A (en) | Negative feed-back amplifier | |
US2768250A (en) | Direct coupled amplifier | |
US2161959A (en) | Intervalve coupling and like circuit | |
US2045316A (en) | Impedance coupled amplifier | |
US3467913A (en) | Variable gain amplifier with constant feedback loop gain | |
US2323211A (en) | Method and means for automatic gain control |