US20240021456A1 - Payload transportation system - Google Patents

Payload transportation system Download PDF

Info

Publication number
US20240021456A1
US20240021456A1 US18/194,428 US202318194428A US2024021456A1 US 20240021456 A1 US20240021456 A1 US 20240021456A1 US 202318194428 A US202318194428 A US 202318194428A US 2024021456 A1 US2024021456 A1 US 2024021456A1
Authority
US
United States
Prior art keywords
fab
vehicle
oht
container
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/194,428
Other languages
English (en)
Inventor
Chieh HSU
Guancyun Li
Ching-Jung Chang
Chi-Feng Tung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US18/194,428 priority Critical patent/US20240021456A1/en
Priority to DE102023109537.4A priority patent/DE102023109537A1/de
Priority to TW112119039A priority patent/TW202409959A/zh
Priority to KR1020230091838A priority patent/KR20240009908A/ko
Priority to CN202310862037.4A priority patent/CN117002932A/zh
Publication of US20240021456A1 publication Critical patent/US20240021456A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67733Overhead conveying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0457Storage devices mechanical with suspended load carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67727Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using a general scheme of a conveying path within a factory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0297Wafer cassette

Definitions

  • the device is usually processed at many workstations or process tools.
  • many semiconductor fabrication facilities/plants, or “FABs” may be built.
  • FAB cluster Semiconductor fabrication facilities that are clustered in a campus setting or an industrial complex.
  • WIP work-in-process
  • the transporting or conveying of a partially finished device, or a work-in-process (WIP) part, is an important aspect in the total manufacturing process.
  • the conveying of semiconductor wafers is especially important in the manufacturing of integrated circuit (IC) chips due to the delicate nature of the chips.
  • a multiplicity of fabrication steps is usually performed to complete the fabrication process.
  • the fabrication process often results in the need for cross-phase transfer within a single FAB and/or cross-fab transfer between FABs of the FAB cluster.
  • AMHSs Automated material handling systems
  • FIG. 1 illustrates a block diagram of a simplified FAB cluster, according to one or more embodiments of the present disclosure.
  • FIGS. 2 A and 2 B are simplified fragmentary schematic diagrams illustrating different stages of a cross-fab transfer process in the FAB cluster, according to one or more embodiments of the present disclosure.
  • FIG. 3 illustrates a simplified fragmentary schematic diagram illustrating an alternative FAB cluster, according to one or more embodiments of the present disclosure.
  • FIG. 4 depicts a flow chart illustrating an exemplary method of performing a cross-fab transfer process in the FAB cluster as shown in FIG. 3 .
  • FIG. 5 illustrates a simplified fragmentary schematic diagram illustrating another alternative FAB cluster, according to one or more embodiments of the present disclosure.
  • FIG. 6 A depicts an exemplary vehicle, according to one or more embodiments of the present disclosure.
  • FIG. 6 B illustrates a simplified schematic diagram of two vehicles operating in different modes during the cross-fab transfer process, according to one or more embodiments of the present disclosure.
  • FIG. 7 depicts a flow chart illustrating an exemplary method of configuring the vehicles to perform operations to conduct the cross-fab transfer process, according to one or more embodiments of the present disclosure.
  • FIG. 8 depicts a block diagram of a control system of the vehicle, according to one or more embodiments of the present disclosure.
  • FIG. 9 is a simplified block diagram of another alternative FAB cluster, according to one embodiment of the present disclosure.
  • FIG. 10 is a simplified fragmentary schematic diagram of another FAB cluster, according to another embodiment of the present disclosure.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • a number or a range of numbers is described with “about,” “approximate,” and the like, the term is intended to encompass numbers that are within a reasonable range considering variations that inherently arise during manufacturing as understood by one of ordinary skill in the art.
  • the number or range of numbers encompasses a reasonable range including the number described, such as within +/ ⁇ 10% of the number described, based on known manufacturing tolerances associated with manufacturing a feature having a characteristic associated with the number.
  • a material layer having a thickness of “about 5 nm” can encompass a dimension range from 4.25 nm to 5.75 nm where manufacturing tolerances associated with depositing the material layer are known to be +/ ⁇ 15% by one of ordinary skill in the art.
  • a FAB cluster may include a number of FABs built in a campus setting or an industrial complex.
  • a payload e.g., wafer(s)
  • a payload container/carrier e.g., a front opening unified pod “FOUP”
  • a “cross-fab transfer” involves the transfer of the payload from one FAB to another.
  • the two FABs of the FAB cluster may be connected by a bridging area (e.g., a corridor bridge, a skyway bridge).
  • a “cross-AMHS transfer” involves the transfer of a payload from one automated material handling system (“AMHS”) to another AMHS, regardless of whether the AMHSs are separate systems within a single FAB or systems in separate FABs.
  • Each FAB may include multiple phases.
  • a “cross-phase transfer” involves the transfer of a payload from one phase to another.
  • Each phase of a FAB includes a plurality of bays that may include process tools or equipment.
  • the equipment within each bay may be interconnected by an intrabay overhead transport (“OHT”) system.
  • the bays may be interconnected with the other bays via an interbay OHT system.
  • the intrabay OHT systems and the interbay OHT system include overhead tracks on which OHT vehicles transport payload containers (e.g., FOUPs) containing payloads (e.g., lots of wafers) to be processed to and from the equipment of the bays, often via stockers.
  • payload containers e.g., FOUPs
  • payloads e.g., lots of wafers
  • a “cross-fab” transfer may include placing interface devices (e.g., stockers) at the bridging area and selecting an interface device that is accessible by both OHT vehicles of a first FAB and OHT vehicles of a second FAB, configuring a vehicle of a first OHT system to take the payload container from the process tools or equipment of the first FAB to the selected interface device that is used to temporarily hold the payload container, and configuring a vehicle of a second OHT system to take the payload container from the selected interface device to the process tools or equipment of the second FAB.
  • Such kind of “cross-fab” transfer increases transportation volume and may cause traffic jam.
  • more clean room space is needed in order to arrange interface devices to implement the “cross-fab” transfer.
  • a “cross-AMEIS transfer” and a “cross-phase transfer” also encounter similar issues.
  • a FAB cluster includes several FABs having different process tools configured to conduct, for example, different fabrication steps.
  • transistors may be formed in a first FAB, and testing of the transistors may be performed in a second FAB.
  • An OHT system of a first FAB has an OHT track that is partially parallel to an OHT track of a OHT system of a second FAB. The partially paralleled portions of the OHT tracks are at the bridging area of the first and second FABs.
  • a vehicle of the first FAB may take the payload and transfer it to a vehicle of the second FAB without temporarily putting the payload on the interface device placed at the bridging area.
  • the cross-fab transfer process is simplified, and efficiency of cross-fab transfer process may be advantageously improved.
  • less clean room spaces may be occupied by interface devices.
  • the vehicle(s) may be operable to carry/hold two payload containers at the same time, thereby further improving transportation efficiency and reducing traffic jams.
  • the present disclosure may also be applied for a cross-phase transfer and a cross-AMHS transfer.
  • FIG. 1 illustrates a block diagram of a simplified FAB cluster 100 .
  • the FAB cluster 100 includes a FAB 102 and a FAB 104 connected by a bridging area 106 .
  • the FAB 102 and the FAB 104 each may include one or more buildings.
  • the FAB 102 includes a first building, and the FAB 104 includes a second building spaced apart from the first building, and the bridging area 106 is a corridor bridge connecting the first and second buildings.
  • the FAB 102 includes a manufacturing execution system (“MES”) 108 , a material control system (MCS) 110 , and an automated material handling system (AMHS) 112 .
  • MES manufacturing execution system
  • MCS material control system
  • AMHS automated material handling system
  • the FAB 104 includes a MES 114 , a MCS 116 , and an AMHS 118 .
  • a payload container e.g., a front opening unified pod (“FOUP”)
  • the MES e.g., the MES 108 or the MES 114
  • determines to which destination in the FAB e.g., the FAB 102 or the FAB 104
  • the MES sends a transfer request to the MCS (e.g., the MCS 110 or the MCS 116 ), which calculates a detailed transportation route using a route search engine and then notifies, for example, the AMHS to execute the transfer step-by-step.
  • the MCS e.g., the MCS 110 or the MCS 116
  • each of the AMHSs 112 and 118 may include a number of control modules, such as a reticule stocker controller, a stocker controller, an overhead buffer controller, an inter-bay OHT controller, an intra-bay OHT controller, and/or a lifter controller.
  • the AMHSs 112 and 118 may include additional, fewer, and different control modules in some embodiments. It is understood that the FAB cluster 100 may have other numbers of FABs.
  • the bridging area 106 represents the connection between the FAB 102 and the FAB 104 .
  • the bridging area 106 may be a corridor bridge, or a skyway bridge, for example.
  • the length of the bridging area 106 may be greater than 10 meters.
  • the bridging area 106 connects the FABs such that a payload container may be passed from one FAB to another.
  • the bridging area 106 is an area where two or more AMHSs may operate together. In this manner, the payload container may be transferred across multiple FAB s by passing control of the payload container from one FAB to another at the bridging area 106 .
  • the bridging area 106 may facilitate transferring a payload container from the FAB 102 to the FAB 104 , from the FAB 104 to the FAB 102 , or both.
  • the bridging area 106 may connect more than two FABs to one another.
  • the bridging area 106 may also represent the connection between two AMHSs.
  • the AMHSs 112 and 118 may be from different vendors.
  • the FAB 102 includes a number of equipment 120 (e.g., process tools, stockers).
  • the process tools in the FAB 102 may be used to perform a number of fabrication processes (e.g., front-end-of-line (FEOL) processes related to fabricating integrated circuit (IC) devices, such as transistors) to a wafer.
  • the equipment 120 in the FAB 102 are serviced by the AMHS 112 .
  • the FAB 104 also includes a number of equipment 122 (e.g., process tools, stockers).
  • the process tools in the FAB 104 may be implemented to perform a number of fabrication processes (e.g., back-end-of-line (BEOL) processes related to fabricating a multilayer interconnect (MLI) structure that interconnects features fabricated by the FEOL process) different than the fabrication processes performed in the FAB 102 .
  • BEOL back-end-of-line
  • MLI multilayer interconnect
  • the equipment 122 in the FAB 104 are serviced by the AMHS 118 .
  • the FAB cluster 100 also includes a unified control unit 126 .
  • the unified control unit 126 is configured to communicate with each of the FAB s 102 and 104 and facilitate and/or organize transportation of payloads between the FAB s 102 and 104 .
  • the unified control unit 126 may act as a server for receiving and providing information and/or instructions to each of the FABs 102 - 104 .
  • the unified control unit 126 may also act as a communication link between FABs such that the MES, MCS, and/or other systems of each FAB may communicate with the systems of another fab.
  • the unified control unit 126 may include hardware, software, or a combination thereof.
  • the unified control unit 126 is a stand-alone unit separate from the MES, MCS, and other systems of each fab. In other embodiments, the unified control unit 126 may be a component or part of at least one of the FAB s. In at least some embodiments, communication between the unified control unit 126 and the FAB s 102 - 104 is by Common Object Request Broker Architecture (“CORBA”). Further, communication between components of the unified control unit 126 and communication between components of the FABs 102 and 104 may utilize CORBA. However, in other embodiments other communication protocols and/or middleware may be used.
  • CORBA Common Object Request Broker Architecture
  • the unified control unit 126 is configured to synchronize the MES 108 and 114 , the MCSs 110 and 116 , and/or the AMHSs 112 and 118 of the FAB s 102 and 104 to facilitate transportation of a payload between the FAB 102 and the FAB 104 .
  • the unified control unit 126 may be configured to facilitate transportation of an empty payload container between the FAB 102 and the FAB 104 .
  • the unified control unit 126 includes a microprocessor 130 configured to perform operations to execute the payload transfer or payload container transfer between different FAB s.
  • the microprocessor 130 may receive data from and transmit data to the MCSs 110 and 116 of the FABs 102 and 104 , respectively.
  • the microprocessor 130 is configured to communicate with each of the MCSs 110 and 116 such that a cross-fab transfer can be synchronized across the different FABs 102 and 104 by sending appropriate signals to the MCSs.
  • the microprocessor 130 determines whether a vehicle associated with the AMHS 112 in the FAB 102 may directly transfer the payload to a vehicle associated with the AMHS 118 in the FAB 104 without using interface devices at the bridging area 106 .
  • the microprocessor 130 is coupled to a data storage 132 .
  • the data storage 132 may include program instructions to generate commands to the MCSs 110 and 116 .
  • the data storage 132 may store instructions that, when executed by the microprocessor 130 , cause the microprocessor 130 to perform operations to provide sub-route requests to each of the MCSs. Detailed description of the operations that may be performed by the microprocessor 130 will be described with reference to FIGS. 2 A- 2 B .
  • the data storage 132 may include a non-volatile memory (NVM), one or more databases containing information regarding available transfer patterns for each FAB, available transfer patterns between FAB s, information regarding the MES and/or AMHS mappings for each FAB, and/or other information related to the transferring of payloads.
  • NVM non-volatile memory
  • the transfer patterns may represent the available routes for transferring a payload between a first position in a first FAB and a second position in a second FAB.
  • the transfer patterns are dynamic and may be updated by factors such as static and dynamic traffic conditions, lot information, lot priority, available routes, route distances, maintenance schedules, and/or other factors.
  • the route of a cross-fab transfer may be broken down into sub-routes comprised of transfers within a single FAB and transfers across a bridging area. Multiple sub-routes may be linked together to create a full transfer route.
  • the transfer patterns may be based on available combinations of sub-routes for achieving the desired transfer.
  • the microprocessor 130 may be configured to synchronize the multiple AMHSs to facilitate the transfer of the payload.
  • the microprocessor 130 may be configured to provide a selected full transfer route which is formed by a number of sub-routes and then communicate sub-routes requests associated with the corresponding sub-routes with the corresponding AMHSs for execution. By coordinating the AMHSs, the cross-fab transfer request can be properly executed.
  • the MES and AMHS mapping provide static information regarding the available routing within the individual FABs and AMHSs that is combined to form a global mapping across the multiple MESs and AMHSs.
  • the MES and AMHS mapping may include the location of various tools and equipment among the FABs and AMHSs that can be utilized in route planning and assessment. While in some of the embodiments described below, there appears to be a single route between positions, this is simply for the sake of clarity and example and should not be considered limiting. Rather, it is fully contemplated that there could be multiple routes for transferring a payload container between AMHSs from one position to another position.
  • the FAB cluster 100 has been described as having a particular combination of components, it is understood that the FAB cluster 100 may have fewer or greater components as would be apparent to one skilled in the art.
  • the unified control unit 126 may also include a user interface engine coupled to the microprocessor 130 .
  • a user may input data through a user interface to select/configure different settings or different parameters.
  • the functions of some of the various components may be combined into a single component and/or functions of a single component may be split out into multiple components.
  • the FAB cluster 100 may include additional FABs in communication with the unified control unit 126 .
  • Cross-fab transfer can be extended to the additional FABs in a manner similar to that described above with respect to FABs 102 and 104 .
  • Detailed description of the FAB cluster that includes additional FABs in communication with the unified control unit 126 will be described with reference to FIGS. 3 - 5 .
  • FIGS. 2 A and 2 B are simplified fragmentary schematic diagrams illustrating different stages of a cross-fab payload transportation process.
  • a “cross-fab transfer job” involves the transfer of a payload container 202 from the FAB 104 to the FAB 102 .
  • the payload container 202 may include a front opening unified pod (FOUP), a front opening shipping box (FOSB), a reticle container, a tray cassette, a frame cassette, a magazine cassette, or other suitable carriers.
  • the payload container 202 is operable to carry a payload 204 .
  • the payload 204 may include wafers, photomasks (or reticles), or other suitable payloads.
  • the payload container 202 that contains payload 204 will be transferred from the FAB 104 to the FAB 102 .
  • the FAB 102 may include a number of bays, and each bay includes equipment 120 (e.g., process tools, stockers, or other equipment).
  • the equipment 120 within each bay of the FAB 102 is interconnected by an intrabay overhead transport (“OHT”) system, and the bays of the FAB 102 may be interconnected via an interbay OHT system.
  • the FAB 104 may include a number of bays, and each bay includes equipment 122 (e.g., process tools, stockers, or other equipment).
  • the equipment 122 within each bay of the FAB 104 is interconnected by another intrabay overhead transport (“OHT”) system, and the bays of the FAB 104 may be interconnected via another interbay OHT system.
  • the intrabay OHT system and the interbay OHT system may be collectively or separately referred to as an OHT system.
  • the OHT system 206 of the AMHS 112 includes overhead tracks or overhead rails (such as overhead track 207 ) on which first-type OHT vehicles (such as vehicle 208 ) transport payload containers to and from equipment 120 .
  • the OHT system 209 of the AMHS 118 includes overhead tracks or overhead rails (such as overhead track 210 ) on which second-type OHT vehicles (such as vehicle 212 ) transport payload container to and from equipment 122 .
  • the OHT system 206 and the OHT system 209 may be provided by different vendors. In embodiments represented in FIG.
  • the overhead track 207 of the OHT system 206 includes a portion 207 a arranged within the FAB 102 and a portion (i.e., the combination of a portion 207 b and a portion 207 c ) arranged in the bridging area 106 . That is, the service range of the OHT system 206 includes both the FAB 102 and a portion of the bridging area 106 .
  • the overhead track 210 of the OHT system 209 includes a portion 210 a arranged within the FAB 104 and a portion (i.e., the combination of a portion 210 b and a portion 210 c ) arranged in the bridging area 106 .
  • the service range of the OHT system 209 includes both the FAB 104 and a portion of the bridging area 106 .
  • the portion 207 b of the overhead track 207 is in proximity of the portion 210 b of the overhead track 210 . More specifically, the portion 207 b of the overhead track 207 is adjacent to and in parallel with the portion 210 b of the overhead track 210 .
  • the FAB cluster 100 includes the unified control unit 126 .
  • the microprocessor 130 may select an appropriate route for transferring the payload container 202 that carrying payload 204 from an equipment 122 to the target equipment 120 and communicates the sub-routes to the MCS 110 and the MCS 116 , respectively.
  • the vehicle 212 After receiving signals (e.g., information related to the sub-route) from the MCS 116 , the vehicle 212 is configured to take the payload container 202 that contains payload 204 from the equipment 122 (e.g., a stocker) in the FAB 104 and move along the overhead track 210 to arrive at a predetermined location 214 at a predetermined time or within a predetermined duration.
  • the vehicle 212 includes a tray configured to hold the payload container 202 .
  • the predetermined location 214 is within the portion 210 b of the overhead track 210 .
  • the vehicle 208 After receiving instructions from the MCS 110 , the vehicle 208 starts travelling along the overhead track 207 to arrive at a predetermined location 216 at the same predetermined time or within the same predetermined duration.
  • the predetermined location 216 is within the portion 210 b of the overhead track 207 and substantially aligns with the predetermined location 214 along the Y direction.
  • the vehicle 208 arrives at the predetermined location 214 at the predetermined time and the vehicle 208 arrives at the predetermined location 216 substantially at the same time.
  • both the vehicles 208 and 212 continue travelling along its respective track. More specifically, after arriving at the respective predetermined locations 214 and 216 , the vehicle 212 moves on the portion 210 b of the overhead track 210 along the ⁇ X direction at a first speed, and the vehicle 208 moves on the portion 207 b of the overhead track 207 along the ⁇ X direction at a second speed.
  • the first speed is equal to the second speed such that the vehicle 208 and the vehicle 212 are relatively stationary.
  • a speed difference between the first speed and the second speed is less than a predetermined threshold (e.g., such that the vehicle 208 and the vehicle 212 are deemed as stationary relative to one another.
  • an alignment module on the vehicle 212 may determine whether the vehicle 208 is aligned with the vehicle 212 .
  • the alignment module may include an image sensor, a laser sensor, a tilt-angle sensor, other suitable devices, and/or combinations thereof.
  • the payload container 202 that contains payload 204 is directly transferred from the vehicle 212 to the vehicle 208 .
  • the tray of the vehicle 212 may slide out from a main body of the vehicle 212 , and a gripper of the vehicle 208 may take the payload container 202 from the tray of the vehicle 212 and put the payload container 202 on a tray of the vehicle 208 .
  • the vehicle 208 continues traveling along the overhead track 207 until carrying the payload container 202 to the target position in the FAB 102 .
  • the cross-fab transfer process is thus finished without arranging an interface device (e.g., stocker) between the OHT system 206 and the OHT system 209 to temporarily hold the payload container (e.g., FOUP) 202 (shown in FIG. 2 A ).
  • the effective area that may be used to place process tools may be increased. Since the cross-fab transfer process is simplified by reducing processes such as temporality positioning the payload container 202 on the interface device and taking the payload container 202 from the same interface device, traffic jams caused by those processes may be advantageously reduced.
  • FIG. 3 illustrates a simplified fragmentary schematic diagram illustrating a cross-fab transfer process in an alternative FAB cluster 300 , according to one or more embodiments of the present disclosure.
  • a block diagram of the FAB cluster 300 is similar to the FAB cluster 100 , and one of the differences between the FAB cluster 300 and the FAB cluster 100 is that the FAB cluster 300 includes more FABs and more bridging areas. Equipment in each FAB is omitted for reason of simplicity.
  • Each FAB in the FAB cluster 300 may be in communication with the unified control unit 126 .
  • FIG. 3 illustrates a simplified fragmentary schematic diagram illustrating a cross-fab transfer process in an alternative FAB cluster 300 , according to one or more embodiments of the present disclosure.
  • a block diagram of the FAB cluster 300 is similar to the FAB cluster 100 , and one of the differences between the FAB cluster 300 and the FAB cluster 100 is that the FAB cluster 300 includes more FABs and more bridging areas. Equipment in each FAB is omitted for reason of simplicity.
  • the FAB cluster 300 includes a FAB 302 a , a FAB 302 b , a FAB 302 c , and a FAB 302 d .
  • the FAB 302 a and FAB 302 b are connected by a bridging area 304 a
  • the FAB 302 b and FAB 302 c are connected by a bridging area 304 b
  • the FAB 302 c and FAB 302 d are connected by a bridging area 304 c
  • the FAB 302 d and FAB 302 a are connected by a bridging area 304 d .
  • Each of the FABs 302 a - 302 d may include a building.
  • Each of the bridging areas 304 a - 304 d may be a corridor bridge or a skyway bridge, for example.
  • the FABs 302 a - 302 d and the bridging areas 304 a - 304 d have substantially same clean room levels.
  • the FABs 302 a - 302 d and the bridging areas 304 a - 304 d may have different clean room levels, and when a payload container is to be transferred from a FAB having a lower clean room level to a FAB having a higher clean room level, a physical cleaning process (e.g., deionized water by shower) may be performed to clean the vehicle and the payload container.
  • a physical cleaning process e.g., deionized water by shower
  • Each of the FABs 302 a - 302 d has its own OHT tracks 308 a , 308 b , 308 c , and 308 d , respectively.
  • each of the OHT tracks has two other portions in two different bridging areas.
  • the OHT tracks 308 a have a portion in the FAB 302 a , a portion in the bridging area 304 a , and a portion in the bridging area 304 d.
  • the FABs 302 a - 302 d are configured to conduct different fabrication steps.
  • the FAB 302 a includes process tools that are configured to perform advanced processes.
  • front-end-of-line (FEOL) processes that generally encompasses processes related to fabricating integrated circuit (IC) devices, such as transistors (e.g., gate-all-around transistors, fin field-effect transistors (FinFETs), complementary field-effect transistors (CFETs)), and/or middle-end-of-line (MEOL) processes that generally encompasses processes related to fabricating contacts to conductive features of the IC devices, such as gate vias to gate structures and/or source/drain contacts to source/drain features are performed by process tools in the FAB 302 a .
  • the process tools in the FAB 302 a may include extreme ultraviolet (EUV) lithography system(s), chemical vapor deposition (CVD) tool(s), atomic layer deposition (ALD) tool(s), and other suitable tools.
  • EUV extreme ultraviolet
  • processed wafers may be transferred to other FABs (e.g., the FAB 302 b , the FAB 302 c , and/or the FAB 302 d ) for further processing.
  • the FAB 302 b includes process tools that are configured to perform back-end-of-line (BEOL) processes that generally encompasses processes related to fabricating a multilayer interconnect (MLI) structure that interconnects IC features fabricated by FEOL and MEOL process, thereby enabling operation of the IC devices.
  • BEOL back-end-of-line
  • the process tools in the FAB 302 b may include chemical vapor deposition (CVD) tools, etching tools, and other suitable tools. In an embodiment, the process tools in the FAB 302 b doesn't include extreme ultraviolet (EUV) lithography system(s).
  • EUV extreme ultraviolet
  • Cross-fab transfer between the FAB 302 a and the FAB 302 b is similar to that described above with respect to FAB s 102 and 104 .
  • vehicles of the FAB 302 a may not only send payload containers that contain payloads to vehicles of the FAB 302 b , but also receive unoccupied/empty payload containers from vehicles of the FAB 302 b .
  • Payload containers transferred between the FAB 302 a and the FAB 302 b may include FOUP, FOSB, or reticle container.
  • Vehicles in the FAB 302 a and FAB 302 b are configured to be compatible with all those different types of payload containers.
  • IC devices may be transferred from the FAB 302 b to other FAB s (e.g., the FAB 302 c and/or the FAB 302 d ) for further processing.
  • the FAB 302 c includes process tools that are configured to perform dicing, wafer bonding, wiring, molding, and/or other packaging processes. The process of wafer dicing enables manufacturers of integrated circuits (ICs) and other semiconductor devices to harvest many individual dice from a single wafer.
  • the process tools in the FAB 302 c may include wafer dicing machine(s), wire bonding machine(s), die attach machine(s), molding equipment for encapsulating integrated circuits, and/or other suitable equipment.
  • the process tools in the FAB 302 c doesn't include chemical vapor deposition (CVD) tools, etching tools, extreme ultraviolet (EUV) lithography system(s).
  • CVD chemical vapor deposition
  • EUV extreme ultraviolet
  • Cross-fab transfer between the FAB 302 b and the FAB 302 c is similar to that described above with respect to FAB s 102 and 104 .
  • vehicles of the FAB 302 b may not only send payload containers that contain payloads to vehicles of the FAB 302 c , but also receive unoccupied payload containers from vehicles of the FAB 302 c .
  • Payload containers transferred between the FAB 302 b and the FAB 302 c may include FOUP, reticle container, tray cassette, frame cassette, magazine cassette, and/or other suitable payload containers.
  • Vehicles in the FAB 302 b and FAB 302 c are configured to be compatible with all those different types of payload containers.
  • the packaged IC devices may be transferred from the FAB 302 c to the FAB 302 d for testing to determine if the packaged IC devices work properly.
  • the FAB 302 d includes process tools that are configured to perform testing for, for example, electrical and functional characteristics as well as performance of the packaged IC devices to detect defects.
  • the process tools in the FAB 302 d may include automated test equipment (ATE), wafer prober, probe card, and/or other suitable testing tools.
  • the process tools in the FAB 302 d doesn't include chemical vapor deposition (CVD) tools, etching tools, photolithography system(s), wafer dicing machine(s), wire bonding machine(s), die attach machine(s), or molding equipment.
  • CVD chemical vapor deposition
  • the FAB 302 c and the FAB 302 d may communicate with the unified control unit 126 .
  • Cross-fab transfer between the FAB 302 c and the FAB 302 d is similar to that described above with respect to FAB s 102 and 104 .
  • vehicles of the FAB 302 c may not only send payload containers that contain payloads to vehicles of the FAB 302 d , but also receive unoccupied payload containers from vehicles of the FAB 302 d .
  • Payload containers transferred between the FAB 302 c and the FAB 302 d may include FOUP, tray cassette, or other suitable payload containers.
  • Vehicles in the FAB 302 c and FAB 302 d are configured to be compatible with all those different types of payload containers.
  • the processed wafers may be transferred by vehicles 306 g and 306 h to the FAB 302 d for testing.
  • the processed wafers may be transferred to the FAB 302 d for testing before packing.
  • the wafers may also be transferred to the FAB 302 d for testing, and the tested wafers may be then transfer from the FAB 302 d to the FAB 302 c to finish the rest of the processes in the FAB 302 c.
  • FIG. 4 depicts a flow chart illustrating an exemplary method 400 of performing the cross-fab transfer process in the FAB cluster 300 in FIG. 3 .
  • the method 400 includes, at block 402 , sending a signal to a unified control unit (e.g., unified control unit 126 ) once processes (e.g., FEOL and/or MEOL processes) that should be performed in a first FAB (e.g., FAB 302 a in FIG. 3 ) are finished and a payload (e.g., wafers) is ready for next steps that will be performed in a second FAB (e.g., FAB 302 b in FIG. 3 ).
  • the signal may be sent by the FAB 302 a .
  • the unified control unit 126 may determine an appropriate route for transferring the payload between its current position in the FAB 302 a and its next position in the FAB 302 b.
  • the method 400 also includes, at block 404 , receiving, by the FAB 302 a and the FAB 302 b , respectively, an instruction from the unified control unit 126 to transfer the payload from the FAB 302 a to the FAB 302 b .
  • the instruction may include a first sub-route comprised of transfers within the FAB 302 a and transfers across the bridging area 304 a and received by the MCS of the FAB 302 a and a second sub-route comprised of transfers within the FAB 302 b and transfers across the bridging area 304 a and received by the MCS of the FAB 302 b.
  • the method 400 also includes, at block 406 , configuring (e.g., by MCS of the FAB 302 a ) a vehicle (e.g., vehicle 306 a ) of the FAB 302 a to take the payload from the payload's current position to a bridging area (e.g., bridging area 304 a ) that connects the FAB 302 a and 302 b and transfer the payload to a corresponding vehicle (e.g., vehicle 306 b ) of the FAB 302 b when appropriate, and, at block 408 , configuring (e.g., by MCS of the FAB 302 b ) the corresponding vehicle (e.g., vehicle 306 b ) of the FAB 302 b to arrive at the bridging area (e.g., bridging area 304 a ) and take the payload from the vehicle (e.g., vehicle 306 a ) of the FAB 302 a when appropriate (e
  • the method 400 also includes, at block 410 , conducting the payload transfer between vehicle 306 a of the FAB 302 a and vehicle 306 b of the FAB 302 b when some predetermined conditions (e.g., the two vehicles are aligned, travelling along a same direction at a same speed and travelling on adjacent and parallel portions of OHT tracks) are met.
  • the payload transfer between the two vehicles is similar to that described above with respect to FIGS. 2 A- 2 B .
  • the vehicle 306 b may carry the payload and deliver it to a predetermined equipment (e.g., a process tool or a stocker).
  • the payload may then undergo some fabrication processes in the FAB 302 b . Interbay and/or intrabay payload transfer processes may be further conducted inside the FAB 302 b.
  • the method 400 includes, at block 412 , sending a signal to the unified control unit (e.g., unified control unit 126 ) once processes (e.g., BEOL processes) that should be performed in the FAB 302 b are finished and the payload is ready for next steps that will be performed in FAB 302 c .
  • the signal may be sent by the FAB 302 b .
  • the signal may also be a manual request.
  • the unified control unit 126 may determine an appropriate route for transferring the payload between its current position in the FAB 302 b and its desired next position in the FAB 302 c.
  • the method 400 also includes, at block 414 , receiving, by the FAB 302 b and the FAB 302 c , respectively, an instruction from the unified control unit 126 to transfer the payload from the FAB 302 b to the FAB 302 c .
  • the method 400 also includes, at block 416 , configuring (e.g., by MCS of the FAB 302 b ) a vehicle (e.g., vehicle 306 c ) of the FAB 302 b to take the payload from the payload's current position to a bridging area (e.g., bridging area 304 b ) that connects the FAB 302 b and the FAB 302 c and transfer the payload to a corresponding vehicle (e.g., vehicle 306 d ) of the FAB 302 c when appropriate, and, at block 418 , configuring (e.g., by MCS of the FAB 302 c ) the corresponding vehicle (e.g., vehicle 306 d ) of the FAB 302 c to arrive at the bridging area (e.g., bridging area 304 b ) and take the payload from the vehicle (e.g., vehicle 306 c ) of the FAB 302 b when
  • the method 400 also includes, at block 420 , conducting the payload transfer between vehicle 306 c of the FAB 302 b and vehicle 306 d of the FAB 302 c .
  • the payload transfer between the two vehicles is similar to that described above with respect to FIGS. 2 A- 2 B .
  • the vehicle 306 d may carry the payload and deliver it to a predetermined equipment (e.g., a process tool or a stocker).
  • the payload may then undergo some fabrication processes (e.g., dicing, wire bonding) in the FAB 302 c .
  • Interbay and/or intrabay payload transfer processes may be further conducted inside the FAB 302 c.
  • the method 400 includes, at block 422 , sending a signal to the unified control unit (e.g., unified control unit 126 ) once processes that should be performed in the FAB 302 c are finished and the payload is ready for next steps that will be performed in FAB 302 d .
  • the signal may be sent by the FAB 302 c .
  • the signal may also be a manual request.
  • the unified control unit 126 may determine an appropriate route for transferring the payload between its current position in the FAB 302 c and its desired next position in the FAB 302 d.
  • the method 400 also includes, at block 424 , receiving, by the FAB 302 c and the FAB 302 d , respectively, an instruction from the unified control unit 126 to transfer the payload from the FAB 302 c to the FAB 302 d .
  • the method 400 also includes, at block 426 , configuring (e.g., by MCS of the FAB 302 c ) a vehicle (e.g., vehicle 306 e ) of the FAB 302 c to take the payload from the payload's current position to a bridging area (e.g., bridging area 304 c ) that connects the FAB 302 c and 302 d and transfer the payload to a corresponding vehicle (e.g., vehicle 3060 of the FAB 302 d when appropriate, and, at block 428 , configuring (e.g., by MCS of the FAB 302 d ) the corresponding vehicle (e.g., vehicle 3060 of the FAB 302 d to arrive at the bridging area (e.g., bridging area 304 c ) and take the payload from the vehicle (e.g., vehicle 306 e ) of the FAB 302 c when appropriate (e.g., when the two vehicles
  • the method 400 also includes, at block 430 , conducting the payload transfer between vehicle 306 e of the FAB 302 c and vehicle 306 f of the FAB 302 d .
  • the payload transfer between the two vehicles is similar to that described above with respect to FIGS. 2 A- 2 B .
  • the vehicle 306 f may carry the payload and deliver it to a predetermined equipment (e.g., a process tool or a stocker).
  • the payload may undergo some fabrication processes in the FAB 302 d . Interbay and/or intrabay payload transfer processes may be further conducted in the FAB 302 d .
  • payload (e.g., wafer) transfers are performed between FAB 302 a and FAB 302 b , between FAB 302 b and FAB 302 c , and between FAB 302 c and 302 d in a sequential order.
  • multiple cross-fab transfers may be performed simultaneously among those FABs, and various types of payloads may be transferred.
  • the payload may be transferred directly between the FAB 302 a and the FAB 302 d . Similar operations may be performed, and related description is omitted for reason of simplicity.
  • FIG. 5 illustrates a simplified fragmentary schematic diagram of an alternative FAB cluster 300 ′.
  • the FAB cluster 300 ′ is similar to the FAB cluster 300 .
  • One of the differences between the FAB cluster 300 ′ and the FAB cluster 300 is that the FABs 302 a - 302 d in the FAB cluster 300 ′ are arranged in a different way. More specifically, the FABs 302 a - 302 d in the FAB cluster 300 ′ are connected by a bridging area 304 .
  • Each of the OHT system of the FABs 302 a - 302 d includes a portion of its OHT track in the bridging area 304 . Two adjacent portions of the OHT tracks are at least partially parallel to enable the cross-fab transfer described above with reference to FIGS. 2 A- 2 B . Repeated description is omitted for reason of simplicity.
  • the cross-fab transfer may be performed without placing payloads on interface devices (e.g., stocker), thereby increasing transportation efficiency and reducing traffic jams.
  • vehicles used in the OHT system(s) of the FAB(s) are able to take more than one payload containers to increase transportation efficiency and reduce traffic jams.
  • FIG. 6 A depicts a cross-sectional view of an exemplary vehicle taken along line A-A′ as shown in FIG. 3 , according to one or more embodiments of the present disclosure.
  • FIG. 6 B depicts a cross-sectional view of exemplary vehicles taken along line B-B′ as shown in FIG. 3 . Referring to FIG.
  • the vehicle 306 a is connected to the tracks 308 a of the OHT system of the FAB 302 a such that the vehicle 306 a may be operable to move along the tracks 308 a .
  • the vehicle 306 a includes a housing (or a main body) 610 and at least one (e.g., one, two, or more) upper gripper 620 a and at least one (e.g., one, two, or more) lower gripper 620 b configured to extend from the housing 610 to grab one or more payload containers from the process tool, interface equipment, another vehicle (such as vehicle 306 b ), and/or other devices.
  • the upper gripper 620 a and the lower gripper 620 b may be mechanically coupled to an outer surface of the housing 610 or an inner surface of the housing 610 .
  • the upper gripper 620 a or the lower gripper 620 b may extend laterally (e.g., along the Y direction) and then vertically (along the ⁇ Z direction) to grab the payload container.
  • the upper gripper 620 a and the lower gripper 620 b may perform their respective function independently. For example, in some embodiments, to take a payload container, only one of the upper gripper 620 a and the lower gripper 620 b is configured to operate to take the payload container.
  • the vehicle 306 a also includes a first tray 630 a configured to hold or carry a payload container grabbed by the upper gripper 620 a and a second tray 630 b configured to hold or carry a payload container grabbed by the lower gripper 620 b .
  • a first tray 630 a configured to hold or carry a payload container grabbed by the upper gripper 620 a
  • a second tray 630 b configured to hold or carry a payload container grabbed by the lower gripper 620 b .
  • the upper gripper 620 a may put the reticle container on the first tray 630 a .
  • the first tray 630 a may be operable to slide out from the main body 610 of the vehicle 306 a to facilitate the transfer process.
  • the lower gripper 620 b may put the FOUP on the second tray 630 b .
  • the second tray 630 b may be operable to slide out from the main body 610 of the vehicle 306 a during the cross-fab transfer process.
  • the tray may be configured to have anti-skid mechanisms.
  • dampers may be installed on the top surface of the tray.
  • the first tray 630 a and sidewall and top surfaces the housing 610 forms an upper cavity.
  • the second tray 630 b , sidewall surfaces the housing 610 , and a bottom surface the first tray 630 a forms a lower cavity.
  • a volume of the upper cavity is less than a volume of the lower cavity, and the first tray 630 a and second tray 630 b are configured to hold payload containers with different volumes.
  • the first tray 630 a may hold a payload container 640 a (e.g., tray cassette or reticle container) having a volume smaller than that of a payload container 640 b (e.g., FOUP or FOSB) held by the second tray 630 b .
  • a payload container 640 a e.g., tray cassette or reticle container
  • a payload container 640 b e.g., FOUP or FOSB
  • FIG. 6 B illustrates a simplified schematic diagram of the vehicle 306 a and vehicle 306 b during the cross-fab transfer process.
  • the vehicles 306 a - 306 h and vehicles 208 - 210 have substantially the same structure, and repeated description related to the structure of the vehicle 306 b is omitted for reason of simplicity.
  • the first tray 630 a of the vehicle 306 a holds the payload container 640 a and the second tray 630 b of the vehicle 306 a holds the payload container 640 b .
  • upper gripper 620 a ′ and lower gripper 620 b ′ of the vehicle 306 b extend out from the vehicle 306 b 's main body and then extend laterally and/or vertically.
  • the first tray 630 a and the second tray 630 b of the vehicle 306 a may slide out from the vehicle 306 a 's main body 610 .
  • the upper gripper 620 a ′ and lower gripper 620 b ′ of the vehicle 306 b may then extend downwardly to take and lift the payload container 640 a and the payload container 640 b , respectively, from the first tray 630 a and the second tray 630 b of the vehicle 306 a and put the payload container 640 a and the payload container 640 b on the first tray 630 a ′ and the second tray 630 b ′ of the vehicle 306 b , respectively.
  • the payload container 640 a may be transferred from the vehicle 306 a to the vehicle 306 b
  • the payload container 640 b may be transferred from the vehicle 306 a to another vehicle.
  • destinations of the payload container 640 a and payload container 640 b may be same or different.
  • the vehicle 306 a may hold a payload container with payload inside, and the vehicle 306 b may hold an empty payload container. After the vehicle 306 a and the vehicle 306 b are aligned and are ready for transfer, the vehicle 306 a may take the empty payload container from the vehicle 306 b , and the vehicle 306 b may receive the occupied payload container from the vehicle 306 a .
  • the vehicle may contain two empty payload containers.
  • the vehicles that are able to carry two payload containers may be used in the FABs 102 - 104 and/or FABs 302 a - 302 d for cross-fab transfers, cross-phase transfers in a same FAB, and/or cross-AMHS transfers.
  • FIG. 7 depicts a flow chart illustrating an exemplary method 700 of conducting the cross-fab transfer process by the vehicles 306 a and 306 b , according to one or more embodiments of the present disclosure.
  • the method 700 includes, at block 702 , receiving, by a vehicle (e.g., vehicle 306 a ), an instruction to take a first payload container (e.g., payload container 640 a ) in a first FAB (e.g., FAB 302 a ), transfer the payload container 640 a to a vehicle (e.g., vehicle 306 b ) of another FAB (e.g., FAB 302 b ), and receive a second payload container from the vehicle 306 b .
  • a vehicle e.g., vehicle 306 a
  • FAB FAB
  • FIG. 7 depicts a flow chart illustrating an exemplary method 700 of conducting the cross-fab transfer process by the vehicles 306 a and 306 b , according to one or
  • the method 700 includes, at block 704 , travelling along rails 308 a of the FAB 302 a until arriving the current position of the payload container 640 a .
  • the payload container 640 a may carry payloads, such as wafers or reticles.
  • the method 700 includes, at block 706 , grabbing, by a gripper (e.g., the upper gripper 620 a ) of the vehicle 306 a , the payload container 640 a and placing it on the corresponding tray (e.g., the first tray 630 a ).
  • a gripper e.g., the upper gripper 620 a
  • the method 700 includes, at block 708 , travelling along rails 308 a of the FAB 302 a and arriving a predetermined location of the bridging area between the two FAB s (e.g., bridging area 304 a ) at a predetermined time.
  • the method 700 also includes, at block 710 , receiving, by a vehicle (e.g., vehicle 306 b ), an instruction to take a second payload container (not shown) in a second FAB (e.g., FAB 302 b ), transfer the second payload container to a vehicle (e.g., vehicle 306 a ) of the first FAB (e.g., FAB 302 a ), and receive the first payload container (e.g., payload container 640 a ) from the vehicle 306 a .
  • the method 700 includes, at block 712 , travelling along rails 308 b of the FAB 302 b until arriving the current position of the second payload container.
  • the second payload container in the FAB 302 b that will be transferred to FAB 302 a may be an empty payload container without carrying payloads.
  • the method 700 includes, at block 714 , grabbing, by gripper (e.g., the lower gripper 620 b ) of the vehicle 306 b , the empty payload container and placing it on the corresponding tray (e.g., the second tray 630 b ).
  • the method 700 includes, at block 716 , travelling along rails 308 b of the FAB 302 b and arriving a corresponding predetermined location of the bridging area the bridging area 304 a at a predetermined time.
  • the vehicle 306 a and vehicle 306 b may then start alignment process and determine whether the vehicle 306 a and vehicle 306 b are ready for transfer (e.g., whether the first and second vehicles 306 a - 306 b are aligned, moving along a same direction at a same speed). If not, the vehicle 306 a and vehicle 306 b may configure their respective speed or perform other operations until they are ready for transfer. If yes, the method 700 moves to block 720 where the empty payload container is transferred from the vehicle 306 b to the vehicle 306 a , and the payload container 640 a is transferred from the vehicle 306 a to the vehicle 306 b . The two transfers may be performed simultaneously. It is understood that the vehicle 306 a and vehicle 306 b may perform fewer or greater operations as would be apparent to one skilled in the art.
  • FIG. 8 depicts a block diagram of a control system of the vehicle 306 a , according to one embodiment of the present disclosure.
  • the vehicle 306 a includes a processing unit 810 configured to perform operations to execute the cross-fab transfer.
  • the processing unit 810 may determine the operation of the grippers 620 a and 620 b and the operations of the trays 630 a and 630 b .
  • the processing unit 810 is coupled to data storage (e.g., a non-volatile memory (NVM)) 820 .
  • data storage e.g., a non-volatile memory (NVM)
  • the data storage 820 may store instructions that, when executed by the processing unit 810 , cause the processing unit 810 to perform operations to control the movement and speed of the vehicle, the operation of the grippers, the movement of the trays, for example.
  • the data storage 820 may also include look-up tables (LUTs) to store one or more parameters/operations associated with one or more predetermined criteria.
  • the predetermined criteria may include criteria corresponding to, for example, monitored or detected status parameters.
  • the vehicle 306 a also includes a network interface 830 coupled to the processing unit 810 to provide interconnection between the vehicle 306 a and the MCS of the FAB 302 a .
  • the processing unit 810 may transmit, via the network interface 730 , information such as location and the trays' availability statuses of the vehicle to the MCS.
  • the processing unit 810 may receive, via the network interface 830 , signals such as sub-route requests.
  • the vehicle 306 a also includes a location sensor 840 operably connected to the processing unit 810 .
  • the location sensor 840 may provide location information of the vehicle 306 a to the processing unit 810 . Based on the location information, the processing unit 810 may perform different operations.
  • the vehicle 306 a also includes an alignment module 850 coupled to the processing unit 810 to determine whether the vehicle 306 a is aligned with the predetermined object (e.g., the vehicle 306 b ).
  • the alignment module 850 may include an image sensor, a laser sensor, a tilt-angle sensor, other suitable devices, and/or combinations thereof.
  • the vehicle 306 a may also include a contact detector 860 configured to determine whether the gripper(s) of the vehicle is in full contact with the payload carrier. It is understood that the vehicle 306 a may have fewer or greater components as would be apparent to one skilled in the art.
  • the vehicle 306 a may include a display that may be configured to show a bar code, an image, a QR code or other suitable information such that the other vehicle may use alignment module to detect or scan the information (“alignment mark”) shown on the display to determine the alignment between these two vehicles.
  • operations performed by vehicles of the FAB are controlled by the MCS of the FAB, no matter whether the vehicles are travelling along rails in the FAB or in the bridging areas.
  • another MCS may take the responsibility to control operations that will be performed by the vehicles.
  • FIG. 9 illustrates a block diagram of a simplified FAB cluster 900 , according to one embodiment of the present disclosure.
  • the FAB cluster 900 is similar to the FAB cluster 100 .
  • One of the differences between the FAB cluster 900 and the FAB cluster 100 is that the bridging area 106 of the FAB cluster 900 includes an MCS 113 .
  • An exemplary process for cross-fab transfer in the FAB cluster 900 includes, receiving an instruction, by the vehicle 212 (shown in FIG. 2 A ), to take the payload container 202 from an equipment in the FAB 104 and transfer the payload container 202 to the vehicle 208 when the vehicle 212 is moving along the portion 210 b .
  • the instruction may include one of the sub-route requests received from the microprocessor 130 .
  • the vehicle 212 After receiving the instruction, the vehicle 212 is configured to move along the track 210 of the OHT system 209 to arrive at a location that is in proximity of the equipment that is holding the payload container 202 . The vehicle 212 is then configured to grab the payload container 202 from the equipment and carry the payload container 202 . After taking the payload container 202 , the vehicle 212 is configured to move along the track 210 and arrive at the predetermined location 214 .
  • one or more sensors may be installed near the boundary of the FAB 104 to detect for the entry/exit of the vehicles 212 .
  • a signal may be sent to the MCS 116 of the FAB 104 and the MCS 113 of the bridging area 106 , and the MCS 113 of the bridging area 106 may then have the control of the vehicle 212 .
  • the MCS 113 of the bridging area 106 may then have the control of the vehicle 208 .
  • the MCS 113 of the bridging area 106 may instruct the vehicle 212 and vehicle 208 to perform operations to perform the payload transfer at the bridging area 106 .
  • FIG. 10 is a simplified fragmentary perspective view of a FAB cluster 1000 .
  • each FAB may have one building configured to contain different equipment, and different FAB s may have different heights. That is, a height of OHT tracks of a first FAB may be different from a height of OHT tracks of a second FAB.
  • FIG. 10 depicts an example of improved OHT tracks to facilitate efficient cross-fab transportation. As depicted in FIG.
  • the first FAB 1100 has OHT tracks 1300 in the first FAB 1100 and in a bridging area 1150
  • the second FAB 1200 has OHT tracks 1400 in the second FAB 1200 and in the bridging area 1150 .
  • a height H 1 of the portion of OHT tracks 1300 in the first FAB 1100 is different than a height H 2 of the portion of OHT tracks 1400 in the second FAB 1200 .
  • each of the OHT tracks 1300 and 1400 is configured to such that at least a portion of the OHT tracks 1300 and a portion of the OHT tracks 1400 are parallel and have a same height in the bridging area 1150 .
  • the portion of the OHT tracks 1300 of the first FAB 1100 has three parts: a first part 1300 a that has a height H 1 in the first FAB 1100 , a second part 1300 b having a slanted rail and thus non-uniform heights in the bridging area 1150 , and a third part 1300 c in the bridging area 1150 and having a height H 3 less than the height H 1 .
  • the portion of the OHT tracks 1400 of the second FAB 1200 has three parts: a first part 1400 a that has a height H 2 in the second FAB 1200 , a second part 1400 b having a slanted rail and thus non-uniform heights in the bridging area 1150 , and a third part 1400 c in the bridging area 1150 and having the height H 3 greater than the height H 2 .
  • an angle difference between an angle A 1 of a first piece 1300 b 1 of the second part 1300 b and an angle A 2 of a second piece 1300 b 2 neighboring the first piece 1300 b 1 of the second part 1300 b is less than 10°. If the angle difference is greater than 10°, payload carrier may fall down from the vehicle. If the angle difference is less than 10°, the bridging area may not be able to contain the long OHT tracks. This applies to the second parts 1400 b of the OHT tracks 1400 of the second FAB 1200 as well.
  • one or more embodiments of the present disclosure provide many benefits to a cross-fab transfer.
  • the present disclosure provides a method for performing a cross-fab transfer without putting a payload carrier temporarily on a stocker or other interface devices.
  • the cross-fab transfer is simplified.
  • the manufacturing facility doesn't need interface devices arranged in a bridging area.
  • the traffic jam caused by temporarily putting the wafer carrier on the interface devices and then taking the wafer carrier from the interface devices may be reduced.
  • vehicles of the FAB(s) may be operable to contain one or more (e.g., two) payload containers to further increase transportation efficiency and reduce traffic jams.
  • One or more embodiments of the present disclosure may also be applied in a cross-phase transportation, a cross-AMHS transportation.
  • the present disclosure provides for many different embodiments. Semiconductor systems and thereof are disclosed herein.
  • the present disclosure is directed to a system.
  • the system includes a first fabrication plant (FAB) building including a first set of fabrication tools, a first overhead transfer (OHT) track servicing the first set of fabrication tools, and a first vehicle operable to carry a first container and move along the first OHT track.
  • the system also includes a second FAB building including a second set of fabrication tools, a second OHT track servicing the second set of fabrication tools, and a second vehicle operable to carry the first container and move along the second OHT track.
  • FAB fabrication plant
  • OHT overhead transfer
  • the system also includes a first bridging area between the first FAB building and the second FAB building, wherein the first OHT track comprises a first portion in the first FAB building and a second portion in the first bridging area, the second OHT track comprises a first portion in the second FAB building and a second portion in the first bridging area, the second portion of the second OHT track is at least partially in parallel with the second portion of the first OHT track, the second vehicle is operable to directly receive the first container from the first vehicle when both the first vehicle and the second vehicle are moving in the first bridging area.
  • the first set of fabrication tools may be configured to perform front-end-of-line (FEOL) processes
  • the second set of fabrication tools may be configured to perform back-end-of-line (BEOL) processes.
  • the first container may be configured to contain wafers or reticles.
  • the first container may include a front opening unified pod (FOUP), a front opening shipping box (FOSB), or a reticle container.
  • FOUP front opening unified pod
  • FOSB front opening shipping box
  • reticle container a reticle container.
  • the system may also include a master control system configured to organize transportation of payloads between the first FAB building and the second FAB building
  • the first FAB building may also include a first control system configured to directly communicate with the first vehicle and the master control system
  • the second FAB building may also include a second control system configured to directly communicate with the second vehicle and the master control system.
  • the system may also include a third control system, where the first control system may be configured to control operations performed by the first vehicle when the first vehicle is moving along the first portion of the first OHT track, the second control system may be configured to control operations performed by the second vehicle when the second vehicle is moving along the first portion of the second OHT track, and the third control system may be configured to control operations performed by the first vehicle when the first vehicle is moving along the second portion of the first OHT track and control operations performed by the second vehicle when the second vehicle is moving along the second portion of the second OHT track.
  • the first vehicle may be operable to carry two containers simultaneously.
  • the first vehicle may be further operable to directly receive another container from the second vehicle when both the first vehicle and the second vehicle are moving in the first bridging area.
  • the system may also include a third FAB building including a third set of fabrication tools, a third OHT track servicing the third set of fabrication tools, and a third vehicle operable to carry the first container and move along the third OHT track.
  • the system may also include a second bridging area between the second FAB building and the third FAB building, where the second OHT track further system may include a third portion in the second bridging area, the third OHT track may include a first portion in the third FAB building and a second portion in the second bridging area, the third portion of the second OHT track is in parallel with the second portion of the third OHT track, and third vehicle may be operable to directly receive the first container from a vehicle of the second FAB building.
  • the third set of fabrication tools may be configured to perform processes comprises dicing, wiring, or molding.
  • a vehicle of the third FAB building may be operable to transfer an unoccupied container to a vehicle of the second FAB building.
  • a height of the first portion of the first OHT track in the first FAB building may be different than a height of the first portion of the second OHT track in the second FAB building.
  • the present disclosure is directed to a system.
  • the system includes a first automatic material handling system (AMHS) comprising a first overhead transfer (OHT) track, and a first vehicle movable along the first OHT track, where the first vehicle is operable to carry a first payload container and a second payload container simultaneously.
  • AMHS automatic material handling system
  • OHT overhead transfer
  • the first payload container may include a tray cassette or a reticle container.
  • the second payload container may include a front opening unified pod (FOUP) or a front opening shipping box (FOSB).
  • the system may also include a second AMHS comprising a second OHT track and a second vehicle movable along the second OHT track and operable to carry two payload containers simultaneously, where the first OHT track comprises a first portion that is in parallel with and adjacent to a second portion of the second OHT track, and on condition that the first vehicle is within the first portion of the first OHT track, and the second vehicle is within the second portion of the second OHT track, the first vehicle is operable to transfer at least one of the first payload container and the payload second container to the second vehicle.
  • the first vehicle may include a first gripper configured to grab the first payload container, a first container holder configured to hold the first payload container, a second gripper configured to grab the second payload container, and a second container holder configured to hold the second payload container, wherein the second container holder is disposed under the first container holder.
  • the present disclosure is directed to a method.
  • the method includes providing a first FAB building and a second FAB building connected via a bridging area, wherein the first FAB building comprises a first set of fabrication tools configured to perform first plurality of fabrication processes, the second FAB building comprises a second set of fabrication tools configured to perform second plurality of fabrication processes, performing one or more fabrication processes of the first plurality of fabrication processes to a wafer in the first FAB building, configuring a first vehicle of the first FAB building to travel along a first overhead transfer (OHT) track and take the wafer to the bridging area, wherein a first portion of the first OHT is at the bridging area, configuring a second vehicle of the second FAB building to travel along a second overhead transfer (OHT) track and arrive at the bridging area, wherein a second portion of the second OHT is at the bridging area and in parallel with the first portion of the first OHT track, on condition that the first vehicle and the second vehicle are aligned and travelling
  • the first plurality of fabrication processes may include front-end-of-line (FEOL) processes configured to form isolation features, gate structures, and source/drain features
  • the second plurality of fabrication processes may include back-end-of-line (BEOL) processes configured to form a multilayer interconnect (MLI) structure that interconnects integrated circuit features fabricated by FEOL process.
  • the method may also include, on condition that the first vehicle and the second vehicle are aligned and travelling at a same speed along a same direction along the first portion of the first OHT track and the second portion of the second OHT track, respectively, further configuring the second vehicle to transfer a payload container to the first vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
US18/194,428 2022-07-14 2023-03-31 Payload transportation system Pending US20240021456A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/194,428 US20240021456A1 (en) 2022-07-14 2023-03-31 Payload transportation system
DE102023109537.4A DE102023109537A1 (de) 2022-07-14 2023-04-17 Nutzlasttransportsystem
TW112119039A TW202409959A (zh) 2022-07-14 2023-05-23 貨物運輸系統及方法
KR1020230091838A KR20240009908A (ko) 2022-07-14 2023-07-14 페이로드 운송 시스템
CN202310862037.4A CN117002932A (zh) 2022-07-14 2023-07-14 用于货物转移的系统、用于跨制造厂转移的系统和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263389194P 2022-07-14 2022-07-14
US18/194,428 US20240021456A1 (en) 2022-07-14 2023-03-31 Payload transportation system

Publications (1)

Publication Number Publication Date
US20240021456A1 true US20240021456A1 (en) 2024-01-18

Family

ID=89429550

Family Applications (1)

Application Number Title Priority Date Filing Date
US18/194,428 Pending US20240021456A1 (en) 2022-07-14 2023-03-31 Payload transportation system

Country Status (4)

Country Link
US (1) US20240021456A1 (ko)
KR (1) KR20240009908A (ko)
DE (1) DE102023109537A1 (ko)
TW (1) TW202409959A (ko)

Also Published As

Publication number Publication date
TW202409959A (zh) 2024-03-01
KR20240009908A (ko) 2024-01-23
DE102023109537A1 (de) 2024-01-25

Similar Documents

Publication Publication Date Title
Agrawal et al. A survey of automated material handling systems in 300-mm SemiconductorFabs
US7356378B1 (en) Method and system for smart vehicle route selection
US8308418B2 (en) High efficiency buffer stocker
US8292563B2 (en) Nonproductive wafer buffer module for substrate processing apparatus
US7925380B2 (en) Integrated transportation control for wafer fabrication facility
JP2001520803A (ja) 一貫生産型のベイ内バッファ・デリベリ・ストッカシステム
US6778879B2 (en) Automated material handling system and method of use
US20080240892A1 (en) Storage buffer device for automated material handling systems
US10510571B2 (en) Reticle transfer system and method
US9558978B2 (en) Material handling with dedicated automated material handling system
KR101567917B1 (ko) 워크스테이션들 간의 전달 챔버
US9250623B2 (en) Methods and systems for fabricating integrated circuits utilizing universal and local processing management
JP2002313880A (ja) 半導体集積回路装置の製造方法
US11782428B2 (en) Transport system and method
US20240021456A1 (en) Payload transportation system
US9020633B1 (en) Automating storage, retrieval, and routine for process flow
US20070198333A1 (en) Systems and methods for cross-intrabay transport
Kaempf Automated wafer transport in the wafer Fab
CN117002932A (zh) 用于货物转移的系统、用于跨制造厂转移的系统和方法
US20230395415A1 (en) Wafer Transportation
Na et al. Lifter assignment problem for inter-line transfers in semiconductor manufacturing facilities
Chung et al. The integrated room layout for a semiconductor facility plan
US20230386872A1 (en) Transport control apparatus and logistics transport system including the same
KR20240037936A (ko) 인터페이스 장치 및 이를 구비하는 컨테이너 이송 시스템
KR20240074525A (ko) 이송 장치의 동작 제어 방법

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION