US20230295502A1 - Silicon nitride etching composition and method - Google Patents

Silicon nitride etching composition and method Download PDF

Info

Publication number
US20230295502A1
US20230295502A1 US18/201,363 US202318201363A US2023295502A1 US 20230295502 A1 US20230295502 A1 US 20230295502A1 US 202318201363 A US202318201363 A US 202318201363A US 2023295502 A1 US2023295502 A1 US 2023295502A1
Authority
US
United States
Prior art keywords
alkylamino
silicon nitride
chosen
composition
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/201,363
Inventor
Steven Michael BILODEAU
SeongJin Hong
Hsing-chen Wu
Min-Chieh Yang
Emanuel I. Cooper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Priority to US18/201,363 priority Critical patent/US20230295502A1/en
Publication of US20230295502A1 publication Critical patent/US20230295502A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/10Etching, surface-brightening or pickling compositions containing an inorganic acid containing a boron compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the present invention relates to a composition and method for selectively etching silicon nitride in the presence of silicon oxide, polysilicon and/or metal silicides, and more particularly to a composition and method for effectively and efficiently etching a layer of silicon nitride at a high etch rate and with high selectivity with respect to exposed or underlying layers of silicon oxide, polysilicon and/or metal silicides, particularly in a multilayer semiconductor wafer structure.
  • MOSFET gate electrodes have as electrical points of contact the gate surface and the source and drain regions.
  • the distance between the source and drain regions forms the channel length of the gate electrode, and as such, by decreasing device dimensions the channel length is concomitantly decreased. The result is that the switching speed of the device is increased.
  • hot phosphoric acid etches include the corrosion of metal silicide materials, e.g., gate contact materials, the etching of silicon oxide, and process control due to the difficultly associated with maintaining a specific amount of water in the process solution.
  • metal silicide materials e.g., gate contact materials
  • etching of silicon oxide e.g., silicon oxide
  • process control due to the difficultly associated with maintaining a specific amount of water in the process solution.
  • hot phosphoric acid has been a difficult medium to adapt to single wafer tools, which have become increasingly preferred by many manufacturers.
  • Another way to selectively remove silicon nitride includes the use of a composition including hydrofluoric acid, however, said compositions also remove silicon oxides.
  • a Si 3 N 4 :SiO 2 selectivity of about 10:1 can be achieved through dilution; however, the etch rate of silicon nitride is compromised or above-ambient pressure must be used.
  • Still another process to remove silicon nitride includes the dry etch removal using halogenated gaseous species; however, the Si 3 N 4 :SiO 2 selectivity ratio is even worse than that obtained using the aforementioned wet etch processes.
  • 3D-NAND structures in development today at all the major memory chip manufacturers require high-selectivity etching of silicon nitride (SiN) out of high aspect ratio “slits” defined by oxide (PETEOS).
  • SiN silicon nitride
  • PETEOS oxide
  • the selectivity is controlled by pre-dissolving a certain amount of nitride. The dissolved silicon nitride is converted into slightly soluble oxide; the same happens during etching, but the oxide soon starts depositing near the slits' openings, eventually blocking them. See also U.S. 2017/0287725, in particular FIG.
  • the deep slits take a long time to etch (typically ⁇ 1 hr).
  • Addition of HF in small amounts increases etch rates, but also polymerization of soluble silica species and consequently oxide re-deposition rates.
  • the volatility of HF and related fluorinated species causes process control difficulties.
  • Precision in etching extreme HAR features is critical for optimizing channel holes and trenches for cell access, as well as its unique staircase structure architecture, which connects the cells to surrounding CMOS circuitry for reading, writing, and erasing data. If the vertical pitch of the memory stack is around 50 nm, then a 96 layer stack is on the order of 4.8 ⁇ m high. This corresponds to a challenging aspect ratio of ⁇ 100:1.
  • the difficulty in achieving consistent etch and deposition profiles at the top and the bottom of the memory array increases, so does the difficulty in achieving consistent etch and deposition profiles at the top and the bottom of the memory array. For example, given a ratio of ⁇ 100:1, the selective removal of Si 3 N 4 in the memory stack becomes a wet-etch challenge. The difficulty is removing the Si 3 N 4 consistently at the top and the bottom of the stack and across the wafer, without etching any of the Sift. Below 96 layers, this task is performed using hot phosphoric acid ( ⁇ 160° C.); however, at 96 layers and above, a specially formulated wet etch chemistry is needed to improve process margin.
  • the invention provides compositions useful in etching a substrate having a surface comprising silicon nitride and silicon oxide, with selectivity for etching the silicon nitride relative to the silicon oxide.
  • the composition comprises phosphoric acid, at least one silane compound chosen from alkylamino alkoxy silanes and alkylamino hydroxyl silanes, a solvent comprising water, and optionally a fluoride compound.
  • FIGS. 1 - 4 show a comparison of several examples of the invention in terms of etch rates versus Si loading.
  • Silicon nitride and silicon oxide etch rates were measured using CVD silicon nitride films and PECVD silicon oxide films. Silicon oxide films were exposed to the etching formulation for 4 hours so that the small amount of film loss could be measured. Silicon nitride films were etched for 5 minutes and 10 minutes. Film thicknesses were measured before and after processing by spectroscopic ellipsometry and these thicknesses were used to calculate etch rates.
  • FIG. 1 depicts a graph that shows etch rates as a function of Si Loading
  • FIG. 2 depicts a graph displaying the etch rates as a function of Si loading
  • FIG. 3 depicts graph displaying the etch rates in 85% phosphoric acid as a function of Si loading
  • FIG. 4 depicts a graph showing selectivity (“example B”), (“example A”) and 85% H 3 PO 4 .
  • FIG. 5 shows schematically a structure of an exemplary substrate as described, before and after a selective etching step as also described.
  • One aspect of the present invention relates to compositions which are useful in the selective removal of silicon nitride relative to polysilicon (poly-Si) and silicon oxide material deposited from a silicon oxide precursor source, and hence are useful as wet etchants for at least partial removal of silicon nitride material from a microelectronic device.
  • Metal silicide materials that may be present should not be substantially corroded by said removal compositions.
  • the invention also provides methods, processes, and systems for using the wet etching compositions to remove silicon nitride from a substrate containing silicon nitride and silicon oxide.
  • the compositions can produce an advantageously high etch rate of silicon nitride, an advantageously high selectivity of silicon nitride relative to silicon oxide, or an advantageous balance of these performance properties.
  • microelectronic device corresponds to semiconductor substrates, including 3D NAND structures, flat panel displays, and microelectromechanical systems (MEMS), manufactured for use in microelectronic, integrated circuit, or computer chip applications. It is to be understood that the term “microelectronic device” is not meant to be limiting in any way and includes any substrate that includes a negative channel metal oxide semiconductor (nMOS) and/or a positive channel metal oxide semiconductor (pMOS) transistor and will eventually become a microelectronic device or microelectronic assembly.
  • nMOS negative channel metal oxide semiconductor
  • pMOS positive channel metal oxide semiconductor
  • suitable for removing silicon nitride material from a microelectronic device having such nitride material thereon corresponds to at least partial removal of silicon nitride material from the microelectronic device.
  • silicon nitride and “Si 3 N 4 ” correspond to pure silicon nitride (Si 3 N 4 ) as well as impure silicon nitride including hydrogen, carbon and/or oxygen impurities in the crystal structure.
  • silicon oxide refers to thin films made of silicon oxide (SiO x ), e.g., SiO 2 , “thermal oxide” (ThO x ), and the like.
  • the silicon oxide can be placed on the substrate by any method, such as by deposition via chemical vapor deposition from TEOS or another source, or by being thermally deposited.
  • the silicon oxide generally contains a commercially useful low level of other materials or impurities.
  • the silicon oxide may be present as part of a microelectronic device substrate as a feature of the microelectronic device, for example as an insulating layer.
  • partial removal of silicon nitride material corresponds to the removal of at least a portion of the exposed silicon nitride layer.
  • partial removal of silicon nitride material includes the anisotropic removal of a silicon nitride layer that covers/protects the gate electrodes to form a Si 3 N 4 sidewall.
  • the compositions of the present invention may be used more generally to substantially remove silicon nitride material relative to poly-silicon and/or silicon oxide layers. In those circumstances, “substantial removal” is defined in one embodiment as at least 90%, in another embodiment at least 95%, and in yet another embodiment at least 99% of the silicon nitride material is removed using the compositions of the invention.
  • metal silicide corresponds to any silicide including the species Ni, Pt, Co, Ta, Mo, W, and Ti, including but not limited to TiSi 2 , NiSi, CoSi 2 , NiPtSi, tantalum silicide, molybdenum silicide, and tungsten silicide.
  • Silicic acid is a general name for a family of chemical compounds of silicon, hydrogen, and oxygen, with the general formula [SiO x (OH) 4 ⁇ 2x ] n , and includes the compounds metasilicic acid ((H 2 SiO 3 ) n ), orthosilicic acid (H 4 SiO 4 ), disilicic acid (H 2 Si 2 O 5 ), and pyrosilicic acid (H 6 Si 2 O 7 ). Silicic acid can be obtained in many ways well known to those skilled in the art, e.g.
  • alkoxysilanes e.g., tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetra-n-propoxysilane, tetra-n-butoxysilane
  • alkoxysilanes with amino groups e.g., aminotriethoxysilane, hexaethoxydisilazane
  • alkoxysilanes with one or more halogen or pseudohalogen groups e.g., triethoxychlorosilane, triethoxyfluorosilane, triethoxy(isocyanato)silane, diethoxydichlorosilane
  • alkoxysilane will hereinafter be used to include alkoxysilanes, alkoxysilanes with amino groups and alkoxysilanes with one or more halogen
  • the silicon oxide layer may be deposited from a silicon oxide precursor source, e.g., TEOS, or may be thermally deposited silicon oxide.
  • a silicon oxide precursor source e.g., TEOS
  • Other typical low- ⁇ materials “low-k dielectric material” corresponds to any material used as a dielectric material in a layered microelectronic device, wherein the material has a dielectric constant less than about 3.5.
  • the low- ⁇ dielectric materials include low-polarity materials such as silicon-containing organic polymers, silicon-containing hybrid organic/inorganic materials, organosilicate glass (OSG), TEOS, fluorinated silicate glass (FSG), silicon dioxide, silicon oxycarbide, silicon oxynitride, silicon nitride, carbon-doped oxide (CDO) or carbon-doped glass, for example, CORALTM from Novellus Systems, Inc., BLACK DIAMONDTM from Applied Materials, Inc.
  • low-polarity materials such as silicon-containing organic polymers, silicon-containing hybrid organic/inorganic materials, organosilicate glass (OSG), TEOS, fluorinated silicate glass (FSG), silicon dioxide, silicon oxycarbide, silicon oxynitride, silicon nitride, carbon-doped oxide (CDO) or carbon-doped glass, for example, CORALTM from Novellus Systems, Inc., BLACK DIAMONDTM from Applied Materials, Inc.
  • SiLKTM dielectric resins from Dow (polymers based on crosslinked polyphenylenes by reaction of polyfunctional cyclopentadienone and acetylene-containing materials; see, for example, U.S. Pat. No. 5,965,679, incorporated herein by reference), and NANOGLASSTM of Nanopore, Inc, (Silica aerogel/xerogel (known as nanoporous silica), and the like. It is to be appreciated that the low- ⁇ dielectric materials may have varying densities and varying porosities.
  • compositions of the present invention must possess good metal compatibility, e.g., a low etch rate on the interconnect metal and/or interconnector metal silicide material.
  • Metals of interest include, but are not limited to, copper, tungsten, cobalt, molybdenum, aluminum, tantalum, titanium and ruthenium.
  • Silicides of interest include any silicide including the species Ni, Pt, Co, Ta, Mo, W, and Ti, including but not limited to TiSi 2 , NiSi, CoSi 2 , NiPtSi, tantalum silicide, molybdenum silicide, and tungsten silicide.
  • compositions of the invention may be embodied in a wide variety of specific formulations, as hereinafter more fully described.
  • compositions wherein specific components of the composition are discussed in reference to weight percentage ranges including a zero lower limit, it will be understood that such components may be present or absent in various specific embodiments of the composition, and that in instances where such components are present, they may be present at concentrations as low as 0.001 weight percent, based on the total weight of the composition in which such components are employed.
  • the composition includes aqueous phosphoric acid (e.g., concentrated phosphoric acid) in an amount that is effective to produce desired etching of silicon nitride.
  • aqueous phosphoric acid refers to an ingredient of the composition that is mixed or combined with other ingredients of the composition to form the composition.
  • phosphoric acid solids refers to the non-aqueous component of an aqueous phosphoric acid ingredient, or of a composition that is prepared from aqueous phosphoric acid ingredient.
  • the amount of phosphoric acid solids contained in a composition can be an amount that, in combination with the other materials of an etching composition, will provide desired etching performance, including desired silicon nitride etch rate and selectivity, which typically requires a relatively high amount (concentration) of phosphoric acid solids.
  • an etching composition can contain an amount of phosphoric acid solids that is at least about 50 weight percent based on total weight of the composition, e.g., at least 70, or at least about 80 or 85 weight percent phosphoric acid solids based on total weight of the composition.
  • the composition may contain “concentrated” phosphoric acid as an ingredient that is mixed or combined with other ingredients (one ingredient optionally being water, in some form) to produce the composition.
  • Concentrated phosphoric acid refers to an aqueous phosphoric acid ingredient that contains a high or maximum amount of phosphoric acid solids in the presence of a low or minimum amount of water and substantially no other ingredients (e.g., less than 0.5 or 0.1 weight percent of any non-water or non-phosphoric acid solids materials).
  • Concentrated phosphoric acid can typically be considered to have at least about 80 or 85 weight percent phosphoric acid solids in about 15 or 20 weight percent water.
  • the composition may be considered to include an amount of concentrated phosphoric acid that is diluted with water, meaning for example concentrated phosphoric acid that has been diluted with an amount of water before or after being combined with other ingredients of the etching composition, or an equivalent formed in any manner.
  • an ingredient of the composition can be concentrated phosphoric acid or a diluted phosphoric acid, and the etching composition can contain an additional amount of water that is provided to the composition either as a component of a different ingredient or as a separate water ingredient.
  • the amount of concentrated phosphoric acid (85 weight percent, in water) can be an amount that is at least 60, e.g., at least 80 or at least 90, 93, 95, or at least 98 weight percent of the composition, based on total weight of the composition.
  • compositions can comprise, consist of, or consist essentially of the recited ingredients and any combination of optional ingredients.
  • composition as described, or an ingredient or component thereof, that is said to “consist essentially of” a group of specified ingredients or materials refers to a composition that contains the specified ingredients or materials with not more than a low or insignificant amount of other ingredients or materials, e.g., not more than 5, 2, 1, 0.5, 0.1, or 0.05 parts by weight of other ingredients or materials.
  • a composition that contains materials that consist essentially of: aqueous phosphoric acid, at least one silane compound chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes, and a solvent comprising water, and optional ingredients as described means a composition that contains these ingredients and not more than 5, 2, 1, 0.5, 0.1, or 0.05 parts by weight of any other dissolved or un-dissolved material or materials (individually or as a total) other than the identified materials.
  • fluoride compound corresponds to species including ionic fluoride ion (F ⁇ ) or covalently bonded fluorine. It is to be appreciated that the fluoride species may be included as a fluoride species or generated in situ. In certain embodiments, this compound capable of generating the fluoride ion will be derived from HF, monoflurophosphoric (MFPA), difluorophosphoric (DFPA) or hexafluorophosphoric acid. In concentrated phosphoric acid compositions, HF will exist mostly in the form of monofluorophosphoric acid (MFPA). In certain embodiments, the low-volatility MFPA or DFPA may be used directly in the compositions in order to simplify addition and blending.
  • MFPA monoflurophosphoric
  • DFPA difluorophosphoric acid
  • the fluoride compound may be chosen from CsF and KF. In other embodiments, the fluoride compound may be chosen from tetramethylammonium hexafluorophosphate; ammonium hexafluorophosphate; ammonium fluoride; ammonium bifluoride; quaternary ammonium tetrafluoroborates and quaternary phosphonium tetrafluoroborates having the formula NR′ 4 BF 4 and PR′ 4 BF 4 , respectively, wherein each R′ may be the same as or different from one another and is chosen from hydrogen, straight-chained, branched, or cyclic C 1 -C 6 alkyl (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl), and straight-chained or branched C 6 -C 10 aryl (e.g., benzyl); tetrabutylammonium
  • the fluoride compound is selected from ammonium fluoride, ammonium bifluoride, quaternary ammonium tetrafluoroborates (e.g., tetramethylammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate), quaternary phosphonium tetrafluoroborates, or combinations thereof.
  • the fluoride compound comprises ammonium bifluoride, ammonium fluoride, or a combination thereof.
  • the invention provides a composition comprising:
  • the phosphoric acid will be present in the composition in about 50 to about 95 weight percent. In other embodiments, phosphoric acid will be present in about 70 to about 90 weight percent, and in other embodiments, about 85 weight percent.
  • the composition may further comprise a fluoride compound.
  • the fluoride compound is selected from HF and monofluoro phosphoric acid. In other embodiments, the fluoride compound is selected from cesium fluoride and potassium fluoride.
  • the fluoride compound is selected from ammonium hexafluorophosphate; tetramethylammonium hexafluorophosphate; ammonium fluoride; ammonium bifluoride; fluoroboric acid; quaternary ammonium tetrafluoroborates and quaternary phosphonium tetrafluoroborates having the formula NR′ 4 BF 4 and PR′ 4 BF 4 ,respectively, wherein R′ may be the same as or different from one another and is selected from hydrogen, straight-chained, branched, or cyclic C 1 -C 6 alkyl, and straight-chained or branched C 6 -C 10 aryl; tetramethylammonium tetrafluoroborate (TMA-BF 4 ); and combinations thereof.
  • R′ may be the same as or different from one another and is selected from hydrogen, straight-chained, branched, or cyclic C 1 -C 6 alkyl, and
  • alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formula
  • each X is independently chosen from fluorine, a C 1 -C 8 alkyl group, or a group of the formula —OR, wherein R is hydrogen or a C 1 -C 8 alkyl group, n is an integer of from 1 to 6, and each R 1 is independently chosen from hydrogen, a C 1 -C 8 alkyl group, or a group of the formula C 1 -C 8 alkoxy(CH 2 ) n —.
  • the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are chosen from (3-aminopropyl)triethoxy silane (CAS No. 919-30-2); (3-aminopropyl)silane triol (CAS No.
  • alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formula
  • each X is independently chosen from fluorine, a C 1 -C 8 alkyl group, or a group of the formula —OR, wherein R is hydrogen or a C 1 -C 8 alkyl group, n is an integer of from 1 to 6, y is an integer of from 1 to 6, and wherein z is an integer of from 1 to 6.
  • the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are chosen from N-(3-trimethoxysilylpropyl)diethylenetriamine (CAS Number 35141-30-1); N-(2-aminoethyl)-3-aminopropyltriethoxy silane (CAS No. 5089-72-5); N-(2-aminoethyl)-3-aminopropyl silane triol (CAS No. 1760-24-3); (3-trimethoxysilylpropyl)dethylenetriamine (CAS No. 35141-30-1); and N-(6-aminohexyl)aminopropyltrimethoxysilane (CAS No. 51895-58-0).
  • two alkylamino groups are connected to a silicon atom that carries two X groups (as defined above) or one X and one alkyl group, e.g. 3,3′-(dimethoxysilylene)bis-(1-Propanamine) (CAS No. 51749-36-1):
  • one or more aminoalkyl groups branch out of an alkyl or aminoalkyl chain that is connected to a silicon atom that carries three X groups (as defined above) or two X and one alkyl group, e.g. 2-[(Dimethoxymethylsilyl)methyl]-1,4-butanediamine (CAS No. 1019109-96-6):
  • two or more silicon atoms connected by oxygen bridges carry a total of at least one aminoalkyl group and at least one “X” group as described above, with the remaining silicon substituents being alkylamine, “X”, or alkyl; e.g. 1,3-Bis(3-aminopropyl)-1,1,3,3-tetraethoxydisiloxane (CAS No. 17907-78-7):
  • the amount of the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds in the compositions of the invention can be an amount that, in combination with the other materials of an etching composition, will provide desired etching performance, including desired silicon nitride etch rate and selectivity.
  • an etching composition can contain an amount of alkylamino alkoxysilane and alkylamino hydroxyl silane compounds, which may be a single species or a combination of two or more species, in a range from about 20 to 10,000 parts per million (i.e., from 0.0020 to 1.0 weight percent) based on total weight of the composition, or from about 20 to 2,000, 4,000, or 5,000 parts per million (i.e., from 0.002 to 0.2, 0.4, or 0.5 weight percent) based on total weight of the composition.
  • Component (c) is a solvent comprising water.
  • the solvent may further comprise one or more water-miscible solvents such as pyrrolidinones, glycols, amines, and glycol ethers, including, but not limited to, methanol, ethanol, isopropanol, butanol, and higher alcohols (such as C 2 -C 4 diols and C 3 -C 4 triols), tetrahydrofurfuryl alcohol (THFA), halogenated alcohols (such as 3-chloro-1,2-propanediol, 1-chloro-2-propanol, 2-chloro-1-propanol, 3-chloro-1-propanol, 3-bromo-1,2-propanediol, 1-bromo-2-propanol, 3-bromo-1-propanol, 3-iodo-1-propanol, 4-chloro-1-butanol, 2-chloroethanol), acetic acid, prop
  • the compositions of the invention further comprise low molecular weight amines and amine phosphate salts.
  • the low molecular weight amines and amine phosphate salts are primary, secondary, or tertiary C 1 -C 6 alkylamine or phosphate salts thereof. Examples include dimethylamine, trimethylamine, triethylamine, tripropylamine, tributylamine and the like. It will be appreciated that when such amines or their aqueous solutions are added to a concentrated H 3 PO 4 composition, amine phosphate salts will form.
  • the composition comprises: (a) phosphoric acid; (b) N-(2-aminoethyl)-3-aminopropyl silanetriol; and (c) a solvent comprising water.
  • the composition further comprises HF or monofluorophosphoric acid.
  • the composition further comprises triethylamine or a dihydrogen phosphate salt thereof.
  • the composition may optionally comprise surfactant(s) (different from the other optional or required ingredients of the present description) to improve performance of the composition.
  • surfactant refers to an organic compound that lowers the surface tension (or interfacial tension) between two liquids or between a liquid and a solid, typically an organic amphiphilic compound that contains a hydrophobic group (e.g., a hydrocarbon (e.g., alkyl) “tail”) and a hydrophilic group.
  • Preferred surfactants are thermally stable and stay ionic under strongly acidic conditions such as the conditions of an etching process of the present invention. Examples include perfluoroalkylsulfonic acids and long-chain quaternary ammonium compounds (e.g.
  • Fluorinated non-ionic surfactants such as Chemours' Capstone® FS-31/FS-35 can also be used.
  • Non-ionic unfluorinated surfactants such as poly(ethylene glycol)-poly(propylene glycol) copolymers (“PEG-PPG”) can also be used, and are better suited for lower-acidity compositions (e.g. ⁇ 75% H 3 PO 4 ) and operation at ⁇ 130° C.
  • the amount of surfactant in the composition can be an amount that, in combination with the other materials of an etching composition, will provide desired overall performance.
  • the composition can contain an amount of surfactant that may be in a range from about 0.001 to about 10 weight percent, e.g., from about 0.01 to about 0.5, 1, 2, 7, or 7 weight percent surfactant based on total weight of the composition.
  • the compositions can contain an amount of carboxylic acid compound, meaning an organic compound that contains at least one carboxylic acid group.
  • carboxylic acid compound meaning an organic compound that contains at least one carboxylic acid group.
  • the presence of a carboxylic acid compound in composition as described can improve performance by inhibiting redeposition of silicon oxide or formation of particles of the same.
  • the carboxylic acid compounds for use in the compositions include acetic acid, malonic acid, succinic acid, 2-methylsuccinic acid, glutaric acid, adipic acid, salicylic acid, 1,2,3-propanetricarboxylic acid (a.k.a.
  • tricarballylic acid 2-phosphonoacetic acid, 3-phosphonopropanoic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), any of which may be used alone, in combination together with each other, or in combination with a different carboxylic acid compound.
  • PBTCA 2-phosphonobutane-1,2,4-tricarboxylic acid
  • the amount of carboxylic acid compound (including derivatives thereof) contained in the compositions can be an amount that, in combination with the other materials of the compositions, will provide desired etching performance while not otherwise affecting performance or chemical stability of an etching composition.
  • the compositions can contain an amount of carboxylic acid compound, which may be a single species or a combination of two or more species, in a range from about 0.01 to about 10 weight percent based on total weight of the composition, or from about 0.1 to about 5 or 8 weight percent based on total weight of the composition.
  • the composition may contain water from one or from multiple sources. For example, water will be present in an aqueous phosphoric acid ingredient. Additionally, water may be used as a carrier for one or more of the other ingredients of the etching composition, and water may be added alone as its own ingredient.
  • the amount of water should be sufficiently low to allow the composition to exhibit desired or preferred or advantageous etching performance properties, including a useful (sufficiently high) silicon nitride etch rate. An increase in the presence of water tends to increase the etch rate of silicon nitride but can also depress the boiling point of the etching composition, which forces a reduction in operating temperature of the etching composition and an opposite effect.
  • amounts of water, from all sources, in an etching composition can be less than about 50, 40, or 30 weight percent, for example in a range from about 5 weight percent to about 25 percent by weight, based on total weight of the composition, or in a range from about 10 to 20 weight percent water based on total weight of the composition.
  • these and other example compositions as described can contain, consist of, or consist essentially of the phosphoric acid, the amino hydroxyl silane or amino alkoxy silane, and any one or any combination of the identified optional ingredients.
  • Certain embodiments of the compositions of the invention do not require and may exclude other types of ingredients not typically included in an etching composition, such as a pH adjusting agent (other than the acids mentioned as potential ingredients herein) and solid materials such as abrasive particles.
  • the invention provides a method for removing silicon nitride from a microelectronic device, said method comprising contacting the microelectronic device with a composition of the present invention, for sufficient time under sufficient conditions to at least partially remove said silicon nitride material from the microelectronic device.
  • silicon nitride material may be removed without substantially damaging metal and metal silicide interconnect materials.
  • the invention thus provides methods for selectively and substantially removing silicon nitride materials relative to polysilicon and/or silicon oxide materials from the surface of the microelectronic device having same thereon using the compositions described herein.
  • the metal silicide materials that are present are not substantially corroded by said removal compositions using said method.
  • the composition is applied in any suitable manner to the surface of the microelectronic device having the silicon nitride material thereon, e.g., by spraying the removal composition on the surface of the device, by dipping (in a static or dynamic volume of the removal composition) of the device including the silicon nitride material, by contacting the device with another material, e.g., a pad, or fibrous sorbent applicator element, that has the removal composition absorbed thereon, by contacting the device including the silicon nitride material with a circulating removal composition, or by any other suitable means, manner or technique, by which the removal composition is brought into removal contact with the silicon nitride material.
  • the application may be in a batch or single wafer apparatus, for dynamic or static cleaning.
  • the application of the removal composition to the surface of the microelectronic device is controlled agitation whereby the composition is circulated through the container housing said composition.
  • compositions of the present invention by virtue of their selectivity for silicon nitride material relative to other materials that may be present on the microelectronic device structure and exposed to the composition, such as metallization, polysilicon, silicon oxide(s), etc., achieve at least partial removal of the silicon nitride material in a highly efficient and highly selective manner.
  • the composition typically is contacted with the microelectronic device structure for a sufficient time of from about 1 minute to about 200 minutes, in one embodiment, about 15 minutes to about 100 minutes, or about 1 minute to about 3 minutes for a single wafer tool, at sufficient conditions including, but not limited to, in one embodiment, a temperature in a range of from about 120° C. to about 180° C.
  • contacting times and temperatures are illustrative, and any other suitable time and temperature conditions may be employed that are efficacious to at least partially remove the silicon nitride material from the device structure, within the practice of the invention.
  • the removal composition is readily removed from the microelectronic device to which it has previously been applied, e.g., by rinse, wash, or other removal step(s), as may be desired and efficacious in a given end use application of the compositions of the present invention.
  • the device may be rinsed with a rinse solution including deionized water and/or dried (e.g., spin-dry, N 2 , vapor-dry, etc.).
  • the removal compositions of the invention selectively etch silicon nitride material relative to poly-Si and silicon oxides from the surface of the microelectronic device without causing substantial corrosion of the metal and/or metal silicide interconnect material(s).
  • the selectivity of silicon nitride to silicon oxide(s) in the presence of the removal compositions of the invention are, in one embodiment, in a range from about 10:1 to about 7,000:1, in another embodiment about 30:1 to about 3,000:1, and in another embodiment about 100:1 to about 2000:1 at temperatures of 40-100° C. in one embodiment, of 60-95° C. in another embodiment, and of 75-90° C. in yet another embodiment.
  • the selectivity of silicon nitride relative to silicon oxide(s) can be tuned from about 20:1 to infinity in one embodiment and in the range from about 20:1 to about 7,000:1 in another embodiment.
  • the selectivity is formally negative for some usable formulations, reflecting the fact that the thickness of the oxide film is very slightly but measurably increased by precipitation of silica.
  • a substrate can include alternating thin film layers of silicon nitride as structural features of a substrate that includes alternating thin film layers of the silicon nitride layers with silicon oxide.
  • the silicon oxide layers are high aspect ratio structures that contain the silicon nitride layers disposed between the layers of silicon oxide.
  • a still further aspect of the invention relates to methods of manufacturing an article comprising a microelectronic device, said method comprising contacting the microelectronic device with the compositions of the present invention for sufficient time to etchingly remove silicon nitride material from the surface of the microelectronic device having same thereon, and incorporating said microelectronic device into said article.
  • compositions described herein are easily formulated by simple addition of the respective ingredients and mixing to homogeneous condition. Furthermore, the compositions may be readily formulated as single-package formulations or multi-part formulations that are mixed at the point of use, preferably multi-part formulations. The individual parts of the multi-part formulation may be mixed at the tool or in a storage tank upstream of the tool.
  • concentrations of the respective ingredients may be widely varied in specific multiples of the composition, i.e., more dilute or more concentrated, and it will be appreciated that the compositions described herein can variously and alternatively comprise, consist or consist essentially of any combination of ingredients consistent with the disclosure herein.
  • kits including, in one or more containers, one or more components adapted to form the compositions described herein.
  • the kit includes, in one or more containers, the combination of at least one of components (a)-(c) above for combining with water at the fab or the point of use.
  • the containers of the kit must be suitable for storing and shipping said cleaning composition components, for example, NOWPak®. containers (Advanced Technology Materials, Inc., Danbury, Conn., USA).
  • the one or more containers which contain the components of the first cleaning composition preferably include means for bringing the components in said one or more containers in fluid communication for blending and dispense. For example, referring to the NOWPak®.
  • gas pressure may be applied to the outside of a liner in said one or more containers to cause at least a portion of the contents of the liner to be discharged and hence enable fluid communication for blending and dispense.
  • gas pressure may be applied to the head space of a conventional pressurizable container or a pump may be used to enable fluid communication.
  • the system preferably includes a dispensing port for dispensing the blended cleaning composition to a process tool.
  • Substantially chemically inert, impurity-free, flexible and resilient polymeric film materials such as high density polyethylene, may be used to fabricate the liners for said one or more containers.
  • Desirable liner materials are processed without requiring co-extrusion or barrier layers, and without any pigments, UV inhibitors, or processing agents that may adversely affect the purity requirements for components to be disposed in the liner.
  • a listing of desirable liner materials include films comprising virgin (additive-free) polyethylene, virgin polytetrafluoroethylene (PTFE), polypropylene, polyurethane, polyvinylidene chloride, polyvinylchloride, polyacetal, polystyrene, polyacrylonitrile, polybutylene, and so on. Exemplary thicknesses of such liner materials are in a range from about 5 mils (0.005 inch) to about 30 mils (0.030 inch), as for example a thickness of 20 mils (0.020 inch).
  • the invention provides a kit comprising one or more containers having components therein suitable for removing silicon nitride from a microelectronic device, wherein one or more containers of said kit contains (a) phosphoric acid; (b) at least one silane compound chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes as described herein; and (c) a solvent comprising water; and optionally (d) a fluoride compound, provided that the fluoride compound is other than hexafluoro silicic acid.
  • High aspect ratio structures were processed to first remove any oxidized film from the exposed silicon nitride. Structures were then processed in the formulation at the desired temperature in a boiling flask with stirring. For the conditions where silicate loading is specified either tetramethylammonium silicate (TMAS) or silica nanoparticles were added. For examples 16 and 17, TMAS was used and the loading is provided as ppm Si. For all other examples SiO 2 nanoparticles were used and silicate loading is provided as ppm SiO 2 . Structures were processed for times long enough to fully remove the SiN, typically between 45 minutes and 2 hours. After processing in the formulation structures were rinsed in hot deionized water and dried with flowing nitrogen. The etch rates shown were similarly obtained by processing blanket films, with thickness measured by spectroscopic ellipsometry.
  • the loading window is defined in this case on the low end by where selectivity is >1000 and on the high end by the onset of redeposition. A different selectivity target will result in a different width of the loading window.

Abstract

Compositions useful for the selective removal of silicon nitride materials relative to polysilicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon are provided. The compositions of the invention are particularly useful in the etching of 3D NAND structures.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a composition and method for selectively etching silicon nitride in the presence of silicon oxide, polysilicon and/or metal silicides, and more particularly to a composition and method for effectively and efficiently etching a layer of silicon nitride at a high etch rate and with high selectivity with respect to exposed or underlying layers of silicon oxide, polysilicon and/or metal silicides, particularly in a multilayer semiconductor wafer structure.
  • BACKGROUND OF THE INVENTION
  • There is a continued need for improved microelectronic device performance there is a continued emphasis on decreasing device dimensions, which provides the dual advantages of dramatically increasing device density as well as improving device performance. Device performance is improved because decreased device dimensions result in shorter paths that need to be traveled by charge carriers, e.g., electrons.
  • For example, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET) gate electrodes have as electrical points of contact the gate surface and the source and drain regions. The distance between the source and drain regions forms the channel length of the gate electrode, and as such, by decreasing device dimensions the channel length is concomitantly decreased. The result is that the switching speed of the device is increased.
  • It is self-evident that reducing device dimensions results in increased packaging density of devices on a microelectronic device chip. This increased packaging density brings with it sharp reductions in the length of the interconnect paths between devices, which reduces the relative negative impact (such as resistive voltage drop, cross talk or RC delay) that these interconnect paths have on overall device performance.
  • Such requirements however cause problems of increased parasitic capacitance, device contact resistance (gate, source and drain contacts in MOSFET devices), and tight tolerance of pattern definition. For very small sub-micron or sub-half-micron or even sub-quarter-micron modern silicon devices, the conventional photolithographic technique for patterning contacts will not meet the required tolerance of critical dimensions. Methods that have been explored to improve resolution and feature size include the formation of a self-aligned poly-silicon (poly-Si) gate structure, which helps to solve the problem of critical dimension tolerance. Using this method, the contact points that are formed for the source and the drain of the gate electrode self-align with the poly-Si gate.
  • One problem encountered during the formation of self-aligned gate structures has been the selective removal of silicon nitride materials relative to polysilicon, silicon oxide and/or metal silicide materials. For example, during the anisotropic etching of the silicon nitride layer covering the gate electrodes, the underlying silicon oxide layer and silicon substrate are often damaged as well, causing a deteriorated reliability of a semiconductor device.
  • Conventional wet etching techniques for selectively removing silicon nitride (Si3N4) have utilized hot (approximately 145-180° C.) phosphoric acid (H3PO4) solutions with water, typically 85% phosphoric acid and 15% water (by volume). Using fresh hot phosphoric acid, the typical Si3N4:SiO2 selectivity is about 40:1.Advantageously, as the nitride layer is removed, hydrated silicon oxide forms, which consistent with Le Chatelier's principle, inhibits the additional removal of silicon oxide from the device surface; thus selectivity gradually increases with use. Disadvantages associated with the use of hot phosphoric acid etches include the corrosion of metal silicide materials, e.g., gate contact materials, the etching of silicon oxide, and process control due to the difficultly associated with maintaining a specific amount of water in the process solution. In addition, hot phosphoric acid has been a difficult medium to adapt to single wafer tools, which have become increasingly preferred by many manufacturers.
  • Another way to selectively remove silicon nitride includes the use of a composition including hydrofluoric acid, however, said compositions also remove silicon oxides. A Si3N4:SiO2 selectivity of about 10:1 can be achieved through dilution; however, the etch rate of silicon nitride is compromised or above-ambient pressure must be used. Still another process to remove silicon nitride includes the dry etch removal using halogenated gaseous species; however, the Si3N4:SiO2 selectivity ratio is even worse than that obtained using the aforementioned wet etch processes.
  • 3D-NAND structures in development today at all the major memory chip manufacturers require high-selectivity etching of silicon nitride (SiN) out of high aspect ratio “slits” defined by oxide (PETEOS). In the regular hot phosphoric acid “hot phos” process the selectivity is controlled by pre-dissolving a certain amount of nitride. The dissolved silicon nitride is converted into slightly soluble oxide; the same happens during etching, but the oxide soon starts depositing near the slits' openings, eventually blocking them. See also U.S. 2017/0287725, in particular FIG. 1D, which shows an illustration where the deposition of colloidal silica tends to “pinch off” the gaps or trenches in the microelectronic device. As a result, the process window of pre-etch oxide concentration is very narrow, difficult to control, and the etch bath has to be replaced very often. Oxide re-deposition rate thus needs to be minimized.
  • In addition, the deep slits take a long time to etch (typically ≥1 hr). Addition of HF in small amounts increases etch rates, but also polymerization of soluble silica species and consequently oxide re-deposition rates. Furthermore, the volatility of HF and related fluorinated species causes process control difficulties.
  • In planar NAND technology, scaling is driven mostly by lithography. In scaling 3D NAND, extreme precision and process repeatability is required to create complex 3D structures with very high-aspect-ratio (HAR) features. Therefore, achieving success with 3D NAND requires innovative patterning solutions that minimize variability. (See Overcoming Challenges in 3D NAND Volume Manufacturing. Solid State Technology website: http://electroig.com/blog/2017/07/overcoming-challenges-in-3d-nand-volume-manufacturing/)
  • Precision in etching extreme HAR features is critical for optimizing channel holes and trenches for cell access, as well as its unique staircase structure architecture, which connects the cells to surrounding CMOS circuitry for reading, writing, and erasing data. If the vertical pitch of the memory stack is around 50 nm, then a 96 layer stack is on the order of 4.8 μm high. This corresponds to a challenging aspect ratio of ˜100:1.
  • Additionally, as multilayer stack heights increase, so does the difficulty in achieving consistent etch and deposition profiles at the top and the bottom of the memory array. For example, given a ratio of ˜100:1, the selective removal of Si3N4 in the memory stack becomes a wet-etch challenge. The difficulty is removing the Si3N4 consistently at the top and the bottom of the stack and across the wafer, without etching any of the Sift. Below 96 layers, this task is performed using hot phosphoric acid (˜160° C.); however, at 96 layers and above, a specially formulated wet etch chemistry is needed to improve process margin.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides compositions useful in etching a substrate having a surface comprising silicon nitride and silicon oxide, with selectivity for etching the silicon nitride relative to the silicon oxide. The composition comprises phosphoric acid, at least one silane compound chosen from alkylamino alkoxy silanes and alkylamino hydroxyl silanes, a solvent comprising water, and optionally a fluoride compound.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1-4 show a comparison of several examples of the invention in terms of etch rates versus Si loading. Silicon nitride and silicon oxide etch rates were measured using CVD silicon nitride films and PECVD silicon oxide films. Silicon oxide films were exposed to the etching formulation for 4 hours so that the small amount of film loss could be measured. Silicon nitride films were etched for 5 minutes and 10 minutes. Film thicknesses were measured before and after processing by spectroscopic ellipsometry and these thicknesses were used to calculate etch rates.
  • Specifically, the figures depicts the following:
  • FIG. 1 depicts a graph that shows etch rates as a function of Si Loading
  • FIG. 2 depicts a graph displaying the etch rates as a function of Si loading
  • FIG. 3 depicts graph displaying the etch rates in 85% phosphoric acid as a function of Si loading
  • FIG. 4 depicts a graph showing selectivity (“example B”), (“example A”) and 85% H3PO4.
  • FIG. 5 shows schematically a structure of an exemplary substrate as described, before and after a selective etching step as also described.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One aspect of the present invention relates to compositions which are useful in the selective removal of silicon nitride relative to polysilicon (poly-Si) and silicon oxide material deposited from a silicon oxide precursor source, and hence are useful as wet etchants for at least partial removal of silicon nitride material from a microelectronic device. Metal silicide materials that may be present should not be substantially corroded by said removal compositions.
  • The invention also provides methods, processes, and systems for using the wet etching compositions to remove silicon nitride from a substrate containing silicon nitride and silicon oxide. The compositions can produce an advantageously high etch rate of silicon nitride, an advantageously high selectivity of silicon nitride relative to silicon oxide, or an advantageous balance of these performance properties.
  • For ease of reference, “microelectronic device” corresponds to semiconductor substrates, including 3D NAND structures, flat panel displays, and microelectromechanical systems (MEMS), manufactured for use in microelectronic, integrated circuit, or computer chip applications. It is to be understood that the term “microelectronic device” is not meant to be limiting in any way and includes any substrate that includes a negative channel metal oxide semiconductor (nMOS) and/or a positive channel metal oxide semiconductor (pMOS) transistor and will eventually become a microelectronic device or microelectronic assembly.
  • As used herein, “suitability” for removing silicon nitride material from a microelectronic device having such nitride material thereon corresponds to at least partial removal of silicon nitride material from the microelectronic device.
  • As used herein, “silicon nitride” and “Si3N4” correspond to pure silicon nitride (Si3N4) as well as impure silicon nitride including hydrogen, carbon and/or oxygen impurities in the crystal structure.
  • As used herein, “silicon oxide” refers to thin films made of silicon oxide (SiOx), e.g., SiO2, “thermal oxide” (ThOx), and the like. The silicon oxide can be placed on the substrate by any method, such as by deposition via chemical vapor deposition from TEOS or another source, or by being thermally deposited. The silicon oxide generally contains a commercially useful low level of other materials or impurities. The silicon oxide may be present as part of a microelectronic device substrate as a feature of the microelectronic device, for example as an insulating layer.
  • As used herein, “at least partial removal of silicon nitride material” corresponds to the removal of at least a portion of the exposed silicon nitride layer. For example, partial removal of silicon nitride material includes the anisotropic removal of a silicon nitride layer that covers/protects the gate electrodes to form a Si3N4 sidewall. It is also contemplated herein that the compositions of the present invention may be used more generally to substantially remove silicon nitride material relative to poly-silicon and/or silicon oxide layers. In those circumstances, “substantial removal” is defined in one embodiment as at least 90%, in another embodiment at least 95%, and in yet another embodiment at least 99% of the silicon nitride material is removed using the compositions of the invention.
  • As used herein, “about” is intended to correspond to +/−5% of the stated value.
  • As used herein, “metal silicide” corresponds to any silicide including the species Ni, Pt, Co, Ta, Mo, W, and Ti, including but not limited to TiSi2, NiSi, CoSi2, NiPtSi, tantalum silicide, molybdenum silicide, and tungsten silicide.
  • “Silicic acid” is a general name for a family of chemical compounds of silicon, hydrogen, and oxygen, with the general formula [SiOx(OH)4−2x]n, and includes the compounds metasilicic acid ((H2SiO3)n), orthosilicic acid (H4SiO4), disilicic acid (H2Si2O5), and pyrosilicic acid (H6Si2O7). Silicic acid can be obtained in many ways well known to those skilled in the art, e.g. by hydrating fine silica powder (preferably 1 μm diameter or less), alkoxysilanes (e.g., tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetra-n-propoxysilane, tetra-n-butoxysilane), alkoxysilanes with amino groups (e.g., aminotriethoxysilane, hexaethoxydisilazane), alkoxysilanes with one or more halogen or pseudohalogen groups (e.g., triethoxychlorosilane, triethoxyfluorosilane, triethoxy(isocyanato)silane, diethoxydichlorosilane), or combinations thereof. For ease of reference, “alkoxysilane” will hereinafter be used to include alkoxysilanes, alkoxysilanes with amino groups and alkoxysilanes with one or more halogen or pseudohalogen groups.
  • As described herein, the silicon oxide layer may be deposited from a silicon oxide precursor source, e.g., TEOS, or may be thermally deposited silicon oxide. Other typical low-κ materials “low-k dielectric material” corresponds to any material used as a dielectric material in a layered microelectronic device, wherein the material has a dielectric constant less than about 3.5. In certain embodiments, the low-κ dielectric materials include low-polarity materials such as silicon-containing organic polymers, silicon-containing hybrid organic/inorganic materials, organosilicate glass (OSG), TEOS, fluorinated silicate glass (FSG), silicon dioxide, silicon oxycarbide, silicon oxynitride, silicon nitride, carbon-doped oxide (CDO) or carbon-doped glass, for example, CORAL™ from Novellus Systems, Inc., BLACK DIAMOND™ from Applied Materials, Inc. (e.g., BD1, BD2, and BD3 designations for PECVD) SiLK™ dielectric resins from Dow (polymers based on crosslinked polyphenylenes by reaction of polyfunctional cyclopentadienone and acetylene-containing materials; see, for example, U.S. Pat. No. 5,965,679, incorporated herein by reference), and NANOGLASS™ of Nanopore, Inc, (Silica aerogel/xerogel (known as nanoporous silica), and the like. It is to be appreciated that the low-κ dielectric materials may have varying densities and varying porosities.
  • The compositions of the present invention must possess good metal compatibility, e.g., a low etch rate on the interconnect metal and/or interconnector metal silicide material. Metals of interest include, but are not limited to, copper, tungsten, cobalt, molybdenum, aluminum, tantalum, titanium and ruthenium. Silicides of interest include any silicide including the species Ni, Pt, Co, Ta, Mo, W, and Ti, including but not limited to TiSi2, NiSi, CoSi2, NiPtSi, tantalum silicide, molybdenum silicide, and tungsten silicide.
  • Compositions of the invention may be embodied in a wide variety of specific formulations, as hereinafter more fully described.
  • In all such compositions, wherein specific components of the composition are discussed in reference to weight percentage ranges including a zero lower limit, it will be understood that such components may be present or absent in various specific embodiments of the composition, and that in instances where such components are present, they may be present at concentrations as low as 0.001 weight percent, based on the total weight of the composition in which such components are employed.
  • The composition includes aqueous phosphoric acid (e.g., concentrated phosphoric acid) in an amount that is effective to produce desired etching of silicon nitride. The term “aqueous phosphoric acid” refers to an ingredient of the composition that is mixed or combined with other ingredients of the composition to form the composition. The term “phosphoric acid solids” refers to the non-aqueous component of an aqueous phosphoric acid ingredient, or of a composition that is prepared from aqueous phosphoric acid ingredient.
  • The amount of phosphoric acid solids contained in a composition can be an amount that, in combination with the other materials of an etching composition, will provide desired etching performance, including desired silicon nitride etch rate and selectivity, which typically requires a relatively high amount (concentration) of phosphoric acid solids. For example, an etching composition can contain an amount of phosphoric acid solids that is at least about 50 weight percent based on total weight of the composition, e.g., at least 70, or at least about 80 or 85 weight percent phosphoric acid solids based on total weight of the composition.
  • To provide a desired amount of phosphoric acid solids, the composition may contain “concentrated” phosphoric acid as an ingredient that is mixed or combined with other ingredients (one ingredient optionally being water, in some form) to produce the composition. “Concentrated” phosphoric acid refers to an aqueous phosphoric acid ingredient that contains a high or maximum amount of phosphoric acid solids in the presence of a low or minimum amount of water and substantially no other ingredients (e.g., less than 0.5 or 0.1 weight percent of any non-water or non-phosphoric acid solids materials). Concentrated phosphoric acid can typically be considered to have at least about 80 or 85 weight percent phosphoric acid solids in about 15 or 20 weight percent water. Alternately, the composition may be considered to include an amount of concentrated phosphoric acid that is diluted with water, meaning for example concentrated phosphoric acid that has been diluted with an amount of water before or after being combined with other ingredients of the etching composition, or an equivalent formed in any manner. As another alternative, an ingredient of the composition can be concentrated phosphoric acid or a diluted phosphoric acid, and the etching composition can contain an additional amount of water that is provided to the composition either as a component of a different ingredient or as a separate water ingredient.
  • As an example, if concentrated phosphoric acid is used to form the composition, the amount of concentrated phosphoric acid (85 weight percent, in water) can be an amount that is at least 60, e.g., at least 80 or at least 90, 93, 95, or at least 98 weight percent of the composition, based on total weight of the composition.
  • The compositions can comprise, consist of, or consist essentially of the recited ingredients and any combination of optional ingredients. As a general convention throughout the present description, the composition as described, or an ingredient or component thereof, that is said to “consist essentially of” a group of specified ingredients or materials refers to a composition that contains the specified ingredients or materials with not more than a low or insignificant amount of other ingredients or materials, e.g., not more than 5, 2, 1, 0.5, 0.1, or 0.05 parts by weight of other ingredients or materials. For example, a composition that contains materials that consist essentially of: aqueous phosphoric acid, at least one silane compound chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes, and a solvent comprising water, and optional ingredients as described, means a composition that contains these ingredients and not more than 5, 2, 1, 0.5, 0.1, or 0.05 parts by weight of any other dissolved or un-dissolved material or materials (individually or as a total) other than the identified materials.
  • As used herein, “fluoride compound” corresponds to species including ionic fluoride ion (F) or covalently bonded fluorine. It is to be appreciated that the fluoride species may be included as a fluoride species or generated in situ. In certain embodiments, this compound capable of generating the fluoride ion will be derived from HF, monoflurophosphoric (MFPA), difluorophosphoric (DFPA) or hexafluorophosphoric acid. In concentrated phosphoric acid compositions, HF will exist mostly in the form of monofluorophosphoric acid (MFPA). In certain embodiments, the low-volatility MFPA or DFPA may be used directly in the compositions in order to simplify addition and blending. In other embodiments, the fluoride compound may be chosen from CsF and KF. In other embodiments, the fluoride compound may be chosen from tetramethylammonium hexafluorophosphate; ammonium hexafluorophosphate; ammonium fluoride; ammonium bifluoride; quaternary ammonium tetrafluoroborates and quaternary phosphonium tetrafluoroborates having the formula NR′4BF4 and PR′4BF4, respectively, wherein each R′ may be the same as or different from one another and is chosen from hydrogen, straight-chained, branched, or cyclic C1-C6 alkyl (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl), and straight-chained or branched C6-C10 aryl (e.g., benzyl); tetrabutylammonium tetrafluoroborate (TBA-BF4); and combinations thereof. In certain embodiments, the fluoride compound is selected from ammonium fluoride, ammonium bifluoride, quaternary ammonium tetrafluoroborates (e.g., tetramethylammonium tetrafluoroborate, tetraethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate), quaternary phosphonium tetrafluoroborates, or combinations thereof. In certain embodiments, the fluoride compound comprises ammonium bifluoride, ammonium fluoride, or a combination thereof.
  • As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include their plural referents unless the context clearly dictates otherwise. The terms “containing” or “including” are intended to be synonymous with the term “comprising”, meaning that at least the named compound, element, particle, or method step, etc., is present in the composition or article or method, but does not exclude the presence of other compounds, materials, particles, method steps, etc., even if the other such compounds, material, particles, method steps, etc., have the same function as what is named, unless expressly excluded in the claims.
  • In one aspect, the invention provides a composition comprising:
      • (a) phosphoric acid;
      • (b) at least one silane chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes, wherein said silane possesses at least one moiety chosen from alkoxy, hydroxyl, and fluoro;
      • (c) a solvent comprising water; and optionally
      • (d) a fluoride compound, provided that the fluoride compound is other than hexafluorosilicic acid.
  • In certain embodiments, the phosphoric acid will be present in the composition in about 50 to about 95 weight percent. In other embodiments, phosphoric acid will be present in about 70 to about 90 weight percent, and in other embodiments, about 85 weight percent.
  • In certain embodiments of the invention, the composition may further comprise a fluoride compound. In one embodiment, the fluoride compound is selected from HF and monofluoro phosphoric acid. In other embodiments, the fluoride compound is selected from cesium fluoride and potassium fluoride. In other embodiments, the fluoride compound is selected from ammonium hexafluorophosphate; tetramethylammonium hexafluorophosphate; ammonium fluoride; ammonium bifluoride; fluoroboric acid; quaternary ammonium tetrafluoroborates and quaternary phosphonium tetrafluoroborates having the formula NR′4BF4 and PR′4BF4,respectively, wherein R′ may be the same as or different from one another and is selected from hydrogen, straight-chained, branched, or cyclic C1-C6 alkyl, and straight-chained or branched C6-C10 aryl; tetramethylammonium tetrafluoroborate (TMA-BF4); and combinations thereof.
  • In certain embodiments, the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formula
  • Figure US20230295502A1-20230921-C00001
  • wherein each X is independently chosen from fluorine, a C1-C8 alkyl group, or a group of the formula —OR, wherein R is hydrogen or a C1-C8 alkyl group, n is an integer of from 1 to 6, and each R1 is independently chosen from hydrogen, a C1-C8 alkyl group, or a group of the formula C1-C8 alkoxy(CH2)n—. In certain embodiments, the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are chosen from (3-aminopropyl)triethoxy silane (CAS No. 919-30-2); (3-aminopropyl)silane triol (CAS No. 58160-99-9); 3-aminopropyldimethylethoxysilane (CAS No. 18306-79-1); 3-aminopropylmethyldiethoxysilane (CAS No. 3179-76-8); and N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (CAS No. 3069-29-2); (N, N-dimethyl-3-amnopropyl)trimethoxysilane, (CAS No. 2530-86-1); and 3-aminopropyldimethylfluorosilane (CAS No. 153487-58-2).
  • In certain embodiments, the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formula
  • Figure US20230295502A1-20230921-C00002
  • wherein each X is independently chosen from fluorine, a C1-C8 alkyl group, or a group of the formula —OR, wherein R is hydrogen or a C1-C8 alkyl group, n is an integer of from 1 to 6, y is an integer of from 1 to 6, and wherein z is an integer of from 1 to 6.
  • In certain embodiments, the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are chosen from N-(3-trimethoxysilylpropyl)diethylenetriamine (CAS Number 35141-30-1); N-(2-aminoethyl)-3-aminopropyltriethoxy silane (CAS No. 5089-72-5); N-(2-aminoethyl)-3-aminopropyl silane triol (CAS No. 1760-24-3); (3-trimethoxysilylpropyl)dethylenetriamine (CAS No. 35141-30-1); and N-(6-aminohexyl)aminopropyltrimethoxysilane (CAS No. 51895-58-0).
  • In certain embodiments, two alkylamino groups are connected to a silicon atom that carries two X groups (as defined above) or one X and one alkyl group, e.g. 3,3′-(dimethoxysilylene)bis-(1-Propanamine) (CAS No. 51749-36-1):
  • Figure US20230295502A1-20230921-C00003
  • In certain embodiments, one or more aminoalkyl groups branch out of an alkyl or aminoalkyl chain that is connected to a silicon atom that carries three X groups (as defined above) or two X and one alkyl group, e.g. 2-[(Dimethoxymethylsilyl)methyl]-1,4-butanediamine (CAS No. 1019109-96-6):
  • Figure US20230295502A1-20230921-C00004
  • In certain embodiments, two or more silicon atoms connected by oxygen bridges carry a total of at least one aminoalkyl group and at least one “X” group as described above, with the remaining silicon substituents being alkylamine, “X”, or alkyl; e.g. 1,3-Bis(3-aminopropyl)-1,1,3,3-tetraethoxydisiloxane (CAS No. 17907-78-7):
  • Figure US20230295502A1-20230921-C00005
  • and its methoxy analog, 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethoxydisiloxane (CAS No. 76712-65-7):
  • Figure US20230295502A1-20230921-C00006
  • The amount of the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds in the compositions of the invention can be an amount that, in combination with the other materials of an etching composition, will provide desired etching performance, including desired silicon nitride etch rate and selectivity. For example, an etching composition can contain an amount of alkylamino alkoxysilane and alkylamino hydroxyl silane compounds, which may be a single species or a combination of two or more species, in a range from about 20 to 10,000 parts per million (i.e., from 0.0020 to 1.0 weight percent) based on total weight of the composition, or from about 20 to 2,000, 4,000, or 5,000 parts per million (i.e., from 0.002 to 0.2, 0.4, or 0.5 weight percent) based on total weight of the composition.
  • Component (c) is a solvent comprising water. Optionally, the solvent may further comprise one or more water-miscible solvents such as pyrrolidinones, glycols, amines, and glycol ethers, including, but not limited to, methanol, ethanol, isopropanol, butanol, and higher alcohols (such as C2-C4 diols and C3-C4 triols), tetrahydrofurfuryl alcohol (THFA), halogenated alcohols (such as 3-chloro-1,2-propanediol, 1-chloro-2-propanol, 2-chloro-1-propanol, 3-chloro-1-propanol, 3-bromo-1,2-propanediol, 1-bromo-2-propanol, 3-bromo-1-propanol, 3-iodo-1-propanol, 4-chloro-1-butanol, 2-chloroethanol), acetic acid, propionic acid, trifluoroacetic acid, N-methylpyrrolidinone (NMP), cyclohexylpyrrolidinone, N-octylpyrrolidinone, N-phenylpyrrolidinone, methyldiethanolamine, dimethyl formamide (DMF), dimethylsulfoxide (DMSO), tetramethylene sulfone (sulfolane), phenoxy-2-propanol (PPh), propriophenone, ethyl lactate, ethyl acetate, ethyl benzoate, acetonitrile, ethylene glycol, propylene glycol (PG), 1,3-propanediol, butyryl lactone, butylene carbonate, ethylene carbonate, propylene carbonate, dipropylene glycol, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether (i.e., butyl carbitol), triethylene glycol monobutyl ether, ethylene glycol monohexyl ether, diethylene glycol monohexyl ether, ethylene glycol phenyl ether, propylene glycol methyl ether, dipropylene glycol methyl ether (DPGME), tripropylene glycol methyl ether (TPGME), dipropylene glycol dimethyl ether, dipropylene glycol ethyl ether, propylene glycol n-propyl ether, dipropylene glycol n-propyl ether (DPGPE), tripropylene glycol n-propyl ether, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, propylene glycol phenyl ether, dipropylene glycol methyl ether acetate, tetraethylene glycol dimethyl ether (TEGDE), dibasic ester, glycerine carbonate, N-formyl morpholine, triethyl phosphate, and combinations thereof When using an alkoxysilane additive, its hydrolysis generates a small amount of alcohol, for example, methanol or ethanol, which is incorporated into the formulation as the alcohol itself or as its phosphoric acid monoester and is mostly boiled off at typical process temperatures. In addition, the organic solvent may comprise other amphiphilic species, i.e., species that contain both hydrophilic and hydrophobic moieties similar to surfactants.
  • In certain embodiments, the compositions of the invention further comprise low molecular weight amines and amine phosphate salts. In other embodiments, the low molecular weight amines and amine phosphate salts are primary, secondary, or tertiary C1-C6 alkylamine or phosphate salts thereof. Examples include dimethylamine, trimethylamine, triethylamine, tripropylamine, tributylamine and the like. It will be appreciated that when such amines or their aqueous solutions are added to a concentrated H3PO4 composition, amine phosphate salts will form.
  • In one embodiment, the composition comprises: (a) phosphoric acid; (b) N-(2-aminoethyl)-3-aminopropyl silanetriol; and (c) a solvent comprising water. In a further embodiment, the composition further comprises HF or monofluorophosphoric acid. In a further embodiment, the composition further comprises triethylamine or a dihydrogen phosphate salt thereof.
  • The composition may optionally comprise surfactant(s) (different from the other optional or required ingredients of the present description) to improve performance of the composition. As used herein the term “surfactant” refers to an organic compound that lowers the surface tension (or interfacial tension) between two liquids or between a liquid and a solid, typically an organic amphiphilic compound that contains a hydrophobic group (e.g., a hydrocarbon (e.g., alkyl) “tail”) and a hydrophilic group. Preferred surfactants are thermally stable and stay ionic under strongly acidic conditions such as the conditions of an etching process of the present invention. Examples include perfluoroalkylsulfonic acids and long-chain quaternary ammonium compounds (e.g. dodecyltrimethylammonium hydrogen sulfate). Fluorinated non-ionic surfactants such as Chemours' Capstone® FS-31/FS-35 can also be used. Non-ionic unfluorinated surfactants such as poly(ethylene glycol)-poly(propylene glycol) copolymers (“PEG-PPG”) can also be used, and are better suited for lower-acidity compositions (e.g. ≤75% H3PO4) and operation at ≤130° C.
  • The amount of surfactant in the composition can be an amount that, in combination with the other materials of an etching composition, will provide desired overall performance. For example, the composition can contain an amount of surfactant that may be in a range from about 0.001 to about 10 weight percent, e.g., from about 0.01 to about 0.5, 1, 2, 7, or 7 weight percent surfactant based on total weight of the composition.
  • Optionally, the compositions can contain an amount of carboxylic acid compound, meaning an organic compound that contains at least one carboxylic acid group. According to the invention, the presence of a carboxylic acid compound in composition as described can improve performance by inhibiting redeposition of silicon oxide or formation of particles of the same. In certain embodiments, the carboxylic acid compounds for use in the compositions include acetic acid, malonic acid, succinic acid, 2-methylsuccinic acid, glutaric acid, adipic acid, salicylic acid, 1,2,3-propanetricarboxylic acid (a.k.a. tricarballylic acid), 2-phosphonoacetic acid, 3-phosphonopropanoic acid, and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), any of which may be used alone, in combination together with each other, or in combination with a different carboxylic acid compound.
  • The amount of carboxylic acid compound (including derivatives thereof) contained in the compositions can be an amount that, in combination with the other materials of the compositions, will provide desired etching performance while not otherwise affecting performance or chemical stability of an etching composition. For example, the compositions can contain an amount of carboxylic acid compound, which may be a single species or a combination of two or more species, in a range from about 0.01 to about 10 weight percent based on total weight of the composition, or from about 0.1 to about 5 or 8 weight percent based on total weight of the composition.
  • The composition may contain water from one or from multiple sources. For example, water will be present in an aqueous phosphoric acid ingredient. Additionally, water may be used as a carrier for one or more of the other ingredients of the etching composition, and water may be added alone as its own ingredient. The amount of water should be sufficiently low to allow the composition to exhibit desired or preferred or advantageous etching performance properties, including a useful (sufficiently high) silicon nitride etch rate. An increase in the presence of water tends to increase the etch rate of silicon nitride but can also depress the boiling point of the etching composition, which forces a reduction in operating temperature of the etching composition and an opposite effect. Examples of amounts of water, from all sources, in an etching composition, can be less than about 50, 40, or 30 weight percent, for example in a range from about 5 weight percent to about 25 percent by weight, based on total weight of the composition, or in a range from about 10 to 20 weight percent water based on total weight of the composition.
  • Optionally, these and other example compositions as described can contain, consist of, or consist essentially of the phosphoric acid, the amino hydroxyl silane or amino alkoxy silane, and any one or any combination of the identified optional ingredients. Certain embodiments of the compositions of the invention do not require and may exclude other types of ingredients not typically included in an etching composition, such as a pH adjusting agent (other than the acids mentioned as potential ingredients herein) and solid materials such as abrasive particles.
  • The following table contains illustrative compositions in weight percent believed to be useful in the practice of the invention:
  • Ex-
    ample H3PO4 Solubilizer Active fluoride DIW Amine Total
    1   71% APST, 1% HF, 0.2% 12.8% Dimethylamine, 15% 100%
    2   76% N2APST, 1.5% 0 12.3% Trimethylamine, 10% 100%
    3 74.4% APST, 3% NH4F, 0.2% 22.4% 0 100%
    4   78% N3APTMS, 3% Triethylamine 18.5% 0 100%
    trihydrofluoride, 0.5%
    5 82.5% APST, 1.2% 3-aminopropyl-   16% 0 100%
    dimethylfluorosilane 0.3%
    6   78% N2APST, 2% MFPA, 0.5%   19% Triethylamine 100%
    dihydrogen
    phosphate (TEAP), 0.5
    7   65% APTES, 2% 0   32% TEAP, 1% 100%
    8   80% APTES, 1.25% Tetramethylammonium 18.3% TEAP, 0.3% 100%
    hexafluorophosphate, 0.15%
    9 81.1% DMSBP, 2% HF, 0.2% 13.7% Dipropylamine, 3% 100%
    10 82.2% BAPTEDS, 3% 0 14.8% 0
    11   62% AHAPTMS, 3% Tetramethylammonium 26.8% 0 100%
    hexafluorophosphate, 0.2% DIW,
      8% BC
  • As used herein, the following shorthand references are made:
      • (3-aminopropyl)triethoxy-silane (CAS No. 919-30-2) “APTES”;
      • (3-aminopropyl)silane triol (CAS No. 58160-99-9) “APST”;
      • N-(2-aminoethyl)-3-aminopropyl silane triol (CAS No. 1760-24-3) “N2APST”;
      • N1-(3-Trimethoxysilypropyl)diethylenetriamine) “N3APTMS”;
      • 3,3′-(dimethoxysilylene)bis-(1-Propanamine) (CAS No. 51749-36-1) “DMSBP”;
      • 1,3-Bis(3-aminopropyl)-1,1,3,3-tetraethoxydisiloxane (CAS No. 17907-78-7) “BAPTEDS”;
      • N-(6-aminohexyl)aminopropyltrimethoxysilane (CAS No. 51895-58-0) “AHAPTMS”; and
      • diethylene glycol monobutyl ether (butyl carbitol) “BC”.
  • In yet another aspect, the invention provides a method for removing silicon nitride from a microelectronic device, said method comprising contacting the microelectronic device with a composition of the present invention, for sufficient time under sufficient conditions to at least partially remove said silicon nitride material from the microelectronic device. For example, silicon nitride material may be removed without substantially damaging metal and metal silicide interconnect materials. The invention thus provides methods for selectively and substantially removing silicon nitride materials relative to polysilicon and/or silicon oxide materials from the surface of the microelectronic device having same thereon using the compositions described herein. The metal silicide materials that are present are not substantially corroded by said removal compositions using said method.
  • In etching application, the composition is applied in any suitable manner to the surface of the microelectronic device having the silicon nitride material thereon, e.g., by spraying the removal composition on the surface of the device, by dipping (in a static or dynamic volume of the removal composition) of the device including the silicon nitride material, by contacting the device with another material, e.g., a pad, or fibrous sorbent applicator element, that has the removal composition absorbed thereon, by contacting the device including the silicon nitride material with a circulating removal composition, or by any other suitable means, manner or technique, by which the removal composition is brought into removal contact with the silicon nitride material. The application may be in a batch or single wafer apparatus, for dynamic or static cleaning. In one embodiment, the application of the removal composition to the surface of the microelectronic device is controlled agitation whereby the composition is circulated through the container housing said composition.
  • The compositions of the present invention, by virtue of their selectivity for silicon nitride material relative to other materials that may be present on the microelectronic device structure and exposed to the composition, such as metallization, polysilicon, silicon oxide(s), etc., achieve at least partial removal of the silicon nitride material in a highly efficient and highly selective manner.
  • In use of the compositions of the invention for removing silicon nitride material from microelectronic device structures having same thereon, the composition typically is contacted with the microelectronic device structure for a sufficient time of from about 1 minute to about 200 minutes, in one embodiment, about 15 minutes to about 100 minutes, or about 1 minute to about 3 minutes for a single wafer tool, at sufficient conditions including, but not limited to, in one embodiment, a temperature in a range of from about 120° C. to about 180° C. Such contacting times and temperatures are illustrative, and any other suitable time and temperature conditions may be employed that are efficacious to at least partially remove the silicon nitride material from the device structure, within the practice of the invention.
  • Following the achievement of the desired removal action, the removal composition is readily removed from the microelectronic device to which it has previously been applied, e.g., by rinse, wash, or other removal step(s), as may be desired and efficacious in a given end use application of the compositions of the present invention. For example, the device may be rinsed with a rinse solution including deionized water and/or dried (e.g., spin-dry, N2, vapor-dry, etc.).
  • The removal compositions of the invention selectively etch silicon nitride material relative to poly-Si and silicon oxides from the surface of the microelectronic device without causing substantial corrosion of the metal and/or metal silicide interconnect material(s). For example, the selectivity of silicon nitride to silicon oxide(s) in the presence of the removal compositions of the invention are, in one embodiment, in a range from about 10:1 to about 7,000:1, in another embodiment about 30:1 to about 3,000:1, and in another embodiment about 100:1 to about 2000:1 at temperatures of 40-100° C. in one embodiment, of 60-95° C. in another embodiment, and of 75-90° C. in yet another embodiment. When the silicic acid source includes an alkoxysilane, e.g., TEOS, the selectivity of silicon nitride relative to silicon oxide(s) can be tuned from about 20:1 to infinity in one embodiment and in the range from about 20:1 to about 7,000:1 in another embodiment. In fact, the selectivity is formally negative for some usable formulations, reflecting the fact that the thickness of the oxide film is very slightly but measurably increased by precipitation of silica.
  • An etching step of the present description can be useful to etch silicon nitride material from a surface of any type of substrate. According to particular embodiments, a substrate can include alternating thin film layers of silicon nitride as structural features of a substrate that includes alternating thin film layers of the silicon nitride layers with silicon oxide. The silicon oxide layers are high aspect ratio structures that contain the silicon nitride layers disposed between the layers of silicon oxide.
  • A still further aspect of the invention relates to methods of manufacturing an article comprising a microelectronic device, said method comprising contacting the microelectronic device with the compositions of the present invention for sufficient time to etchingly remove silicon nitride material from the surface of the microelectronic device having same thereon, and incorporating said microelectronic device into said article.
  • The compositions described herein are easily formulated by simple addition of the respective ingredients and mixing to homogeneous condition. Furthermore, the compositions may be readily formulated as single-package formulations or multi-part formulations that are mixed at the point of use, preferably multi-part formulations. The individual parts of the multi-part formulation may be mixed at the tool or in a storage tank upstream of the tool. The concentrations of the respective ingredients may be widely varied in specific multiples of the composition, i.e., more dilute or more concentrated, and it will be appreciated that the compositions described herein can variously and alternatively comprise, consist or consist essentially of any combination of ingredients consistent with the disclosure herein.
  • Another aspect of the invention relates to a kit including, in one or more containers, one or more components adapted to form the compositions described herein. In one embodiment, the kit includes, in one or more containers, the combination of at least one of components (a)-(c) above for combining with water at the fab or the point of use. The containers of the kit must be suitable for storing and shipping said cleaning composition components, for example, NOWPak®. containers (Advanced Technology Materials, Inc., Danbury, Conn., USA). The one or more containers which contain the components of the first cleaning composition preferably include means for bringing the components in said one or more containers in fluid communication for blending and dispense. For example, referring to the NOWPak®. containers, gas pressure may be applied to the outside of a liner in said one or more containers to cause at least a portion of the contents of the liner to be discharged and hence enable fluid communication for blending and dispense. Alternatively, gas pressure may be applied to the head space of a conventional pressurizable container or a pump may be used to enable fluid communication. In addition, the system preferably includes a dispensing port for dispensing the blended cleaning composition to a process tool.
  • Substantially chemically inert, impurity-free, flexible and resilient polymeric film materials, such as high density polyethylene, may be used to fabricate the liners for said one or more containers. Desirable liner materials are processed without requiring co-extrusion or barrier layers, and without any pigments, UV inhibitors, or processing agents that may adversely affect the purity requirements for components to be disposed in the liner. A listing of desirable liner materials include films comprising virgin (additive-free) polyethylene, virgin polytetrafluoroethylene (PTFE), polypropylene, polyurethane, polyvinylidene chloride, polyvinylchloride, polyacetal, polystyrene, polyacrylonitrile, polybutylene, and so on. Exemplary thicknesses of such liner materials are in a range from about 5 mils (0.005 inch) to about 30 mils (0.030 inch), as for example a thickness of 20 mils (0.020 inch).
  • Regarding the containers for the kits, the disclosures of the following patents and patent applications are hereby incorporated herein by reference in their respective entireties: U.S. Pat. No. 7,188,644 entitled “APPARATUS AND METHOD FOR MINIMIZING THE GENERATION OF PARTICLES IN ULTRAPURE LIQUIDS;” U.S. Pat. No. 6,698,619 entitled “RETURNABLE AND REUSABLE, BAG-IN-DRUM FLUID STORAGE AND DISPENSING CONTAINER SYSTEM;” and U.S. Patent Application No. 60/916,966 entitled “SYSTEMS AND METHODS FOR MATERIAL BLENDING AND DISTRIBUTION” filed on May 9, 2007 in the name of John E. Q. Hughes, and PCT/US08/63276 entitled “SYSTEMS AND METHODS FOR MATERIAL BLENDING AND DISTRIBUTION” filed on May 9, 2008 in the name of Advanced Technology Materials, Inc.
  • Accordingly, in a further aspect, the invention provides a kit comprising one or more containers having components therein suitable for removing silicon nitride from a microelectronic device, wherein one or more containers of said kit contains (a) phosphoric acid; (b) at least one silane compound chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes as described herein; and (c) a solvent comprising water; and optionally (d) a fluoride compound, provided that the fluoride compound is other than hexafluoro silicic acid.
  • This invention can be further illustrated by the following examples of certain embodiments thereof, although it will be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention unless otherwise specifically indicated.
  • EXAMPLES
  • High aspect ratio structures were processed to first remove any oxidized film from the exposed silicon nitride. Structures were then processed in the formulation at the desired temperature in a boiling flask with stirring. For the conditions where silicate loading is specified either tetramethylammonium silicate (TMAS) or silica nanoparticles were added. For examples 16 and 17, TMAS was used and the loading is provided as ppm Si. For all other examples SiO2 nanoparticles were used and silicate loading is provided as ppm SiO2. Structures were processed for times long enough to fully remove the SiN, typically between 45 minutes and 2 hours. After processing in the formulation structures were rinsed in hot deionized water and dried with flowing nitrogen. The etch rates shown were similarly obtained by processing blanket films, with thickness measured by spectroscopic ellipsometry.
  • TABLE 1
    FORMULATION EXAMPLES (Weight Percent, balance ~85% H3PO4)
    Example
    Figure US20230295502A1-20230921-P00001
    /
    additive  
    Figure US20230295502A1-20230921-P00002
    HF APST N2APST N3APTMS TEAP
    12 0.0025 0.07 0.02
    13 0.02
    14 0.0025 0.04 0.02
    15 0.04 0.02
    16 0.002 0.09
    17 0.002 0.07
    18 0.002 1.4 0.2

    Acronyms have the same meaning as for examples 1-11 above.
  • TABLE 2
    Post-etch excess thickness (deposit build-up) of
    oxide in structure, as a function of added
    SiO2 in the formulation (at 152° C.)
    0 ppm 50 ppm 100 ppm 150 ppm 200 ppm
    Example SiO2 SiO2 SiO2 SiO2 SiO2
    12 OK* OK OK OK OK
    13 OK OK OK OK OK
    14 OK OK
     85% OK >2 nm >15 nm
    H3PO4
    *”OK” signifies a change of <2 nm relative to the initial oxide thickness.
  • TABLE 3
    Etch rates (ER) as a function of added SiO2 (at 152° C.)
    Example 0 ppm 50 ppm 100 ppm 150 ppm 200 ppm
    13 SiO2 SiO2 SiO2 SiO2 SiO2
    SiN ER 36 34 35 34 36
    (A/min)
    ThOx ER 0.3 −0.1 −0.1 −0.2 −0.2
    (A/min)
    85% H3PO4
    SiN ER 41 35 34
    (A/min)
    ThOx ER 1.0 0.1 0.1
    (A/min)

    Note that, compared with examples 12-14, 85% H3PO4 either has poor selectivity toward oxide (about 40:1 at 0 ppm silica, Table 3) or causes excessive oxide redeposition (at 100 and 200 ppm silica, Table 2).
  • TABLE 4
    Performance Summary of Formulations 16 and 17:
    3D NAND SiN Selective Etches
    85%
    H3PO4/
    15% Example
    Critical H2O + Example Example 18 +
    require- [Si] = 16 + 80 17 + 45 45 ppm
    ments Target 40 ppm ppm Si ppm Si Si
    SiNx:SiO2 1000:1 830:1 >3000:1 2300:1 >:2000:1
    Selectivity
    SiNx >12 12.5 14.6 14.5 12.5
    Removal nm/min
    Rate
    Loading >0 ppm no 15-80 ppm 35-45 ppm 45->224
    window Si window Si Si ppm
    (loading
    with
    selectivity
    >1000 &
    no re-
    deposition)
    Bath Life <10% stable ER stable ER stable ER
    Stability Change >24hrs >24hrs >24hrs
    Shelf Life in ER >2 years >2 years >2 years
    Stability (Bath
    Loading life No ER No ER Not
    Stability >24hrs, change, change, measured
    Shelf life no-redepo- no-redepo-
    ≥6 sition sition
    months) with with
    bleed/feed bleed/feed
    Temper- <160° C. 150° C. 150° C. 150° C. 150° C.
    ature
    (° C.)

    Addition of dissolved silicates during processing reduces silicon oxide etch rates without substantially changing nitride etch rate.
  • At high enough dissolved silicate concentration a silica-rich precipitate is redeposited on SiO2 surfaces within the 3D NAND structure.
  • The loading window is defined in this case on the low end by where selectivity is >1000 and on the high end by the onset of redeposition. A different selectivity target will result in a different width of the loading window.

Claims (21)

1-20. (canceled)
21. A method for removing silicon nitride from a microelectronic device, the method comprising contacting the microelectronic device with a composition, for sufficient time under sufficient conditions to at least partially remove the silicon nitride material from the microelectronic device, wherein the composition comprises:
(a) phosphoric acid;
(b) at least one silane chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes, wherein said silane possesses at least one moiety chosen from alkoxy, hydroxyl, and fluoro;
(c) a solvent comprising water;
(d) a fluoride compound, provided that the fluoride compound is other than hexafluoro silicic acid; and
(e) an alkyl amine or phosphate salt thereof.
22. The method of claim 21, wherein the phosphoric acid is present in a range of 50 to 95 weight percent, based on the total weight of the composition.
23. The method of claim 21, wherein the fluoride compound is chosen from HF and monofluorophosphoric acid.
24. The method of claim 21, wherein the fluoride compound is chosen from cesium fluoride and potassium fluoride.
25. The method of claim 21, wherein the fluoride compound is chosen from fluoroboric acid; tetramethylammonium hexafluorophosphate; ammonium fluoride; ammonium bifluoride; quaternary ammonium tetrafluoroborates and quaternary phosphonium tetrafluoroborates having the formula NR′4BF4 and PR′4BF4, respectively, wherein R′ may be the same as or different from one another and is selected from hydrogen, straight-chained, branched, or cyclic C1-C6 alkyl, and straight-chained or branched C6-C10 aryl; tetrabutylammonium tetrafluoroborate (TBA-BF4); and combinations thereof.
26. The method of claim 21, wherein the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formula
Figure US20230295502A1-20230921-C00007
wherein each X is independently chosen from fluorine, a C1-C8 alkyl group, or a group of the formula −OR, wherein R is hydrogen or a C1-C8 alkyl group, n is an integer of from 1 to 6, and each R1 is independently chosen from hydrogen, a C1-C8 alkyl group, or a group of the formula C1-C8 alkoxy(CH2)n—.
27. The method of claim 26, wherein R is methyl or ethyl.
28. The method of claim 26, wherein the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are chosen from (3-aminopropyl)triethoxy-silane; (3-aminopropyl)silane-triol; 3-aminopropyldimethylethoxysilane; 3-aminopropylmethyldiethoxysilane; and N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane; (N, N-dimethyl-3-amnopropyl)trimethoxysilane; and 3-aminopropyldimethylfluorosilane.
29. The method of claim 21, wherein the alkyl amine or phosphate salt thereof is chosen from a primary, secondary, or tertiary C1-C6 alkylamine or dihydrogen phosphate salt thereof.
30. The method of claim 21, wherein the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formula
Figure US20230295502A1-20230921-C00008
wherein each X is independently chosen from fluorine, a C1-C8 alkyl group, or a group of the formula —OR, wherein R is hydrogen or a C1-C8 alkyl group, n is an integer of from 1 to 6, y is an integer of from 1 to 6, and wherein z is an integer of from 1 to 6.
31. The method of claim 30, wherein R is methyl or ethyl.
32. The method of claim 30, wherein the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are chosen from N-(3-trimethoxysilylpropyl)diethylenetriamine; N-(2-aminoethyl)-3-aminopropyltriethoxy silane; N-(2-aminoethyl)-3-aminopropyl-silane triol; (3-trimethoxysilylpropyl)dethylenetriamine; and N-(6-aminohexyl)aminopropyltrimethoxysilane.
33. The method of claim 31, wherein the alkyl amine or phosphate salt thereof is chosen from a primary, secondary, or tertiary C1-C6 alkylamine or dihydrogen phosphate salt thereof.
34. The method of claim 21 wherein the composition further comprises a surfactant, a carboxylic acid compound, or a dissolved silicate.
35. The method of claim 21, wherein the alkylamino alkoxysilane and alkylamino hydroxyl silane compounds are represented by the formulas
Figure US20230295502A1-20230921-C00009
36. A method of selectively removing silicon nitride material comprising:
contacting a substrate supporting silicon nitride with an etchant comprising:
(a) phosphoric acid;
(b) at least one silane chosen from (i) alkylamino alkoxysilanes and (ii) alkylamino hydroxyl silanes, wherein said silane possesses at least one moiety chosen from alkoxy, hydroxyl, and fluoro;
(c) a solvent comprising water;
(d) a fluoride compound, provided that the fluoride compound is other than hexafluoro silicic acid; and
(e) an alkyl amine or phosphate salt thereof,
wherein the etchant has a selectivity of silicon nitride to silicon oxide of at least 30:1.
37. The method of claim 36 wherein the etchant has a temperature between 40 and 100° C.
38. The method of claim 36, wherein contacting the substrate with the etchant occurs from about 1 to about 3 minutes.
39. The method of claim 36, wherein the etchant has a selectivity of silicon nitride to silicon oxide of at least 1000:1.
40. The method of claim 36, wherein etchant comprises 70 wt. % to 95 wt. % of phosphoric acid by weight of the etchant.
US18/201,363 2018-11-15 2023-05-24 Silicon nitride etching composition and method Pending US20230295502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/201,363 US20230295502A1 (en) 2018-11-15 2023-05-24 Silicon nitride etching composition and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862767904P 2018-11-15 2018-11-15
US16/681,449 US11053440B2 (en) 2018-11-15 2019-11-12 Silicon nitride etching composition and method
US17/341,138 US11697767B2 (en) 2018-11-15 2021-06-07 Silicon nitride etching composition and method
US18/201,363 US20230295502A1 (en) 2018-11-15 2023-05-24 Silicon nitride etching composition and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/341,138 Continuation US11697767B2 (en) 2018-11-15 2021-06-07 Silicon nitride etching composition and method

Publications (1)

Publication Number Publication Date
US20230295502A1 true US20230295502A1 (en) 2023-09-21

Family

ID=70727494

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/681,449 Active US11053440B2 (en) 2018-11-15 2019-11-12 Silicon nitride etching composition and method
US17/341,138 Active US11697767B2 (en) 2018-11-15 2021-06-07 Silicon nitride etching composition and method
US18/201,363 Pending US20230295502A1 (en) 2018-11-15 2023-05-24 Silicon nitride etching composition and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/681,449 Active US11053440B2 (en) 2018-11-15 2019-11-12 Silicon nitride etching composition and method
US17/341,138 Active US11697767B2 (en) 2018-11-15 2021-06-07 Silicon nitride etching composition and method

Country Status (7)

Country Link
US (3) US11053440B2 (en)
JP (2) JP7438211B2 (en)
KR (2) KR20240013860A (en)
CN (1) CN112996881A (en)
SG (1) SG11202103910PA (en)
TW (2) TW202325824A (en)
WO (1) WO2020102228A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240013860A (en) * 2018-11-15 2024-01-30 엔테그리스, 아이엔씨. Silicon nitride etching composition and method
KR20220049560A (en) * 2019-08-21 2022-04-21 엔테그리스, 아이엔씨. Improved formulation for highly selective silicon nitride etching
JP2023536836A (en) * 2020-07-30 2023-08-30 インテグリス・インコーポレーテッド Compositions and methods for selectively etching silicon nitride films
KR102345842B1 (en) * 2020-09-21 2021-12-31 주식회사 이엔에프테크놀로지 Silicon nitride layer etching composition and etching method using the same
KR20240006642A (en) * 2021-05-12 2024-01-15 엔테그리스, 아이엔씨. Selective etchant compositions and methods
WO2022251068A1 (en) * 2021-05-26 2022-12-01 Entegris, Inc. Compositions and methods for selectively etching silicon nitride films
KR20230079903A (en) * 2021-11-29 2023-06-07 (주)후성 Etching composition and method for preparing the same
JP2023109710A (en) * 2022-01-27 2023-08-08 ステラケミファ株式会社 Microprocessing treatment agent and microprocessing treatment method
CN116631852A (en) * 2022-02-14 2023-08-22 联芯集成电路制造(厦门)有限公司 Method for removing hard mask layer
CN115873599A (en) * 2022-10-10 2023-03-31 湖北兴福电子材料股份有限公司 Selective etching solution for silicon nitride/silicon oxide 3D NAND structure piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160017224A1 (en) * 2014-07-17 2016-01-21 Soulbrain Co., Ltd. Composition for etching
US20180237923A1 (en) * 2015-08-26 2018-08-23 Adeka Corporation Etching liquid composition and etching method
KR20180109745A (en) * 2017-03-28 2018-10-08 주식회사 이엔에프테크놀로지 Etching composion for silicon nitride layer
US20190390110A1 (en) * 2018-06-25 2019-12-26 Enf Technology Co., Ltd. Silicon nitride layer etching composition

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6162370A (en) 1998-08-28 2000-12-19 Ashland Inc. Composition and method for selectively etching a silicon nitride film
KR100327342B1 (en) 1999-10-27 2002-03-06 윤종용 Composite etchant for a nitride etching in a semiconductor process and an etching method using the same etchant
US20030022800A1 (en) 2001-06-14 2003-01-30 Peters Darryl W. Aqueous buffered fluoride-containing etch residue removers and cleaners
US20060021974A1 (en) 2004-01-29 2006-02-02 Applied Materials, Inc. Method and composition for polishing a substrate
KR20060108436A (en) 2005-04-13 2006-10-18 매그나칩 반도체 유한회사 Composition for cleaning semiconductor device and method for cleaning semiconductor device using it
US8025811B2 (en) * 2006-03-29 2011-09-27 Intel Corporation Composition for etching a metal hard mask material in semiconductor processing
DE102007012578A1 (en) * 2006-09-01 2008-03-06 Bühler PARTEC GmbH Cationically stabilized aqueous silica dispersion, process for their preparation and their use
WO2008080096A2 (en) * 2006-12-21 2008-07-03 Advanced Technology Materials, Inc. Compositions and methods for the selective removal of silicon nitride
JP5332197B2 (en) * 2007-01-12 2013-11-06 東ソー株式会社 Etching composition and etching method
KR101097277B1 (en) 2009-10-07 2011-12-22 솔브레인 주식회사 A Composition for wet etching
JP2012033561A (en) * 2010-07-28 2012-02-16 Sanyo Chem Ind Ltd Etchant for silicon nitride
JP2012099550A (en) * 2010-10-29 2012-05-24 Sanyo Chem Ind Ltd Etchant for silicon nitride
KR101391605B1 (en) 2010-12-31 2014-05-08 솔브레인 주식회사 A Composition for wet etching of silicon nitride or silicon oxide
KR101922855B1 (en) 2011-08-09 2019-02-27 바스프 에스이 Aqueous alkaline compositions and method for treating the surface of silicon substrates
JP5913869B2 (en) 2011-08-31 2016-04-27 林純薬工業株式会社 Etching solution composition and etching method
KR101335855B1 (en) 2011-12-20 2013-12-02 오씨아이 주식회사 Etching solution for silicon nitride layer
KR101380487B1 (en) 2012-05-09 2014-04-01 오씨아이 주식회사 Etching solution for silicon nitride layer
JP2014099480A (en) 2012-11-13 2014-05-29 Fujifilm Corp Semiconductor substrate etching method and semiconductor element manufacturing method
JP6180298B2 (en) 2013-11-27 2017-08-16 株式会社Adeka Etching solution composition and etching method
KR20160050536A (en) * 2014-10-30 2016-05-11 램테크놀러지 주식회사 Etchant compositions for nitride layers and methods of manufacturing semiconductor devices using the same
WO2016096083A1 (en) 2014-12-19 2016-06-23 Merck Patent Gmbh Agent for increasing etching rates
US10301580B2 (en) * 2014-12-30 2019-05-28 Versum Materials Us, Llc Stripping compositions having high WN/W etching selectivity
KR101757812B1 (en) 2015-05-29 2017-07-14 세메스 주식회사 System for regenerating the phosphoric acid solution, and Apparatus and method for treating substrate
KR101728951B1 (en) 2015-06-25 2017-04-21 오씨아이 주식회사 Etching solution for silicon nitride layer
KR20170009240A (en) * 2015-07-16 2017-01-25 동우 화인켐 주식회사 Non-fluorinated type etching composition for silicon nitride layer
EP3344716A4 (en) * 2015-09-03 2019-04-10 Cabot Microelectronics Corporation Methods and compositions for processing dielectric substrate
KR102443370B1 (en) * 2015-11-20 2022-09-15 동우 화인켐 주식회사 Etching solution composition for a silicon nitride layer
KR102545804B1 (en) * 2015-12-04 2023-06-20 솔브레인 주식회사 Composition for etching and manufacturing method of semiconductor device using the same
WO2017095022A1 (en) 2015-12-04 2017-06-08 솔브레인 주식회사 Composition for etching and method for manufacturing semiconductor device using same
US10515820B2 (en) 2016-03-30 2019-12-24 Tokyo Electron Limited Process and apparatus for processing a nitride structure without silica deposition
CN107345137A (en) * 2016-05-04 2017-11-14 Oci有限公司 The etching solution of particle appearance can be suppressed
KR102424391B1 (en) * 2016-11-24 2022-08-05 삼성전자주식회사 Etchant compositions and methods of manufacturing integrated circuit device using the same
KR101828437B1 (en) 2017-04-06 2018-03-29 주식회사 디엔에스 A Composition for Wet Etching to Silicon Nitride
KR20240013860A (en) * 2018-11-15 2024-01-30 엔테그리스, 아이엔씨. Silicon nitride etching composition and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160017224A1 (en) * 2014-07-17 2016-01-21 Soulbrain Co., Ltd. Composition for etching
US20180237923A1 (en) * 2015-08-26 2018-08-23 Adeka Corporation Etching liquid composition and etching method
KR20180109745A (en) * 2017-03-28 2018-10-08 주식회사 이엔에프테크놀로지 Etching composion for silicon nitride layer
US20190390110A1 (en) * 2018-06-25 2019-12-26 Enf Technology Co., Ltd. Silicon nitride layer etching composition

Also Published As

Publication number Publication date
TW202026403A (en) 2020-07-16
WO2020102228A1 (en) 2020-05-22
CN112996881A (en) 2021-06-18
US11697767B2 (en) 2023-07-11
JP7438211B2 (en) 2024-02-26
KR102628802B1 (en) 2024-01-24
JP2022507589A (en) 2022-01-18
SG11202103910PA (en) 2021-05-28
US11053440B2 (en) 2021-07-06
US20210296136A1 (en) 2021-09-23
US20200157423A1 (en) 2020-05-21
TW202325824A (en) 2023-07-01
JP2023109854A (en) 2023-08-08
KR20210066007A (en) 2021-06-04
TWI797396B (en) 2023-04-01
KR20240013860A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US11697767B2 (en) Silicon nitride etching composition and method
US9691629B2 (en) Compositions and methods for the selective removal of silicon nitride
US11421157B2 (en) Formulations for high selective silicon nitride etch
US11781066B2 (en) Wet etching composition and method
US20220363990A1 (en) Selective etchant compositions and methods

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED