US20230015259A1 - Inserter for guiding a device through a hemostasis valve and method thereof - Google Patents

Inserter for guiding a device through a hemostasis valve and method thereof Download PDF

Info

Publication number
US20230015259A1
US20230015259A1 US17/810,743 US202217810743A US2023015259A1 US 20230015259 A1 US20230015259 A1 US 20230015259A1 US 202217810743 A US202217810743 A US 202217810743A US 2023015259 A1 US2023015259 A1 US 2023015259A1
Authority
US
United States
Prior art keywords
catheter
tubular body
distal
valve
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/810,743
Inventor
Michael Buck
Julia Fox
James Jacobs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperative Care Inc
Original Assignee
Imperative Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/357,490 external-priority patent/US11457936B2/en
Application filed by Imperative Care Inc filed Critical Imperative Care Inc
Priority to US17/810,743 priority Critical patent/US20230015259A1/en
Assigned to Imperative Care, Inc. reassignment Imperative Care, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCK, MICHAEL, FOX, Julia, JACOBS, JAMES
Publication of US20230015259A1 publication Critical patent/US20230015259A1/en
Priority to PCT/US2023/066924 priority patent/WO2023220707A2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/06Haemostasis valves, i.e. gaskets sealing around a needle, catheter or the like, closing on removal thereof
    • A61M39/0693Haemostasis valves, i.e. gaskets sealing around a needle, catheter or the like, closing on removal thereof including means for seal penetration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • A61B17/320758Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3462Trocars; Puncturing needles with means for changing the diameter or the orientation of the entrance port of the cannula, e.g. for use with different-sized instruments, reduction ports, adapter seals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3498Valves therefor, e.g. flapper valves, slide valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • A61M25/0053Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids having a variable stiffness along the longitudinal axis, e.g. by varying the pitch of the coil or braid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0054Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0138Tip steering devices having flexible regions as a result of weakened outer material, e.g. slots, slits, cuts, joints or coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00685Archimedes screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/0084Material properties low friction
    • A61B2017/00849Material properties low friction with respect to tissue, e.g. hollow organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00907Material properties transparent or translucent for light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22031Gripping instruments, e.g. forceps, for removing or smashing calculi
    • A61B2017/22034Gripping instruments, e.g. forceps, for removing or smashing calculi for gripping the obstruction or the tissue part from inside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22079Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with suction of debris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22082Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • A61B2017/2217Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions single wire changing shape to a gripping configuration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B2017/3454Details of tips
    • A61B2017/3458Details of tips threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/309Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using white LEDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/373Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • A61B2090/3784Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument both receiver and transmitter being in the instrument or receiver being also transmitter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/84Drainage tubes; Aspiration tips
    • A61M1/85Drainage tubes; Aspiration tips with gas or fluid supply means, e.g. for supplying rinsing fluids or anticoagulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0004Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0004Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
    • A61M2025/0006Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system which can be secured against axial movement, e.g. by using a locking cuff
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M2025/0042Microcatheters, cannula or the like having outside diameters around 1 mm or less
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • A61M2025/0046Coatings for improving slidability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • A61M2025/0687Guide tubes having means for atraumatic insertion in the body or protection of the tip of the sheath during insertion, e.g. special designs of dilators, needles or sheaths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system
    • A61M2210/125Heart

Definitions

  • Removal of blood clots from the vascular system (thrombectomy) using a trans vascular approach may be accomplished at any of a variety of treatment sites, such as arteries in the extremities, veins for deep vein thrombosis (DVT), large veins and arteries (central vessels) such as iliac veins and arteries, the aorta, the inferior vena cava and pulmonary arteries to treat pulmonary emboli (PE).
  • VVT deep vein thrombosis
  • PE pulmonary emboli
  • VTE venous thromboembolic disease
  • DVT and PE are part of the same continuum of disease, with over 95% of emboli originating in the lower extremities.
  • PE pulmonary artery
  • RV right ventricular
  • PE thrombolytic therapy delivered systemically or more locally through Catheter Directed Thrombolytics. These approaches result in multiple catheterization lab visits, lengthy hospital stays and often lead to bleeding complications.
  • Newer approaches to PE treatment include single session thrombectomy treatments without the use of thrombolytics. These thrombectomy treatments include delivering a catheter into the PA to remove the thrombus through aspiration, and secondary tools may also macerate or disrupt the thrombus prior to aspiration.
  • thrombectomy results in fewer bleeding complications and reduced hospital stays compared to thrombolytics, there is much to be improved upon given the challenges of the procedure itself, including the ability to capture a broad spectrum of thrombus types and reduce the total volume of blood loss during the procedure.
  • the thrombectomy catheter is introduced through an introducer puncture in a large diameter vein.
  • a flexible guide wire is passed through the introducer into the vein and the introducer is removed.
  • the flexible guidewire provides a rail for a flexible guide catheter to be advanced through the right atrium into the right ventricle and into the pulmonary artery.
  • the flexible guidewire is removed and replaced with a stiff guidewire.
  • the large diameter thrombectomy catheter with support dilator is then advanced over the stiff guidewire to the pulmonary artery and the dilator is removed. If the large diameter thrombectomy catheter is not successful in accessing or aspirating thrombus in a more distal portion of the vessel, a smaller diameter catheter may be inserted through the large diameter catheter.
  • peripheral arterial occlusive (PAO) disease occurs in more than 4% of individuals over age 40 and markedly increases in incidence after the age of 70.
  • Acute PAO is usually due to thrombosis of the peripheral vasculature and is associated with a significant risk of limb loss.
  • therapy for acute PAO centers on the rapid restoration of arterial patency and blood flow such as through mechanical thrombectomy in procedures similar to those described above.
  • Clot aspiration using certain commercial vacuum-assisted thrombectomy systems may sometimes need to be terminated due to the risk of excessive blood loss by the patient, especially when using large aspiration catheters.
  • aspiration thrombectomy when the catheter tip falls out of contact with the thrombus or other occlusive material, the tip is exposed to healthy blood and full flow of blood through the catheter ensues. Under such conditions, the total volume of blood loss may be excessive, and in some cases, may result in premature termination of the procedure.
  • the blood loss rate can be on the order of 30-40 cc per second with an 24 French size catheter. With a maximum tolerable blood loss on the order of about 500 mL, the catheter cannot run in unrestricted mode for more than approximately 10 to 15 seconds. The aggregate blood loss may reach an unacceptable level before sufficient clot is removed.
  • a clot capture module for use in a thrombectomy system, such as within the sterile field.
  • the clot capture module comprises a housing; a clot capture chamber in the housing; a window in the housing to permit visual inspection of the clot chamber; and a filter in the clot chamber, visible through the window, the filter having an upstream surface and a downstream surface.
  • An incoming flow path is configured to direct incoming blood from an aspiration catheter against the upstream surface of the filter.
  • An aspiration control valve is provided in the incoming flow path, configured to block or permit the flow of incoming blood.
  • An outgoing flow path is configured to direct blood from the second side of the filter to a remote vacuum canister.
  • the clot capture module may further comprise a vent valve, openable to permit an optically transparent media such as air or saline to be drawn into the clot chamber, enabling blood to be evacuated from the clot chamber to a remote canister.
  • the upstream surface of the filter may be visible through the window, so that clot accumulated on the upstream surface can be visually observed through the window, once the vent has been opened to evacuate blood from the clot capture chamber.
  • the window may comprise a transparent cylindrical portion of the housing.
  • the upstream surface of the filter may be substantially planar. Alternatively, the upstream surface of the filter may be convex.
  • the filter may comprise a tubular porous membrane such as a cylinder, and the upstream surface of the filter may be on a radially outwardly facing surface of the membrane.
  • the tubular filter membrane may enclose a filtered blood chamber which is in communication with the outgoing flow path.
  • the module may further comprise an aspiration control, for controlling the aspiration control valve.
  • the aspiration control may comprise a rocker switch, configured to selectively collapse or allow reopening of a collapsible tubing.
  • the aspiration control valve may be normally closed, and may be spring biased into the closed configuration.
  • the clot capture module may be provided in combination with a vacuum line leading to an aspiration pump and canister, wherein the clot capture module is configured to reside within a sterile field and the aspiration pump and canister are outside of the sterile field.
  • the vacuum line may be at least about 30 inches or 50 inches or more in length.
  • a manually actuated aspiration device e.g., a syringe
  • an aspiration pump to permit a user to manually apply aspiration through the vacuum line.
  • a thrombus engagement tool configured to advance through an aspiration catheter and engage thrombus.
  • the thrombus engagement tool comprises a rotatable core wire having a proximal end and a distal end; and a thrombus engagement tip on the distal end of the core wire.
  • the tip may comprise a helical thread; an advance segment on a distal side of the thread and a trailing segment on a proximal side of the thread.
  • the advance segment, helical thread and trailing segment may all be molded onto the core wire.
  • the thrombus engagement tool may further comprise a projection on the core wire, underneath at least one of the advance segment and the trailing segment, to form an interference fit with the thrombus engagement tip.
  • the projection may comprise an annular ring, which may be a radiopaque marker.
  • the thrombus engagement tool may comprise a first radiopaque marker under the advance segment and a second radiopaque marker under the trailing segment.
  • An outer periphery of the helical thread may substantially conform to an inside surface of a cylinder.
  • the thread may comprise a proximal surface which inclines radially outwardly in a proximal direction to define a proximally opening undercut.
  • the thrombus engagement tool may further comprise a handle on the proximal end of the core wire configured for hand turning the core wire.
  • a limit bearing surface may be provided on the handle, for limiting distal projection of the thrombus engagement tip relative to a distal end of the aspiration catheter.
  • the method comprises the steps of providing an aspiration catheter having a central lumen and a distal end; advancing the distal end to obstructive material in a vessel; applying vacuum to the lumen to draw clot at least partially into the lumen; and introducing a thrombus engagement tool into the lumen.
  • the thrombus engagement tool may have a tip with an axial length of no more than about 1 cm or about 5 mm and a helical thread having a major diameter that is at least about 0.015 inches smaller than an inside diameter of the lumen, to provide an aspiration flow path through the lumen around the outside of the tip.
  • the method further comprises manually rotating the tip to engage clot between the tip and an inside wall of the lumen.
  • a method of aspirating a vascular occlusion from a remote site comprises the steps of advancing an elongate tubular body through a vascular access site and up to a vascular occlusion, the tubular body comprising a proximal end, a distal end, a central lumen, and a stop surface.
  • a rotatable core is advanced distally through the lumen until a limit surface carried by the core rotatably slidably engages the stop surface to provide a rotatable bearing which limits further distal advance of the core within the lumen. Vacuum is applied to the lumen and the core is manually rotated to engage thrombus.
  • the advancing the rotatable core may be accomplished after the step of advancing the elongate tubular body through the vascular access site and up to the vascular occlusion.
  • the core may be a solid core wire or a cannulated structure such as a hypotube or microcatheter having a central lumen extending axially between a proximal opening and a distal opening.
  • the core may carry a proximal handle, and the limit surface may be carried by the handle.
  • the tubular body may include a proximal hub, and the stop surface may be carried by the hub.
  • the core may carry an engagement tip having a helical thread, and the engaging thrombus step may comprise pinning thrombus between a first side of the tip and an inside surface of the tubular body.
  • an inserter for guiding a device through a hemostasis valve comprising an elongate tubular body, having a proximal end, a distal end and a central lumen; a laterally facing concave landing zone on the proximal end, having a radius of curvature that increases in the proximal direction; and an axially extending slit in the sidewall, extending from the distal end to the landing zone.
  • the tubular body may further comprise a tapered distal tip, and a proximal pull tab to facilitate removal of the inserter from the device.
  • a surface of the landing zone may comprises a different color than an outside surface of the tubular body, to facilitate visualization of the landing zone and advancing the distal end of the device into the tubular body.
  • a method of passing a device through a hemostasis valve may comprise the steps of providing an inserter, having a tubular body with a split sidewall; advancing the tubular body through a hemostasis valve; advancing a device through the tubular body and beyond the hemostasis valve; and proximally retracting the tubular body so that the device escapes laterally from the tubular body through the split sidewall, leaving the device in place across the hemostasis valve.
  • the advancing the tubular body step may comprise advancing a tapered distal tip on the tubular body through the hemostasis valve.
  • the advancing the tubular body through the hemostasis valve step may be accomplished with the device pre loaded inside the tubular body.
  • a distal nose segment of the tubular body may expand in diameter in response to advancing the device therethrough.
  • the device may be a thrombus engagement tool or a secondary catheter.
  • the secondary catheter may be an aspiration catheter.
  • FIG. 1 is a schematic view of a thrombus removal system in accordance with the present invention.
  • FIG. 2 is a perspective view of a flow control module.
  • FIG. 3 is an elevational of cross-sectional view through the flow control module of FIG. 2 .
  • FIG. 4 is a schematic view of the dual vacuum chamber configuration that produces an accelerated aspiration response.
  • FIG. 5 is a qualitative fluid flow rate diagram at the catheter tip following opening of the vacuum control valve.
  • FIG. 6 A is a side elevational view of a thrombus engagement tool.
  • FIG. 6 B is an enlarged detail view of the distal end of the thrombus engagement tool of FIG. 6 A .
  • FIG. 6 C is a longitudinal elevational cross-section through the thrombus engagement tool of FIG. 6 B .
  • FIGS. 7 A- 7 E are side elevational views of various embodiments of thrombectomy catheters.
  • FIG. 8 is a cross-sectional view through a distal portion of the embolectomy catheter showing a side wall construction.
  • FIG. 9 is a cross-sectional view through a distal portion of the embolectomy catheter showing the radiopaque marker and inclined distal face.
  • FIGS. 10 A- 10 B are perspective views of an inserter tool to facilitate passing a catheter through a hemostasis valve.
  • FIG. 10 C is an end view of the inserter of FIGS. 10 A and 10 B .
  • the system 10 includes a thrombectomy catheter 12 , having an elongate tubular body 14 extending between the proximal end 16 and a distal end 18 .
  • a central lumen 20 (not illustrated in FIG. 1 ) extends between a proximal catheter connector 22 and a distal port 24 on the distal end 18 .
  • catheters of the present invention can readily be modified to incorporate additional structures, such as permanent or removable column strength enhancing mandrels, two or more lumen such as to permit drug, contrast or irrigant infusion or to supply inflation media to an inflatable balloon carried by the catheter, or any combinations of these features, as will be readily apparent to one of skill in the art in view of the disclosure herein.
  • additional structures such as permanent or removable column strength enhancing mandrels, two or more lumen such as to permit drug, contrast or irrigant infusion or to supply inflation media to an inflatable balloon carried by the catheter, or any combinations of these features, as will be readily apparent to one of skill in the art in view of the disclosure herein.
  • the disclosure will be described primarily in the context of removing obstructive material from the vasculature, but it will be understood to have applicability as an access catheter for delivery and removal of any of a variety of diagnostics or therapeutic devices with or without aspiration.
  • catheters disclosed herein may readily be adapted for use throughout the body wherever it may be desirable to distally advance a low profile high flexibility catheter into a variety of type of vasculature, such as small or large vasculature and/or tortuous or relatively straight vasculature.
  • catheter shafts in accordance with any embodiment described herein may be dimensioned for use throughout the neurovascular, coronary and peripheral vasculature, the gastrointestinal tract, the urethra, ureters, Fallopian tubes and other lumens and potential lumens, as well.
  • the catheter shaft construction of any embodiment herein may also be used to provide minimally invasive percutaneous tissue access, such as for diagnostic or therapeutic access to a solid tissue target (e.g., breast or liver or brain biopsy or tissue excision), delivery of laparoscopic tools or access to bones such as the spine for delivery of screws, bone cement or other tools or implants.
  • a solid tissue target e.g., breast or liver or brain biopsy or tissue excision
  • laparoscopic tools or access to bones such as the spine for delivery of screws, bone cement or other tools or implants.
  • Catheter 12 will have a length and diameter suitable for the intended access point and target location.
  • the catheter 12 may have an effective length from the distal end of manifold or hub 22 to distal tip 18 generally no more than about 230 cm, no more than about 210 cm, no more than about 180 cm, or no more than about 160 cm. and typically from about 50 cm to about 150 cm, from about 90 cm to about 130 cm, or from about 105 cm to about 115 cm.
  • the outer diameter of the catheter 10 may be from about 0.035 inches to about 0.15 inches, from about 0.09 inches to about 0.13 inches, and may be lower in a distal segment than in a proximal segment.
  • the inner diameter of the catheter 12 in a single central lumen embodiment may be greater than or equal to about 0.1 inches, greater than or equal to about 0.088 inches, or greater than or equal to about 0.08 inches, or greater than or equal to about 0.06.
  • the inner diameter of the catheter 12 in a single central lumen embodiment may be less than about 0.20 inches or 0.15 inches, or less than or equal to about 0.11 inches, less than or equal to about 0.1 inches, less than or equal to about 0.088 inches, or less than or equal to about 0.07 inches, and often no more than about 0.095 inches.
  • the catheter 12 is releasably connectable to a flow control module 28 by way of a complementary connector module 30 .
  • Connector module 30 provides a releasable connection to complementary catheter connector 22 and may include a side port 32 for releasable connection to tubing 34 which may lead to a valve 36 .
  • Connector module 30 may additionally comprise a hemostasis valve configured to receive another device such as a guidewire or thrombus engagement tool, discussed below.
  • Valve 36 may selectively place tubing 34 into communication with side port 37 or the flow control module 28 discussed in greater detail below.
  • Side port 37 may be placed into communication with a source of media such as saline, contrast solution or medication, or a manifold 38 which can provide selective communication with each.
  • the use of valve 36 allows infusion of a desired media without detaching the tubing 34 from the connector module 30 .
  • the flow control module 28 is in communication with the valve 36 by way of a distal tube 44 .
  • Flow control module 28 is in communication with the selector valve 49 by way of a proximal tube 46 . This establishes a flow path between the distal port 24 through the catheter 12 through the various tubing and flow control module 28 to the pump assembly 42 .
  • the flow control module 28 may be integrally formed within the hub of thrombectomy catheter 12 to which the catheter 12 may be removably or non-removably attached or within the connector module 30 .
  • a manually actuated aspiration device e.g., a syringe
  • an aspiration pump assembly 42 may be used in addition to, or as an alternative to, an aspiration pump assembly 42 to permit a user to manually apply aspiration through the vacuum line.
  • a manually actuated aspiration device may be in in addition to, or as an alternative to, the pump assembly described in any embodiment herein.
  • Flow control module 28 may include a flow regulator such as an on-off control for regulating flow through the flow path between the catheter 12 and pump 42 .
  • the flow regulator is configured to provide a reversible restriction in the flow path, such as by an expandable or contractible iris, a ball valve or other rotary core valve, leaf valve, a pinch tubing, or others known in the art.
  • the flow regulator comprises a collapsible portion 29 of the tubular wall defining the flow path, such as a section of polymeric tubing.
  • An actuator 31 positioned adjacent the tubing is movable in response to a control such as a push button or toggle switch 48 between a first position where it compresses the tubing, thereby completely restricting flow, and a second position where it has moved away from the tubing, allowing the tubing to resume its full inside diameter and allow fluid flow.
  • the actuator 31 may be spring biased or have another default driver in the direction of the first (restricted) position, and only movable into the second (open) position in the presence of an affirmative mechanical force or release of a constraint allowing the flow path to open. Upon removal of the momentary “on” command, the actuator 31 automatically resumes the first position, obstructing flow.
  • the actuator 31 may be driven by a mechanical control such as a lever or rotatable knob, or an electrically driven system such as a solenoid, operated by any of a variety of buttons, levers, triggers, foot pedals or other switches known in the art, depending upon the desired functionality.
  • a mechanical control such as a lever or rotatable knob
  • an electrically driven system such as a solenoid, operated by any of a variety of buttons, levers, triggers, foot pedals or other switches known in the art, depending upon the desired functionality.
  • the flow control module 28 may contain a filter chamber 33 for example, which is in communication with the vacuum canister 58 on the pump assembly 42 by way of elongate aspiration tubing 40 .
  • the toggle switch 48 is in between the filter chamber 33 and the catheter 12 . In a default off position of some embodiments, this allows the entire length of the aspiration tubing 40 and the filter chamber 33 to reach the same low pressure as the aspiration canister 58 on the pump 42 .
  • a filter assembly 35 includes an outer tubular sidewall 37 having a transparent window 39 . In some implementations the entire tubular sidewall 37 can be a transparent window.
  • the side wall 37 encloses a filter 41 .
  • the filter 41 includes a filter sidewall 43 defining an interior (downstream) chamber (not illustrated) for filtered blood.
  • blood and thrombus are drawn in the direction from catheter 12 via vacuum line 44 through a first filter aperture 45 and into the clot collection chamber 33 . Any thrombus will be captured on the outside (upstream side) of filter 43 . Blood is drawn through the filter 43 and proximal tubing 46 en route to the canister 58 .
  • the filter 43 is tubular however it may alternatively be planar or other shape depending upon the desired configuration.
  • the switch 48 may thereafter be closed to compress tubing 29 and isolate the catheter 12 from the vacuum source.
  • a normally closed vent 47 may be momentarily opened, to permit intake of an optically transparent media such as saline or ambient air. This allows residual blood in the chamber 33 to be drawn through the filter 43 and aspirated out via proximal tubing 46 , enabling visualization of any clot on the surface of the filter 43 through the window 39 .
  • the vent 47 may be manually actuated by a user and/or automatically actuated by the system. In some instances, a user may manually actuate the vent 47 through actuation of a button 62 located on the flow control module 28 .
  • the vent 67 may be normally closed, and then transitioned to an open configuration when the button 62 is being actuated (or vice versa). When in the open configuration, the vent 67 may expose the clot collection chamber 33 to an ambient environment. In some instances, exposure of the chamber 33 to the ambient environment allowing intake of air and acceleration of blood flow through the clot collection chamber 33 and towards the proximal tubing. Increased acceleration of blood flow due to vent 47 actuation may facilitate visualization of the clot by displacing the amount of blood or other fluids from the optical path between the window and the filter and/or decrease the amount of time required for the physician to accurately identify the clot in the chamber 33 .
  • the valved vent also allows the physician to deliver pulsatile negative pressure waves at the distal opening 24 .
  • the flow control module 28 comprises a proximal housing 31 and a distal housing 29 separated by the transparent tubular sidewall 35 .
  • the tubular sidewall 35 and the filter 43 are carried by the proximal housing 31 .
  • Housing 29 and tubular sidewall 35 may be joined at a releasable connection 33 that, in some instances, includes a gasket 59 to form a sealed connection.
  • Complementary surface structures e.g., inclined corresponding grooves and pins or flanges
  • the proximal housing 31 and the distal housing 29 may be rotated relative to each other (e.g., by relative rotation across the gasket) to disconnect the housings from each other.
  • the filter 43 may be attached to any one of the distal housing 29 or the proximal housing 31 upon disconnection of the housings.
  • the tubular sidewall 35 may be attached to either one of the distal housing 29 and/or the proximal housing 31 such that, upon disconnection, the tubular sidewall 35 may remain attached to one of the housings 29 , 31 .
  • the tubular sidewall 35 may be configured to remain around the filter 43 or may be configured to be removed from over the filter 43 . In either instance, disconnection of the housings 29 , 31 from each other can expose the filter 43 and allow a clot to be easily accessed and removed.
  • the interior surface of the clot collection container 33 may comprise a coating to provide one or more of a variety of properties to the clot collection containers 33 .
  • the coating may be configured to enhance visualization through at least a portion of the clot collection container 33 (such as the transparent window 39 ).
  • the coating may be configured to inhibit blood accumulation or increase blood repellant properties.
  • the clot collection container 33 may comprise a coating to inhibit foam formation during an aspiration procedure.
  • the coatings may be located at least partially along an interior surface of the tubular sidewall 35 and/or the clot collection container 33 or along an entire interior surface of the tubular sidewall 35 and/or the clot collection container 33 .
  • the coating is located along an interior surface of the transparent window 39 .
  • the coating can be both hydrophobic and oleophobic.
  • the coating may have some hydrophilic features on a portion of the polymer to increase oleophobic properties.
  • Aspiration pump assembly 42 may be releasably placed into communication with flow control module 28 such as by a luer connection between selector valve 45 and tubing 40 .
  • Aspiration pump assembly 42 may include a vacuum pump 50 , and may also include a vacuum gauge 51 , and an optional pressure adjustment control 54 .
  • the vacuum gauge 51 is in fluid communication with the vacuum pump and indicates the vacuum pressure generated by the pump.
  • the pressure adjustment control 54 allows the user to set to a specific vacuum pressure.
  • Power button 56 activates the pump 50 .
  • the vacuum canister 58 may be provided with a vent 53 to atmosphere, opened or closed by a valve.
  • the valve is normally closed to permit vacuum in the canister to reach a desired low pressure.
  • the valve may be momentarily opened as desired to permit introduction of air and reduction of the vacuum, such as to reduce foaming within the vacuum canister 58 .
  • the vent may function to reduce foaming and increase visibility within the canister.
  • the vent 53 comprises a permanently opened vent such as in a lid or side wall of the vacuum canister.
  • the vent may comprise an aperture formed through the lid or side wall having a diameter of no more than about 0.5 mm or 0.25 mm and may be a laser cut hole through a metal sheet which may be in the form of a disc carried by the lid.
  • the inside surface of the canister 58 may be provided with a coating of one or more materials to inhibit foaming of blood under vacuum.
  • the coatings may be located at least partially along or entirely along an interior surface of the vacuum canister 58 .
  • the coating can be both hydrophobic and oleophobic. In some instances, the coating may have some hydrophilic features on a portion of the polymer to increase oleophobic properties.
  • Aspiration pump 50 may alternatively be a manually activated pump such as a syringe.
  • a flow restrictor may be coupled such as by luer connectors in series with the vacuum line 40 .
  • the flow restrictors enables toggling between a low flow and a high flow configuration.
  • the flow restrictors may comprise a variable restrictor that may be adjusted by a user. This may be accomplished by selectively diverting flow between a relatively smaller diameter and larger diameter aperture, a variable diameter aperture, or other flow regulators such as any of those disclosed in the United States patent publication No. 2021/0315597 to Buck, et al, entitled Aspiration System with Accelerated Response, the disclosure of which is hereby incorporated in its entirety herein.
  • a rotatable drum is provided with a first transverse flow path having a first diameter.
  • the drum is rotatable within a housing having an inlet port and an outlet port.
  • the drum may be rotated to place the inlet port into fluid communication with the outlet port through the first flow path.
  • a second flow path having a second, different diameter also extends transversely through the drum, rotationally offset from the first flow path.
  • the drum may be rotated to place the inlet port into communication with the outlet port through the second flow path, thereby providing a flow rate through the drum different from the flow rate provided by the first flow path.
  • the filter chamber 33 on the flow control module 28 or on the connector module 30 is spaced apart from the remote vacuum pump 42 and vacuum canister 58 to provide enhanced aspiration performance.
  • Conventional aspiration pumps and filters are intended to be placed outside of the sterile field and may be far enough away from the patient to require a length of aspiration tubing 40 between the pump assembly 42 and the catheter 12 to be at least about 50 inches or about 100 inches or more.
  • the tubing 40 may be about 102 inches.
  • the pump typically includes an aspiration canister 58 for blood collection.
  • an aspiration canister 58 for blood collection.
  • a valve is opened to place the low pressure canister 58 in communication with the catheter 12 by way of the aspiration tubing 40 , to aspirate material from the patient.
  • the length of the aspiration tubing extending from inside to outside of the sterile field operates as a flow restrictor, causing a delay between the time of activating the vacuum button on the pump assembly 42 and actual application of suction to the clot at the distal end of the catheter.
  • the only flow restriction between a source of vacuum (filter chamber 33 ) and the patient is the relatively short aspiration pathway between the on/off valve in the handpiece actuated by toggle switch 48 and the distal end 18 of the catheter.
  • the aspiration control 48 is activated to open the flow path, the flow restriction and enclosed volume on the patient side of the filter chamber 33 is low relative to the flow restriction and enclosed volume through aspiration tubing 40 on the pump side of the filter chamber 33 .
  • This dual chamber configuration produces a rapid spike in negative pressure experienced at the distal end 18 of the catheter 12 upon activation of the aspiration control 48 , and rapid filling of the chamber 33 .
  • the response time between activating the aspiration control 48 and realizing suction actually experienced at the clot is significantly faster and allows significantly higher initial flow than the response time realized in a conventional system having only a vacuum chamber 58 located at the pump assembly 42 outside of the sterile field.
  • the spike of negative pressure experienced at the distal end of the catheter will fade as pressure equilibrium is reached between the filter chamber 33 and canister 58 .
  • the vacuum pump 50 will gradually bring the pressure in the filter chamber 33 back down to the level in the vacuum canister 58 at the pump.
  • FIG. 4 A simplified fluid flow diagram is illustrated in FIG. 4 , and a qualitative flow rate diagram is illustrated in FIG. 5 .
  • the flow restriction between chamber 33 and the distal end 18 of catheter 12 is small relative to the flow restriction between the vacuum canister 58 and the vacuum chamber 33 . This allows a negative pressure peak experienced at distal end 18 almost instantaneously upon activation of vacuum switch 48 .
  • the flow rate of material into the catheter 12 rapidly reaches a peak and subsides as vacuum chamber 33 fills with aspirated material.
  • the vacuum in chamber 33 declines to a minimum, and slowly recharges by the large vacuum chamber 58 and associated pump through tubing 40 when the toggle switch 48 is moved into the closed position.
  • a clinician may choose to close the vacuum switch 48 at or shortly following the maximum flow rate, just giving a short burst or series of bursts of pulsatile vacuum to facilitate spiration of thrombus into the catheter 12 .
  • a similar effect may be established by utilizing the vent 47 .
  • the vacuum in chamber 33 may decline to a minimum as the button 62 is actuated such that the vent is opened. Thereafter, the vacuum chamber 33 may slowly recharge by the large vacuum chamber 58 and associated pump through tubing 40 when the button 62 and vent 47 are moved into the closed position.
  • a clinician may choose to open the vent 47 at or shortly following the maximum flow rate, just giving a short burst or series of bursts of pulsatile vacuum to facilitate spiration of thrombus into the catheter 12 .
  • an elongate flexible thrombus engagement tool may be advanced through the aspiration catheter, to facilitate retrieval of the clot.
  • the thrombus engagement tool may comprise an elongate flexible shaft having a proximal hand piece such as a knob configured to be rotated by hand.
  • the distal end carries a clot engagement tip which may include one or more radially outwardly extending engagement structures such as a helical thread.
  • a thrombus engagement tool 80 may comprise an elongate flexible shaft 82 having a proximal end 84 and a distal end 86 .
  • a proximal hand piece such as a torquing handle 88 may be configured to be rotated by hand.
  • Distal end 86 carries a clot engagement tip 90 which may include one or more radially outwardly extending structures such as a helical thread 92 .
  • the handle 88 may have an indicium of rotational direction such as a printed or molded arrow 94 which indicates the direction to rotate the handle 88 in order for the helical thread 92 to engage clot.
  • the distal tip 90 includes a helical thread 92 extending between a distal thread end 96 and a proximal thread end 94 and supported by flexible shaft 98 .
  • the axial length of the distal tip 90 is at least about 5 mm or 10 mm or 15 mm or 20 mm and in some embodiments no more than about 30 mm or 20 mm measured along the flexible shaft 98 .
  • the axial length will be within the range of from about 20 mm to about 25 mm.
  • the helical thread 92 wraps around the axis at least about 1 or 2 or 4 or more full revolutions, but in some embodiments no more than about 10 or no more than about 6 revolutions. Preferably, the thread 92 wraps around the axis within the range of from about 2.5 to about 4.5 revolutions. In some embodiments the axial length along the threaded portion of the tip is within the range of from about 5 to about 15 mm, and preferably within the range of from about 8 mm to about 12 mm.
  • the helical thread 92 on this implementation may have a constant pitch throughout its length.
  • the pitch may be within the range of from about 5 to about 10 threads per inch depending upon desired performance.
  • the thread to thread spacing in the axial direction may be within the range of from about 2 mm to about 6 mm, preferably from about 3 mm to about 4 mm.
  • the thread may have multiple pitches (e.g. stepped or graduated) designed to engage, transport or grasp thrombus within the catheter lumen.
  • a distal pitch may be less than a proximal pitch.
  • the pitch may vary continuously along the length of the thread, or may step from a first, constant pitch in a proximal zone to a second, different pitch in a distal zone of the thread.
  • the thread 92 may comprise a continuous single helical flange or may have a plurality of discontinuities to produce a plurality of teeth or serrations, arranged helically around the core wire.
  • the maximum OD of the thread 92 is preferably smaller than the diameter of a sliding fit within the intended catheter lumen, and may generally be at least about 0.015 inches or at least about 0.010 inches smaller than the catheter lumen ID. In some implementations, the max OD of the tip may be significantly less than the inside diameter of the catheter lumen to allow more space for the thrombus along the side of the tip but still create significant grasping force via lateral engagement of the helical threads with the thrombus.
  • the maximum helical thread diameter is about 0.110 inches
  • the catheter lumen ID is about 0.275 inches (24 F) (a 0.165 inch gap between the helical threads and catheter wall).
  • the maximum OD of the tip is within the range of from about 0.03 to about 0.06 inches within a catheter having a distal end ID within the range from about 0.068 inches to about 0.073 inches. This leaves a substantial tip bypass flow path.
  • the max OD of the tip is no more than about 35% or no more than about 40% or no more than about 60% of the ID of the corresponding catheter and may be within the range of from about 35% to about 55% of the catheter ID. In some instances, the max OD of the tip may slightly less than the ID of the corresponding catheter to provide a sliding fit within the intended catheter lumen. For example, the max OD of the tip may be no less than about 90% or no less than about 95% or no less than about 97% of the ID of the corresponding catheter.
  • the tip 90 will normally be pushed to one side of the aspiration lumen.
  • manual manipulation such as rotation of the tip 90 can engage the clot like a worm gear and either grasp the clot (e.g., by pinning it against the opposing catheter sidewall) for retraction or facilitate freeing the blockage and aid in ingestion of the clot into the catheter.
  • Manual manipulation may also include axial proximal and distal reciprocation along with rotation, during aspiration, which can facilitate ingestion of the clot into the catheter.
  • annular flow path is created in the annular (if the tip were centered) space between the maximum OD of the tip, and the ID of the catheter lumen.
  • This annular flow path cooperates with the vacuum and helical tip to grab and pull obstructive material into the catheter under rotation and vacuum.
  • the annular flow path is significantly greater than any flow path created by manufacturing tolerances in a tip configured to shear embolic material between the tip and the catheter wall.
  • a cross sectional area of the helical flow path of a tip having a maximum OD in the range of from about 0.0400 to about 0.0406 inches will generally be at least about 0.0003 square inches, and in some embodiments at least about 0.00035 or at least about 0.000375 inches.
  • the total aspiration flow path across the helical tip is therefore the sum of the helical flow path through the tip and the annular flow path defined between the OD of the tip and the ID of the catheter lumen.
  • Aspiration occurs both through the helical channel formed between adjacent helical threads as well as around the outside of the tip such that the assembly is configured for engaging and capturing embolic material but not shearing it between a sharp edge of the thread and the inside wall of the catheter.
  • the distal advance segment 100 advantageously permits the thrombus engagement device 80 to at least partially move past the thrombus without “pushing” the thrombus in a distal direction as the tip 90 is advanced. This may inhibit the thrombus (or any particulate thereof) from passing downstream within the vessel during engagement of the device 80 with the thrombus.
  • the distal advance segment 100 can comprise a continuation of the helical thread 92 .
  • the distal advance segment 100 may comprise a threaded segment continuing from the helical thread 92 .
  • the threaded distal advance segment 100 may maintain an outer diameter consistent with the remainder of the helical thread 92 .
  • the threaded distal advance segment 100 may comprise a thread that tapers in a distal direction towards a smaller outer diameter relative to the remainder of the helical thread 92 .
  • the helical thread 92 may comprise a proximal cylindrical segment and a distal tapered segment that extends along the distal advance segment 100 .
  • the profile of the tip 90 in an end view along the axis of rotation may be circular and/or, in some instances, may vary to create a non circular pattern around the axis of rotation.
  • profile may comprise a helical pattern, such as an oval cross-section that rotates along the axis of rotation to create the helical profile.
  • the tip as seen in an end elevational view thus may exhibit a major diameter and a minor diameter.
  • the minor diameter may be no more than about 95% or 90% or 80% or 70% of the major diameter, depending upon desired performance.
  • the outer edge 93 of the thread 92 lies along the surface of a cylinder.
  • an outer edge 93 of the thread 92 thus has a linear surface in the axial direction, substantially conforming to the surface of a cylinder.
  • a distal side 95 of the thread 92 is inclined radially outwardly in a proximal direction.
  • a proximal side 97 of the thread 92 also inclines radially outwardly in a proximal direction thereby defining a proximally facing undercut along the length of the thread.
  • the illustrated tip 90 includes an atraumatic, tapered distal advance segment 100 extending between an atraumatic distal tip at 102 and a transition to the distal end 96 of the thread 92 .
  • Helical thread 92 extends proximally from the transition to a proximal end 94 of the helical thread 92 .
  • a trailing segment 104 may extend between the proximal end 94 of the thread and the proximal end 106 of the tip.
  • the axial length of the distal advance segment 100 may be at least about 5 mm or at least about 8 mm or 9 mm and generally less than about 15 mm, and in some implementations is within the range of from about 8 mm to about 12 mm.
  • the outside diameter of the flexible shaft 82 is generally less than about 0.02 inches, or less than about 0.015 inches and, in one implementation, is about 0.008 inches.
  • the flexible shaft 82 may comprise a distal tapered section.
  • the distal tapered section may advantageously increase tip flexibility and/or maximize aspiration.
  • the outside diameter at the distal end of the distal tapered section of the flexible shaft 82 is generally less than about 0.01 inches, or less than about 0.008 inches and, in one implementation, is no more than about 0.006 inches.
  • the outside diameter of the advance segment 100 at distal tip 102 is generally less than about 0.024 inches, or less than about 0.020 inches and, in one implementation, is about 0.018 inches.
  • the maximum outside diameter of the advance segment 100 and helical thread 92 may be within the range from about 0.020 to about 0.045 inches, and, in one implementation, is less than about 0.040 inches, such as about 0.035 inches.
  • the advance segment, helical thread and trailing segment of the tip 90 may be molded as a single piece over the flexible shaft 82 using any of a variety of polymers known in the catheter arts.
  • a first radiopaque marker 110 may be carried on the flexible shaft 82 beneath the advance segment 100 .
  • a second radiopaque marker 112 may be carried on the flexible shaft 82 within the trailing segment 104 .
  • Each radiopaque marker may comprise a radiopaque tube or a coil of radiopaque wire such as a platinum iridium alloy wire having a diameter about 0.002 inches and positioned or wrapped around the flexible shaft 82 and soldered to the flexible shaft 82 to produce an RO sleeve or coil having an outside diameter of less than about 0.020 inches, such as about 0.012 inches.
  • the radiopaque markers may also provide an axial interference fit between the flexible shaft 82 and the advance segment 100 and trailing segment 104 to resist core wire axial pull out from the tip 90 (tip detachment).
  • the maximum OD of the thread 92 exceeds the maximum OD of the advance segment 100 by at least about 15% or 25% or 30% or more of the OD of the advance segment 100 , to facilitate crossing the clot with the advance segment 100 and engaging the clot with the thread 92 .
  • the distal tip 102 may be permitted to extend at least about 2 cm or 3 cm and preferably as much as 4 to 8 cm beyond the catheter (such as to permit manual removal of engaged thrombus), but generally will be limited to extend no more than a preset distance such as 12 cm or 8 cm or 5 cm beyond the catheter (e.g., within the range of from about 5 cm to about 10 cm) depending upon desired performance.
  • Distal advance of the tip 102 may be limited by providing mechanical interference at the desired distal limit of travel.
  • a distal stop surface 114 which may be on the handle 88 (see FIG. 6 A ) provides an interference engagement with a complementary proximal surface (e.g. proximal surface 33 on connector module 30 or on the catheter hub) carried by the aspiration catheter through which the thrombus engagement tool 80 is advanced.
  • a distal engagement surface can be carried anywhere along the length of the thrombus engagement tool 80 , for sliding rotational engagement with a complementary proximally facing stop surface carried by the catheter. Additional details of distal limit configurations may be found in U.S.
  • the limit on distal advance of the helical tip may enable a first configuration in which the distal tip may be advanced through the catheter and placed at a first position approximately aligned with the distal end of the catheter 12 . The physician may then advance the tip to a second position extending beyond the distal end of the catheter such as for inspection and cleaning purposes.
  • a position indicator 85 may be carried by the flexible shaft 82 spaced apart from the distal surface 114 by a distance corresponding to the maximum length of the thrombus engagement tool intended to extend beyond the distal end of the catheter.
  • the distal tip 102 may be positioned approximately at the distal end of the catheter. This way the physician will know that any further distal advance of the thrombus engagement tool will be extending beyond the distal end of the catheter. The maximum extension will be reached when the distal surface 114 contacts the catheter hub.
  • the position indicator 85 may comprise any of a variety of visual or tactile features, such as a color change or a colored band surrounding the flexible shaft 82 .
  • a visual indicium implementation color change or circumferential line
  • the distal tip 102 may be positioned approximately at the distal end of the catheter when the indicator is visible just outside of the hub.
  • the position indicator 85 comprises the transition between the distal end of the hypo tube 87 and the underlying flexible shaft 82 . This provides haptic feedback as the indicator (step in outside diameter) encounters and passes through the valve of the RHV.
  • the hypo tube 87 additionally functions as a strain relief or anti buckling feature and may have an axial length within the range of from about 3 cm to about 15 cm and in some implementations within the range of from about 5 cm to about 9 cm.
  • a distal segment 120 may have a length within the range of about 1-3 cm and a durometer of less than about 35 D or 30 D.
  • An adjacent proximal segment 122 may have a length within the range of about 4-6 cm, and a durometer of less than about 35 D or 30 D.
  • An adjacent proximal segment 124 may have a length within the range of about 4-6 cm, and a durometer of about 35 D or less.
  • An adjacent proximal segment 126 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 35 D to about 45 D (e.g., 40 D).
  • An adjacent proximal segment 128 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 50 D to about 60 D (e.g., about 55 D).
  • An adjacent proximal segment 130 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 35 D to about 50 D to about 60 D (e.g., about 55 D).
  • An adjacent proximal segment 132 may have a length within the range of about 1-3 cm, and a durometer of at least about 60 D and typically less than about 75 D. More proximal segments may have a durometer of at least about 65 D or 70 D.
  • the distal most two or three segments may comprise a material such as Tecothane and/or PEBAX, and more proximal segments may comprise PEBAX or other catheter jacket materials known in the art. At least three or five or seven or nine or more discrete segments may be utilized, having a change in durometer between highest and lowest along the length of the catheter shaft of at least about 10 D, preferably at least about 20 D and in some implementations at least about 30 D or 40 D or more.
  • FIGS. 7 A- 7 E illustrate various embodiments of catheters, at least some of which incorporate a plurality of catheter outer jacket segments with varying lengths and/or hardness for varying flexibility along the length of the catheter body. It will be understood that any of the features shown or described in connection with any of the catheters of FIGS. 7 A- 7 E can be used with any of the embodiments described and/or contemplated herein. It will also be understood that any of the features described and/or contemplated in connection with any of the embodiments disclosed herein can be utilized with any of the catheters described in connection with FIGS. 7 A- 7 E . As with all embodiments in this specification, any feature, structure, material, method, or step that is described and/or illustrated in the embodiments of FIGS. 7 A- 7 E can be used with or instead of any feature, structure, material, method, or step that is described and/or illustrated in any other embodiment of this specification.
  • FIGS. 7 B- 7 E illustrates embodiments of various catheters 400 , 500 , 600 .
  • the catheters 400 , 500 , 600 may include differing properties (e.g., such as length, diameter, etc.) such that one or more of the catheters 400 , 500 , 600 may interact with any of the other catheters 400 , 500 , 600 in any various manner.
  • each of catheters 400 , 500 , 600 may comprise a different size to permit the catheters 400 , 500 , 600 to at least partially extend through one or more of the other catheters 400 , 500 , 600 .
  • the lengths of each of the catheters 400 , 500 , 600 may vary so as to permit a smaller catheter to pass through and extend distally beyond a larger catheter in a telescoping manner.
  • catheter 500 may be configured to pass through and extend beyond catheter 400 .
  • catheter 600 may be configured to pass through and extend beyond at least one of catheter 500 or catheter 400 in a telescoping manner.
  • FIG. 7 E illustrates an example telescoping catheter stack including each of catheters 400 , 500 , 600 , it will be understood by one having skill in the art that any combination of catheters 400 , 500 , 600 may be utilized.
  • a system may incorporate the use of catheter 400 and catheter 500 , the use of catheter 400 and catheter 600 , or the use of catheter 500 and catheter 600 .
  • Catheter 400 may comprise an 8 F catheter. In some instances, catheter 400 comprises a diameter larger than the diameter of any of the remaining catheters in a system. Additionally, or alternatively, catheter 400 may comprise an overall length shorter than the length of any of the remaining catheters in a system. In this manner, catheter 400 may comprise the outermost catheter in a telescoping system and may permit any of the remaining catheters 500 , 600 to extend distally beyond a distal end of catheter 400 .
  • the catheter 400 may comprise a length between about 35 cm and about 105 cm or, a length between about 45 cm and about 95 cm.
  • the catheter 400 may comprise a length of from about 50 cm to about 90 cm.
  • the catheter 400 may comprise a length at least shorter than any catheter with a diameter smaller than catheter 400 (e.g., such as catheter 500 , 600 ).
  • Catheter 500 may comprise a 6 F catheter.
  • catheter 500 comprises a diameter in between the diameters of the remaining catheters in a system.
  • catheter 500 may comprise a length in between the lengths of the remaining catheters in the system.
  • catheter 500 may comprise a middle catheter in a telescoping system and may be configured to pass through and extend beyond one or more catheters while also permitting another catheter to extend distally beyond a distal end of catheter 500 .
  • the catheter 500 may comprise a length between about 120 cm and about 155 cm or between about 130 cm and about 145 cm.
  • the catheter 500 may comprise a length of about from 135 cm to about 137 cm.
  • the catheter 500 may comprise a length at least longer than any catheter with a diameter larger than catheter 500 (e.g., such as catheter 400 ).
  • the catheter 500 may comprise a length at least shorter than any catheter with a diameter smaller than catheter 500 (e.g., such as catheter 600 ).
  • Catheter 600 may comprise a 5 F catheter. In some instances, catheter 600 comprises a diameter smaller than the diameters of the remaining catheters in a system. Additionally, or alternatively, catheter 600 may comprise a length longer than the lengths of any of the remaining catheters in the system. In this manner, catheter 600 may comprise an innermost catheter in a telescoping system and may be configured to pass through and extend beyond one or more of the other catheters.
  • the catheter 600 may comprise a length between about 145 cm and about 175 cm or between about 155 cm and about 165 cm.
  • the catheter 600 may comprise a length of about 160 cm.
  • the catheter 600 may comprise a length at least longer than any catheter with a diameter larger than catheter 600 (e.g., such as catheter 400 , 500 ).
  • One or more of the catheters 400 , 500 , 600 may include a coil and/or a braid in the sidewall extending through at least a portion of the sidewall of the catheter 400 , 500 , 600 , as discussed herein.
  • the braid may have properties that vary along the length of each catheter 400 , 500 , 600 to generate a variety of desired characteristics of the catheter 400 , 500 , 600 .
  • a wire density of the braid may vary gradually or in steps along the length of the catheter 400 , 500 , 600 and/or vary between discrete sections of the catheter 400 , 500 , 600 .
  • Catheter 600 may comprise one or more discrete sections with braid properties varying between one or more of the sections.
  • catheter 600 may comprise a first section, a second (e.g., intermediate) section, and a third distal section.
  • a sidewall property such as a length and/or a wire density the braid along a respective section, may vary between the sections.
  • a pics per inch (ppi) count of the braid in connection with the wire density of the braid may gradually transition between one or more of the catheter sections.
  • the ppi count of the braid in some instances, may remain generally consistent through a length of the first section and a length of the third section but gradually transition along the length of the second, intermediate section.
  • the first section of catheter 600 may have a length of at least about 20 cm.
  • the length of the first section may be from about 25 cm to about 35 cm or, in one example, about 30 cm.
  • the braid through the first section may have a wire density of at least about 100 ppi.
  • the braid through the first section may have wire density of at least about 120 ppi or, more specifically, about 130 ppi.
  • the third section of catheter 600 may have a length of at least about 100 cm.
  • the length of the third section may be from about 120 cm to about 140 cm or, more specifically, about 130 cm.
  • the braid through the third section may have a wire density of no greater than about 85 ppi.
  • the braid through the third section may have wire density from about 70 ppi to about 80 ppi.
  • the second section of catheter 600 may be an intermediate section between the first section and the third section.
  • the second section may have a length of at least about 3 cm. In some instances, the second section may have a length no greater than about 20 cm or, more specifically, no greater than about 10 cm. For example, the length of the second section may be about 5 cm.
  • the braid through the second section may have a wire density of no greater than the wire density of the first section and no less than the wire density of the third section.
  • Catheter 500 may comprise one or more discrete sections with braid properties varying between one or more of the sections.
  • catheter 500 may comprise a first section, a second (e.g., intermediate) section, and a third section.
  • a sidewall property such as a length and/or a wire density the braid along a respective section, may vary between the sections.
  • a ppi count of the braid in connection with the wire density of the braid may gradually transition between one or more of the catheter sections.
  • the ppi count of the braid in some instances, may remain generally consistent through a length of the first section and a length of the third section but gradually transition along the length of the second, intermediate section.
  • the first section of catheter 500 may have a length of at least about 20 cm.
  • the length of the first section may be from about 25 cm to about 35 cm or, in one example, about 30 cm.
  • the braid through the first section may have a wire density of at least about 100 ppi.
  • the braid through the first section may have wire density of at least about 120 ppi or, in one example, about 130 ppi.
  • the third section of catheter 500 may have a length of at least about 80 cm.
  • the length of the third section may be from about 100 cm to about 120 cm or, in one example, about 105 cm.
  • the braid through the third section may have a wire density of no greater than about 100 ppi.
  • the braid through the third section may have wire density from about 80 ppi to about 90 ppi.
  • the second section of catheter 600 may be an intermediate section between the first section and the third section.
  • the second section may have a length of at least about 3 cm. In some instances, the second section may have a length no greater than about 20 cm or, more specifically, no greater than about 10 cm. For example, the length of the second section may be about 5 cm.
  • the braid through the second section may have a wire density of no greater than the wire density of the first section and no less than the wire density of the third section.
  • Catheter 400 may comprise one or more discrete sections with braid properties varying between one or more of the sections.
  • catheter 400 may comprise one section.
  • the catheter 400 may comprise a greater number of sections (e.g., two sections, three sections, four sections, or greater).
  • catheter 400 may comprise three sections as described in connection with either one or catheter 500 or catheter 600 .
  • a sidewall property, such as a length and/or a wire density the braid, may vary along catheter 400 .
  • a ppi count of the braid in connection with the wire density of the braid may gradually transition to increasing flexibility in a distal direction along catheter 400 .
  • the section of catheter 400 may have a length of at least about 40 cm.
  • the length of the section may be from about 50 cm to about 60 cm or, in one example, about 55 cm.
  • the braid through the section may have a wire density of at least about 80 ppi.
  • the braid through the section may have wire density of at least about 90 ppi.
  • the braid in some instances, may extend along an entire length of the catheter sidewall. In some instance, a junction between the braid and a coil is not present in the catheter and/or the catheter sidewall does not incorporate a coil. It will be understood that this braid configuration may be applied to any catheter disclosed herein, including, but not limited to, catheters 400 , 500 , 600 .
  • One or more of the catheters 400 , 500 , 600 may an outer jacket segment stacking pattern for a progressive flexibility catheter.
  • the outer jacket segment may each have properties that vary along the length of each catheter 400 , 500 , 600 to generate a variety of desired characteristics of the catheter 400 , 500 , 600 .
  • each segment of the outer jacket may have a corresponding Shore D hardness to vary the flexibility along the length of the catheter 400 , 500 , 600 .
  • the outer jacket segments may be made of a thermoplastic elastomer made of flexible polyether and rigid polyamide (e.g., Pebax®).
  • each segment of the outer jacket may comprise a different variation of the thermoplastic elastomer to alter flexiblity.
  • Catheter 600 may comprise a plurality of discrete segments of the outer jacket with varying flexibility between one or more of the segments.
  • catheter 600 may comprise a plurality of segments.
  • a sidewall property, such as Shore D hardness and/or flexibility, may vary between the segments.
  • a Shore D hardness of the outer jacket segments may gradually transition from higher at proximal end segment of the outer jacket to lower at a distal end segment of the outer jacket.
  • the proximal end segment of the outer jacket of the catheter 600 may have a Shore D hardness of at least about 60.
  • the Shore D hardness of the proximal end segment may be from about 70 to about 80 or, more specifically, at least about 75.
  • the distal end segment of the outer jacket of the catheter 600 may have a Shore D hardness of at most about 40.
  • Shore D hardness of the distal end segment may be from about 30 to about 20 or, more specifically, no more than about 27.
  • a plurality of the intermediate segments between the distal end segment and the proximal end segment may each comprise a variety of Shore D hardness.
  • each segment decreases in a Shore D hardness in a distal direction and may have a smaller Shore D hardness than a proximally adjacent segment.
  • the Shore D hardness of a first segment may be from about 30 to about 50 or, more specifically, about 40.
  • the first segment in some instances, may be between positioned about 120 cm to about 160 cm or, more specifically, about 140 cm away from a distal end face of the catheter 600 .
  • the Shore D hardness of the second segment may be from about 50 to about 70 or, more specifically, about 65.
  • the second segment in some instances, may be between positioned about 220 cm to about 260 cm or, more specifically, about 240 cm away from a distal end face of the catheter 600 .
  • Catheter 500 may comprise a plurality of discrete segments of the outer jacket with varying flexibility between one or more of the segments.
  • catheter may comprise a plurality of segments.
  • a sidewall property, such as Shore D hardness and/or flexibility, may vary between the segments.
  • a Shore D hardness of the outer jacket segments may gradually transition from higher at a proximal end segment of the outer jacket to lower at a distal end segment of the outer jacket.
  • the proximal end segment of the outer jacket of the catheter 500 may have a Shore D hardness of at least about 60.
  • the Shore D hardness of the proximal end segment may be from about 70 to about 80 or, more specifically, at least about 75.
  • the distal end segment of the outer jacket of the catheter 500 may have a Shore D hardness of at most about 40.
  • Shore D hardness of the distal end segment may be from about 30 to about 20 or, more specifically, no more than about 27.
  • a plurality of the intermediate segments between the distal end segment and the proximal end segment may each comprise a variety of Shore D hardness.
  • each segment decreases in a Shore D hardness in a distal direction and may have a smaller Shore D hardness than a proximally adjacent segment.
  • the Shore D hardness of a first segment may be from about 30 to about 50 or, more specifically, about 40.
  • the first segment in some instances, may be between positioned about 70 cm to about 110 cm or, more specifically, about 90 cm away from a distal end face of the catheter 500 .
  • the Shore D hardness of a second segment may be from about 50 to about 70 or, more specifically, about 65.
  • the second segment in some instances, may be between positioned about 160 cm to about 200 cm or, more specifically, about 180 cm away from a distal end face of the catheter 500 .
  • Catheter 400 may comprise a plurality of discrete segments of the outer jacket with varying flexibility between one or more of the segments.
  • catheter 400 may comprise a plurality of segments.
  • a sidewall property, such as Shore D hardness and/or flexibility, may vary between the segments.
  • a Shore D hardness of the outer jacket segments may gradually transition from a proximal end segment of the outer jacket to a distal end segment of the outer jacket.
  • the proximal end segment of the outer jacket of the catheter 400 may have a Shore D hardness of at least about 60.
  • the Shore D hardness of the proximal end segment may be from about 70 to about 80 or, more specifically, about 75.
  • the distal end segment of the outer jacket of the catheter 400 may have a Shore D hardness of at most about 40.
  • Shore D hardness of the distal end segment may be from about 30 to about 20 or, more specifically, no more than about 27.
  • a plurality of the intermediate segments between the distal end segment and the proximal end segment may each comprise a variety of Shore D hardness.
  • each segment decreases in a Shore D hardness in a distal direction and may have a smaller Shore D hardness than a proximally adjacent segment.
  • the Shore D hardness of a first segment may be from about 30 to about 50 or, more specifically, about 40.
  • a first segment in some instances, may be between positioned about 65 cm to about 105 cm or, more specifically, about 85 cm away from a distal end face of the catheter 400 .
  • the Shore D hardness of a second segment may be from about 40 to about 65 or, more specifically, about 55.
  • the second segment in some instances, may be between positioned about 105 cm to about 145 cm or, more specifically, about 125 cm away from a distal end face of the catheter 400 .
  • the Shore D hardness of a third segment may be from about 60 to about 80 or, more specifically, about 70.
  • the third segment in some instances, may be between positioned about 140 cm to about 180 cm or, more specifically, about 160 cm away from a distal end face of the catheter 400 .
  • Catheter 400 may comprise a tubular body length of about 90+/ ⁇ 5 cm. In some instances, catheter 400 may comprise a tubular body length of about 50+/ ⁇ 5 cm. A number of the plurality of discrete segments of the outer jacket of catheter 400 may vary with respect to the tubular body length of catheter 400 . A length of the respective segments of the plurality of discrete segments of the outer jacket of catheter 400 may vary with respect to the tubular body length of catheter 400 .
  • a coating in some instances, may be located along an outer diameter of a distal portion of the catheter sidewall.
  • the coating can be configured to decrease frictional resistance of the distal portion of the catheter sidewall with any adjacent structure (e.g., a vessel wall). In some instances, the coating increases the lubriciousness of the catheter distal portion outer sidewall.
  • the coating may advantageously reduce friction on the distal end of the catheter going through tortuous vasculature. This may facilitate advancement and rotation of the catheter distal end, particularly in situations where the catheter contains an increased flexibility along a distal end portion of the catheter.
  • the coating may extend in a proximal direction from, or proximate to, a catheter distal end face. The coating may extend at least about 20 cm in a proximal direction.
  • the coating extends no farther than about 50 cm from the catheter distal end face.
  • the coating may extend for a length of about 25 cm to about 35 cm or, more specifically, about 30 cm from a catheter distal end face. It will be understood that the coating may be applied to any catheter disclosed herein, including, but not limited to, catheters 400 , 500 , 600 .
  • FIG. 8 illustrates a cross section through the sidewall of a distal portion of a single lumen catheter.
  • An internal support layer may comprise either a coil or braid.
  • adjacent loops or filars of the coil 140 may have a constant pitch throughout the length of the coil or may be closely tightly wound in a proximal zone with a distal section having looser spacing between adjacent loops.
  • At least the distal about 1 cm or about 2 cm or about 3 cm or about 4 cm of the coil will have a spacing that is at least about 130%, and in some implementations at least about 150% or more than the spacing in the proximal coil section.
  • the spacing in the proximal coil may be about 0.004 inches and in the distal section may be at least about 0.006 inches or about 0.007 inches or more.
  • the distal end of the coil or braid 140 can be spaced proximally from the distal end of the inner liner 142 , for example, to provide room for an annular radiopaque marker 144 .
  • the coil or braid 140 may be set back proximally from the distal end, in some embodiments, by approximately no more than about 1 cm, about 2 cm, or about 3 cm.
  • the distal end of the catheter 12 is provided with a beveled (inclined) distal surface 146 residing on a plane having an angle of at least about 10 degrees or about 20 degrees and in one embodiment about 30 degrees with respect to a longitudinal axis of the catheter 10 .
  • At least a distally facing edge of the annular radiopaque marker 144 may be an ellipse, residing on a plane which is inclined with respect to the longitudinal axis to complement the bevel angle of the distal surface 146 . Additional details are described in connection with FIG. 9 below.
  • the distal braid or coil and the RO marker 144 are provided with an outer jacket 156 such as a polymer tube formed from a plurality of axially adjacent cylindrical segments to enclose the catheter body 16 .
  • the outer sleeve 156 may comprise any of a variety of materials, such as polyethylene, polyurethane, polyether block amide (e.g., PEBAXTM), nylon or others known in the art. Sufficient heat is applied to cause the polymer to flow into and embed the proximal braid and distal coil.
  • the outer jacket 156 is formed by sequentially advancing a plurality of short tubular segments 133 , 132 , 130 , 128 , 126 , 124 , 122 , 120 concentrically over the catheter shaft subassembly, and applying heat to shrink the sections on to the catheter 12 and provide a smooth continuous outer tubular body.
  • the foregoing segmented construction may extend along at least the most distal about 10 cm, and preferably at least about the most distal about 20 cm, about 25 cm, about 30 cm, about 35 cm, about 40 cm, or more than about 40 cm of the catheter body 10 .
  • the entire length of the outer jacket 156 may be formed from tubular segments and the length of the distal tubular segments may be shorter than the one or more tubular segments forming the proximal portion of the outer jacket 156 proximal to the junction between the braid 150 and coil 140 in order to provide proximal backup support and steeper transitions in flexibility toward the distal end of the catheter 12 .
  • the durometer of the outer wall segments may decrease in a distal direction.
  • proximal segments such as 133 and 132
  • proximal segments such as 133 and 132
  • a 25 cm section may have at least about 3 or about 5 or about 7 or more segments and the catheter 12 overall may have at least about 6 or about 8 or about 10 or more distinct flexibility zones.
  • the distal 1 or 2 or 4 or more segments 122 , 120 may have a smaller OD following shrinking than the more proximal segments 133 - 124 to produce a step down in OD for the finished catheter body 16 .
  • the length of a lower OD section 160 may be within the range of from about 3 cm to about 15 cm and, in some embodiments, is within the range of from about 5 cm to about 10 cm such as about 7 cm or about 8 cm and may be accomplished by providing the distal segments 122 , 120 with a lower wall thickness.
  • the most distal portion of the catheter 12 may comprise a durometer of less than approximately 35 D (e.g., 25 D) to form a highly flexible distal portion of the catheter and have a length between approximately 25 cm and approximately 35 cm.
  • the distal portion may comprise one or more tubular segments of the same durometer (e.g., segment 120 ).
  • a series of proximally adjacent tubular segments may form a transition region between a proximal stiffer portion of the catheter 12 and the distal highly flexible portion of the catheter.
  • the series of tubular segments forming the transition region may have the same or substantially similar lengths, such as approximately 1 cm.
  • each of the series of tubular segments may provide a steep drop in durometer over the transition region.
  • the transition region may have a proximal tubular segment 122 (proximally adjacent the distal portion) having a durometer of approximately 35 D.
  • An adjacent proximal segment 124 may have a durometer of approximately 55 D.
  • An adjacent proximal segment 126 may have a durometer of approximately 63 D.
  • An adjacent proximal segment 128 may have a durometer of approximately 72 D.
  • More proximal segments may comprise a durometer or durometers greater than approximately 72 D and may extend to the proximal end of the catheter.
  • a catheter segment may comprise a proximal portion greater than approximately 72 D between about 1 cm and about 3 cm. In some embodiments, the proximal portion may be about 2 cm long.
  • the most distal segments e.g., 120 , 122
  • more proximal segments may comprise a generally stiffer material, such as Vestamid®.
  • the inner diameter of the catheter 10 may be between approximately 0.06 and 0.08 inches, between approximately 0.065 and 0.075 inches, or between approximately 0.068 and 0.073 inches. In some embodiments, the inner diameter is approximately 0.071 inches.
  • the distal most portion may step or taper to a decreased inner diameter such as under segments 122 and 120 .
  • the taper may occur approximately between the distal highly flexible portion and the transition region (e.g., over the most proximal portion of the distal highly flexible portion).
  • the taper may be relatively gradual (e.g., occurring over approximately 10 or more cm) or may be relatively steep (e.g., occurring over less than approximately 5 cm).
  • the inner diameter may taper to an inner diameter between about 0.03 and about 0.06 inches.
  • the inner diameter may be about 0.035 inches, about 0.045 inches, or about 0.055 inches at the distal end of the catheter 12 .
  • the inner diameter may remain constant, at least over the catheter extension segment.
  • the coil 140 may extend proximally from a distal end of the catheter 12 along the highly flexible distal portion ending at or overlapping with the distal end of the braid 150 . In other embodiments, the coil 140 may extend the entire length of the catheter 12 .
  • the braid 150 when present, may extend from about the transition 163 the proximal end of the coil 140 to the proximal end of the catheter 12 .
  • distal catheter tip 18 comprises a tubular body 14 which includes an advance segment 200 , and a marker band 144 .
  • An inner tubular liner 142 may extend throughout the length of the distal catheter tip and may comprise dip coated PTFE.
  • a reinforcing element 140 such as a braid and/or spring coil is embedded in an outer jacket which may extend the entire length of the catheter proximally of the radiopaque marker.
  • the advance segment 200 terminates distally in an angled face 146 , to provide a leading side wall portion 202 having a length measured between the distal end 204 of the marker band 144 and a distal tip 206 .
  • a trailing side wall portion 208 of the advance segment 200 has an axial length in the illustrated embodiment of approximately equal to the axial length of the leading side wall portion 202 as measured at approximately 180 degrees around the catheter from the leading side wall portion 202 .
  • the leading side wall portion 202 may have an axial length within the range of from about 0.1 mm to about 5 mm and generally within the range of from about 1 to 3 mm.
  • the trailing side wall portion 208 may be at least about 0.1 or 0.5 or 1 mm or 2 mm or more shorter than the axial length of the leading side wall portion 202 , depending upon the desired performance.
  • the angled face 146 inclines at an angle A within the range of from about 45 degrees to about 80 degrees from the longitudinal axis of the catheter.
  • the angle is within the range of from about 50 degrees to about 70 degrees or within the range of from about 55 degrees to about 65 degrees from the longitudinal axis of the catheter.
  • the angle A is about 60 degrees.
  • One consequence of an angle A of less than 90 degrees is an elongation of a major axis of the area of the distal port which increases the surface area of the port and may enhance clot aspiration or clot retention.
  • the area of the angled port is generally at least about 105%, and no more than about 130%, in some implementations within the range of from about 110% and about 125% and in one example is about 115%.
  • the axial length of the advance segment is substantially constant around the circumference of the catheter, so that the angled face 146 is approximately parallel to the distal surface 210 of the marker band 144 .
  • the marker band 144 has a proximal surface approximately transverse to the longitudinal axis of the catheter, producing a marker band 144 having a right trapezoid configuration in a side elevational view.
  • a short sidewall 212 is rotationally aligned with the trailing side wall portion 208 , and has an axial length within the range of from about 0.2 mm to about 4 mm, and typically from about 0.5 mm to about 2 mm.
  • An opposing long sidewall 214 is rotationally aligned with the leading side wall portion 202 .
  • Long sidewall 214 of the marker band 144 is generally at least about 10% or 20% longer than short sidewall 212 and may be at least about 50% or 70% or 90% or more longer than short sidewall 212 , depending upon desired performance. Generally, the long sidewall 214 will have a length of at least about 0.5 mm or 1 mm and less than about 5 mm or about 4 mm.
  • any of the marker bands described herein may be a continuous annular structure, or may optionally have at least one and optionally two or three or more axially extending slits throughout its length.
  • the slit may be located on the short sidewall 212 or the long sidewall 214 or in between, depending upon desired bending characteristics.
  • Any of the marker bands described herein may comprise any of a variety of radiopaque materials, such as a platinum/iridium alloy, with a wall thickness preferably no more than about 0.003 inches and in one implementation is about 0.001 inches.
  • the advance segment 200 may comprise a distal extension of the outer polymer jacket and optionally the inner liner, without other internal supporting structures distally of the marker band 144 .
  • the outer jacket may comprise extruded Tecothane and/or PEBAX.
  • the advance segment 200 may have a bending stiffness and radial crush stiffness that is no more than about 50%, and in some implementations no more than about 25% or 15% or 5% or less than the corresponding value for the adjacent proximal catheter body.
  • the proximal end of the catheter 12 is preferably provided with a hemostasis valve, to facilitate introduction of a thrombus engagement tool or a secondary catheter there through.
  • the hemostasis valve may be carried by the connector module 30 , or directly by the proximal catheter connector 22 . Any of a variety of hemostasis valve configurations may be used.
  • valve inserter in accordance with another embodiment.
  • the inserter enables opening a valve (e.g., the hemostasis valve and/or an introducer sheath valve having an elastomeric membrane valve with a passive slit) and supporting it in an open configuration while providing an access lumen therethrough to enable a delicate secondary device such as a thrombus engagement tool or a catheter to advance therethrough without encountering any resistance or damage from the valve.
  • a valve e.g., the hemostasis valve and/or an introducer sheath valve having an elastomeric membrane valve with a passive slit
  • the inserter 300 comprises an elongate tubular body 302 having a proximal end 304 , a distal end 306 , and a central lumen 308 extending therethrough.
  • the tubular body 302 has an inside diameter sufficient to accommodate the secondary device, and an OD capable of passing through a compatible hemostasis valve.
  • tubular body will have an outside diameter within the range of from about 0.04′′ to about 0.1, and a length within the range of from about 1′′ to about 4′′.
  • Tubular body 302 can be formed as an extrusion from any of a variety of common catheter polymers such as Nylon, PEEK, polyethylene, polyimide or others known in the art having sufficient crush resistance and column strength to enter and to maintain patency under the closing pressure of a hemostasis valve.
  • common catheter polymers such as Nylon, PEEK, polyethylene, polyimide or others known in the art having sufficient crush resistance and column strength to enter and to maintain patency under the closing pressure of a hemostasis valve.
  • the proximal end 304 of the tubular body 302 may be provided with a funnel shaped landing zone 322 leading to the central lumen, to facilitate introducing the distal tip of the secondary device into the inserter.
  • the proximal end of the tubular body is provided with an inclined face 314 .
  • a distal, leading edge 316 of the inclined face 314 is axially distally spaced apart from the trailing proximal edge 318 of the face 314 by a distance D.
  • the distance D [between 316 and 318] may be at least about 0.1′′ and typically no more than about 0.5′′.
  • the inclined face cooperates with the curved sidewall of the tube to create a side opening for funneling the distal tip of the secondary device into the proximal end of the lumen.
  • the side wall at the trailing edge 318 may be provided with a curvature having a greater radius than the radius of curvature at the leading edge 316 with a progressively changing radius in between, creating a funnel shape for the landing zone 322 .
  • the tubular body 302 is provided with an axially extending slit 310 extending between the distal end 306 and the leading edge 316 of the inclined face 314 , to enable the inserter to be peeled away laterally from the secondary device extending therethrough once the inserter has enabled passage of the secondary device through the hemostasis valve.
  • a pull tab 312 may be provided on the proximal end of the tubular body 302 to enable the inserter 300 to be grasped and pulled away from the secondary device extending therethrough.
  • the pull tab 312 may be integrally formed with the tubular body 302 (e.g., as a portion of the sidewall of the tube stock as illustrated) or attached thereto such as by adhesive bonding or mechanical compression or interference engagement.
  • the pull tab 312 inclines laterally away from the longitudinal axis of the tubular body, to allow coaxial approach and introduction of the catheter into the inserter 300 .
  • the tubular body has a substantially constant diameter throughout most (e.g., at least about 80% or 90%) of its length overall. However, at least the outside diameter in a distal nose segment 324 may be necked down to a smaller outside diameter at the distal end. This enables the inserter to better enter the hemostasis valve under distal compression.
  • the tubular body has an 8 French ID along most of its length but necks down to 6 French in the distal nose segment 324 . This inserter will facilitate the introduction of either a 6 French or an 8 French catheter through the hemostasis valve, since the 8 French catheter can simply forcibly dilate the necked distal end due to the axial slit 310 .
  • the concave entrance funnel surface of the landing zone 322 may be provided with a visual indicium such as a different color than the outside surface of the tubular body 302 , to facilitate visualization of the funnel opening and assist in loading the secondary catheter into the funnel. This may be accomplished by providing a colored coating on either the inside or outside surface of the tube stock, or by forming at least a portion of the tube stock as a coextrusion of dissimilar colored materials.
  • a clot capture module for use in a thrombectomy system, the clot capture module comprising one or more of the following:
  • a filter in the clot capture chamber the filter being visible through the window, the filter having an upstream surface and a downstream surface;
  • an incoming flow path configured to direct incoming blood from an aspiration catheter against the upstream surface of the filter
  • a normally closed aspiration control valve in the incoming flow path configured to block flow of incoming aspirated blood until actuated to permit inflow of aspirated blood
  • an outgoing flow path configured to direct blood from a downstream side of the filter to a remote vacuum canister.
  • a clot capture module as described in any embodiment herein, wherein the upstream surface of the filter is visible through the window.
  • a clot capture module as described in any embodiment herein, wherein the filter comprises a blood permeable membrane, and wherein the upstream surface of the filter is on a radially outwardly facing surface of the blood permeable membrane.
  • a clot capture module as described in any embodiment herein, wherein the blood permeable membrane at least partially encloses a filtered blood chamber which is in fluid communication with the outgoing flow path.
  • a clot capture module as described in any embodiment herein, comprising a proximal housing, and a distal housing separated by a transparent tubular side wall.
  • a clot capture module as described in any embodiment herein, wherein at least one of the proximal housing and distal housing is releasably connected to the transparent tubular side wall.
  • a thrombus engagement tool configured to be advanced through a catheter and to engage thrombus, the thrombus engagement tool comprising one or more of the following:
  • a rotatable core having a proximal end and a distal end
  • thrombus engagement tip on the distal end of the rotatable core, the thrombus engagement tip comprising:
  • a thrombus engagement tool as described in any embodiment herein, comprising a first radiopaque marker under the advance segment and a second radiopaque marker under the trailing segment.
  • a thrombus engagement tool as described in any embodiment herein, comprising a limit bearing surface on the handle, the limit bearing surface being configured to limit projection of the thrombus engagement tip in a distal direction relative to a distal end of the aspiration catheter.
  • a thrombus engagement tool as described in any embodiment herein, wherein the advance segment, the helical thread, and the trailing segment are all molded onto the rotatable core.
  • a method of removing embolic material from a vessel with mechanical and aspiration assistance comprising one or more of the following:
  • an aspiration catheter having a central lumen and a distal end
  • the thrombus engagement tool having a tip comprising a helical thread having a major diameter that is at least about 0.015 inches smaller than an inside diameter of the central lumen, the helical thread being configured to provide an aspiration flow path around the tip;
  • a method of removing embolic material as described in any embodiment herein, comprising the step of advancing the catheter to a pulmonary embolism.
  • a method of removing embolic material as described in any embodiment herein, comprising the step of advancing the catheter to a deep venous thrombosis.
  • a method of removing embolic material as described in any embodiment herein, comprising the step of introducing a thrombus engagement tool having a tip with a major diameter that is no more than about 60% of the inside diameter of the central lumen.
  • a method of removing embolic material as described in any embodiment herein, comprising introducing a thrombus engagement tool having a tip with a major diameter that is no more than about 40% of the inside diameter of the central lumen.
  • a method of removing embolic material as described in any embodiment herein further comprising axially reciprocating the thrombus engagement tool within the catheter.
  • a method of removing embolic material as described in any embodiment herein, comprising extending the distal tip at least about 2 cm beyond the distal end of the catheter.
  • a method of removing embolic material as described in any embodiment herein, comprising axially aligning the distal tip with the distal end of the catheter using a position indicator on the rotatable core.
  • An inserter for guiding a device through a valve comprising one or more of the following:
  • an elongate tubular body having a proximal end, a distal end, and a sidewall at least partially defining a central lumen
  • the concave landing zone having a radius of curvature that increases in a proximal direction
  • a surface of the concave landing zone comprises a different color than an outside surface of the elongate tubular body.
  • a method of passing a device through a valve comprising one or more of the following:
  • a method of passing a device through a valve as described in any embodiment herein, wherein advancing the tubular body through the valve comprises advancing a tapered distal tip on the tubular body through the valve.

Abstract

An inserter for guiding a device through a hemostasis valve. The inserter comprises an elongate tubular body, a concave landing zone, and an axially extending slit. The elongate body tubular body of the inserter partially defines a central lumen. A method a of passing a device through a valve comprises the steps of providing an inserter having a tubular body with a split sidewall, advancing the tubular body through a valve, advancing a device through the tubular body and beyond the valve and retracting the tubular body so that the device escapes laterally from the tubular body through the split sidewall, leaving the device in place across the valve.

Description

    INCORPORATION BY REFERENCE
  • This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 63/341,926, filed May 13, 2022.
  • BACKGROUND
  • Removal of blood clots from the vascular system (thrombectomy) using a trans vascular approach may be accomplished at any of a variety of treatment sites, such as arteries in the extremities, veins for deep vein thrombosis (DVT), large veins and arteries (central vessels) such as iliac veins and arteries, the aorta, the inferior vena cava and pulmonary arteries to treat pulmonary emboli (PE).
  • For example, venous thromboembolic disease (VTE) is a worldwide crisis. There are over 10 million cases of DVT and PE diagnosed globally per year, with 1 million cases occurring in the United States and over 700,000 in France, Italy, Germany, Spain, Sweden, and the United Kingdom combined each year. There are approximately 60,000 to 100,000 deaths from PE in the United States each year. DVT and PE are part of the same continuum of disease, with over 95% of emboli originating in the lower extremities. When PE occurs, the severity depends on the embolic burden and its effect on the right ventricle as well as underlying cardiopulmonary comorbidities. Death can result from the acute increase in pulmonary artery (PA) pressure with increased right ventricular (RV) afterload and dysfunction.
  • Patients with high-risk PE have been treated primarily with thrombolytic therapy delivered systemically or more locally through Catheter Directed Thrombolytics. These approaches result in multiple catheterization lab visits, lengthy hospital stays and often lead to bleeding complications. Newer approaches to PE treatment include single session thrombectomy treatments without the use of thrombolytics. These thrombectomy treatments include delivering a catheter into the PA to remove the thrombus through aspiration, and secondary tools may also macerate or disrupt the thrombus prior to aspiration. While thrombectomy results in fewer bleeding complications and reduced hospital stays compared to thrombolytics, there is much to be improved upon given the challenges of the procedure itself, including the ability to capture a broad spectrum of thrombus types and reduce the total volume of blood loss during the procedure.
  • The thrombectomy catheter is introduced through an introducer puncture in a large diameter vein. A flexible guide wire is passed through the introducer into the vein and the introducer is removed. The flexible guidewire provides a rail for a flexible guide catheter to be advanced through the right atrium into the right ventricle and into the pulmonary artery. The flexible guidewire is removed and replaced with a stiff guidewire. The large diameter thrombectomy catheter with support dilator is then advanced over the stiff guidewire to the pulmonary artery and the dilator is removed. If the large diameter thrombectomy catheter is not successful in accessing or aspirating thrombus in a more distal portion of the vessel, a smaller diameter catheter may be inserted through the large diameter catheter.
  • In addition, peripheral arterial occlusive (PAO) disease occurs in more than 4% of individuals over age 40 and markedly increases in incidence after the age of 70. Acute PAO is usually due to thrombosis of the peripheral vasculature and is associated with a significant risk of limb loss. In order to preserve the limb, therapy for acute PAO centers on the rapid restoration of arterial patency and blood flow such as through mechanical thrombectomy in procedures similar to those described above.
  • Clot aspiration using certain commercial vacuum-assisted thrombectomy systems may sometimes need to be terminated due to the risk of excessive blood loss by the patient, especially when using large aspiration catheters. During aspiration thrombectomy, when the catheter tip falls out of contact with the thrombus or other occlusive material, the tip is exposed to healthy blood and full flow of blood through the catheter ensues. Under such conditions, the total volume of blood loss may be excessive, and in some cases, may result in premature termination of the procedure. For example, during a procedure when the catheter enters healthy blood and full aspiration flow ensues, the blood loss rate can be on the order of 30-40 cc per second with an 24 French size catheter. With a maximum tolerable blood loss on the order of about 500 mL, the catheter cannot run in unrestricted mode for more than approximately 10 to 15 seconds. The aggregate blood loss may reach an unacceptable level before sufficient clot is removed.
  • Thus, notwithstanding prior efforts, there remains a need for an improved technology for removing or reducing thrombotic restrictions and occlusions within either the patient's arterial or venous blood vessels.
  • SUMMARY
  • There is provided in accordance with one aspect of the present invention, a clot capture module for use in a thrombectomy system, such as within the sterile field. The clot capture module comprises a housing; a clot capture chamber in the housing; a window in the housing to permit visual inspection of the clot chamber; and a filter in the clot chamber, visible through the window, the filter having an upstream surface and a downstream surface.
  • An incoming flow path is configured to direct incoming blood from an aspiration catheter against the upstream surface of the filter. An aspiration control valve is provided in the incoming flow path, configured to block or permit the flow of incoming blood. An outgoing flow path is configured to direct blood from the second side of the filter to a remote vacuum canister.
  • The clot capture module may further comprise a vent valve, openable to permit an optically transparent media such as air or saline to be drawn into the clot chamber, enabling blood to be evacuated from the clot chamber to a remote canister. The upstream surface of the filter may be visible through the window, so that clot accumulated on the upstream surface can be visually observed through the window, once the vent has been opened to evacuate blood from the clot capture chamber. The window may comprise a transparent cylindrical portion of the housing.
  • The upstream surface of the filter may be substantially planar. Alternatively, the upstream surface of the filter may be convex. The filter may comprise a tubular porous membrane such as a cylinder, and the upstream surface of the filter may be on a radially outwardly facing surface of the membrane. The tubular filter membrane may enclose a filtered blood chamber which is in communication with the outgoing flow path.
  • The module may further comprise an aspiration control, for controlling the aspiration control valve. The aspiration control may comprise a rocker switch, configured to selectively collapse or allow reopening of a collapsible tubing. The aspiration control valve may be normally closed, and may be spring biased into the closed configuration.
  • The clot capture module may be provided in combination with a vacuum line leading to an aspiration pump and canister, wherein the clot capture module is configured to reside within a sterile field and the aspiration pump and canister are outside of the sterile field. The vacuum line may be at least about 30 inches or 50 inches or more in length. In some instances, a manually actuated aspiration device (e.g., a syringe) may be used in addition to, or as an alternative to, an aspiration pump to permit a user to manually apply aspiration through the vacuum line.
  • There is provided in accordance with another aspect of the present invention, a thrombus engagement tool, configured to advance through an aspiration catheter and engage thrombus. The thrombus engagement tool comprises a rotatable core wire having a proximal end and a distal end; and a thrombus engagement tip on the distal end of the core wire. The tip may comprise a helical thread; an advance segment on a distal side of the thread and a trailing segment on a proximal side of the thread. The advance segment, helical thread and trailing segment may all be molded onto the core wire.
  • The thrombus engagement tool may further comprise a projection on the core wire, underneath at least one of the advance segment and the trailing segment, to form an interference fit with the thrombus engagement tip. The projection may comprise an annular ring, which may be a radiopaque marker. The thrombus engagement tool may comprise a first radiopaque marker under the advance segment and a second radiopaque marker under the trailing segment.
  • An outer periphery of the helical thread may substantially conform to an inside surface of a cylinder. The thread may comprise a proximal surface which inclines radially outwardly in a proximal direction to define a proximally opening undercut.
  • The thrombus engagement tool may further comprise a handle on the proximal end of the core wire configured for hand turning the core wire. A limit bearing surface may be provided on the handle, for limiting distal projection of the thrombus engagement tip relative to a distal end of the aspiration catheter.
  • There is further provided a method of removing embolic material from a vessel with mechanical and aspiration assistance. The method comprises the steps of providing an aspiration catheter having a central lumen and a distal end; advancing the distal end to obstructive material in a vessel; applying vacuum to the lumen to draw clot at least partially into the lumen; and introducing a thrombus engagement tool into the lumen. The thrombus engagement tool may have a tip with an axial length of no more than about 1 cm or about 5 mm and a helical thread having a major diameter that is at least about 0.015 inches smaller than an inside diameter of the lumen, to provide an aspiration flow path through the lumen around the outside of the tip. The method further comprises manually rotating the tip to engage clot between the tip and an inside wall of the lumen.
  • A method of aspirating a vascular occlusion from a remote site, comprises the steps of advancing an elongate tubular body through a vascular access site and up to a vascular occlusion, the tubular body comprising a proximal end, a distal end, a central lumen, and a stop surface. A rotatable core is advanced distally through the lumen until a limit surface carried by the core rotatably slidably engages the stop surface to provide a rotatable bearing which limits further distal advance of the core within the lumen. Vacuum is applied to the lumen and the core is manually rotated to engage thrombus. The advancing the rotatable core may be accomplished after the step of advancing the elongate tubular body through the vascular access site and up to the vascular occlusion. The core may be a solid core wire or a cannulated structure such as a hypotube or microcatheter having a central lumen extending axially between a proximal opening and a distal opening.
  • The core may carry a proximal handle, and the limit surface may be carried by the handle. The tubular body may include a proximal hub, and the stop surface may be carried by the hub. The core may carry an engagement tip having a helical thread, and the engaging thrombus step may comprise pinning thrombus between a first side of the tip and an inside surface of the tubular body.
  • There is also provided an inserter for guiding a device through a hemostasis valve, comprising an elongate tubular body, having a proximal end, a distal end and a central lumen; a laterally facing concave landing zone on the proximal end, having a radius of curvature that increases in the proximal direction; and an axially extending slit in the sidewall, extending from the distal end to the landing zone. The tubular body may further comprise a tapered distal tip, and a proximal pull tab to facilitate removal of the inserter from the device. A surface of the landing zone may comprises a different color than an outside surface of the tubular body, to facilitate visualization of the landing zone and advancing the distal end of the device into the tubular body.
  • A method of passing a device through a hemostasis valve may comprise the steps of providing an inserter, having a tubular body with a split sidewall; advancing the tubular body through a hemostasis valve; advancing a device through the tubular body and beyond the hemostasis valve; and proximally retracting the tubular body so that the device escapes laterally from the tubular body through the split sidewall, leaving the device in place across the hemostasis valve.
  • The advancing the tubular body step may comprise advancing a tapered distal tip on the tubular body through the hemostasis valve. The advancing the tubular body through the hemostasis valve step may be accomplished with the device pre loaded inside the tubular body.
  • A distal nose segment of the tubular body may expand in diameter in response to advancing the device therethrough. The device may be a thrombus engagement tool or a secondary catheter. The secondary catheter may be an aspiration catheter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of a thrombus removal system in accordance with the present invention.
  • FIG. 2 is a perspective view of a flow control module.
  • FIG. 3 is an elevational of cross-sectional view through the flow control module of FIG. 2 .
  • FIG. 4 is a schematic view of the dual vacuum chamber configuration that produces an accelerated aspiration response.
  • FIG. 5 is a qualitative fluid flow rate diagram at the catheter tip following opening of the vacuum control valve.
  • FIG. 6A is a side elevational view of a thrombus engagement tool.
  • FIG. 6B is an enlarged detail view of the distal end of the thrombus engagement tool of FIG. 6A.
  • FIG. 6C is a longitudinal elevational cross-section through the thrombus engagement tool of FIG. 6B.
  • FIGS. 7A-7E are side elevational views of various embodiments of thrombectomy catheters.
  • FIG. 8 is a cross-sectional view through a distal portion of the embolectomy catheter showing a side wall construction.
  • FIG. 9 is a cross-sectional view through a distal portion of the embolectomy catheter showing the radiopaque marker and inclined distal face.
  • FIGS. 10A-10B are perspective views of an inserter tool to facilitate passing a catheter through a hemostasis valve.
  • FIG. 10C is an end view of the inserter of FIGS. 10A and 10B.
  • DETAILED DESCRIPTION
  • Referring to FIG. 1 , there is illustrated a thrombectomy system such as for PE or DVT aspiration procedures. The system 10 includes a thrombectomy catheter 12, having an elongate tubular body 14 extending between the proximal end 16 and a distal end 18. A central lumen 20 (not illustrated in FIG. 1 ) extends between a proximal catheter connector 22 and a distal port 24 on the distal end 18.
  • Although primarily described in the context of an aspiration catheter with a single central lumen, catheters of the present invention can readily be modified to incorporate additional structures, such as permanent or removable column strength enhancing mandrels, two or more lumen such as to permit drug, contrast or irrigant infusion or to supply inflation media to an inflatable balloon carried by the catheter, or any combinations of these features, as will be readily apparent to one of skill in the art in view of the disclosure herein. In addition, the disclosure will be described primarily in the context of removing obstructive material from the vasculature, but it will be understood to have applicability as an access catheter for delivery and removal of any of a variety of diagnostics or therapeutic devices with or without aspiration.
  • The catheters disclosed herein may readily be adapted for use throughout the body wherever it may be desirable to distally advance a low profile high flexibility catheter into a variety of type of vasculature, such as small or large vasculature and/or tortuous or relatively straight vasculature. For example, catheter shafts in accordance with any embodiment described herein may be dimensioned for use throughout the neurovascular, coronary and peripheral vasculature, the gastrointestinal tract, the urethra, ureters, Fallopian tubes and other lumens and potential lumens, as well. The catheter shaft construction of any embodiment herein may also be used to provide minimally invasive percutaneous tissue access, such as for diagnostic or therapeutic access to a solid tissue target (e.g., breast or liver or brain biopsy or tissue excision), delivery of laparoscopic tools or access to bones such as the spine for delivery of screws, bone cement or other tools or implants.
  • Catheter 12 will have a length and diameter suitable for the intended access point and target location. In one example, referring to FIG. 1 , the catheter 12 may have an effective length from the distal end of manifold or hub 22 to distal tip 18 generally no more than about 230 cm, no more than about 210 cm, no more than about 180 cm, or no more than about 160 cm. and typically from about 50 cm to about 150 cm, from about 90 cm to about 130 cm, or from about 105 cm to about 115 cm. The outer diameter of the catheter 10 may be from about 0.035 inches to about 0.15 inches, from about 0.09 inches to about 0.13 inches, and may be lower in a distal segment than in a proximal segment.
  • The inner diameter of the catheter 12 in a single central lumen embodiment may be greater than or equal to about 0.1 inches, greater than or equal to about 0.088 inches, or greater than or equal to about 0.08 inches, or greater than or equal to about 0.06. The inner diameter of the catheter 12 in a single central lumen embodiment may be less than about 0.20 inches or 0.15 inches, or less than or equal to about 0.11 inches, less than or equal to about 0.1 inches, less than or equal to about 0.088 inches, or less than or equal to about 0.07 inches, and often no more than about 0.095 inches.
  • In the illustrated embodiment, the catheter 12 is releasably connectable to a flow control module 28 by way of a complementary connector module 30. Connector module 30 provides a releasable connection to complementary catheter connector 22 and may include a side port 32 for releasable connection to tubing 34 which may lead to a valve 36. Connector module 30 may additionally comprise a hemostasis valve configured to receive another device such as a guidewire or thrombus engagement tool, discussed below.
  • Valve 36 may selectively place tubing 34 into communication with side port 37 or the flow control module 28 discussed in greater detail below. Side port 37 may be placed into communication with a source of media such as saline, contrast solution or medication, or a manifold 38 which can provide selective communication with each. The use of valve 36 allows infusion of a desired media without detaching the tubing 34 from the connector module 30.
  • Referring to FIGS. 2 and 3 , the flow control module 28 is in communication with the valve 36 by way of a distal tube 44. Flow control module 28 is in communication with the selector valve 49 by way of a proximal tube 46. This establishes a flow path between the distal port 24 through the catheter 12 through the various tubing and flow control module 28 to the pump assembly 42. In an alternate implementation of the invention, the flow control module 28 may be integrally formed within the hub of thrombectomy catheter 12 to which the catheter 12 may be removably or non-removably attached or within the connector module 30. In some instances, a manually actuated aspiration device (e.g., a syringe) may be used in addition to, or as an alternative to, an aspiration pump assembly 42 to permit a user to manually apply aspiration through the vacuum line. It will be understood by one having skill in the art that a manually actuated aspiration device may be in in addition to, or as an alternative to, the pump assembly described in any embodiment herein.
  • Flow control module 28 may include a flow regulator such as an on-off control for regulating flow through the flow path between the catheter 12 and pump 42. The flow regulator is configured to provide a reversible restriction in the flow path, such as by an expandable or contractible iris, a ball valve or other rotary core valve, leaf valve, a pinch tubing, or others known in the art.
  • In one implementation, the flow regulator comprises a collapsible portion 29 of the tubular wall defining the flow path, such as a section of polymeric tubing. An actuator 31 positioned adjacent the tubing is movable in response to a control such as a push button or toggle switch 48 between a first position where it compresses the tubing, thereby completely restricting flow, and a second position where it has moved away from the tubing, allowing the tubing to resume its full inside diameter and allow fluid flow. The actuator 31 may be spring biased or have another default driver in the direction of the first (restricted) position, and only movable into the second (open) position in the presence of an affirmative mechanical force or release of a constraint allowing the flow path to open. Upon removal of the momentary “on” command, the actuator 31 automatically resumes the first position, obstructing flow.
  • The actuator 31 may be driven by a mechanical control such as a lever or rotatable knob, or an electrically driven system such as a solenoid, operated by any of a variety of buttons, levers, triggers, foot pedals or other switches known in the art, depending upon the desired functionality.
  • The flow control module 28 may contain a filter chamber 33 for example, which is in communication with the vacuum canister 58 on the pump assembly 42 by way of elongate aspiration tubing 40. The toggle switch 48 is in between the filter chamber 33 and the catheter 12. In a default off position of some embodiments, this allows the entire length of the aspiration tubing 40 and the filter chamber 33 to reach the same low pressure as the aspiration canister 58 on the pump 42.
  • Additional details of the filter assembly and related structures are illustrated in FIG. 3 . A filter assembly 35 includes an outer tubular sidewall 37 having a transparent window 39. In some implementations the entire tubular sidewall 37 can be a transparent window. The side wall 37 encloses a filter 41. The filter 41 includes a filter sidewall 43 defining an interior (downstream) chamber (not illustrated) for filtered blood.
  • Upon opening the flow path by activating the switch 48, blood and thrombus are drawn in the direction from catheter 12 via vacuum line 44 through a first filter aperture 45 and into the clot collection chamber 33. Any thrombus will be captured on the outside (upstream side) of filter 43. Blood is drawn through the filter 43 and proximal tubing 46 en route to the canister 58. In the illustrated example, the filter 43 is tubular however it may alternatively be planar or other shape depending upon the desired configuration.
  • The switch 48 may thereafter be closed to compress tubing 29 and isolate the catheter 12 from the vacuum source. A normally closed vent 47 may be momentarily opened, to permit intake of an optically transparent media such as saline or ambient air. This allows residual blood in the chamber 33 to be drawn through the filter 43 and aspirated out via proximal tubing 46, enabling visualization of any clot on the surface of the filter 43 through the window 39. The vent 47 may be manually actuated by a user and/or automatically actuated by the system. In some instances, a user may manually actuate the vent 47 through actuation of a button 62 located on the flow control module 28.
  • For example, the vent 67 may be normally closed, and then transitioned to an open configuration when the button 62 is being actuated (or vice versa). When in the open configuration, the vent 67 may expose the clot collection chamber 33 to an ambient environment. In some instances, exposure of the chamber 33 to the ambient environment allowing intake of air and acceleration of blood flow through the clot collection chamber 33 and towards the proximal tubing. Increased acceleration of blood flow due to vent 47 actuation may facilitate visualization of the clot by displacing the amount of blood or other fluids from the optical path between the window and the filter and/or decrease the amount of time required for the physician to accurately identify the clot in the chamber 33. The valved vent also allows the physician to deliver pulsatile negative pressure waves at the distal opening 24.
  • In the illustrated embodiment, the flow control module 28 comprises a proximal housing 31 and a distal housing 29 separated by the transparent tubular sidewall 35. The tubular sidewall 35 and the filter 43 are carried by the proximal housing 31. Housing 29 and tubular sidewall 35 may be joined at a releasable connection 33 that, in some instances, includes a gasket 59 to form a sealed connection. Complementary surface structures (e.g., inclined corresponding grooves and pins or flanges) may permit rapid attachment and detachment. For example, the proximal housing 31 and the distal housing 29 may be rotated relative to each other (e.g., by relative rotation across the gasket) to disconnect the housings from each other.
  • The filter 43 may be attached to any one of the distal housing 29 or the proximal housing 31 upon disconnection of the housings. The tubular sidewall 35 may be attached to either one of the distal housing 29 and/or the proximal housing 31 such that, upon disconnection, the tubular sidewall 35 may remain attached to one of the housings 29, 31. Upon detaching and separating the proximal housing 31 from the distal housing 29, the tubular sidewall 35 may be configured to remain around the filter 43 or may be configured to be removed from over the filter 43. In either instance, disconnection of the housings 29, 31 from each other can expose the filter 43 and allow a clot to be easily accessed and removed.
  • The interior surface of the clot collection container 33 may comprise a coating to provide one or more of a variety of properties to the clot collection containers 33. In some instances, the coating may be configured to enhance visualization through at least a portion of the clot collection container 33 (such as the transparent window 39). The coating may be configured to inhibit blood accumulation or increase blood repellant properties. In some instances, the clot collection container 33 may comprise a coating to inhibit foam formation during an aspiration procedure. The coatings may be located at least partially along an interior surface of the tubular sidewall 35 and/or the clot collection container 33 or along an entire interior surface of the tubular sidewall 35 and/or the clot collection container 33. In some instance, the coating is located along an interior surface of the transparent window 39. The coating can be both hydrophobic and oleophobic. In some instances, the coating may have some hydrophilic features on a portion of the polymer to increase oleophobic properties.
  • Aspiration pump assembly 42 may be releasably placed into communication with flow control module 28 such as by a luer connection between selector valve 45 and tubing 40. Aspiration pump assembly 42 may include a vacuum pump 50, and may also include a vacuum gauge 51, and an optional pressure adjustment control 54. The vacuum gauge 51 is in fluid communication with the vacuum pump and indicates the vacuum pressure generated by the pump. The pressure adjustment control 54 allows the user to set to a specific vacuum pressure. Power button 56 activates the pump 50.
  • The vacuum canister 58 may be provided with a vent 53 to atmosphere, opened or closed by a valve. In one implementation the valve is normally closed to permit vacuum in the canister to reach a desired low pressure. The valve may be momentarily opened as desired to permit introduction of air and reduction of the vacuum, such as to reduce foaming within the vacuum canister 58.
  • The vent may function to reduce foaming and increase visibility within the canister. In some instances, the vent 53 comprises a permanently opened vent such as in a lid or side wall of the vacuum canister. The vent may comprise an aperture formed through the lid or side wall having a diameter of no more than about 0.5 mm or 0.25 mm and may be a laser cut hole through a metal sheet which may be in the form of a disc carried by the lid.
  • In addition to or as an alternative to the vent, the inside surface of the canister 58 may be provided with a coating of one or more materials to inhibit foaming of blood under vacuum. The coatings may be located at least partially along or entirely along an interior surface of the vacuum canister 58. The coating can be both hydrophobic and oleophobic. In some instances, the coating may have some hydrophilic features on a portion of the polymer to increase oleophobic properties.
  • Any of a variety of controls may be utilized to operate the various pump functions, including switches, buttons, levers, rotatable knobs, and others which will be apparent to those of skill in the art in view of the disclosure herein. Aspiration pump 50 may alternatively be a manually activated pump such as a syringe.
  • In some applications, it may be desirable to provide a non occlusive restriction of flow between the vacuum canister 58 and the flow control module 28. A flow restrictor may be coupled such as by luer connectors in series with the vacuum line 40. In one implementation the flow restrictors enables toggling between a low flow and a high flow configuration. The flow restrictors may comprise a variable restrictor that may be adjusted by a user. This may be accomplished by selectively diverting flow between a relatively smaller diameter and larger diameter aperture, a variable diameter aperture, or other flow regulators such as any of those disclosed in the United States patent publication No. 2021/0315597 to Buck, et al, entitled Aspiration System with Accelerated Response, the disclosure of which is hereby incorporated in its entirety herein.
  • In one particular implementation, a rotatable drum is provided with a first transverse flow path having a first diameter. The drum is rotatable within a housing having an inlet port and an outlet port. The drum may be rotated to place the inlet port into fluid communication with the outlet port through the first flow path. A second flow path having a second, different diameter also extends transversely through the drum, rotationally offset from the first flow path. The drum may be rotated to place the inlet port into communication with the outlet port through the second flow path, thereby providing a flow rate through the drum different from the flow rate provided by the first flow path.
  • The filter chamber 33 on the flow control module 28 or on the connector module 30 is spaced apart from the remote vacuum pump 42 and vacuum canister 58 to provide enhanced aspiration performance. Conventional aspiration pumps and filters are intended to be placed outside of the sterile field and may be far enough away from the patient to require a length of aspiration tubing 40 between the pump assembly 42 and the catheter 12 to be at least about 50 inches or about 100 inches or more. For example, the tubing 40 may be about 102 inches.
  • The pump typically includes an aspiration canister 58 for blood collection. When aspiration is desired in a prior art system, a valve is opened to place the low pressure canister 58 in communication with the catheter 12 by way of the aspiration tubing 40, to aspirate material from the patient. But the length of the aspiration tubing extending from inside to outside of the sterile field operates as a flow restrictor, causing a delay between the time of activating the vacuum button on the pump assembly 42 and actual application of suction to the clot at the distal end of the catheter.
  • In the illustrated implementation, the only flow restriction between a source of vacuum (filter chamber 33) and the patient is the relatively short aspiration pathway between the on/off valve in the handpiece actuated by toggle switch 48 and the distal end 18 of the catheter. When the aspiration control 48 is activated to open the flow path, the flow restriction and enclosed volume on the patient side of the filter chamber 33 is low relative to the flow restriction and enclosed volume through aspiration tubing 40 on the pump side of the filter chamber 33.
  • This dual chamber configuration produces a rapid spike in negative pressure experienced at the distal end 18 of the catheter 12 upon activation of the aspiration control 48, and rapid filling of the chamber 33. The response time between activating the aspiration control 48 and realizing suction actually experienced at the clot is significantly faster and allows significantly higher initial flow than the response time realized in a conventional system having only a vacuum chamber 58 located at the pump assembly 42 outside of the sterile field.
  • The spike of negative pressure experienced at the distal end of the catheter will fade as pressure equilibrium is reached between the filter chamber 33 and canister 58. When the aspiration control 48 is closed, the vacuum pump 50 will gradually bring the pressure in the filter chamber 33 back down to the level in the vacuum canister 58 at the pump.
  • A simplified fluid flow diagram is illustrated in FIG. 4 , and a qualitative flow rate diagram is illustrated in FIG. 5 . The flow restriction between chamber 33 and the distal end 18 of catheter 12 is small relative to the flow restriction between the vacuum canister 58 and the vacuum chamber 33. This allows a negative pressure peak experienced at distal end 18 almost instantaneously upon activation of vacuum switch 48. The flow rate of material into the catheter 12 rapidly reaches a peak and subsides as vacuum chamber 33 fills with aspirated material. The vacuum in chamber 33 declines to a minimum, and slowly recharges by the large vacuum chamber 58 and associated pump through tubing 40 when the toggle switch 48 is moved into the closed position. In some instances of use, a clinician may choose to close the vacuum switch 48 at or shortly following the maximum flow rate, just giving a short burst or series of bursts of pulsatile vacuum to facilitate spiration of thrombus into the catheter 12. In use, a similar effect may be established by utilizing the vent 47. The vacuum in chamber 33 may decline to a minimum as the button 62 is actuated such that the vent is opened. Thereafter, the vacuum chamber 33 may slowly recharge by the large vacuum chamber 58 and associated pump through tubing 40 when the button 62 and vent 47 are moved into the closed position. In some instances of use, a clinician may choose to open the vent 47 at or shortly following the maximum flow rate, just giving a short burst or series of bursts of pulsatile vacuum to facilitate spiration of thrombus into the catheter 12.
  • If the application of vacuum is not able to aspirate the clot into the catheter, an elongate flexible thrombus engagement tool may be advanced through the aspiration catheter, to facilitate retrieval of the clot. The thrombus engagement tool may comprise an elongate flexible shaft having a proximal hand piece such as a knob configured to be rotated by hand. The distal end carries a clot engagement tip which may include one or more radially outwardly extending engagement structures such as a helical thread.
  • Referring to FIGS. 6A-6C, a thrombus engagement tool 80 may comprise an elongate flexible shaft 82 having a proximal end 84 and a distal end 86. A proximal hand piece such as a torquing handle 88 may be configured to be rotated by hand. Distal end 86 carries a clot engagement tip 90 which may include one or more radially outwardly extending structures such as a helical thread 92. The handle 88 may have an indicium of rotational direction such as a printed or molded arrow 94 which indicates the direction to rotate the handle 88 in order for the helical thread 92 to engage clot.
  • Referring to FIG. 6B, the distal tip 90 includes a helical thread 92 extending between a distal thread end 96 and a proximal thread end 94 and supported by flexible shaft 98. The axial length of the distal tip 90 is at least about 5 mm or 10 mm or 15 mm or 20 mm and in some embodiments no more than about 30 mm or 20 mm measured along the flexible shaft 98. Preferably, the axial length will be within the range of from about 20 mm to about 25 mm.
  • The helical thread 92 wraps around the axis at least about 1 or 2 or 4 or more full revolutions, but in some embodiments no more than about 10 or no more than about 6 revolutions. Preferably, the thread 92 wraps around the axis within the range of from about 2.5 to about 4.5 revolutions. In some embodiments the axial length along the threaded portion of the tip is within the range of from about 5 to about 15 mm, and preferably within the range of from about 8 mm to about 12 mm.
  • The helical thread 92 on this implementation may have a constant pitch throughout its length. The pitch may be within the range of from about 5 to about 10 threads per inch depending upon desired performance. For example, the thread to thread spacing in the axial direction may be within the range of from about 2 mm to about 6 mm, preferably from about 3 mm to about 4 mm.
  • Alternatively, the thread may have multiple pitches (e.g. stepped or graduated) designed to engage, transport or grasp thrombus within the catheter lumen. A distal pitch may be less than a proximal pitch. The pitch may vary continuously along the length of the thread, or may step from a first, constant pitch in a proximal zone to a second, different pitch in a distal zone of the thread. The thread 92 may comprise a continuous single helical flange or may have a plurality of discontinuities to produce a plurality of teeth or serrations, arranged helically around the core wire.
  • The maximum OD of the thread 92 is preferably smaller than the diameter of a sliding fit within the intended catheter lumen, and may generally be at least about 0.015 inches or at least about 0.010 inches smaller than the catheter lumen ID. In some implementations, the max OD of the tip may be significantly less than the inside diameter of the catheter lumen to allow more space for the thrombus along the side of the tip but still create significant grasping force via lateral engagement of the helical threads with the thrombus.
  • In one implementation, the maximum helical thread diameter is about 0.110 inches, and the catheter lumen ID is about 0.275 inches (24 F) (a 0.165 inch gap between the helical threads and catheter wall). In another implementation, the maximum OD of the tip is within the range of from about 0.03 to about 0.06 inches within a catheter having a distal end ID within the range from about 0.068 inches to about 0.073 inches. This leaves a substantial tip bypass flow path.
  • In certain applications, the max OD of the tip is no more than about 35% or no more than about 40% or no more than about 60% of the ID of the corresponding catheter and may be within the range of from about 35% to about 55% of the catheter ID. In some instances, the max OD of the tip may slightly less than the ID of the corresponding catheter to provide a sliding fit within the intended catheter lumen. For example, the max OD of the tip may be no less than about 90% or no less than about 95% or no less than about 97% of the ID of the corresponding catheter.
  • Since this implementation of the thrombus engagement tool does not have any centering structures for the tip 90 or shaft 82, the tip 90 will normally be pushed to one side of the aspiration lumen. When a clot becomes lodged between the tip 90 and the opposing inside surface of the side wall of the catheter, manual manipulation such as rotation of the tip 90 can engage the clot like a worm gear and either grasp the clot (e.g., by pinning it against the opposing catheter sidewall) for retraction or facilitate freeing the blockage and aid in ingestion of the clot into the catheter. Manual manipulation may also include axial proximal and distal reciprocation along with rotation, during aspiration, which can facilitate ingestion of the clot into the catheter.
  • Thus, an unimpeded flow path is created in the annular (if the tip were centered) space between the maximum OD of the tip, and the ID of the catheter lumen. This annular flow path cooperates with the vacuum and helical tip to grab and pull obstructive material into the catheter under rotation and vacuum. The annular flow path is significantly greater than any flow path created by manufacturing tolerances in a tip configured to shear embolic material between the tip and the catheter wall.
  • Additional aspiration volume is obtained as a result of the helical channel defined between each two adjacent threads of the tip. A cross sectional area of the helical flow path of a tip having a maximum OD in the range of from about 0.0400 to about 0.0406 inches will generally be at least about 0.0003 square inches, and in some embodiments at least about 0.00035 or at least about 0.000375 inches. The total aspiration flow path across the helical tip is therefore the sum of the helical flow path through the tip and the annular flow path defined between the OD of the tip and the ID of the catheter lumen.
  • Aspiration occurs both through the helical channel formed between adjacent helical threads as well as around the outside of the tip such that the assembly is configured for engaging and capturing embolic material but not shearing it between a sharp edge of the thread and the inside wall of the catheter.
  • The distal advance segment 100 advantageously permits the thrombus engagement device 80 to at least partially move past the thrombus without “pushing” the thrombus in a distal direction as the tip 90 is advanced. This may inhibit the thrombus (or any particulate thereof) from passing downstream within the vessel during engagement of the device 80 with the thrombus.
  • In some instances, the distal advance segment 100 can comprise a continuation of the helical thread 92. For example, the distal advance segment 100 may comprise a threaded segment continuing from the helical thread 92. The threaded distal advance segment 100, in some instances, may maintain an outer diameter consistent with the remainder of the helical thread 92. The threaded distal advance segment 100, in some instances, may comprise a thread that tapers in a distal direction towards a smaller outer diameter relative to the remainder of the helical thread 92. For example, the helical thread 92 may comprise a proximal cylindrical segment and a distal tapered segment that extends along the distal advance segment 100.
  • The profile of the tip 90 in an end view along the axis of rotation may be circular and/or, in some instances, may vary to create a non circular pattern around the axis of rotation. For example, profile may comprise a helical pattern, such as an oval cross-section that rotates along the axis of rotation to create the helical profile. The tip as seen in an end elevational view thus may exhibit a major diameter and a minor diameter. The minor diameter may be no more than about 95% or 90% or 80% or 70% of the major diameter, depending upon desired performance. In the illustrated example, the outer edge 93 of the thread 92 lies along the surface of a cylinder.
  • In the illustrated implementation, an outer edge 93 of the thread 92 thus has a linear surface in the axial direction, substantially conforming to the surface of a cylinder. A distal side 95 of the thread 92 is inclined radially outwardly in a proximal direction. A proximal side 97 of the thread 92 also inclines radially outwardly in a proximal direction thereby defining a proximally facing undercut along the length of the thread.
  • Referring to FIGS. 6B and 6C, the illustrated tip 90 includes an atraumatic, tapered distal advance segment 100 extending between an atraumatic distal tip at 102 and a transition to the distal end 96 of the thread 92. Helical thread 92 extends proximally from the transition to a proximal end 94 of the helical thread 92. In some instances, a trailing segment 104 may extend between the proximal end 94 of the thread and the proximal end 106 of the tip.
  • The axial length of the distal advance segment 100 may be at least about 5 mm or at least about 8 mm or 9 mm and generally less than about 15 mm, and in some implementations is within the range of from about 8 mm to about 12 mm.
  • The outside diameter of the flexible shaft 82 is generally less than about 0.02 inches, or less than about 0.015 inches and, in one implementation, is about 0.008 inches. In some instances, the flexible shaft 82 may comprise a distal tapered section. The distal tapered section may advantageously increase tip flexibility and/or maximize aspiration. The outside diameter at the distal end of the distal tapered section of the flexible shaft 82 is generally less than about 0.01 inches, or less than about 0.008 inches and, in one implementation, is no more than about 0.006 inches.
  • The outside diameter of the advance segment 100 at distal tip 102 is generally less than about 0.024 inches, or less than about 0.020 inches and, in one implementation, is about 0.018 inches. The maximum outside diameter of the advance segment 100 and helical thread 92 may be within the range from about 0.020 to about 0.045 inches, and, in one implementation, is less than about 0.040 inches, such as about 0.035 inches. The advance segment, helical thread and trailing segment of the tip 90 may be molded as a single piece over the flexible shaft 82 using any of a variety of polymers known in the catheter arts.
  • Referring to FIG. 6C, a first radiopaque marker 110 may be carried on the flexible shaft 82 beneath the advance segment 100. A second radiopaque marker 112 may be carried on the flexible shaft 82 within the trailing segment 104. Each radiopaque marker may comprise a radiopaque tube or a coil of radiopaque wire such as a platinum iridium alloy wire having a diameter about 0.002 inches and positioned or wrapped around the flexible shaft 82 and soldered to the flexible shaft 82 to produce an RO sleeve or coil having an outside diameter of less than about 0.020 inches, such as about 0.012 inches. The radiopaque markers may also provide an axial interference fit between the flexible shaft 82 and the advance segment 100 and trailing segment 104 to resist core wire axial pull out from the tip 90 (tip detachment).
  • In certain implementations, the maximum OD of the thread 92 exceeds the maximum OD of the advance segment 100 by at least about 15% or 25% or 30% or more of the OD of the advance segment 100, to facilitate crossing the clot with the advance segment 100 and engaging the clot with the thread 92.
  • Depending upon the clinical application, it may be desirable to control the extent to which, if any, the distal tip 102 can extend beyond the distal end of the catheter 12. In certain implementations, the distal tip 102 may be permitted to extend at least about 2 cm or 3 cm and preferably as much as 4 to 8 cm beyond the catheter (such as to permit manual removal of engaged thrombus), but generally will be limited to extend no more than a preset distance such as 12 cm or 8 cm or 5 cm beyond the catheter (e.g., within the range of from about 5 cm to about 10 cm) depending upon desired performance.
  • Distal advance of the tip 102 may be limited by providing mechanical interference at the desired distal limit of travel. In one implementation, a distal stop surface 114 which may be on the handle 88 (see FIG. 6A) provides an interference engagement with a complementary proximal surface (e.g. proximal surface 33 on connector module 30 or on the catheter hub) carried by the aspiration catheter through which the thrombus engagement tool 80 is advanced. Alternatively, a distal engagement surface can be carried anywhere along the length of the thrombus engagement tool 80, for sliding rotational engagement with a complementary proximally facing stop surface carried by the catheter. Additional details of distal limit configurations may be found in U.S. patent application Ser. No. 17/036,258 filed Sep. 29, 2020 and entitled Embolic Retrieval Catheter, which is hereby expressly incorporated in its entirety herein by reference.
  • The limit on distal advance of the helical tip may enable a first configuration in which the distal tip may be advanced through the catheter and placed at a first position approximately aligned with the distal end of the catheter 12. The physician may then advance the tip to a second position extending beyond the distal end of the catheter such as for inspection and cleaning purposes.
  • A position indicator 85 may be carried by the flexible shaft 82 spaced apart from the distal surface 114 by a distance corresponding to the maximum length of the thrombus engagement tool intended to extend beyond the distal end of the catheter. When the position indicator 85 is located at a corresponding reference point relative to the catheter hub, the distal tip 102 may be positioned approximately at the distal end of the catheter. This way the physician will know that any further distal advance of the thrombus engagement tool will be extending beyond the distal end of the catheter. The maximum extension will be reached when the distal surface 114 contacts the catheter hub.
  • The position indicator 85 may comprise any of a variety of visual or tactile features, such as a color change or a colored band surrounding the flexible shaft 82. In a visual indicium implementation (color change or circumferential line) the distal tip 102 may be positioned approximately at the distal end of the catheter when the indicator is visible just outside of the hub. In another implementation, the position indicator 85 comprises the transition between the distal end of the hypo tube 87 and the underlying flexible shaft 82. This provides haptic feedback as the indicator (step in outside diameter) encounters and passes through the valve of the RHV. The hypo tube 87 additionally functions as a strain relief or anti buckling feature and may have an axial length within the range of from about 3 cm to about 15 cm and in some implementations within the range of from about 5 cm to about 9 cm.
  • Referring to FIG. 7A, there is illustrated one example of an outer jacket segment stacking pattern for a progressive flexibility catheter of the type discussed in connection with FIG. 1 . A distal segment 120 may have a length within the range of about 1-3 cm and a durometer of less than about 35 D or 30 D. An adjacent proximal segment 122 may have a length within the range of about 4-6 cm, and a durometer of less than about 35 D or 30 D. An adjacent proximal segment 124 may have a length within the range of about 4-6 cm, and a durometer of about 35 D or less. An adjacent proximal segment 126 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 35 D to about 45 D (e.g., 40 D). An adjacent proximal segment 128 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 50 D to about 60 D (e.g., about 55 D). An adjacent proximal segment 130 may have a length within the range of about 1-3 cm, and a durometer within the range of from about 35 D to about 50 D to about 60 D (e.g., about 55 D). An adjacent proximal segment 132 may have a length within the range of about 1-3 cm, and a durometer of at least about 60 D and typically less than about 75 D. More proximal segments may have a durometer of at least about 65 D or 70 D.
  • The distal most two or three segments may comprise a material such as Tecothane and/or PEBAX, and more proximal segments may comprise PEBAX or other catheter jacket materials known in the art. At least three or five or seven or nine or more discrete segments may be utilized, having a change in durometer between highest and lowest along the length of the catheter shaft of at least about 10 D, preferably at least about 20 D and in some implementations at least about 30 D or 40 D or more.
  • FIGS. 7A-7E illustrate various embodiments of catheters, at least some of which incorporate a plurality of catheter outer jacket segments with varying lengths and/or hardness for varying flexibility along the length of the catheter body. It will be understood that any of the features shown or described in connection with any of the catheters of FIGS. 7A-7E can be used with any of the embodiments described and/or contemplated herein. It will also be understood that any of the features described and/or contemplated in connection with any of the embodiments disclosed herein can be utilized with any of the catheters described in connection with FIGS. 7A-7E. As with all embodiments in this specification, any feature, structure, material, method, or step that is described and/or illustrated in the embodiments of FIGS. 7A-7E can be used with or instead of any feature, structure, material, method, or step that is described and/or illustrated in any other embodiment of this specification.
  • FIGS. 7B-7E illustrates embodiments of various catheters 400, 500, 600. The catheters 400, 500, 600 may include differing properties (e.g., such as length, diameter, etc.) such that one or more of the catheters 400, 500, 600 may interact with any of the other catheters 400, 500, 600 in any various manner. In one instance, as illustrated by FIG. 7E, each of catheters 400, 500, 600 may comprise a different size to permit the catheters 400, 500, 600 to at least partially extend through one or more of the other catheters 400, 500, 600. The lengths of each of the catheters 400, 500, 600 may vary so as to permit a smaller catheter to pass through and extend distally beyond a larger catheter in a telescoping manner.
  • For instance, catheter 500 may be configured to pass through and extend beyond catheter 400. By way of further example, catheter 600 may be configured to pass through and extend beyond at least one of catheter 500 or catheter 400 in a telescoping manner. While FIG. 7E illustrates an example telescoping catheter stack including each of catheters 400, 500, 600, it will be understood by one having skill in the art that any combination of catheters 400, 500, 600 may be utilized. For example, a system may incorporate the use of catheter 400 and catheter 500, the use of catheter 400 and catheter 600, or the use of catheter 500 and catheter 600.
  • Catheter 400 may comprise an 8 F catheter. In some instances, catheter 400 comprises a diameter larger than the diameter of any of the remaining catheters in a system. Additionally, or alternatively, catheter 400 may comprise an overall length shorter than the length of any of the remaining catheters in a system. In this manner, catheter 400 may comprise the outermost catheter in a telescoping system and may permit any of the remaining catheters 500, 600 to extend distally beyond a distal end of catheter 400. The catheter 400 may comprise a length between about 35 cm and about 105 cm or, a length between about 45 cm and about 95 cm. The catheter 400 may comprise a length of from about 50 cm to about 90 cm. The catheter 400 may comprise a length at least shorter than any catheter with a diameter smaller than catheter 400 (e.g., such as catheter 500, 600).
  • Catheter 500 may comprise a 6 F catheter. In some instances, catheter 500 comprises a diameter in between the diameters of the remaining catheters in a system. Additionally, or alternatively, catheter 500 may comprise a length in between the lengths of the remaining catheters in the system. In this manner, catheter 500 may comprise a middle catheter in a telescoping system and may be configured to pass through and extend beyond one or more catheters while also permitting another catheter to extend distally beyond a distal end of catheter 500. The catheter 500 may comprise a length between about 120 cm and about 155 cm or between about 130 cm and about 145 cm. The catheter 500 may comprise a length of about from 135 cm to about 137 cm. The catheter 500 may comprise a length at least longer than any catheter with a diameter larger than catheter 500 (e.g., such as catheter 400). The catheter 500 may comprise a length at least shorter than any catheter with a diameter smaller than catheter 500 (e.g., such as catheter 600).
  • Catheter 600 may comprise a 5 F catheter. In some instances, catheter 600 comprises a diameter smaller than the diameters of the remaining catheters in a system. Additionally, or alternatively, catheter 600 may comprise a length longer than the lengths of any of the remaining catheters in the system. In this manner, catheter 600 may comprise an innermost catheter in a telescoping system and may be configured to pass through and extend beyond one or more of the other catheters. The catheter 600 may comprise a length between about 145 cm and about 175 cm or between about 155 cm and about 165 cm. The catheter 600 may comprise a length of about 160 cm. The catheter 600 may comprise a length at least longer than any catheter with a diameter larger than catheter 600 (e.g., such as catheter 400, 500).
  • One or more of the catheters 400, 500, 600 may include a coil and/or a braid in the sidewall extending through at least a portion of the sidewall of the catheter 400, 500, 600, as discussed herein. The braid may have properties that vary along the length of each catheter 400, 500, 600 to generate a variety of desired characteristics of the catheter 400, 500, 600. For example, a wire density of the braid may vary gradually or in steps along the length of the catheter 400, 500, 600 and/or vary between discrete sections of the catheter 400, 500, 600.
  • Catheter 600 may comprise one or more discrete sections with braid properties varying between one or more of the sections. In some instances, catheter 600 may comprise a first section, a second (e.g., intermediate) section, and a third distal section. However, it will be understood by one having skill in the art that the catheter 600 may comprise a fewer number of sections (e.g., one section or two sections) or a greater number of sections (e.g., four sections or greater). A sidewall property, such as a length and/or a wire density the braid along a respective section, may vary between the sections. In some instances, a pics per inch (ppi) count of the braid in connection with the wire density of the braid may gradually transition between one or more of the catheter sections. For example, the ppi count of the braid, in some instances, may remain generally consistent through a length of the first section and a length of the third section but gradually transition along the length of the second, intermediate section.
  • The first section of catheter 600 may have a length of at least about 20 cm. For example, the length of the first section may be from about 25 cm to about 35 cm or, in one example, about 30 cm. The braid through the first section may have a wire density of at least about 100 ppi. For example, the braid through the first section may have wire density of at least about 120 ppi or, more specifically, about 130 ppi.
  • The third section of catheter 600 may have a length of at least about 100 cm. For example, the length of the third section may be from about 120 cm to about 140 cm or, more specifically, about 130 cm. The braid through the third section may have a wire density of no greater than about 85 ppi. For example, the braid through the third section may have wire density from about 70 ppi to about 80 ppi.
  • The second section of catheter 600 may be an intermediate section between the first section and the third section. The second section may have a length of at least about 3 cm. In some instances, the second section may have a length no greater than about 20 cm or, more specifically, no greater than about 10 cm. For example, the length of the second section may be about 5 cm. The braid through the second section may have a wire density of no greater than the wire density of the first section and no less than the wire density of the third section.
  • Catheter 500 may comprise one or more discrete sections with braid properties varying between one or more of the sections. In some instances, catheter 500 may comprise a first section, a second (e.g., intermediate) section, and a third section. However, it will be understood by one having skill in the art that the catheter may comprise a fewer number of sections (e.g., one section or two sections) or a greater number of sections (e.g., four sections or greater). A sidewall property, such as a length and/or a wire density the braid along a respective section, may vary between the sections. In some instances, a ppi count of the braid in connection with the wire density of the braid may gradually transition between one or more of the catheter sections. For example, the ppi count of the braid, in some instances, may remain generally consistent through a length of the first section and a length of the third section but gradually transition along the length of the second, intermediate section.
  • The first section of catheter 500 may have a length of at least about 20 cm. For example, the length of the first section may be from about 25 cm to about 35 cm or, in one example, about 30 cm. The braid through the first section may have a wire density of at least about 100 ppi. For example, the braid through the first section may have wire density of at least about 120 ppi or, in one example, about 130 ppi.
  • The third section of catheter 500 may have a length of at least about 80 cm. For example, the length of the third section may be from about 100 cm to about 120 cm or, in one example, about 105 cm. The braid through the third section may have a wire density of no greater than about 100 ppi. For example, the braid through the third section may have wire density from about 80 ppi to about 90 ppi.
  • The second section of catheter 600 may be an intermediate section between the first section and the third section. The second section may have a length of at least about 3 cm. In some instances, the second section may have a length no greater than about 20 cm or, more specifically, no greater than about 10 cm. For example, the length of the second section may be about 5 cm. The braid through the second section may have a wire density of no greater than the wire density of the first section and no less than the wire density of the third section.
  • Catheter 400 may comprise one or more discrete sections with braid properties varying between one or more of the sections. In some instances, catheter 400 may comprise one section. However, it will be understood by one having skill in the art that the catheter 400 may comprise a greater number of sections (e.g., two sections, three sections, four sections, or greater). For example, catheter 400 may comprise three sections as described in connection with either one or catheter 500 or catheter 600. A sidewall property, such as a length and/or a wire density the braid, may vary along catheter 400. In some instances, a ppi count of the braid in connection with the wire density of the braid may gradually transition to increasing flexibility in a distal direction along catheter 400. The section of catheter 400 may have a length of at least about 40 cm. For example, the length of the section may be from about 50 cm to about 60 cm or, in one example, about 55 cm. The braid through the section may have a wire density of at least about 80 ppi. For example, the braid through the section may have wire density of at least about 90 ppi.
  • The braid, in some instances, may extend along an entire length of the catheter sidewall. In some instance, a junction between the braid and a coil is not present in the catheter and/or the catheter sidewall does not incorporate a coil. It will be understood that this braid configuration may be applied to any catheter disclosed herein, including, but not limited to, catheters 400, 500, 600.
  • One or more of the catheters 400, 500, 600 may an outer jacket segment stacking pattern for a progressive flexibility catheter. The outer jacket segment may each have properties that vary along the length of each catheter 400, 500, 600 to generate a variety of desired characteristics of the catheter 400, 500, 600. For example, each segment of the outer jacket may have a corresponding Shore D hardness to vary the flexibility along the length of the catheter 400, 500, 600. The outer jacket segments may be made of a thermoplastic elastomer made of flexible polyether and rigid polyamide (e.g., Pebax®). In some instances, each segment of the outer jacket may comprise a different variation of the thermoplastic elastomer to alter flexiblity.
  • Catheter 600 may comprise a plurality of discrete segments of the outer jacket with varying flexibility between one or more of the segments. In some instances, catheter 600 may comprise a plurality of segments. A sidewall property, such as Shore D hardness and/or flexibility, may vary between the segments. In some instances, a Shore D hardness of the outer jacket segments may gradually transition from higher at proximal end segment of the outer jacket to lower at a distal end segment of the outer jacket.
  • The proximal end segment of the outer jacket of the catheter 600 may have a Shore D hardness of at least about 60. For example, the Shore D hardness of the proximal end segment may be from about 70 to about 80 or, more specifically, at least about 75.
  • The distal end segment of the outer jacket of the catheter 600 may have a Shore D hardness of at most about 40. For example, the Shore D hardness of the distal end segment may be from about 30 to about 20 or, more specifically, no more than about 27.
  • A plurality of the intermediate segments between the distal end segment and the proximal end segment may each comprise a variety of Shore D hardness. In some instances, each segment decreases in a Shore D hardness in a distal direction and may have a smaller Shore D hardness than a proximally adjacent segment. For example, the Shore D hardness of a first segment may be from about 30 to about 50 or, more specifically, about 40. The first segment, in some instances, may be between positioned about 120 cm to about 160 cm or, more specifically, about 140 cm away from a distal end face of the catheter 600. By way of another example, the Shore D hardness of the second segment may be from about 50 to about 70 or, more specifically, about 65. The second segment, in some instances, may be between positioned about 220 cm to about 260 cm or, more specifically, about 240 cm away from a distal end face of the catheter 600.
  • Catheter 500 may comprise a plurality of discrete segments of the outer jacket with varying flexibility between one or more of the segments. In some instances, catheter may comprise a plurality of segments. A sidewall property, such as Shore D hardness and/or flexibility, may vary between the segments. In some instances, a Shore D hardness of the outer jacket segments may gradually transition from higher at a proximal end segment of the outer jacket to lower at a distal end segment of the outer jacket.
  • The proximal end segment of the outer jacket of the catheter 500 may have a Shore D hardness of at least about 60. For example, the Shore D hardness of the proximal end segment may be from about 70 to about 80 or, more specifically, at least about 75.
  • The distal end segment of the outer jacket of the catheter 500 may have a Shore D hardness of at most about 40. For example, the Shore D hardness of the distal end segment may be from about 30 to about 20 or, more specifically, no more than about 27.
  • a plurality of the intermediate segments between the distal end segment and the proximal end segment may each comprise a variety of Shore D hardness. In some instances, each segment decreases in a Shore D hardness in a distal direction and may have a smaller Shore D hardness than a proximally adjacent segment. For example, the Shore D hardness of a first segment may be from about 30 to about 50 or, more specifically, about 40. The first segment, in some instances, may be between positioned about 70 cm to about 110 cm or, more specifically, about 90 cm away from a distal end face of the catheter 500. By way of another example, the Shore D hardness of a second segment may be from about 50 to about 70 or, more specifically, about 65. The second segment, in some instances, may be between positioned about 160 cm to about 200 cm or, more specifically, about 180 cm away from a distal end face of the catheter 500.
  • Catheter 400 may comprise a plurality of discrete segments of the outer jacket with varying flexibility between one or more of the segments. In some instances, catheter 400 may comprise a plurality of segments. A sidewall property, such as Shore D hardness and/or flexibility, may vary between the segments. In some instances, a Shore D hardness of the outer jacket segments may gradually transition from a proximal end segment of the outer jacket to a distal end segment of the outer jacket.
  • The proximal end segment of the outer jacket of the catheter 400 may have a Shore D hardness of at least about 60. For example, the Shore D hardness of the proximal end segment may be from about 70 to about 80 or, more specifically, about 75.
  • The distal end segment of the outer jacket of the catheter 400 may have a Shore D hardness of at most about 40. For example, the Shore D hardness of the distal end segment may be from about 30 to about 20 or, more specifically, no more than about 27.
  • A plurality of the intermediate segments between the distal end segment and the proximal end segment may each comprise a variety of Shore D hardness. In some instances, each segment decreases in a Shore D hardness in a distal direction and may have a smaller Shore D hardness than a proximally adjacent segment. For example, the Shore D hardness of a first segment may be from about 30 to about 50 or, more specifically, about 40. A first segment, in some instances, may be between positioned about 65 cm to about 105 cm or, more specifically, about 85 cm away from a distal end face of the catheter 400. By way of another example, the Shore D hardness of a second segment may be from about 40 to about 65 or, more specifically, about 55. The second segment, in some instances, may be between positioned about 105 cm to about 145 cm or, more specifically, about 125 cm away from a distal end face of the catheter 400. By way of further example, the Shore D hardness of a third segment may be from about 60 to about 80 or, more specifically, about 70. The third segment, in some instances, may be between positioned about 140 cm to about 180 cm or, more specifically, about 160 cm away from a distal end face of the catheter 400.
  • Catheter 400 may comprise a tubular body length of about 90+/−5 cm. In some instances, catheter 400 may comprise a tubular body length of about 50+/−5 cm. A number of the plurality of discrete segments of the outer jacket of catheter 400 may vary with respect to the tubular body length of catheter 400. A length of the respective segments of the plurality of discrete segments of the outer jacket of catheter 400 may vary with respect to the tubular body length of catheter 400.
  • A coating, in some instances, may be located along an outer diameter of a distal portion of the catheter sidewall. The coating can be configured to decrease frictional resistance of the distal portion of the catheter sidewall with any adjacent structure (e.g., a vessel wall). In some instances, the coating increases the lubriciousness of the catheter distal portion outer sidewall. The coating may advantageously reduce friction on the distal end of the catheter going through tortuous vasculature. This may facilitate advancement and rotation of the catheter distal end, particularly in situations where the catheter contains an increased flexibility along a distal end portion of the catheter. The coating may extend in a proximal direction from, or proximate to, a catheter distal end face. The coating may extend at least about 20 cm in a proximal direction. In some instances, the coating extends no farther than about 50 cm from the catheter distal end face. For example, the coating may extend for a length of about 25 cm to about 35 cm or, more specifically, about 30 cm from a catheter distal end face. It will be understood that the coating may be applied to any catheter disclosed herein, including, but not limited to, catheters 400, 500, 600.
  • FIG. 8 illustrates a cross section through the sidewall of a distal portion of a single lumen catheter. An internal support layer may comprise either a coil or braid. In a coil implementation, adjacent loops or filars of the coil 140 may have a constant pitch throughout the length of the coil or may be closely tightly wound in a proximal zone with a distal section having looser spacing between adjacent loops. In an embodiment having a coil section 140 with an axial length of at least between about 20% and about 30% of the overall catheter length, (e.g., 28 cm coil length in a 110 cm catheter shaft 16), at least the distal about 1 cm or about 2 cm or about 3 cm or about 4 cm of the coil will have a spacing that is at least about 130%, and in some implementations at least about 150% or more than the spacing in the proximal coil section. In a 110 cm catheter shaft 3000 having a Nitinol coil, the spacing in the proximal coil may be about 0.004 inches and in the distal section may be at least about 0.006 inches or about 0.007 inches or more.
  • The distal end of the coil or braid 140 can be spaced proximally from the distal end of the inner liner 142, for example, to provide room for an annular radiopaque marker 144. The coil or braid 140 may be set back proximally from the distal end, in some embodiments, by approximately no more than about 1 cm, about 2 cm, or about 3 cm. In one embodiment, the distal end of the catheter 12 is provided with a beveled (inclined) distal surface 146 residing on a plane having an angle of at least about 10 degrees or about 20 degrees and in one embodiment about 30 degrees with respect to a longitudinal axis of the catheter 10. At least a distally facing edge of the annular radiopaque marker 144 may be an ellipse, residing on a plane which is inclined with respect to the longitudinal axis to complement the bevel angle of the distal surface 146. Additional details are described in connection with FIG. 9 below.
  • After applying a braid or braid and coil over tie layer 152 and/or over a liner, the distal braid or coil and the RO marker 144 are provided with an outer jacket 156 such as a polymer tube formed from a plurality of axially adjacent cylindrical segments to enclose the catheter body 16. The outer sleeve 156 may comprise any of a variety of materials, such as polyethylene, polyurethane, polyether block amide (e.g., PEBAX™), nylon or others known in the art. Sufficient heat is applied to cause the polymer to flow into and embed the proximal braid and distal coil.
  • In one implementation, the outer jacket 156 is formed by sequentially advancing a plurality of short tubular segments 133, 132, 130, 128, 126, 124, 122, 120 concentrically over the catheter shaft subassembly, and applying heat to shrink the sections on to the catheter 12 and provide a smooth continuous outer tubular body. The foregoing segmented construction may extend along at least the most distal about 10 cm, and preferably at least about the most distal about 20 cm, about 25 cm, about 30 cm, about 35 cm, about 40 cm, or more than about 40 cm of the catheter body 10. The entire length of the outer jacket 156 may be formed from tubular segments and the length of the distal tubular segments may be shorter than the one or more tubular segments forming the proximal portion of the outer jacket 156 proximal to the junction between the braid 150 and coil 140 in order to provide proximal backup support and steeper transitions in flexibility toward the distal end of the catheter 12.
  • The durometer of the outer wall segments may decrease in a distal direction. For example, proximal segments such as 133 and 132, may have a durometer of at least about 60 D or about 70 D, with gradual decrease in durometer of successive segments in a distal direction to a durometer of no more than about 35 D or about 25 D or lower. A 25 cm section may have at least about 3 or about 5 or about 7 or more segments and the catheter 12 overall may have at least about 6 or about 8 or about 10 or more distinct flexibility zones. The distal 1 or 2 or 4 or more segments 122, 120, may have a smaller OD following shrinking than the more proximal segments 133-124 to produce a step down in OD for the finished catheter body 16. The length of a lower OD section 160 may be within the range of from about 3 cm to about 15 cm and, in some embodiments, is within the range of from about 5 cm to about 10 cm such as about 7 cm or about 8 cm and may be accomplished by providing the distal segments 122, 120 with a lower wall thickness.
  • In another embodiment, the most distal portion of the catheter 12 may comprise a durometer of less than approximately 35 D (e.g., 25 D) to form a highly flexible distal portion of the catheter and have a length between approximately 25 cm and approximately 35 cm. The distal portion may comprise one or more tubular segments of the same durometer (e.g., segment 120). A series of proximally adjacent tubular segments may form a transition region between a proximal stiffer portion of the catheter 12 and the distal highly flexible portion of the catheter. The series of tubular segments forming the transition region may have the same or substantially similar lengths, such as approximately 1 cm.
  • The relatively short length of each of the series of tubular segments may provide a steep drop in durometer over the transition region. For example, the transition region may have a proximal tubular segment 122 (proximally adjacent the distal portion) having a durometer of approximately 35 D. An adjacent proximal segment 124 may have a durometer of approximately 55 D. An adjacent proximal segment 126 may have a durometer of approximately 63 D. An adjacent proximal segment 128 may have a durometer of approximately 72 D.
  • More proximal segments may comprise a durometer or durometers greater than approximately 72 D and may extend to the proximal end of the catheter. For instance, a catheter segment may comprise a proximal portion greater than approximately 72 D between about 1 cm and about 3 cm. In some embodiments, the proximal portion may be about 2 cm long. In some embodiments, the most distal segments (e.g., 120, 122) may comprise PEBAX™ and more proximal segments may comprise a generally stiffer material, such as Vestamid®.
  • The inner diameter of the catheter 10 may be between approximately 0.06 and 0.08 inches, between approximately 0.065 and 0.075 inches, or between approximately 0.068 and 0.073 inches. In some embodiments, the inner diameter is approximately 0.071 inches.
  • In some embodiments, the distal most portion may step or taper to a decreased inner diameter such as under segments 122 and 120. The taper may occur approximately between the distal highly flexible portion and the transition region (e.g., over the most proximal portion of the distal highly flexible portion). The taper may be relatively gradual (e.g., occurring over approximately 10 or more cm) or may be relatively steep (e.g., occurring over less than approximately 5 cm). The inner diameter may taper to an inner diameter between about 0.03 and about 0.06 inches. For example, the inner diameter may be about 0.035 inches, about 0.045 inches, or about 0.055 inches at the distal end of the catheter 12. In some embodiments, the inner diameter may remain constant, at least over the catheter extension segment.
  • In some hybrid coil/braid embodiments, the coil 140 may extend proximally from a distal end of the catheter 12 along the highly flexible distal portion ending at or overlapping with the distal end of the braid 150. In other embodiments, the coil 140 may extend the entire length of the catheter 12. The braid 150, when present, may extend from about the transition 163 the proximal end of the coil 140 to the proximal end of the catheter 12.
  • Any of the catheters disclosed herein may be provided with an angled distal tip. Referring to FIG. 9 , distal catheter tip 18 comprises a tubular body 14 which includes an advance segment 200, and a marker band 144. An inner tubular liner 142 may extend throughout the length of the distal catheter tip and may comprise dip coated PTFE.
  • A reinforcing element 140 such as a braid and/or spring coil is embedded in an outer jacket which may extend the entire length of the catheter proximally of the radiopaque marker.
  • The advance segment 200 terminates distally in an angled face 146, to provide a leading side wall portion 202 having a length measured between the distal end 204 of the marker band 144 and a distal tip 206. A trailing side wall portion 208 of the advance segment 200, has an axial length in the illustrated embodiment of approximately equal to the axial length of the leading side wall portion 202 as measured at approximately 180 degrees around the catheter from the leading side wall portion 202. The leading side wall portion 202 may have an axial length within the range of from about 0.1 mm to about 5 mm and generally within the range of from about 1 to 3 mm. The trailing side wall portion 208 may be at least about 0.1 or 0.5 or 1 mm or 2 mm or more shorter than the axial length of the leading side wall portion 202, depending upon the desired performance.
  • The angled face 146 inclines at an angle A within the range of from about 45 degrees to about 80 degrees from the longitudinal axis of the catheter. For certain implementations, the angle is within the range of from about 50 degrees to about 70 degrees or within the range of from about 55 degrees to about 65 degrees from the longitudinal axis of the catheter. In one implementation, the angle A is about 60 degrees. One consequence of an angle A of less than 90 degrees is an elongation of a major axis of the area of the distal port which increases the surface area of the port and may enhance clot aspiration or clot retention. Compared to the surface area of the circular, transverse port (angle A is 90 degrees), the area of the angled port is generally at least about 105%, and no more than about 130%, in some implementations within the range of from about 110% and about 125% and in one example is about 115%.
  • In the illustrated embodiment, the axial length of the advance segment is substantially constant around the circumference of the catheter, so that the angled face 146 is approximately parallel to the distal surface 210 of the marker band 144. The marker band 144 has a proximal surface approximately transverse to the longitudinal axis of the catheter, producing a marker band 144 having a right trapezoid configuration in a side elevational view. A short sidewall 212 is rotationally aligned with the trailing side wall portion 208, and has an axial length within the range of from about 0.2 mm to about 4 mm, and typically from about 0.5 mm to about 2 mm. An opposing long sidewall 214 is rotationally aligned with the leading side wall portion 202. Long sidewall 214 of the marker band 144 is generally at least about 10% or 20% longer than short sidewall 212 and may be at least about 50% or 70% or 90% or more longer than short sidewall 212, depending upon desired performance. Generally, the long sidewall 214 will have a length of at least about 0.5 mm or 1 mm and less than about 5 mm or about 4 mm.
  • Any of the marker bands described herein may be a continuous annular structure, or may optionally have at least one and optionally two or three or more axially extending slits throughout its length. The slit may be located on the short sidewall 212 or the long sidewall 214 or in between, depending upon desired bending characteristics. Any of the marker bands described herein may comprise any of a variety of radiopaque materials, such as a platinum/iridium alloy, with a wall thickness preferably no more than about 0.003 inches and in one implementation is about 0.001 inches.
  • The advance segment 200 may comprise a distal extension of the outer polymer jacket and optionally the inner liner, without other internal supporting structures distally of the marker band 144. The outer jacket may comprise extruded Tecothane and/or PEBAX. The advance segment 200 may have a bending stiffness and radial crush stiffness that is no more than about 50%, and in some implementations no more than about 25% or 15% or 5% or less than the corresponding value for the adjacent proximal catheter body.
  • The proximal end of the catheter 12 is preferably provided with a hemostasis valve, to facilitate introduction of a thrombus engagement tool or a secondary catheter there through. The hemostasis valve may be carried by the connector module 30, or directly by the proximal catheter connector 22. Any of a variety of hemostasis valve configurations may be used.
  • Referring to FIGS. 10A-10C, there is illustrated a valve inserter in accordance with another embodiment. The inserter enables opening a valve (e.g., the hemostasis valve and/or an introducer sheath valve having an elastomeric membrane valve with a passive slit) and supporting it in an open configuration while providing an access lumen therethrough to enable a delicate secondary device such as a thrombus engagement tool or a catheter to advance therethrough without encountering any resistance or damage from the valve.
  • The inserter 300 comprises an elongate tubular body 302 having a proximal end 304, a distal end 306, and a central lumen 308 extending therethrough. The tubular body 302 has an inside diameter sufficient to accommodate the secondary device, and an OD capable of passing through a compatible hemostasis valve. In general, tubular body will have an outside diameter within the range of from about 0.04″ to about 0.1, and a length within the range of from about 1″ to about 4″. Tubular body 302 can be formed as an extrusion from any of a variety of common catheter polymers such as Nylon, PEEK, polyethylene, polyimide or others known in the art having sufficient crush resistance and column strength to enter and to maintain patency under the closing pressure of a hemostasis valve.
  • The proximal end 304 of the tubular body 302 may be provided with a funnel shaped landing zone 322 leading to the central lumen, to facilitate introducing the distal tip of the secondary device into the inserter. In the illustrated embodiment, the proximal end of the tubular body is provided with an inclined face 314. A distal, leading edge 316 of the inclined face 314 is axially distally spaced apart from the trailing proximal edge 318 of the face 314 by a distance D. The distance D [between 316 and 318] may be at least about 0.1″ and typically no more than about 0.5″.
  • The inclined face cooperates with the curved sidewall of the tube to create a side opening for funneling the distal tip of the secondary device into the proximal end of the lumen. For this purpose, the side wall at the trailing edge 318 may be provided with a curvature having a greater radius than the radius of curvature at the leading edge 316 with a progressively changing radius in between, creating a funnel shape for the landing zone 322.
  • The tubular body 302 is provided with an axially extending slit 310 extending between the distal end 306 and the leading edge 316 of the inclined face 314, to enable the inserter to be peeled away laterally from the secondary device extending therethrough once the inserter has enabled passage of the secondary device through the hemostasis valve.
  • A pull tab 312 may be provided on the proximal end of the tubular body 302 to enable the inserter 300 to be grasped and pulled away from the secondary device extending therethrough. The pull tab 312 may be integrally formed with the tubular body 302 (e.g., as a portion of the sidewall of the tube stock as illustrated) or attached thereto such as by adhesive bonding or mechanical compression or interference engagement. In the illustrated embodiment, the pull tab 312 inclines laterally away from the longitudinal axis of the tubular body, to allow coaxial approach and introduction of the catheter into the inserter 300.
  • In one implementation of the inserter, the tubular body has a substantially constant diameter throughout most (e.g., at least about 80% or 90%) of its length overall. However, at least the outside diameter in a distal nose segment 324 may be necked down to a smaller outside diameter at the distal end. This enables the inserter to better enter the hemostasis valve under distal compression. In one example, the tubular body has an 8 French ID along most of its length but necks down to 6 French in the distal nose segment 324. This inserter will facilitate the introduction of either a 6 French or an 8 French catheter through the hemostasis valve, since the 8 French catheter can simply forcibly dilate the necked distal end due to the axial slit 310.
  • In one implementation, the concave entrance funnel surface of the landing zone 322 may be provided with a visual indicium such as a different color than the outside surface of the tubular body 302, to facilitate visualization of the funnel opening and assist in loading the secondary catheter into the funnel. This may be accomplished by providing a colored coating on either the inside or outside surface of the tube stock, or by forming at least a portion of the tube stock as a coextrusion of dissimilar colored materials.
  • Example Embodiments
  • A clot capture module for use in a thrombectomy system, the clot capture module comprising one or more of the following:
  • a housing;
  • a clot capture chamber in the housing;
  • a window in the housing to permit visual inspection of the clot capture chamber;
  • a filter in the clot capture chamber, the filter being visible through the window, the filter having an upstream surface and a downstream surface;
  • an incoming flow path configured to direct incoming blood from an aspiration catheter against the upstream surface of the filter;
  • a normally closed aspiration control valve in the incoming flow path, the aspiration control valve configured to block flow of incoming aspirated blood until actuated to permit inflow of aspirated blood; and
  • an outgoing flow path configured to direct blood from a downstream side of the filter to a remote vacuum canister.
  • A clot capture module as described in any embodiment herein, further comprising a normally closed vent being openable to permit air to be drawn into the clot capture chamber.
  • A clot capture module as described in any embodiment herein, wherein the upstream surface of the filter is visible through the window.
  • A clot capture module as described in any embodiment herein, wherein the upstream surface of the filter is substantially planar.
  • A clot capture module as described in any embodiment herein, wherein the upstream surface of the filter is convex.
  • A clot capture module as described in any embodiment herein, wherein the filter comprises a blood permeable membrane, and wherein the upstream surface of the filter is on a radially outwardly facing surface of the blood permeable membrane.
  • A clot capture module as described in any embodiment herein, wherein the blood permeable membrane at least partially encloses a filtered blood chamber which is in fluid communication with the outgoing flow path.
  • A clot capture module as described in any embodiment herein, wherein the window comprises a transparent tubular portion of the housing.
  • A clot capture module as described in any embodiment herein, further comprising an aspiration actuator, configured to control the aspiration control valve.
  • A clot capture module as described in any embodiment herein, wherein the aspiration actuator comprises a rocker switch.
  • A clot capture module as described in any embodiment herein in combination with a vacuum line leading to an aspiration pump and canister, wherein the clot capture module is configured to reside within a sterile field while the aspiration pump and canister reside outside of the sterile field.
  • A clot capture module as described in any embodiment herein, wherein the vacuum line is at least about 30 inches in length.
  • A clot capture module as described in any embodiment herein, wherein the aspiration control valve comprises collapsible tubing.
  • A clot capture module as described in any embodiment herein, further comprising a selector valve in the vacuum line.
  • A clot capture module as described in any embodiment herein, wherein the aspiration pump comprises a syringe.
  • A clot capture module as described in any embodiment herein, comprising a proximal housing, and a distal housing separated by a transparent tubular side wall.
  • A clot capture module as described in any embodiment herein, wherein at least one of the proximal housing and distal housing is releasably connected to the transparent tubular side wall.
  • A clot capture module as described in any embodiment herein, further comprising a coating to inhibit blood accumulation on an interior surface of the window.
  • A thrombus engagement tool configured to be advanced through a catheter and to engage thrombus, the thrombus engagement tool comprising one or more of the following:
  • a rotatable core having a proximal end and a distal end; and
  • a thrombus engagement tip on the distal end of the rotatable core, the thrombus engagement tip comprising:
  • a helical thread;
  • an advance segment on a distal side of the helical thread; and
  • a trailing segment on a proximal side of the helical thread.
  • A thrombus engagement tool as described in any embodiment herein, further comprising a projection carried by the rotatable core, the projection being underneath at least one of the advance segment and the trailing segment to form an interference fit with the thrombus engagement tip.
  • A thrombus engagement tool as described in any embodiment herein, wherein the projection comprises an annular ring.
  • A thrombus engagement tool as described in any embodiment herein, wherein the projection comprises a radiopaque marker.
  • A thrombus engagement tool as described in any embodiment herein, comprising a first radiopaque marker under the advance segment and a second radiopaque marker under the trailing segment.
  • A thrombus engagement tool as described in any embodiment herein, wherein an outer periphery of the helical thread substantially conforms to a surface of a cylinder.
  • A thrombus engagement tool as described in any embodiment herein, wherein the helical thread comprises a proximal surface which inclines radially outwardly in a proximal direction to define a proximally opening undercut.
  • A thrombus engagement tool as described in any embodiment herein, further comprising a handle on the proximal end of the rotatable core.
  • A thrombus engagement tool as described in any embodiment herein, comprising a limit bearing surface on the handle, the limit bearing surface being configured to limit projection of the thrombus engagement tip in a distal direction relative to a distal end of the aspiration catheter.
  • A thrombus engagement tool as described in any embodiment herein, wherein the advance segment, the helical thread, and the trailing segment are all molded onto the rotatable core.
  • A thrombus engagement tool as described in any embodiment herein, wherein the rotatable core is cannulated.
  • A thrombus engagement tool as described in any embodiment herein, wherein the rotatable core is a solid wire.
  • A thrombus engagement tool as described in any embodiment herein, wherein the advance segment comprises an atraumatic tip.
  • A thrombus engagement tool as described in any embodiment herein, wherein the atraumatic tip comprises a soft polymer.
  • A thrombus engagement tool as described in any embodiment herein, wherein the handle further comprises an indicium of rotational direction.
  • A thrombus engagement tool as described in any embodiment herein, wherein the thrombus engagement tip has an axial length within the range of from about 15 mm to about 30 mm.
  • A thrombus engagement tool as described in any embodiment herein in combination with a catheter having an inside diameter, wherein an outside diameter of the helical thread is no more than about 60% of the inside diameter of the catheter.
  • A thrombus engagement tool as described in any embodiment herein, wherein the outside diameter of the helical thread is no more than about 40% of the inside diameter of the catheter.
  • A thrombus engagement tool as described in any embodiment herein, further comprising a position indicator carried by the rotatable core.
  • A thrombus engagement tool as described in any embodiment herein, wherein the position indicator comprises a distal end of a tube surrounding the rotatable core.
  • A method of removing embolic material from a vessel with mechanical and aspiration assistance, the method comprising one or more of the following:
  • providing an aspiration catheter having a central lumen and a distal end;
  • advancing the distal end to obstructive material in a vessel;
  • applying vacuum to the central lumen to draw clot into the central lumen;
  • introducing a thrombus engagement tool into the central lumen, the thrombus engagement tool having a tip comprising a helical thread having a major diameter that is at least about 0.015 inches smaller than an inside diameter of the central lumen, the helical thread being configured to provide an aspiration flow path around the tip; and
  • manually manipulating the tip to engage clot between the tip and an inside wall of the central lumen.
  • A method of removing embolic material as described in any embodiment herein, wherein the tip is carried by a rotatable core having a proximal handle.
  • A method of removing embolic material as described in any embodiment herein, wherein the rotatable core is cannulated.
  • A method of removing embolic material as described in any embodiment herein, wherein the rotatable core is a microcatheter.
  • A method of removing embolic material as described in any embodiment herein, wherein the rotatable core is a wire.
  • A method of removing embolic material as described in any embodiment herein, wherein the axial length of the threaded portion of the tip is within the range of from about 5 mm to about 15 mm.
  • A method of removing embolic material as described in any embodiment herein, further comprising the step of introducing the catheter via a femoral artery prior to the advancing step.
  • A method of removing embolic material as described in any embodiment herein, comprising the step of advancing the catheter to a pulmonary embolism.
  • A method of removing embolic material as described in any embodiment herein, comprising the step of advancing the catheter to a deep venous thrombosis.
  • A method of removing embolic material as described in any embodiment herein, comprising the step of introducing a thrombus engagement tool having a tip with a major diameter that is no more than about 60% of the inside diameter of the central lumen.
  • A method of removing embolic material as described in any embodiment herein, comprising introducing a thrombus engagement tool having a tip with a major diameter that is no more than about 40% of the inside diameter of the central lumen.
  • A method of removing embolic material as described in any embodiment herein, wherein the tip is laterally displaced within the central lumen in response to the ingestion of clot.
  • A method of removing embolic material as described in any embodiment herein, wherein an outer profile of the threaded tip in an end view is substantially circular.
  • A method of removing embolic material as described in any embodiment herein, wherein the thread has a proximal face and a distal face, and the proximal face inclines radially outwardly in a proximal direction.
  • A method of removing embolic material as described in any embodiment herein further comprising axially reciprocating the thrombus engagement tool within the catheter.
  • A method of removing embolic material as described in any embodiment herein, further comprising axially extending the tip beyond the distal end of the catheter.
  • A method of removing embolic material as described in any embodiment herein, comprising extending the distal tip at least about 2 cm beyond the distal end of the catheter.
  • A method of removing embolic material as described in any embodiment herein, comprising axially aligning the distal tip with the distal end of the catheter using a position indicator on the rotatable core.
  • A method of removing embolic material as described in any embodiment herein, further comprising advancing the thrombus engagement tool through a rotating hemostasis valve before introducing the thrombus engagement tool into the central lumen.
  • A method of removing embolic material as described in any embodiment herein, wherein the position indicator provides haptic feedback as the position indicator passes through the hemostasis valve.
  • An inserter for guiding a device through a valve, the inserter comprising one or more of the following:
  • an elongate tubular body having a proximal end, a distal end, and a sidewall at least partially defining a central lumen;
  • a laterally facing concave landing zone on the proximal end, the concave landing zone having a radius of curvature that increases in a proximal direction; and
  • an axially extending slit in the sidewall, the axially extending slit extending from the distal end to the concave landing zone.
  • An inserter as described in any embodiment herein, further comprising a tapered distal tip.
  • An inserter as described in any embodiment herein, further comprising a pull tab.
  • An inserter as described in any embodiment herein, wherein a surface of the concave landing zone comprises a different color than an outside surface of the elongate tubular body.
  • A method of passing a device through a valve, the method comprising one or more of the following:
  • providing an inserter having a tubular body with a split sidewall;
  • advancing the tubular body through a valve;
  • advancing a device through the tubular body and beyond the valve; and
  • proximally retracting the tubular body so that the device escapes laterally from the tubular body through the split sidewall, leaving the device in place across the valve.
  • A method of passing a device through a valve as described in any embodiment herein, wherein advancing the tubular body through the valve comprises advancing a tapered distal tip on the tubular body through the valve.
  • A method of passing a device through a valve as described in any embodiment herein, wherein advancing the tubular body through the valve is accomplished with the device pre loaded inside the tubular body.
  • A method of passing a device through a valve as described in any embodiment herein, wherein a distal nose segment of the tubular body expands in diameter in response to advancing the device therethrough.
  • A method of passing a device through a valve as described in any embodiment herein, wherein the device is a thrombus engagement tool.
  • A method of passing a device through a valve as described in any embodiment herein, wherein the device is a secondary catheter.
  • A method of passing a device through a valve as described in any embodiment herein, wherein the device is an aspiration catheter.

Claims (11)

What is claimed is:
1. An inserter for guiding a device through a valve, the inserter comprising:
an elongate tubular body having a proximal end, a distal end, and a sidewall at least partially defining a central lumen;
a laterally facing concave landing zone on the proximal end, the concave landing zone having a radius of curvature that increases in a proximal direction; and
an axially extending slit in the sidewall, the axially extending slit extending from the distal end to the concave landing zone.
2. An inserter as in claim 1, further comprising a tapered distal tip.
3. An inserter as in claim 1, further comprising a pull tab.
4. An inserter as in claim 1, wherein a surface of the concave landing zone comprises a different color than an outside surface of the elongate tubular body.
5. A method of passing a device through a valve, the method comprising:
providing an inserter having a tubular body with a split sidewall;
advancing the tubular body through a valve;
advancing a device through the tubular body and beyond the valve; and
proximally retracting the tubular body so that the device escapes laterally from the tubular body through the split sidewall, leaving the device in place across the valve.
6. A method as in claim 5, wherein advancing the tubular body through the valve comprises advancing a tapered distal tip on the tubular body through the valve.
7. A method as in claim 5, wherein advancing the tubular body through the valve is accomplished with the device pre loaded inside the tubular body.
8. A method as in claim 5, wherein a distal nose segment of the tubular body expands in diameter in response to advancing the device therethrough.
9. A method as in claim 5, wherein the device is a thrombus engagement tool.
10. A method as in claim 5, wherein the device is a secondary catheter.
11. A method as in claim 5, wherein the device is an aspiration catheter.
US17/810,743 2019-12-18 2022-07-05 Inserter for guiding a device through a hemostasis valve and method thereof Pending US20230015259A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/810,743 US20230015259A1 (en) 2019-12-18 2022-07-05 Inserter for guiding a device through a hemostasis valve and method thereof
PCT/US2023/066924 WO2023220707A2 (en) 2022-05-13 2023-05-12 Transvascular thrombectomy system

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962950058P 2019-12-18 2019-12-18
US202063044511P 2020-06-26 2020-06-26
US202063064273P 2020-08-11 2020-08-11
US17/125,723 US11065018B2 (en) 2019-12-18 2020-12-17 Methods and systems for advancing a catheter to a target site
US17/357,490 US11457936B2 (en) 2019-12-18 2021-06-24 Catheter system for treating thromboembolic disease
US202263341926P 2022-05-13 2022-05-13
US17/810,743 US20230015259A1 (en) 2019-12-18 2022-07-05 Inserter for guiding a device through a hemostasis valve and method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/357,490 Continuation-In-Part US11457936B2 (en) 2019-12-18 2021-06-24 Catheter system for treating thromboembolic disease

Publications (1)

Publication Number Publication Date
US20230015259A1 true US20230015259A1 (en) 2023-01-19

Family

ID=76437155

Family Applications (5)

Application Number Title Priority Date Filing Date
US17/125,723 Active US11065018B2 (en) 2019-12-18 2020-12-17 Methods and systems for advancing a catheter to a target site
US17/125,743 Active US11253277B2 (en) 2019-12-18 2020-12-17 Systems for accessing a central pulmonary artery
US17/125,742 Pending US20210186537A1 (en) 2019-12-18 2020-12-17 Methods and systems for accessing and retrieving thrombo-emboli
US17/125,217 Active 2041-10-25 US11819228B2 (en) 2019-12-18 2020-12-17 Methods and systems for treating a pulmonary embolism
US17/810,743 Pending US20230015259A1 (en) 2019-12-18 2022-07-05 Inserter for guiding a device through a hemostasis valve and method thereof

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US17/125,723 Active US11065018B2 (en) 2019-12-18 2020-12-17 Methods and systems for advancing a catheter to a target site
US17/125,743 Active US11253277B2 (en) 2019-12-18 2020-12-17 Systems for accessing a central pulmonary artery
US17/125,742 Pending US20210186537A1 (en) 2019-12-18 2020-12-17 Methods and systems for accessing and retrieving thrombo-emboli
US17/125,217 Active 2041-10-25 US11819228B2 (en) 2019-12-18 2020-12-17 Methods and systems for treating a pulmonary embolism

Country Status (6)

Country Link
US (5) US11065018B2 (en)
EP (1) EP4076611A4 (en)
JP (1) JP2023507553A (en)
CN (1) CN113365687A (en)
CA (1) CA3162704A1 (en)
WO (1) WO2021127004A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
US11819228B2 (en) 2019-12-18 2023-11-21 Imperative Care, Inc. Methods and systems for treating a pulmonary embolism
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381855B (en) 2017-01-06 2023-07-04 因赛普特有限责任公司 Antithrombotic coating for aneurysm treatment devices
CA3095844A1 (en) 2018-05-01 2019-11-07 Incept, Llc Devices and methods for removing obstructive material from an intravascular site
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
US11517335B2 (en) 2018-07-06 2022-12-06 Incept, Llc Sealed neurovascular extendable catheter
JP2022551988A (en) 2019-10-15 2022-12-14 インパラティブ、ケア、インク. Systems and methods for multivariate stroke detection
US20210315598A1 (en) 2019-12-18 2021-10-14 Imperative Care, Inc. Methods of placing large bore aspiration catheters
US11638637B2 (en) 2019-12-18 2023-05-02 Imperative Care, Inc. Method of removing embolic material with thrombus engagement tool
CA3171899A1 (en) 2020-03-10 2021-09-16 Imperative Care, Inc. Enhanced flexibility neurovascular catheter
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
EP4329643A1 (en) 2021-04-27 2024-03-06 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
WO2023278495A2 (en) 2021-06-28 2023-01-05 Inquis Medical, Inc. Apparatuses and methods for controlling removal of obstructive material
US20230064188A1 (en) * 2021-08-31 2023-03-02 Imperative Care, Inc. Neurovascular access catheter with microcatheter segment
CN116407696B (en) * 2023-04-14 2024-01-26 保定泰鑫德医疗器械制造有限公司 Atraumatic sputum aspirator

Family Cites Families (672)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3605750A (en) 1969-04-07 1971-09-20 David S Sheridan X-ray tip catheter
US3884242A (en) 1971-03-29 1975-05-20 Mpc Kurgisil Catheter assembly
US3890976A (en) 1972-10-26 1975-06-24 Medical Products Corp Catheter tip assembly
US3965901A (en) 1974-10-03 1976-06-29 American Hospital Supply Corporation Suction catheter
US4030503A (en) * 1975-11-05 1977-06-21 Clark Iii William T Embolectomy catheter
US4319580A (en) 1979-08-28 1982-03-16 The Board Of Regents Of The University Of Washington Method for detecting air emboli in the blood in an intracorporeal blood vessel
US4628168A (en) 1980-05-14 1986-12-09 Shiley, Inc. Dielectric heating device for heating cannula members
DE3020041A1 (en) 1980-05-24 1981-12-03 Sartorius GmbH, 3400 Göttingen FILTRATION DEVICE FOR CONCENTRATING LIQUID MEDIA
US4611594A (en) 1984-04-11 1986-09-16 Northwestern University Medical instrument for containment and removal of calculi
US4617019A (en) 1984-09-28 1986-10-14 Sherwood Medical Company Catheter
DE3442736A1 (en) 1984-11-23 1986-06-05 Tassilo Dr.med. 7800 Freiburg Bonzel DILATATION CATHETER
US4619274A (en) 1985-04-18 1986-10-28 Advanced Cardiovascular Systems, Inc. Torsional guide wire with attenuated diameter
US4810582A (en) 1985-11-12 1989-03-07 Tyndale Plains-Hunter Ltd. Hydrophilic polyurethane composition
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
US4739768B2 (en) 1986-06-02 1995-10-24 Target Therapeutics Inc Catheter for guide-wire tracking
US4767399A (en) 1986-12-05 1988-08-30 Fisher Scientific Group Inc. Dba Imed Corporation Volumetric fluid withdrawal system
US4762130A (en) 1987-01-15 1988-08-09 Thomas J. Fogarty Catheter with corkscrew-like balloon
US4923462A (en) 1987-03-17 1990-05-08 Cordis Corporation Catheter system having a small diameter rotatable drive member
US4898575A (en) 1987-08-31 1990-02-06 Medinnovations, Inc. Guide wire following tunneling catheter system and method for transluminal arterial atherectomy
US5217705A (en) 1987-09-25 1993-06-08 Neorx Corporation Method of diagnosing blood clots using fibrin-binding proteins
US4844064A (en) 1987-09-30 1989-07-04 Baxter Travenol Laboratories, Inc. Surgical cutting instrument with end and side openings
ES2047586T3 (en) 1988-03-04 1994-03-01 Angiomed Ag PROCEDURE AND DEVICE TO REMOVE DEPOSITS OF MATERIAL IN VESSELS AND LIVING BODIES.
US5843156A (en) 1988-08-24 1998-12-01 Endoluminal Therapeutics, Inc. Local polymeric gel cellular therapy
US5011488A (en) 1988-12-07 1991-04-30 Robert Ginsburg Thrombus extraction system
DE8900059U1 (en) 1989-01-04 1989-05-24 Schneider (Europe) Ag, Zuerich, Ch
US5226909A (en) 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5120323A (en) 1990-01-12 1992-06-09 Schneider (Usa) Inc. Telescoping guide catheter system
US5279596A (en) 1990-07-27 1994-01-18 Cordis Corporation Intravascular catheter with kink resistant tip
US5527292A (en) 1990-10-29 1996-06-18 Scimed Life Systems, Inc. Intravascular device for coronary heart treatment
US5103827A (en) 1990-12-14 1992-04-14 Medasonics, Inc. Apparatus for and a method of distinguishing ultrasound signals returned from bubbles and particles moving in a fluid from signals due to ultrasound transducer motion
US5916192A (en) 1991-01-11 1999-06-29 Advanced Cardiovascular Systems, Inc. Ultrasonic angioplasty-atherectomy catheter and method of use
US5290247A (en) 1991-05-21 1994-03-01 C. R. Bard, Inc. Intracoronary exchange apparatus and method
US5234416A (en) 1991-06-06 1993-08-10 Advanced Cardiovascular Systems, Inc. Intravascular catheter with a nontraumatic distal tip
US5423846A (en) 1991-10-21 1995-06-13 Cathco, Inc. Dottering auger catheter system
US5308327A (en) 1991-11-25 1994-05-03 Advanced Surgical Inc. Self-deployed inflatable retractor
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5407432A (en) 1992-03-30 1995-04-18 Pameda N.V. Method of positioning a stent
WO1993019679A1 (en) 1992-04-07 1993-10-14 The Johns Hopkins University A percutaneous mechanical fragmentation catheter system
US5713848A (en) 1993-05-19 1998-02-03 Dubrul; Will R. Vibrating catheter
US6936025B1 (en) 1992-05-19 2005-08-30 Bacchus Vascular, Inc. Thrombolysis device
US5328472A (en) 1992-07-27 1994-07-12 Medtronic, Inc. Catheter with flexible side port entry
FR2696924B1 (en) 1992-08-06 1995-01-06 Domilens Laboratoires Surgical instrument for the in situ fragmentation of a living material, in particular a phaco-fragmentation or phaco-emulsification instrument.
WO1994003230A1 (en) 1992-08-07 1994-02-17 Boston Scientific Corporation Support catheter assembly
US5243997A (en) 1992-09-14 1993-09-14 Interventional Technologies, Inc. Vibrating device for a guide wire
US5474563A (en) 1993-03-25 1995-12-12 Myler; Richard Cardiovascular stent and retrieval apparatus
US5429136A (en) * 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5417697A (en) 1993-07-07 1995-05-23 Wilk; Peter J. Polyp retrieval assembly with cauterization loop and suction web
US6858024B1 (en) 1994-02-14 2005-02-22 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
AU690237B2 (en) 1994-03-03 1998-04-23 Target Therapeutics, Inc. Method for detecting separation of a vasoocclusion device
US5466222A (en) 1994-03-30 1995-11-14 Scimed Life Systems, Inc. Longitudinally collapsible and exchangeable catheter
US5454795A (en) 1994-06-27 1995-10-03 Target Therapeutics, Inc. Kink-free spiral-wound catheter
WO1996001079A1 (en) 1994-07-01 1996-01-18 Scimed Life Systems, Inc. Intravascular device utilizing fluid to extract occlusive material
US5549119A (en) 1994-09-13 1996-08-27 Cordis Corporation Vibrating tip catheter
DE69504104T2 (en) 1995-01-04 1999-05-06 Medtronic Inc IMPROVED METHOD FOR PRODUCING A SOFT TIP
US5441051A (en) 1995-02-09 1995-08-15 Hileman; Ronald E. Method and apparatus for the non-invasive detection and classification of emboli
DE19504261A1 (en) 1995-02-09 1996-09-12 Krieg Gunther Angioplasty catheter for dilating and / or opening blood vessels
BR9607836A (en) 1995-03-28 1998-06-16 Straub Federnfabrik Catheter to remove abnormal deposits of blood vessels in humans
WO1996029942A1 (en) 1995-03-28 1996-10-03 Straub Federnfabrik Ag Catheter for detaching abnormal deposits in human blood vessels
US5662622A (en) 1995-04-04 1997-09-02 Cordis Corporation Intravascular catheter
US6824553B1 (en) 1995-04-28 2004-11-30 Target Therapeutics, Inc. High performance braided catheter
US5702373A (en) 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US5658263A (en) 1995-05-18 1997-08-19 Cordis Corporation Multisegmented guiding catheter for use in medical catheter systems
US5938645A (en) 1995-05-24 1999-08-17 Boston Scientific Corporation Northwest Technology Center Inc. Percutaneous aspiration catheter system
US5591187A (en) 1995-07-14 1997-01-07 Dekel; Moshe Laparoscopic tissue retrieval device and method
US5776141A (en) 1995-08-28 1998-07-07 Localmed, Inc. Method and apparatus for intraluminal prosthesis delivery
US5569178A (en) 1995-10-20 1996-10-29 Henley; Julian L. Power assisted suction lipectomy device
US5885209A (en) 1996-02-02 1999-03-23 Green; Anthony D. Endoscopic working channel and method of making same
US5895398A (en) 1996-02-02 1999-04-20 The Regents Of The University Of California Method of using a clot capture coil
US6776766B2 (en) * 1996-04-03 2004-08-17 Rush-Presbyterian-St. Luke's Medical Center Method and apparatus for characterizing gastrointestinal sounds
US6022336A (en) 1996-05-20 2000-02-08 Percusurge, Inc. Catheter system for emboli containment
US6152909A (en) 1996-05-20 2000-11-28 Percusurge, Inc. Aspiration system and method
SE9601974L (en) 1996-05-23 1997-10-13 Elekta Ab Device for injecting a substance into a body, especially human or animal
US5782811A (en) 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5899892A (en) 1996-05-31 1999-05-04 Scimed Life Systems, Inc. Catheter having distal fiber braid
US5827242A (en) 1996-06-21 1998-10-27 Medtronic, Inc. Reinforced catheter body and method for its fabrication
US5735816A (en) 1996-07-23 1998-04-07 Medtronic, Inc. Spiral sheath retainer for autoperfusion dilatation catheter balloon
US6221038B1 (en) 1996-11-27 2001-04-24 Pharmasonics, Inc. Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers
US5690613A (en) 1996-12-06 1997-11-25 Medtronic, Inc. Rapid exchange high pressure transition for high pressure catheter with non-compliant balloon
US6582440B1 (en) 1996-12-26 2003-06-24 Misonix Incorporated Non-clogging catheter for lithotrity
US6355016B1 (en) 1997-03-06 2002-03-12 Medtronic Percusurge, Inc. Catheter core wire
CA2322876A1 (en) 1997-03-06 1998-09-11 Percusurge, Inc. Intravascular aspiration system
US5843103A (en) 1997-03-06 1998-12-01 Scimed Life Systems, Inc. Shaped wire rotational atherectomy device
US20020026145A1 (en) 1997-03-06 2002-02-28 Bagaoisan Celso J. Method and apparatus for emboli containment
US6059745A (en) 1997-05-20 2000-05-09 Gelbfish; Gary A. Thrombectomy device and associated method
US6228046B1 (en) 1997-06-02 2001-05-08 Pharmasonics, Inc. Catheters comprising a plurality of oscillators and methods for their use
US5951539A (en) 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US5928260A (en) 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US7037316B2 (en) 1997-07-24 2006-05-02 Mcguckin Jr James F Rotational thrombectomy device
US6090118A (en) 1998-07-23 2000-07-18 Mcguckin, Jr.; James F. Rotational thrombectomy apparatus and method with standing wave
AU3532197A (en) 1997-07-24 1999-02-16 Australian National University, The Method for detection of fibrin clots
US5891114A (en) 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US5935112A (en) 1997-10-15 1999-08-10 Stevens; Brian W. Hemostasis valve with catheter/guidewire seals
US5908435A (en) 1997-10-23 1999-06-01 Samuels; Shaun L. W. Expandable lumen device and method of use
US20100030256A1 (en) 1997-11-12 2010-02-04 Genesis Technologies Llc Medical Devices and Methods
US6183432B1 (en) 1997-11-13 2001-02-06 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
EP1054634A4 (en) 1998-02-10 2006-03-29 Artemis Medical Inc Entrapping apparatus and method for use
US6824550B1 (en) 2000-04-06 2004-11-30 Norbon Medical, Inc. Guidewire for crossing occlusions or stenosis
US6796976B1 (en) 1998-03-06 2004-09-28 Scimed Life Systems, Inc. Establishing access to the body
IE980241A1 (en) 1998-04-02 1999-10-20 Salviac Ltd Delivery catheter with split sheath
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6511492B1 (en) 1998-05-01 2003-01-28 Microvention, Inc. Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders
US6740104B1 (en) 1998-05-15 2004-05-25 Advanced Cardiovascular Systems, Inc. Enhanced catheter with alignment means
US6368316B1 (en) 1998-06-11 2002-04-09 Target Therapeutics, Inc. Catheter with composite stiffener
WO2000000100A1 (en) 1998-06-30 2000-01-06 Ethicon, Inc. Endometrial balloon ablation catheter having heater
US6285903B1 (en) 1998-06-30 2001-09-04 Eclipse Surgical Technologies, Inc. Intracorporeal device with radiopaque marker
US6322534B1 (en) 1998-11-07 2001-11-27 Cordis Corporation Variable stiffness balloon catheter
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6196972B1 (en) 1998-11-11 2001-03-06 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow
US6591472B1 (en) 1998-12-08 2003-07-15 Medtronic, Inc. Multiple segment catheter and method of fabrication
DE69902986D1 (en) 1998-12-09 2002-10-24 Jms Co Ltd infusion filters
US6165199A (en) 1999-01-12 2000-12-26 Coaxia, Inc. Medical device for removing thromboembolic material from cerebral arteries and methods of use
CA2358661A1 (en) 1999-01-20 2000-07-27 Boston Scientific Limited Intravascular catheter with composite reinforcement
US6171295B1 (en) 1999-01-20 2001-01-09 Scimed Life Systems, Inc. Intravascular catheter with composite reinforcement
DE60042316D1 (en) 1999-01-28 2009-07-16 Salviac Ltd CATHETER WITH EXPANDABLE END CUT
US6143009A (en) 1999-02-02 2000-11-07 Shiber; Samuel Flexible-agitator system and method
US6350271B1 (en) 1999-05-17 2002-02-26 Micrus Corporation Clot retrieval device
EP1992308B1 (en) 1999-06-02 2015-10-28 Microtransform, Inc. Intracorporeal occlusive device
US6355027B1 (en) 1999-06-09 2002-03-12 Possis Medical, Inc. Flexible microcatheter
US6458139B1 (en) 1999-06-21 2002-10-01 Endovascular Technologies, Inc. Filter/emboli extractor for use in variable sized blood vessels
US6179859B1 (en) 1999-07-16 2001-01-30 Baff Llc Emboli filtration system and methods of use
CA2378720A1 (en) 1999-07-23 2001-02-01 Tfx Medical Extrusion Products Catheter device having multi-lumen reinforced shaft and method of manufacture for same
US6251122B1 (en) 1999-09-02 2001-06-26 Scimed Life Systems, Inc. Intravascular filter retrieval device and method
AU1361901A (en) 1999-11-03 2001-05-14 Endocare, Inc. Method of loading a stent on a delivery catheter
US7037267B1 (en) 1999-11-10 2006-05-02 David Lipson Medical diagnostic methods, systems, and related equipment
DE19959230C1 (en) 1999-12-08 2001-04-05 Fresenius Medical Care De Gmbh Two-sheet pouch, used as disposable haemodialysis container, comprises top and bottom closed by convex weld seams and is repeatedly folded parallel to its vertical axis
US6206852B1 (en) 1999-12-15 2001-03-27 Advanced Cardiovascular Systems, Inc. Balloon catheter having a small profile catheter
US6579246B2 (en) 1999-12-22 2003-06-17 Sarcos, Lc Coronary guidewire system
US6520934B1 (en) 1999-12-29 2003-02-18 Advanced Cardiovascular Systems, Inc. Catheter assemblies with flexible radiopaque marker
WO2001049341A2 (en) 1999-12-31 2001-07-12 Bacchus Vascular Inc. Method and system for re-infusing filtered bodily aspirates
US6929633B2 (en) 2000-01-25 2005-08-16 Bacchus Vascular, Inc. Apparatus and methods for clot dissolution
US6663613B1 (en) 2000-01-25 2003-12-16 Bacchus Vascular, Inc. System and methods for clot dissolution
US6394976B1 (en) 2000-01-31 2002-05-28 Intraluminal Therapeutics, Inc. Catheter for controlling the advancement of a guide wire
JP3915862B2 (en) 2000-02-09 2007-05-16 テルモ株式会社 catheter
US6554820B1 (en) 2000-03-08 2003-04-29 Scimed Life Systems, Inc. Composite flexible tube for medical applications
US6719717B1 (en) 2000-03-17 2004-04-13 Advanced Research & Technology Institute, Inc. Thrombectomy treatment system and method
US7713227B2 (en) 2000-03-20 2010-05-11 Michael Wholey Method and apparatus for medical device for aspiration of thromboemobolic debris
US6514273B1 (en) 2000-03-22 2003-02-04 Endovascular Technologies, Inc. Device for removal of thrombus through physiological adhesion
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US20010031981A1 (en) 2000-03-31 2001-10-18 Evans Michael A. Method and device for locating guidewire and treating chronic total occlusions
US6638268B2 (en) 2000-04-07 2003-10-28 Imran K. Niazi Catheter to cannulate the coronary sinus
US6468219B1 (en) 2000-04-24 2002-10-22 Philip Chidi Njemanze Implantable telemetric transcranial doppler device
IL136213A0 (en) 2000-05-17 2001-05-20 Xtent Medical Inc Selectively expandable and releasable stent
US6890315B1 (en) 2000-05-23 2005-05-10 Chf Solutions, Inc. Method and apparatus for vein fluid removal in heart failure
KR100387384B1 (en) 2000-07-26 2003-06-12 규 호 이 Embolic material detachment detection system and method and assembly for embolic treatments
US6613017B1 (en) 2000-08-08 2003-09-02 Scimed Life Systems, Inc. Controlled depth injection device and method
US6776770B1 (en) 2000-09-07 2004-08-17 Advanced Research & Technology Institute Thromboaspiration valve-filter device and methods
US6524303B1 (en) 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
CA2424306A1 (en) 2000-10-18 2002-04-25 Nmt Medical, Inc. Medical implant delivery system
US20060100530A1 (en) 2000-11-28 2006-05-11 Allez Physionix Limited Systems and methods for non-invasive detection and monitoring of cardiac and blood parameters
US6554827B2 (en) 2000-12-11 2003-04-29 Scimed Life Systems, Inc. Radio frequency ablation system
US6533751B2 (en) 2001-01-09 2003-03-18 Andrew Cragg Micro catheter and guidewire system having improved pushability and control
US6673023B2 (en) * 2001-03-23 2004-01-06 Stryker Puerto Rico Limited Micro-invasive breast biopsy device
US20020177800A1 (en) 2001-04-16 2002-11-28 Bagaoisan Celso J. Aspiration catheters and method of use
US20020156460A1 (en) 2001-04-20 2002-10-24 Scimed Life Systems, Inc Microcatheter with improved distal tip and transitions
US20020156459A1 (en) 2001-04-20 2002-10-24 Scimed Life Systems, Inc Microcatheter with improved distal tip and transitions
US7635342B2 (en) 2001-05-06 2009-12-22 Stereotaxis, Inc. System and methods for medical device advancement and rotation
US20020188314A1 (en) 2001-06-07 2002-12-12 Microvena Corporation Radiopaque distal embolic protection device
US6818013B2 (en) 2001-06-14 2004-11-16 Cordis Corporation Intravascular stent device
DE20110121U1 (en) 2001-06-19 2002-12-05 Braun Melsungen Ag catheter
US8715312B2 (en) 2001-07-20 2014-05-06 Microvention, Inc. Aneurysm treatment device and method of use
US8252040B2 (en) 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
CA2461927C (en) 2001-10-03 2012-07-10 Greg J. Kampa Medical device with polymer coated inner lumen
US7172572B2 (en) 2001-10-04 2007-02-06 Boston Scientific Scimed, Inc. Manifold system for a medical device
US20030088266A1 (en) 2001-11-02 2003-05-08 Bowlin Gary L. Method of fusing electroprocessed matrices to a substrate
EP2248549A3 (en) * 2001-12-26 2010-12-08 Yale University Vascular access device
US7029482B1 (en) 2002-01-22 2006-04-18 Cardica, Inc. Integrated anastomosis system
US7335216B2 (en) 2002-01-22 2008-02-26 Cardica, Inc. Tool for creating an opening in tissue
US7223274B2 (en) 2002-01-23 2007-05-29 Cardica, Inc. Method of performing anastomosis
AU2003220474A1 (en) * 2002-03-21 2003-10-08 Radiant Medical, Inc. Measuring blood flow rate or cardiac output
US20030212384A1 (en) 2002-05-10 2003-11-13 Hayden Scott William Expandable interventional system
US7399307B2 (en) 2002-05-14 2008-07-15 Bacchus Vascular, Inc. Apparatus and method for removing occlusive material within blood vessels
US7029468B2 (en) 2002-06-25 2006-04-18 Enpath Medical, Inc. Catheter assembly with side wall exit lumen and method therefor
US7232452B2 (en) 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
US7309334B2 (en) 2002-07-23 2007-12-18 Von Hoffmann Gerard Intracranial aspiration catheter
US7608058B2 (en) 2002-07-23 2009-10-27 Micrus Corporation Stretch resistant therapeutic device
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US20070225614A1 (en) 2004-05-26 2007-09-27 Endothelix, Inc. Method and apparatus for determining vascular health conditions
US20040045645A1 (en) 2002-09-10 2004-03-11 Scimed Life Systems, Inc. Shaped reinforcing member for medical device and method for making the same
US7060051B2 (en) 2002-09-24 2006-06-13 Scimed Life Systems, Inc. Multi-balloon catheter with hydrogel coating
US20070043333A1 (en) 2002-10-03 2007-02-22 Scimed Life Systems, Inc. Method for forming a medical device with a polymer coated inner lumen
DE60330478D1 (en) 2002-10-10 2010-01-21 Micro Therapeutics Inc WIRE-STRENGTH MICRO-CATHETER
US6814746B2 (en) 2002-11-01 2004-11-09 Ev3 Peripheral, Inc. Implant delivery system with marker interlock
US20040138693A1 (en) 2003-01-14 2004-07-15 Scimed Life Systems, Inc. Snare retrievable embolic protection filter with guidewire stopper
US8016752B2 (en) 2003-01-17 2011-09-13 Gore Enterprise Holdings, Inc. Puncturable catheter
JP4409179B2 (en) 2003-01-22 2010-02-03 ニプロ株式会社 Thrombus aspiration catheter with improved suction and crossability
JP2004275435A (en) 2003-03-14 2004-10-07 Terumo Corp Catheter
US7001369B2 (en) 2003-03-27 2006-02-21 Scimed Life Systems, Inc. Medical device
US20040199201A1 (en) 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Embolectomy devices
WO2004087017A1 (en) 2003-04-02 2004-10-14 Boston Scientific Limited Detachable and retrievable stent assembly
US7413563B2 (en) 2003-05-27 2008-08-19 Cardia, Inc. Flexible medical device
US7625346B2 (en) 2003-05-30 2009-12-01 Boston Scientific Scimed, Inc. Transbronchial needle aspiration device
JP4653104B2 (en) 2003-06-10 2011-03-16 ルーメンド インコーポレイテッド Catheter apparatus and method for opening a vascular occlusion
US20050004553A1 (en) 2003-07-02 2005-01-06 Medtronic Ave, Inc. Sheath catheter having variable over-the-wire length and methods of use
JP4667376B2 (en) 2003-07-02 2011-04-13 クック インコーポレイテッド Small gauge needle catheter insertion device
JP2007503918A (en) 2003-09-04 2007-03-01 セカント メディカル エルエルシー Intravascular snare for capturing and removing arterial emboli
US8034003B2 (en) 2003-09-11 2011-10-11 Depuy Mitek, Inc. Tissue extraction and collection device
US7588555B2 (en) 2003-09-24 2009-09-15 Enpath Medical, Inc. Bi-directional catheter assembly and method therefor
US20050103332A1 (en) 2003-11-17 2005-05-19 Bruce Gingles Airway exchange catheter
WO2005051206A1 (en) 2003-11-21 2005-06-09 Vnus Medical Technologies, Inc. Method and apparatus for treating a carotid artery
US7740626B2 (en) 2003-11-21 2010-06-22 Terumo Kabushiki Kaisha Laser induced liquid jet generating apparatus
US8382739B2 (en) 2003-12-02 2013-02-26 Boston Scientific Scimed, Inc. Composite medical device and method of forming
US20050153309A1 (en) 2003-12-22 2005-07-14 David Hoon Method and apparatus for in vivo surveillance of circulating biological components
US7763011B2 (en) 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
SG183072A1 (en) 2004-01-23 2012-08-30 Iscience Surgical Corp Composite ophthalmic microcannula
US20050182386A1 (en) 2004-02-17 2005-08-18 Steen Aggerholm Catheter with stiffening element
EP1987787A1 (en) 2004-02-19 2008-11-05 Applied Medical Resources Corporation Embolectomy capture sheath
US8157792B2 (en) 2004-02-26 2012-04-17 Haemonetics Corporation Wound drainage suction relief
PL1722694T3 (en) 2004-03-04 2010-01-29 Straub Medical Ag Catheter for sucking, fragmenting removing material extractable from blood vessels
CN100577116C (en) 2004-03-04 2010-01-06 施特劳勃医疗器械股份公司 Catheter for sucking, fragmenting and removing extractable material from blood vessels
US8747453B2 (en) 2008-02-18 2014-06-10 Aga Medical Corporation Stent/stent graft for reinforcement of vascular abnormalities and associated method
US7686825B2 (en) 2004-03-25 2010-03-30 Hauser David L Vascular filter device
US8235968B2 (en) 2004-04-13 2012-08-07 Gyrus Acmi, Inc. Atraumatic ureteral access sheath
US8535293B2 (en) 2004-04-13 2013-09-17 Gyrus Acmi, Inc. Atraumatic ureteral access sheath
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
EP1750619B1 (en) 2004-05-25 2013-07-24 Covidien LP Flexible vascular occluding device
US7815627B2 (en) 2004-05-27 2010-10-19 Abbott Laboratories Catheter having plurality of stiffening members
US20190269368A1 (en) 2004-05-28 2019-09-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic Surgical System and Method for Automated Creation of Ablation Lesions
US20060030835A1 (en) 2004-06-29 2006-02-09 Sherman Darren R Catheter shaft tubes and methods of making
ES2549371T3 (en) 2004-08-25 2015-10-27 Microvention, Inc. Thermal separation system for implantable devices
US7931659B2 (en) 2004-09-10 2011-04-26 Penumbra, Inc. System and method for treating ischemic stroke
US9655633B2 (en) 2004-09-10 2017-05-23 Penumbra, Inc. System and method for treating ischemic stroke
US20060064036A1 (en) 2004-09-21 2006-03-23 Cook Incorporated Variable flexibility wire guide
JP2006087643A (en) 2004-09-24 2006-04-06 Terumo Corp Apparatus for sucking foreign substance from blood vessel
US7306585B2 (en) 2004-09-30 2007-12-11 Engineering Resources Group, Inc. Guide catheter
JP2006102222A (en) 2004-10-06 2006-04-20 Sekisui Chem Co Ltd Detachable balloon catheter
US7621904B2 (en) 2004-10-21 2009-11-24 Boston Scientific Scimed, Inc. Catheter with a pre-shaped distal tip
EP1809363A4 (en) 2004-11-01 2010-01-20 Medical Components Inc Universal catheter tunneler
US20060217664A1 (en) 2004-11-15 2006-09-28 Hattler Brack G Telescoping vascular dilator
WO2006055826A2 (en) 2004-11-18 2006-05-26 Chang David W Endoluminal delivery of anesthesia
US20080086110A1 (en) 2004-11-19 2008-04-10 Galdonik Jason A Extendable Device On An Aspiration Catheter
US20060111649A1 (en) 2004-11-19 2006-05-25 Scimed Life Systems, Inc. Catheter having improved torque response and curve retention
US9775963B2 (en) 2010-11-03 2017-10-03 Biocardia, Inc. Steerable endoluminal devices and methods
US20060235348A1 (en) 2005-02-14 2006-10-19 Callicoat David N Method of extracting and analyzing the composition of bodily fluids
US8622997B2 (en) 2005-03-23 2014-01-07 Ronald D. Shippert Tissue transfer method and apparatus
JP4724827B2 (en) 2005-03-24 2011-07-13 国立大学法人山口大学 Agitation treatment device and catheter
WO2006113866A2 (en) 2005-04-20 2006-10-26 Cook Incorporated Internal joint for medical devices
US7806871B2 (en) 2005-05-09 2010-10-05 Boston Scientific Scimed, Inc. Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent
US9014786B2 (en) 2005-05-11 2015-04-21 Eyoca Medical Ltd. Device and method for opening vascular obstructions
US7771358B2 (en) 2005-05-20 2010-08-10 Spentech, Inc. System and method for grading microemboli monitored by a multi-gate doppler ultrasound system
JP4549933B2 (en) 2005-06-08 2010-09-22 ジョンソン・エンド・ジョンソン株式会社 Vascular catheter
US20120330196A1 (en) 2005-06-24 2012-12-27 Penumbra Inc. Methods and Apparatus for Removing Blood Clots and Tissue from the Patient's Head
US20120078140A1 (en) 2005-06-24 2012-03-29 Penumbra, Inc. Method and Apparatus for Removing Blood Clots and Tissue from the Patient's Head
US8123769B2 (en) 2005-08-12 2012-02-28 Cook Medical Technologies Llc Thrombus removal device
US8021351B2 (en) 2005-08-18 2011-09-20 Medtronic Vascular, Inc. Tracking aspiration catheter
US7938820B2 (en) 2005-08-18 2011-05-10 Lumen Biomedical, Inc. Thrombectomy catheter
GR20050100452A (en) 2005-09-02 2007-04-25 Estelle Enterprises Limited Fluid exchange catheter's system
US20070060888A1 (en) 2005-09-06 2007-03-15 Kerberos Proximal Solutions, Inc. Methods and apparatus for assisted aspiration
US20080188928A1 (en) 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US8206343B2 (en) 2005-11-08 2012-06-26 Custom Medical Applications, Inc. Reinforced catheter with articulated distal tip
EP1973680B1 (en) 2005-11-17 2018-01-10 Microvention, Inc. Three-dimensional complex coil
US20080262350A1 (en) 2005-11-18 2008-10-23 Imarx Therapeutics, Inc. Ultrasound Apparatus and Method to Treat an Ischemic Stroke
US20070185521A1 (en) * 2005-12-05 2007-08-09 Cook Incorporated Rapid exchange assembly
WO2007067952A2 (en) * 2005-12-07 2007-06-14 The Board Of Trustees Of The University Of Illinois Optical microprobe for blood clot detection
DE102005059670A1 (en) 2005-12-12 2007-06-14 Phenox Gmbh Device for removing thrombi from blood vessels
WO2007079415A2 (en) 2005-12-30 2007-07-12 C.R. Bard Inc. Embolus blood clot filter removal system and method
US20070208302A1 (en) 2006-01-26 2007-09-06 Webster Mark W Deflection control catheters, support catheters and methods of use
CA2638012A1 (en) 2006-02-02 2007-08-09 Releaf Medical Ltd. Shock-wave generating device, such as for the treatment of calcific aortic stenosis
US7608063B2 (en) 2006-02-23 2009-10-27 Medrad, Inc. Dual lumen aspiration catheter system
US9615832B2 (en) 2006-04-07 2017-04-11 Penumbra, Inc. Aneurysm occlusion system and method
US20120150147A1 (en) 2010-12-08 2012-06-14 Penumbra, Inc. System and method for treating ischemic stroke
US8048032B2 (en) 2006-05-03 2011-11-01 Vascular Solutions, Inc. Coaxial guide catheter for interventional cardiology procedures
US7905877B1 (en) 2006-05-12 2011-03-15 Micrus Design Technology, Inc. Double helix reinforced catheter
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US7803136B2 (en) 2006-06-05 2010-09-28 Schatz Richard A Myocardial injector
US20080097251A1 (en) 2006-06-15 2008-04-24 Eilaz Babaev Method and apparatus for treating vascular obstructions
CA2655026C (en) 2006-06-15 2016-08-02 Microvention, Inc. Embolization device constructed from expansible polymer
WO2008091584A2 (en) 2007-01-22 2008-07-31 Cv Devices, Llc Devices, systems and methods for an epicardial cardiac monitoring system
KR20090037906A (en) 2006-06-30 2009-04-16 아테로메드, 아이엔씨. Atherectomy devices and methods
JP5085648B2 (en) 2006-07-05 2012-11-28 クック メディカル テクノロジーズ エルエルシー Suction clip
JP5336369B2 (en) 2006-08-11 2013-11-06 コーニンクレッカ フィリップス エヌ ヴェ Ultrasound system for cerebral blood flow imaging and microbubble improvement thrombus resolution
US20080086051A1 (en) 2006-09-20 2008-04-10 Ethicon Endo-Surgery, Inc. System, storage medium for a computer program, and method for displaying medical images
US8394078B2 (en) 2006-10-04 2013-03-12 Medrad, Inc. Interventional catheters incorporating an active aspiration system
WO2008057554A1 (en) 2006-11-08 2008-05-15 Cook Incorporated Thrombus removal device
JP5221032B2 (en) 2006-12-11 2013-06-26 株式会社グツドマン Insertion aid, catheter assembly and catheter set
WO2008089282A2 (en) 2007-01-16 2008-07-24 Silver James H Sensors for detecting subtances indicative of stroke, ischemia, infection or inflammation
WO2008097993A2 (en) 2007-02-05 2008-08-14 Boston Scientific Limited Thrombectomy apparatus and method
WO2008095492A2 (en) 2007-02-05 2008-08-14 Aarhus Universitet A method for diagnosing atherosclerotic plaques by measurement of cd36
WO2008101206A2 (en) 2007-02-15 2008-08-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter and method of manufacture
EP2138200B1 (en) 2007-04-03 2013-02-27 Nipro Corporation Thrombus-aspiration catheter
WO2008124618A1 (en) 2007-04-05 2008-10-16 Nmt Medical, Inc. Implant recovery device
US20080262471A1 (en) 2007-04-17 2008-10-23 Medtronic Vascular, Inc. Catheter with braided and coiled reinforcing layer
US7927309B2 (en) 2007-05-29 2011-04-19 Cordis Corporation Expandable sheath introducer
US20080312639A1 (en) 2007-06-13 2008-12-18 Jan Weber Hardened polymeric lumen surfaces
JP5758626B2 (en) 2007-06-26 2015-08-05 ロックスウッド・メディカル・インコーポレイテッド Catheter apparatus for treating vasculature
US8157760B2 (en) 2007-07-18 2012-04-17 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9669191B2 (en) 2008-02-05 2017-06-06 Silk Road Medical, Inc. Interventional catheter system and methods
US20090030400A1 (en) 2007-07-25 2009-01-29 Arani Bose System and method for intracranial access
WO2010014075A1 (en) 2007-07-27 2010-02-04 Microvention, Inc. Detachable coil incorporating stretch resistance
US20090043330A1 (en) 2007-08-09 2009-02-12 Specialized Vascular Technologies, Inc. Embolic protection devices and methods
US8211136B2 (en) * 2007-08-31 2012-07-03 Kimberly-Clark Worldwide, Inc. Stoma dilator
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
EP2211732B1 (en) 2007-10-22 2018-05-16 Atheromed, Inc. Atherectomy devices
CA2643261A1 (en) 2007-11-06 2009-05-06 Queen's University At Kingston Method and system for identifying and quantifing particles in flow systems
US9451884B2 (en) 2007-12-13 2016-09-27 Board Of Trustees Of The University Of Arkansas Device and method for in vivo detection of clots within circulatory vessels
US9144383B2 (en) 2007-12-13 2015-09-29 The Board Of Trustees Of The University Of Arkansas Device and method for in vivo noninvasive magnetic manipulation of circulating objects in bioflows
US8734374B2 (en) 2007-12-20 2014-05-27 Angiodynamics, Inc. Systems and methods for removing undesirable material within a circulatory system during a surgical procedure
JP5366974B2 (en) 2007-12-21 2013-12-11 マイクロベンション インコーポレイテッド System and method for determining the position of a separation zone of a separable implant
CA2709379C (en) 2007-12-21 2016-08-16 Microvention, Inc. Hydrogel filaments for biomedical uses
WO2009091990A1 (en) 2008-01-18 2009-07-23 Ev3 Inc . Angled tip catheter
US20090234321A1 (en) 2008-03-12 2009-09-17 James Edward Shapland Visualization of coronary vein procedure
US8876854B2 (en) 2008-04-03 2014-11-04 Cook Medical Technologies Llc Implant release mechanism
JP4362536B2 (en) 2008-04-11 2009-11-11 日本ライフライン株式会社 catheter
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US20100125253A1 (en) * 2008-11-17 2010-05-20 Avinger Dual-tip Catheter System for Boring through Blocked Vascular Passages
US7947012B2 (en) 2008-04-24 2011-05-24 Medtronic Vascular, Inc. Aspiration catheter having selectively deformable tip
JP2011519632A (en) 2008-05-02 2011-07-14 シークエント メディカル, インコーポレイテッド Filament devices for the treatment of vascular disorders
US8974411B2 (en) 2008-05-21 2015-03-10 Becton, Dickinson And Company Conical diffuser tip
CA2726851C (en) 2008-06-08 2018-11-27 Hotspur Technologies, Inc. Apparatus and methods for removing obstructive material from body lumens
US8070694B2 (en) 2008-07-14 2011-12-06 Medtronic Vascular, Inc. Fiber based medical devices and aspiration catheters
US8333796B2 (en) 2008-07-15 2012-12-18 Penumbra, Inc. Embolic coil implant system and implantation method
US20100023033A1 (en) 2008-07-25 2010-01-28 Medtronic Vescular, Inc. Hydrodynamic Thrombectomy Catheter
US8574245B2 (en) 2008-08-13 2013-11-05 Silk Road Medical, Inc. Suture delivery device
US9731094B2 (en) 2008-08-20 2017-08-15 Cook Medical Technologies Llc Introducer sheath having dual reinforcing elements
US20100063413A1 (en) * 2008-08-25 2010-03-11 Ekos Corporation Lysis Indication
US8343136B2 (en) 2008-08-26 2013-01-01 Cook Medical Technologies Llc Introducer sheath with encapsulated reinforcing member
US8758364B2 (en) 2008-08-29 2014-06-24 Rapid Medical Ltd. Device and method for clot engagement and capture
US8864792B2 (en) 2008-08-29 2014-10-21 Rapid Medical, Ltd. Device and method for clot engagement
US8298591B2 (en) 2008-09-10 2012-10-30 Micro-Dose Life Sciences Llc Anti-fever botanical composition and uses thereof
US8485969B2 (en) 2008-09-18 2013-07-16 Jeffrey Grayzel Medical guide element with diameter transition
US10631745B2 (en) 2008-09-22 2020-04-28 Cheetah Medical, Inc. System and method for determining blood flow
US9510854B2 (en) 2008-10-13 2016-12-06 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
AU2009313402C1 (en) 2008-11-07 2015-10-15 Johnson & Johnson Surgical Vision, Inc. Automatically switching different aspiration levels and/or pumps to an ocular probe
CH699981A2 (en) 2008-11-27 2010-05-31 Straub Medical Ag Catheter for aspirating, fragmenting and out transport of removable material from blood vessels.
US8725249B2 (en) 2008-12-09 2014-05-13 Nephera Ltd. Stimulation of the urinary system
WO2010068793A1 (en) 2008-12-10 2010-06-17 Microvention, Inc. Microcatheter
WO2010070685A1 (en) 2008-12-18 2010-06-24 Invatec S.P.A. Guide catheter
JP2012513292A (en) 2008-12-23 2012-06-14 シルク・ロード・メディカル・インコーポレイテッド Method and system for treating acute ischemic stroke
US8998946B2 (en) 2008-12-30 2015-04-07 Invatec S.P.A. Blood clot removal device
WO2010093836A2 (en) 2009-02-11 2010-08-19 Mark Mallaby Neurovascular microcatheter device, system and methods for use thereof
US8361095B2 (en) 2009-02-17 2013-01-29 Cook Medical Technologies Llc Loop thrombectomy device
US20110295217A1 (en) 2009-03-09 2011-12-01 Sumitomo Bakelite Co., Ltd. Catheter and method of manufacturing catheter
EP2408509B1 (en) 2009-03-18 2023-08-09 Corindus, Inc. Remote catheter system with steerable catheter
US20100241155A1 (en) 2009-03-20 2010-09-23 Acclarent, Inc. Guide system with suction
KR101719831B1 (en) 2009-04-15 2017-03-24 마이크로벤션, 인코포레이티드 Implant delivery system
CN102405069B (en) 2009-04-23 2015-09-16 费森尼斯医疗德国公司 Grumeleuse cuts resistance device, external functional device, blood circuit and treatment facility
WO2010126786A1 (en) 2009-05-01 2010-11-04 Cook Incorporated Aspiration catheter with thrombus removing device
US8517955B2 (en) 2009-05-08 2013-08-27 Broncus Medical Inc. Tissue sampling devices, systems and methods
US20110082373A1 (en) 2009-06-04 2011-04-07 Gurley John C Methods and apparatus for the detection of cardiopulmonary defects
US9510855B2 (en) 2009-06-15 2016-12-06 Perflow Medical Ltd. Method and apparatus for allowing blood flow through an occluded vessel
US8409269B2 (en) 2009-12-21 2013-04-02 Covidien Lp Procedures for vascular occlusion
CN102481433B (en) 2009-06-24 2014-12-31 施菲姆德控股有限责任公司 Steerable medical delivery devices and methods of use
US8795317B2 (en) 2009-07-08 2014-08-05 Concentric Medical, Inc. Embolic obstruction retrieval devices and methods
WO2011011493A1 (en) 2009-07-23 2011-01-27 Neurointerventional Therapeutics, Inc. System and method for removing a blood clot
US8057497B1 (en) 2009-07-28 2011-11-15 Seshadri Raju Thrombectomy removal device kit
US20130006225A1 (en) 2009-08-05 2013-01-03 Rocin Laboratories, Inc. Twin-type cannula assemblies for hand-held power-assisted tissue aspiration instruments
CH701695A1 (en) 2009-08-27 2011-02-28 Straub Medical Ag Catheter with protection system for aspirating, fragmenting and out pumping of removable material from hollow bodies or vessels, in particular of the human or animal body.
US20110054504A1 (en) 2009-08-31 2011-03-03 Boston Scientific Scimed, Inc. Recanalization device with expandable cage
EP2475417B1 (en) 2009-09-11 2018-10-10 Onset Medical Corporation Expandable cerebrovascular sheath
BR112012005835A2 (en) 2009-09-16 2019-09-24 Univ Texas change of temperature in a mammalian body
US8911487B2 (en) 2009-09-22 2014-12-16 Penumbra, Inc. Manual actuation system for deployment of implant
US20110077620A1 (en) 2009-09-30 2011-03-31 Debeer Nicholas C Guide Catheters
US9375223B2 (en) 2009-10-06 2016-06-28 Cardioprolific Inc. Methods and devices for endovascular therapy
US11039845B2 (en) 2009-10-06 2021-06-22 Cardioprolific Inc. Methods and devices for endovascular therapy
US20110106200A1 (en) 2009-10-29 2011-05-05 Medtronic, Inc. Stroke risk monitoring system including implantable medical device
CN102686180B (en) * 2009-11-04 2015-09-30 艾姆西森有限公司 Intracavity remodeling device and method
US8696698B2 (en) 2009-12-02 2014-04-15 Surefire Medical, Inc. Microvalve protection device and method of use for protection against embolization agent reflux
WO2011084342A1 (en) 2009-12-17 2011-07-14 Cook Medical Technologies Llc Delivery system with retractable proximal end
WO2011083460A2 (en) 2010-01-11 2011-07-14 Assis Medical Ltd. Device system and method for reshaping tissue openings
US10342570B2 (en) 2014-02-03 2019-07-09 Medinol Ltd. Device for traversing vessel occlusions and method of use
WO2011098926A1 (en) 2010-02-09 2011-08-18 Koninklijke Philips Electronics N.V. Apparatus, system and method for imaging and treatment using optical position sensing
CN201596219U (en) 2010-02-09 2010-10-06 北京泰杰伟业科技有限公司 Micro-catheter for vascular interventional therapy
US8545552B2 (en) 2010-02-26 2013-10-01 Silk Road Medical, Inc. Systems and methods for transcatheter aortic valve treatment
US20110238041A1 (en) 2010-03-24 2011-09-29 Chestnut Medical Technologies, Inc. Variable flexibility catheter
EP4039203A1 (en) 2010-04-13 2022-08-10 Mivi Neuroscience, Inc. Embolectomy devices for treatment of acute ischemic stroke condition
JP5899200B2 (en) 2010-04-14 2016-04-06 マイクロベンション インコーポレイテッド Implant delivery device
US20120041411A1 (en) 2010-04-19 2012-02-16 Micrus Endovascular Llc Low profile guiding catheter for neurovascular applications
US10238362B2 (en) 2010-04-26 2019-03-26 Gary And Mary West Health Institute Integrated wearable device for detection of fetal heart rate and material uterine contractions with wireless communication capability
US8663259B2 (en) 2010-05-13 2014-03-04 Rex Medical L.P. Rotational thrombectomy wire
US8764779B2 (en) 2010-05-13 2014-07-01 Rex Medical, L.P. Rotational thrombectomy wire
US9023070B2 (en) 2010-05-13 2015-05-05 Rex Medical, L.P. Rotational thrombectomy wire coupler
US9387077B2 (en) 2010-05-27 2016-07-12 Medtronic Vascular Galway Catheter assembly with prosthesis crimping and prosthesis retaining accessories
AU2011267862B2 (en) 2010-06-14 2013-11-07 Covidien Lp Material removal device
US10238833B2 (en) 2010-08-12 2019-03-26 C. R. Bard, Inc. Access port and catheter assembly including catheter distal portion stability features
KR101910207B1 (en) 2010-08-12 2018-10-19 씨. 알. 바드, 인크. Trimmable catheter including distal portion stability features
WO2012021406A2 (en) 2010-08-12 2012-02-16 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US20120040858A1 (en) 2010-08-13 2012-02-16 Morehouse School Of Medicine Biomarkers for stroke
EP2611370A2 (en) 2010-09-03 2013-07-10 University of Washington Neurosurgical devices and associated systems and methods
MX2013003290A (en) * 2010-09-22 2013-05-30 Acclarent Inc Apparatus for treating disorders of the sinuses.
US9039749B2 (en) 2010-10-01 2015-05-26 Covidien Lp Methods and apparatuses for flow restoration and implanting members in the human body
CN106110469B (en) 2010-10-04 2019-07-30 科维蒂恩有限合伙公司 Conduit device
US10238456B2 (en) 2010-10-14 2019-03-26 Corindus, Inc. Occlusion traversal robotic catheter system
WO2012050630A1 (en) 2010-10-14 2012-04-19 Medtronic, Inc. Cannular device and method of manufacture
EP2450067A1 (en) 2010-10-18 2012-05-09 MaRVis Technologies GmbH Medical device
US9107691B2 (en) 2010-10-19 2015-08-18 Distal Access, Llc Apparatus for rotating medical devices, systems including the apparatus, and associated methods
JP5126910B2 (en) 2010-10-29 2013-01-23 朝日インテック株式会社 Auxiliary dilator and catheter assembly using the same
EP2640287B1 (en) 2010-11-21 2023-01-18 Merit Medical Systems, Inc. Tissue removal device
DE102010053111B4 (en) 2010-12-01 2012-10-25 Acandis Gmbh & Co. Kg Arrangement with a device for supplying a medical functional element
WO2012078678A1 (en) 2010-12-06 2012-06-14 Tyco Healthcare Group Lp Vascular remodeling device
US9867725B2 (en) 2010-12-13 2018-01-16 Microvention, Inc. Stent
WO2012109198A1 (en) 2011-02-07 2012-08-16 Brigham And Women's Hospital, Inc. Medical aspiration apparatus
EP3871617A1 (en) 2011-03-09 2021-09-01 Neuravi Limited A clot retrieval device for removing occlusive clot from a blood vessel
US9737646B2 (en) 2011-03-23 2017-08-22 Abbott Cardiovascular Systems Inc. Small vessel stent and methods of use
US10722683B2 (en) 2011-04-05 2020-07-28 Thermopeutix, Inc. Microcatheter with distal tip portion and proximal solution lumen
US9724491B2 (en) 2011-04-05 2017-08-08 Thermopeutix, Inc. Microcatheter with distal tip portion and proximal solution lumen
WO2012145826A1 (en) 2011-04-29 2012-11-01 Evysio Medical Devices Ulc Endovascular prosthesis and delivery device
AU2012253583B2 (en) 2011-05-11 2014-09-25 Covidien Lp Vascular remodeling device
WO2012155954A1 (en) 2011-05-16 2012-11-22 Brainlab Ag Medical catheter with reduced backflow
EP2524653A1 (en) 2011-05-17 2012-11-21 Carag AG Occluder
WO2013003757A2 (en) 2011-06-30 2013-01-03 The Spectranetics Corporation Reentry catheter and method thereof
CN102847220A (en) 2011-06-30 2013-01-02 南通伊诺精密塑胶导管有限公司 Thin-wall fracture-resistant high pressure catheter
US10130789B2 (en) 2011-06-30 2018-11-20 Covidien Lp Distal access aspiration guide catheter
US11097081B2 (en) 2011-07-06 2021-08-24 Boston Scientific Scimed, Inc. Dual durometer soft/flexible enhanced bond strength guiding tip
US9039715B2 (en) 2011-07-11 2015-05-26 Great Aspirations Ltd. Apparatus for entrapping and extracting objects from body cavities
US8676301B2 (en) * 2011-07-14 2014-03-18 Med Works Limited Guide wire incorporating a handle
US9486605B2 (en) 2011-07-15 2016-11-08 Cook Medical Technologies Llc Introducer sheath with braided filament securement mechanism
US11026708B2 (en) 2011-07-26 2021-06-08 Thrombx Medical, Inc. Intravascular thromboembolectomy device and method using the same
CN102319097A (en) 2011-08-04 2012-01-18 东莞永胜医疗制品有限公司 Thrombus aspiration catheter and using method thereof
WO2013022796A2 (en) 2011-08-05 2013-02-14 Silk Road Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US10779855B2 (en) 2011-08-05 2020-09-22 Route 92 Medical, Inc. Methods and systems for treatment of acute ischemic stroke
US8787944B2 (en) 2011-08-18 2014-07-22 Rivada Research, Llc Method and system for providing enhanced location based information for wireless handsets
DE102011111534A1 (en) 2011-08-31 2013-02-28 QUALIMED Innovative Medizinprodukte Gesellschaft mit beschränkter Haftung aspiration
WO2013050880A2 (en) 2011-10-04 2013-04-11 AVNERI, Ben-Ami Devices and methods for percutaneous endarterectomy
EP3738527A1 (en) 2011-10-05 2020-11-18 Pulsar Vascular, Inc. Devices for enclosing an anatomical opening
US9345511B2 (en) 2011-10-13 2016-05-24 Atheromed, Inc. Atherectomy apparatus, systems and methods
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US8771341B2 (en) 2011-11-04 2014-07-08 Reverse Medical Corporation Protuberant aneurysm bridging device and method of use
WO2013070758A2 (en) 2011-11-09 2013-05-16 Boston Scientific Scimed, Inc. Guide extension catheter
DE102011120004B3 (en) 2011-11-30 2013-03-14 Universitätsklinikum Freiburg Device for detaching wall-shaped thrombi from a body vessel
US20130144328A1 (en) 2011-12-06 2013-06-06 Boston Scientific Scimed, Inc. Expanding distal sheath with combined embolic protection
GB2498175B (en) 2011-12-19 2014-04-09 Cook Medical Technologies Llc Thrombus removal apparatus and method
KR102044570B1 (en) 2012-01-04 2019-12-05 라피드 메디칼 리미티드 Braided devices for assisting medical treatments
US20160081825A1 (en) 2012-01-04 2016-03-24 Rapid Medical Ltd. Heat-treated braided intravascular devices and methods
EP2808051B1 (en) 2012-01-23 2020-03-11 Terumo Kabushiki Kaisha Medical tube, catheter, and method for producing medical tube
CN104185490B (en) 2012-01-31 2017-10-20 波士顿科学西美德公司 Guiding extension conduit
US10028854B2 (en) 2012-02-02 2018-07-24 Covidien Lp Stent retaining systems
WO2013119332A2 (en) 2012-02-09 2013-08-15 Stout Medical Group, L.P. Embolic device and methods of use
JP6149855B2 (en) 2012-02-28 2017-06-21 住友ベークライト株式会社 Medical equipment
KR101871144B1 (en) 2012-03-16 2018-06-27 마이크로벤션, 인코포레이티드 Stent and stent delivery device
US9011884B2 (en) 2012-04-18 2015-04-21 Microvention, Inc. Embolic devices
CN102698328B (en) 2012-06-08 2014-12-03 李广成 Double-container balanced lavaging device for hematoma remover
JP6480327B2 (en) 2012-06-14 2019-03-06 マイクロベンション インコーポレイテッドMicrovention, Inc. Polymer therapeutic composition
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US9211132B2 (en) 2012-06-27 2015-12-15 MicoVention, Inc. Obstruction removal system
US9445828B2 (en) 2012-07-05 2016-09-20 Cognition Medical Corp. Methods, devices, and systems for postconditioning with clot removal
US8684963B2 (en) 2012-07-05 2014-04-01 Abbott Cardiovascular Systems Inc. Catheter with a dual lumen monolithic shaft
JP5676054B2 (en) 2012-07-10 2015-02-25 パナソニックIpマネジメント株式会社 CONTROL DEVICE AND OPERATION METHOD FOR INSERTION DEVICE, INSERTION DEVICE HAVING CONTROL DEVICE, CONTROL PROGRAM FOR INSERTION DEVICE, AND INTEGRATED ELECTRONIC CIRCUIT FOR CONTROLLING INSERTION DEVICE
US20140025043A1 (en) 2012-07-17 2014-01-23 Boston Scientific Scimed, Inc. Guide extension catheter
JP6050045B2 (en) 2012-07-20 2016-12-21 テルモ株式会社 Coronary catheter
WO2014022310A1 (en) 2012-08-01 2014-02-06 Boston Scientific Scimed, Inc. Guide extension catheters and methods for manufacturing the same
US9332999B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9332998B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9770251B2 (en) 2012-08-13 2017-09-26 Microvention, Inc. Shaped removal device
US9597171B2 (en) 2012-09-11 2017-03-21 Covidien Lp Retrieval catheter with expandable tip
US9504476B2 (en) 2012-10-01 2016-11-29 Microvention, Inc. Catheter markers
WO2014062696A1 (en) 2012-10-15 2014-04-24 Microvention, Inc. Polymeric treatment compositions
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US20150257659A1 (en) 2012-10-23 2015-09-17 Koninklijke Philips N.V. Device and method for obtaining vital sign information of a living being
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
WO2014076748A1 (en) 2012-11-13 2014-05-22 テルモ株式会社 Catheter
US8784434B2 (en) 2012-11-20 2014-07-22 Inceptus Medical, Inc. Methods and apparatus for treating embolism
EP2922590B1 (en) 2012-11-21 2020-02-05 Amgen Inc. Drug delivery device
US9539022B2 (en) 2012-11-28 2017-01-10 Microvention, Inc. Matter conveyance system
JP6054543B2 (en) 2012-12-04 2016-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Device and method for obtaining vital sign information of a living body
US20140163367A1 (en) 2012-12-07 2014-06-12 Covidien Lp Microcatheter
JP6391910B2 (en) 2012-12-14 2018-09-19 株式会社グッドマン Aspiration catheter
DE102012112732B4 (en) 2012-12-20 2019-06-19 Acandis Gmbh Medical device, system with such a device and manufacturing method
US9358021B2 (en) 2013-01-09 2016-06-07 Covidien Lp Connection of an endovascular intervention device to a manipulation member
US20160256255A9 (en) 2013-02-22 2016-09-08 Jianlu Ma Design and methods for a device with blood flow restriction feature for embolus removal in human vasculature
CN105163789A (en) 2013-03-01 2015-12-16 波士顿科学国际有限公司 Guide extension catheter with a retractable wire
US9370639B2 (en) 2013-03-12 2016-06-21 Cook Medical Technologies, LLC Variable stiffness catheter
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US10531971B2 (en) 2013-03-12 2020-01-14 Abbott Cardiovascular System Inc. Balloon catheter having hydraulic actuator
JP6087020B2 (en) 2013-03-12 2017-03-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Atherectomy device
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
WO2014140978A1 (en) 2013-03-14 2014-09-18 Koninklijke Philips N.V. Device and method for obtaining vital sign information of a subject
US9737328B2 (en) 2013-03-14 2017-08-22 Boston Scientific Limited Hydrodynamic eccentrically pivoting catheter
US9549783B2 (en) 2013-03-15 2017-01-24 Corindus, Inc. Catheter system with magnetic coupling
US8715315B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment systems
ES2774327T3 (en) 2013-03-15 2020-07-20 Qxmedical Llc Reinforcement catheter
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
AU2014228240A1 (en) 2013-03-15 2015-11-05 Zansors Llc Health monitoring, surveillance and anomaly detection
US10813663B2 (en) 2013-03-15 2020-10-27 National University Of Ireland, Galway Device suitable for removing matter from inside the lumen and the wall of a body lumen
CN105377184B (en) 2013-03-15 2017-06-30 微仙美国有限公司 Embolization protective device
US20140271718A1 (en) 2013-03-15 2014-09-18 University Of Florida Research Foundation Incorporated Novel type 1 diabetes vaccines, and methods of use
WO2014151209A1 (en) 2013-03-18 2014-09-25 Virginia Commonwealth Univerisity Dynamic aspiration methods and systems
US9693789B2 (en) 2013-03-29 2017-07-04 Silk Road Medical, Inc. Systems and methods for aspirating from a body lumen
CN203263993U (en) 2013-04-02 2013-11-06 业聚医疗器械(深圳)有限公司 Fast switching guide catheter
ITMI20130516A1 (en) 2013-04-05 2014-10-06 Sofar Spa SURGICAL SYSTEM WITH STERILE TOWELS
US20140330286A1 (en) 2013-04-25 2014-11-06 Michael P. Wallace Methods and Devices for Removing Obstructing Material From the Human Body
US20150005704A1 (en) 2013-05-07 2015-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Steerable Medical Device Having Multiple Curve Profiles
US9629978B2 (en) 2013-05-20 2017-04-25 Clph, Llc Catheters with intermediate layers and methods for making them
US10322260B2 (en) * 2013-05-30 2019-06-18 Terumo Kabushiki Kaisha Treatment method for treating lower limbs using multi-member catheter assembly
US20150335288A1 (en) 2013-06-06 2015-11-26 Tricord Holdings, Llc Modular physiologic monitoring systems, kits, and methods
WO2014203336A1 (en) 2013-06-18 2014-12-24 住友ベークライト株式会社 Medical device and method for manufacturing medical device
US20160151010A1 (en) 2013-07-17 2016-06-02 Glucocheck Ltd. Blood sampling device and methods
KR102129536B1 (en) 2013-08-06 2020-07-03 삼성전자주식회사 Mobile terminal and method for controlling the mobile terminal
US9827126B2 (en) 2013-08-27 2017-11-28 Covidien Lp Delivery of medical devices
AU2014321278B2 (en) 2013-09-19 2016-11-10 Microvention, Inc. Polymer films
CA2923753C (en) 2013-09-19 2021-10-12 Terumo Corporation Polymer particles
JP6554475B2 (en) 2013-10-16 2019-07-31 メッドワークス,エルエルシーMedwerks, Llc Non-invasive medical device
US9913961B2 (en) 2013-10-24 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10695025B2 (en) 2013-11-07 2020-06-30 The Board Of Trustees Of The Leland Stanford Junior University Wearable ultrasonic device for circulating tumor cell detection
AU2014346486B2 (en) 2013-11-08 2016-12-08 Terumo Corporation Polymer particles
US10639061B2 (en) 2013-11-11 2020-05-05 Cook Medical Technologies Llc Devices and methods for modifying veins and other bodily vessels
US10278592B2 (en) 2013-12-09 2019-05-07 Samsung Electronics Co., Ltd. Modular sensor platform
US10219814B2 (en) 2013-12-13 2019-03-05 Rex Medical, L.P. Aspiration system for thrombectomy procedures
EP3082930B1 (en) 2013-12-20 2019-07-17 Boston Scientific Scimed, Inc. Integrated catheter system
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
EP3348214A1 (en) 2014-02-03 2018-07-18 Medinol Ltd. Improved device for traversing vessel occlusions
US9789283B2 (en) 2014-02-03 2017-10-17 Medinol Ltd. Catheter tip assembled with a spring
US9999355B2 (en) 2014-02-12 2018-06-19 Koninklijke Philips N.V. Device, system and method for determining vital signs of a subject based on reflected and transmitted light
US20160066921A1 (en) 2014-02-21 2016-03-10 Neuravi Limited DEVICE AND METHOD FOR ENDOVASCULAR TREATMENT OF ANEURYSMS USING EMBOLIC ePTFE
CN105120776A (en) 2014-03-20 2015-12-02 波士顿科学有限公司 Thrombectomy catheter
US20150269825A1 (en) 2014-03-20 2015-09-24 Bao Tran Patient monitoring appliance
US9241699B1 (en) * 2014-09-04 2016-01-26 Silk Road Medical, Inc. Methods and devices for transcarotid access
US9820761B2 (en) 2014-03-21 2017-11-21 Route 92 Medical, Inc. Rapid aspiration thrombectomy system and method
US9433427B2 (en) 2014-04-08 2016-09-06 Incuvate, Llc Systems and methods for management of thrombosis
JP5954748B2 (en) 2014-04-25 2016-07-20 朝日インテック株式会社 catheter
US9883877B2 (en) 2014-05-19 2018-02-06 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
JP6344762B2 (en) 2014-05-21 2018-06-20 朝日インテック株式会社 catheter
US10792056B2 (en) 2014-06-13 2020-10-06 Neuravi Limited Devices and methods for removal of acute blockages from blood vessels
WO2015189354A1 (en) 2014-06-13 2015-12-17 Neuravi Limited Devices for removal of acute blockages from blood vessels
US10478127B2 (en) 2014-06-23 2019-11-19 Sherlock Solutions, LLC Apparatuses, methods, processes, and systems related to significant detrimental changes in health parameters and activating lifesaving measures
US10265086B2 (en) 2014-06-30 2019-04-23 Neuravi Limited System for removing a clot from a blood vessel
EP3164086B1 (en) 2014-07-01 2020-04-08 Boston Scientific Scimed, Inc. Overlapped braid termination
CN204158457U (en) 2014-07-14 2015-02-18 业聚医疗器械(深圳)有限公司 The conduit of band cutting atherosclerotic plaque and pumping function
US10456552B2 (en) 2014-07-28 2019-10-29 Mayank Goyal System and methods for intracranial vessel access
EP3174591B1 (en) 2014-07-28 2023-11-15 Silk Road Medical, Inc. Transcarotid neurovascular catheter
US20160030079A1 (en) * 2014-08-01 2016-02-04 Patrick Cohen Cannula assembly
US10792043B2 (en) 2014-08-07 2020-10-06 Perflow Medical Ltd. Aneurysm treatment device and method
CN107206208B (en) 2014-08-22 2020-12-15 杰万特·P·帕马 Advanced electromagnetic motion and tracking peripherally inserted central catheter system with extended intravascular applications
US9801643B2 (en) 2014-09-02 2017-10-31 Cook Medical Technologies Llc Clot retrieval catheter
US20160136398A1 (en) 2014-10-31 2016-05-19 Cerevasc, Llc Methods and systems for treating hydrocephalus
WO2016073498A1 (en) 2014-11-07 2016-05-12 Boston Scientific Scimed, Inc. Medical device having an atraumatic distal tip
US20160135829A1 (en) 2014-11-13 2016-05-19 Angiodynamics, Inc. Systems and methods for en bloc removal of undesirable material from passageways
WO2016081950A1 (en) 2014-11-21 2016-05-26 Microvention, Inc. Improved reinforced balloon catheter
US9943321B2 (en) 2014-12-16 2018-04-17 Penumbra, Inc. Methods and devices for removal of thromboembolic material
US20160166265A1 (en) 2014-12-16 2016-06-16 Penumbra Inc. Methods and Devices for Removal of Thromboembolic Material
US10518066B2 (en) 2015-01-09 2019-12-31 Mivi Neuroscience, Inc. Medical guidewires for tortuous vessels
CN107427377B (en) 2015-01-12 2019-09-03 微仙美国有限公司 Bracket
ES2577288B8 (en) 2015-01-13 2019-01-10 Anaconda Biomed S L Device for thrombectomy
CN107205663A (en) 2015-01-19 2017-09-26 皇家飞利浦有限公司 Equipment, system and method for skin detection
US20160213396A1 (en) 2015-01-22 2016-07-28 Cook Medical Technologies Llc Catheter with an auger and method of use thereof
US10426497B2 (en) 2015-07-24 2019-10-01 Route 92 Medical, Inc. Anchoring delivery system and methods
EP4137070A1 (en) * 2015-02-04 2023-02-22 Route 92 Medical, Inc. Rapid aspiration thrombectomy system
KR20170115574A (en) 2015-02-06 2017-10-17 라피드 메디칼 리미티드 Systems and methods for removing vascular occlusion
US9987028B2 (en) 2015-02-12 2018-06-05 Cook Medical Technologies Llc Partially covered braided funnel aspiration catheter
US20160242764A1 (en) 2015-02-24 2016-08-25 Silk Road Medical, Inc. Suture Delivery Device
US20160242893A1 (en) 2015-02-25 2016-08-25 Microvention, Inc. Stent And Filter
WO2016138443A2 (en) 2015-02-26 2016-09-01 Stryker Corporation Surgical instrument with articulation region
CN204909516U (en) * 2015-02-28 2015-12-30 卡迪欧凯尼迪克斯公司 System of vascular system through patient of marcing and carry out external member of surgery operation to patient's chambers of heart
EP3265064A4 (en) 2015-03-04 2018-11-07 Microvention, Inc. Drug delivery device
JP6694870B2 (en) 2015-03-11 2020-05-20 テルモ株式会社 Foreign matter removal device
CN104622538A (en) 2015-03-12 2015-05-20 湖南瑞康通科技发展有限公司 Thrombus excision system
WO2016154592A1 (en) 2015-03-26 2016-09-29 Microvention, Inc. Embiolic particles
EP3280354B1 (en) 2015-04-10 2019-09-04 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
CN107708610A (en) 2015-04-30 2018-02-16 丝绸之路医药公司 System and method for being treated through conduit aorta petal
CN107278160B (en) * 2015-05-26 2019-02-15 泰利福创新有限责任公司 Seal wire ligamentopexis
US10398874B2 (en) 2015-05-29 2019-09-03 Covidien Lp Catheter distal tip configuration
EP4233738A3 (en) 2015-05-29 2023-10-18 Microvention, Inc. Catheter circuit
WO2016201250A1 (en) 2015-06-11 2016-12-15 Microvention, Inc. Expansile device for implantation
US10631893B2 (en) 2015-07-10 2020-04-28 Warsaw Orthopedic, Inc. Nerve and soft tissue removal device
US10888280B2 (en) 2016-09-24 2021-01-12 Sanmina Corporation System and method for obtaining health data using a neural network
US20170028170A1 (en) 2015-07-28 2017-02-02 Andrew Ho, M.D., Inc. Guide catheter extension device and methods of use for cardiology procedures
US10307168B2 (en) 2015-08-07 2019-06-04 Terumo Corporation Complex coil and manufacturing techniques
WO2017025775A1 (en) 2015-08-11 2017-02-16 Latvijas Universitate Device for adaptive photoplethysmography imaging
CN107847243B (en) 2015-08-11 2021-06-01 泰尔茂株式会社 Systems and methods for implant delivery
WO2017040484A1 (en) 2015-08-31 2017-03-09 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US10463386B2 (en) 2015-09-01 2019-11-05 Mivi Neuroscience, Inc. Thrombectomy devices and treatment of acute ischemic stroke with thrombus engagement
US20170072163A1 (en) 2015-09-11 2017-03-16 Cathera, Inc. Catheter shaft and associated devices, systems, and methods
US20170072165A1 (en) 2015-09-11 2017-03-16 Cathera, Inc. Catheter shaft and associated devices, systems, and methods
US11253292B2 (en) 2015-09-13 2022-02-22 Rex Medical, L.P. Atherectomy device
EP3349669B1 (en) 2015-09-18 2020-10-21 Terumo Corporation Vessel prosthesis
WO2017049312A1 (en) 2015-09-18 2017-03-23 Microvention, Inc. Releasable delivery system
JP6938471B2 (en) 2015-09-18 2021-09-22 マイクロベンション インコーポレイテッドMicrovention, Inc. Implant retention, separation and pressing system
JP6854282B2 (en) 2015-09-18 2021-04-07 テルモ株式会社 Pressable implant delivery system
US10639456B2 (en) 2015-09-28 2020-05-05 Microvention, Inc. Guidewire with torque transmission element
EP3406208B1 (en) 2015-09-28 2020-01-22 Stryker Corporation Mechanical thrombectomy apparatuses
US20170100142A1 (en) 2015-10-09 2017-04-13 Incuvate, Llc Systems and methods for management of thrombosis
EP3361944A4 (en) 2015-10-12 2019-05-29 Northwestern University Ambulatory blood pressure and vital sign monitoring apparatus, system and method
JP6941098B2 (en) 2015-10-28 2021-09-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Equipment and methods for determining SUVs in radiation tomography
EP3368137B1 (en) 2015-10-30 2021-03-03 CereVasc, Inc. Systems for treating hydrocephalus
BR112018008678B1 (en) 2015-10-31 2022-11-29 NeuroVasc Technologies, Inc BLOOD FLOW RESTRICTED PISTRO REMOVAL DEVICE AND RELATED METHODS
US10413226B2 (en) 2015-11-09 2019-09-17 Arizona Board Of Regents On Behalf Of Arizona State University Noncontact monitoring of blood oxygen saturation using camera
WO2017087816A1 (en) 2015-11-19 2017-05-26 Penumbra, Inc. Systems and methods for treatment of stroke
WO2017087923A1 (en) 2015-11-21 2017-05-26 Boston Scientific Scimed Inc. Force sensing catheter with a slotted tube element
US10716915B2 (en) 2015-11-23 2020-07-21 Mivi Neuroscience, Inc. Catheter systems for applying effective suction in remote vessels and thrombectomy procedures facilitated by catheter systems
US10617509B2 (en) * 2015-12-29 2020-04-14 Emboline, Inc. Multi-access intraprocedural embolic protection device
US20170189033A1 (en) 2016-01-06 2017-07-06 Microvention, Inc. Occlusive Embolic Coil
AU2017217879B9 (en) 2016-02-10 2021-08-19 Microvention, Inc. Intravascular treatment site access
US10729447B2 (en) 2016-02-10 2020-08-04 Microvention, Inc. Devices for vascular occlusion
CN113350655B (en) 2016-02-24 2024-03-19 禾木(中国)生物工程有限公司 Nerve vascular catheter with enhanced flexibility
US10828061B2 (en) 2016-03-03 2020-11-10 Boston Scientific Scimed, Inc. Accessory devices for use with catheters
US10583270B2 (en) 2016-03-14 2020-03-10 Covidien Lp Compound curve navigation catheter
WO2017201316A1 (en) 2016-05-18 2017-11-23 Microvention, Inc. Embolic containment
WO2017201288A1 (en) 2016-05-19 2017-11-23 Acist Medical Systems, Inc. Position sensing in intravascular processes
US10653873B2 (en) 2016-05-26 2020-05-19 Merit Medical Systems, Inc. Expandable introducer assembly
CN109890452B (en) 2016-06-01 2021-08-17 微仙美国有限公司 Balloon catheter with improved reinforcement
CN111904522B (en) 2016-06-10 2023-06-16 泰尔茂株式会社 Vascular occlusion device
EP3474740A1 (en) 2016-06-24 2019-05-01 Koninklijke Philips N.V. System and method for vital signs detection
US10980555B2 (en) 2016-07-12 2021-04-20 Cardioprolific Inc. Methods and devices for clots and tissue removal
BR112019001481A2 (en) 2016-07-26 2019-04-30 Neuravi Limited clot removal system to remove occlusive clots from a blood vessel
WO2018029033A1 (en) 2016-08-09 2018-02-15 Koninklijke Philips N.V. Device, system and method for monitoring of peripheral arterial perfusion of a subject
JP7061996B6 (en) 2016-08-09 2022-06-06 コーニンクレッカ フィリップス エヌ ヴェ Device for use in blood oxygen saturation measurement
US20180042623A1 (en) 2016-08-11 2018-02-15 Stanley Batiste Blood Clot Aspiration Catheter
US11350825B2 (en) 2016-08-25 2022-06-07 Vivonics, Inc. Contactless system and method for measuring and continuously monitoring arterial blood pressure
US10368874B2 (en) 2016-08-26 2019-08-06 Microvention, Inc. Embolic compositions
US10610668B2 (en) 2016-10-05 2020-04-07 Becton, Dickinson And Company Catheter with an asymmetric tip
CA3041271A1 (en) 2016-10-19 2018-04-26 Medtec Medical, Inc. Electronic vacuum regulator device
US9775730B1 (en) 2016-11-02 2017-10-03 Walzman Innovations, Llc Flow-diverting covered stent
TW201825137A (en) 2016-11-25 2018-07-16 日商住友電木股份有限公司 Catheter and process for producing catheter
CN108245292B (en) 2016-12-29 2019-11-08 先健科技(深圳)有限公司 Conveying device and transportation system
CN110381855B (en) 2017-01-06 2023-07-04 因赛普特有限责任公司 Antithrombotic coating for aneurysm treatment devices
US10905853B2 (en) 2017-01-17 2021-02-02 DePuy Synthes Products, Inc. System and method for delivering a catheter
WO2018136745A1 (en) 2017-01-20 2018-07-26 Route 92 Medical, Inc. Single operator intracranial medical device delivery systems and methods of use
US10912919B2 (en) 2017-01-23 2021-02-09 Edwards Lifesciences Corporation Expandable sheath
US20180228502A1 (en) 2017-02-13 2018-08-16 Penumbra, Inc. Dual lumen hypotube catheter
EP3554391A4 (en) 2017-02-24 2020-09-16 Inceptus Medical LLC Vascular occlusion devices and methods
US11123098B2 (en) 2017-02-28 2021-09-21 Angiosafe, Inc. Device and method for centering and crossing a vascular occlusion
WO2018169032A1 (en) 2017-03-16 2018-09-20 テルモ株式会社 Catheter assembly
EP3603726B1 (en) 2017-03-29 2024-02-21 Terumo Kabushiki Kaisha Catheter assembly
WO2018193601A1 (en) 2017-04-20 2018-10-25 朝日インテック株式会社 Catheter
US10537710B2 (en) 2017-04-20 2020-01-21 Covidien Lp Catheter including an inner liner with a flexible distal section
CN110650695B (en) 2017-05-23 2023-05-12 朝日英达科株式会社 Assisted jet aspiration thrombectomy catheter and method of use
US10478535B2 (en) 2017-05-24 2019-11-19 Mivi Neuroscience, Inc. Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries
US11234723B2 (en) 2017-12-20 2022-02-01 Mivi Neuroscience, Inc. Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries
EP3632494A4 (en) 2017-05-26 2021-03-17 Sumitomo Bakelite Co., Ltd. Catheter
US11432835B2 (en) 2017-06-07 2022-09-06 Penumbra, Inc. Apparatus and methods for clot aspiration
EP4085853A1 (en) 2017-07-31 2022-11-09 Boston Scientific Scimed, Inc. Introducer system with expandable capabilities
JP7006020B2 (en) 2017-08-25 2022-01-24 住友ベークライト株式会社 Catheter and catheter kit
US20190070387A1 (en) 2017-09-02 2019-03-07 Mayank Goyal System and methods for accessing and treating cerebral venous sinus thrombosis
US10105154B1 (en) 2017-11-09 2018-10-23 Pebble Hill Partners, Llc Basket for a catheter device
CN108013918B (en) 2017-12-26 2018-06-29 微创心脉医疗科技(上海)有限公司 One kind takes bolt conduit
EP3742991A4 (en) 2018-01-25 2021-09-22 Ischemicure Ltd. Devices, systems and methods to remove blood clots
WO2019147414A1 (en) 2018-01-26 2019-08-01 Smith & Nephew, Inc. Tissue collection and delivery device and methods of use thereof
US11154314B2 (en) 2018-01-26 2021-10-26 Inari Medical, Inc. Single insertion delivery system for treating embolism and associated systems and methods
JP2021517850A (en) 2018-03-12 2021-07-29 エクストラクト メディカル,インコーポレイティド Devices and methods for removing substances from patients
EP3539486A1 (en) 2018-03-13 2019-09-18 The University of Toledo Minimally invasive thrombectomy
CA3095844A1 (en) 2018-05-01 2019-11-07 Incept, Llc Devices and methods for removing obstructive material from an intravascular site
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
JP2021523793A (en) 2018-05-17 2021-09-09 ルート92メディカル・インコーポレイテッドRoute 92 Medical, Inc. Suction catheter system and how to use
US20200289136A1 (en) 2018-05-17 2020-09-17 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US10716880B2 (en) 2018-06-15 2020-07-21 Incuvate, Llc Systems and methods for aspiration and monitoring
WO2019246583A1 (en) 2018-06-21 2019-12-26 Nasser Rafiee Guidewires and related methods and systems
US11517335B2 (en) 2018-07-06 2022-12-06 Incept, Llc Sealed neurovascular extendable catheter
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
DE102018212091A1 (en) 2018-07-19 2020-01-23 Siemens Healthcare Gmbh Determination of a load-optimized MR sequence
US10531883B1 (en) 2018-07-20 2020-01-14 Syntheon 2.0, LLC Aspiration thrombectomy system and methods for thrombus removal with aspiration catheter
CN112533550A (en) 2018-07-24 2021-03-19 半影公司 Device and method for controlled clot aspiration
AU2019321256B2 (en) 2018-08-13 2023-06-22 Inari Medical, Inc. System for treating embolism and associated devices and methods
US20210001141A1 (en) 2018-10-22 2021-01-07 Joovv, Inc. Photobiomodulation therapy systems and devices
US11020014B2 (en) 2018-11-30 2021-06-01 Microsoft Technology Licensing, Llc Photoplethysmogram device with skin temperature regulator
TR201900192A2 (en) 2019-01-08 2019-02-21 Canakkale Onsekiz Mart Ueniversitesi Rektoerluegue INTERNAL MOVING ASPIRATION CATHETER
US20200297972A1 (en) 2019-02-27 2020-09-24 Imperative Care, Inc. Catheter with seamless flexibility transitions
US20200345979A1 (en) 2019-03-22 2020-11-05 Yince Loh Transradial Access Systems Particularly Useful for Cerebral Access
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
CN114502086A (en) 2019-07-19 2022-05-13 万能医药公司 Device and method for aspirating thrombi
US20210093336A1 (en) 2019-10-01 2021-04-01 Incept, Llc Embolic retrieval catheter
JP7339355B2 (en) 2019-10-03 2023-09-05 朝日インテック株式会社 medical tubular body
JP2022551988A (en) 2019-10-15 2022-12-14 インパラティブ、ケア、インク. Systems and methods for multivariate stroke detection
CN114555168A (en) 2019-11-08 2022-05-27 朝日英达科株式会社 Catheter tube
GB201917184D0 (en) 2019-11-26 2020-01-08 Univ Sheffield Guiding device for a vascular catheter
US11426076B2 (en) 2019-11-27 2022-08-30 Vivonics, Inc. Contactless system and method for assessing and/or determining hemodynamic parameters and/or vital signs
CN110916768A (en) 2019-11-29 2020-03-27 昆山金泰医疗科技有限公司 High-efficient spiral shell rotary-cut bolt device
JP2023507553A (en) 2019-12-18 2023-02-24 インパラティブ、ケア、インク. Methods and systems for treating venous thromboembolism
US20210315598A1 (en) 2019-12-18 2021-10-14 Imperative Care, Inc. Methods of placing large bore aspiration catheters
US11638637B2 (en) 2019-12-18 2023-05-02 Imperative Care, Inc. Method of removing embolic material with thrombus engagement tool
US20210353314A1 (en) 2020-01-23 2021-11-18 Stryker Corporation Mechanically resonant pulse relief valve for assisted clearing of plugged aspiration
US11617865B2 (en) 2020-01-24 2023-04-04 Mivi Neuroscience, Inc. Suction catheter systems with designs allowing rapid clearing of clots
EP4153286A1 (en) 2020-05-22 2023-03-29 Orbusneich Medical Pte. Ltd Pre-shaped medical devices
EP4157427A2 (en) 2020-05-27 2023-04-05 Embrace Medical Ltd. Vascular access catheter
US20220047849A1 (en) 2020-08-11 2022-02-17 Imperative Care, Inc. Catheter with a preset curve
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
US11523841B2 (en) 2020-09-03 2022-12-13 Cardiovascular Systems, Inc. Systems, methods and devices for removal of thrombus and/or soft plaque with asymmetric mass distribution within working region of impeller
CN116456917A (en) 2020-11-13 2023-07-18 微仙美国有限公司 Distal aspiration catheter and method
US20230064188A1 (en) 2021-08-31 2023-03-02 Imperative Care, Inc. Neurovascular access catheter with microcatheter segment
US20230061728A1 (en) 2021-08-31 2023-03-02 Imperative Care, Inc. Neurovascular access catheter with microcatheter segment
KR20230036992A (en) 2021-09-08 2023-03-15 뉴라비 리미티드 Neuro access guide wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
US11819228B2 (en) 2019-12-18 2023-11-21 Imperative Care, Inc. Methods and systems for treating a pulmonary embolism

Also Published As

Publication number Publication date
US11253277B2 (en) 2022-02-22
US20210186536A1 (en) 2021-06-24
US20210187244A1 (en) 2021-06-24
CN113365687A (en) 2021-09-07
EP4076611A1 (en) 2022-10-26
US20210186537A1 (en) 2021-06-24
JP2023507553A (en) 2023-02-24
WO2021127004A1 (en) 2021-06-24
EP4076611A4 (en) 2023-11-15
US20210186542A1 (en) 2021-06-24
CA3162704A1 (en) 2021-06-24
US11819228B2 (en) 2023-11-21
US11065018B2 (en) 2021-07-20

Similar Documents

Publication Publication Date Title
US20230015259A1 (en) Inserter for guiding a device through a hemostasis valve and method thereof
US11457936B2 (en) Catheter system for treating thromboembolic disease
US11633272B2 (en) Manually rotatable thrombus engagement tool
US11147949B2 (en) Method of making an enhanced flexibility neurovascular catheter
US20190381221A1 (en) Suction catheter systems for applying effective aspiration in remote vessels, especially cerebral arteries
EP3753599B1 (en) Systems for treatment of acute ischemic stroke
US20210386440A1 (en) Hydraulic displacement and removal of thrombus clots, and catheters for performing hydraulic displacement
US8241315B2 (en) Apparatus and method for treating occluded vasculature
US20230248502A1 (en) Sterile field clot capture module for use in thrombectomy system
WO2023220707A2 (en) Transvascular thrombectomy system
EP4171400A1 (en) Aspiration system with accelerated response

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: IMPERATIVE CARE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUCK, MICHAEL;FOX, JULIA;JACOBS, JAMES;REEL/FRAME:061547/0297

Effective date: 20221005