US20220043317A9 - Driving thin film switchable optical devices - Google Patents

Driving thin film switchable optical devices Download PDF

Info

Publication number
US20220043317A9
US20220043317A9 US17/247,825 US202017247825A US2022043317A9 US 20220043317 A9 US20220043317 A9 US 20220043317A9 US 202017247825 A US202017247825 A US 202017247825A US 2022043317 A9 US2022043317 A9 US 2022043317A9
Authority
US
United States
Prior art keywords
voltage
controller
optically switchable
switchable device
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/247,825
Other versions
US11630367B2 (en
US20210116770A1 (en
Inventor
Anshu A. Pradhan
Disha Mehtani
Gordon Jack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
View Inc
Original Assignee
View Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/049,623 external-priority patent/US8254013B2/en
Priority claimed from US13/449,248 external-priority patent/US20130271813A1/en
Priority claimed from US13/452,032 external-priority patent/US10429712B2/en
Priority claimed from US13/682,618 external-priority patent/US9030725B2/en
Priority claimed from US13/931,459 external-priority patent/US9412290B2/en
Priority claimed from US14/489,414 external-priority patent/US9778532B2/en
Priority claimed from US16/676,750 external-priority patent/US10935865B2/en
Priority to US17/247,825 priority Critical patent/US11630367B2/en
Application filed by View Inc filed Critical View Inc
Assigned to VIEW, INC. reassignment VIEW, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PRADHAN, ANSHU A., JACK, GORDON, MEHTANI, DISHA
Publication of US20210116770A1 publication Critical patent/US20210116770A1/en
Publication of US20220043317A9 publication Critical patent/US20220043317A9/en
Priority to US18/154,396 priority patent/US20230152655A1/en
Publication of US11630367B2 publication Critical patent/US11630367B2/en
Application granted granted Critical
Assigned to CANTOR FITZGERALD SECURITIES reassignment CANTOR FITZGERALD SECURITIES SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VIEW, INC.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • G02F2001/1555Counter electrode

Definitions

  • Electrochromic (EC) devices typically comprise a multilayer stack including (a) at least one electrochromic material, that changes its optical properties, such as visible light transmitted through the layer, in response to the application of an electrical potential, (b) an ion conductor (IC), which allows ions (e.g. Li + ) to move through it, into and out from the electrochromic material to cause the optical property change, while insulating against electrical shorting, and (c) transparent conductor layers (e.g. transparent conducting oxides or TCOs), over which an electrical potential is applied. In some cases, the electric potential is applied from opposing edges of an electrochromic device and across the viewable area of the device.
  • the transparent conductor layers are designed to have relatively high electronic conductances. Electrochromic devices may have more than the above-described layers, e.g., ion storage layers that color, or not.
  • electrochromic device Due to the physics of the device operation, proper function of the electrochromic device depends upon many factors such as ion movement through the material layers, the electrical potential required to move the ions, the sheet resistance of the transparent conductor layers, and other factors. As the size of electrochromic devices increases, conventional techniques for driving electrochromic transitions fall short. For example, in conventional driving profiles, the device is driven carefully, at sufficiently low voltages so as not to damage the device by driving ions through it too hard, which slows the switching speed, or the device is operated at higher voltages to increase switching speed, but at the cost of premature degradation of the device.
  • a method of transitioning an optically switchable device between two optical states includes applying a ramp function to a voltage applied to drive the optically switchable device until one or more regions of the optically switchable device achieves a predetermined voltage.
  • the method of transitioning also includes, after the one or more regions of the optically switchable device achieves the predetermined voltage, (a) reducing the voltage to generate a reduced magnitude voltage and (b) reducing a current delivered to the optically switchable device, in which a profile of the current as a function of time is shaped in accordance with a profile of the reduced magnitude voltage applied to the optically switchable device.
  • a method in which an optically switchable device is provided in an insulated glass unit.
  • a method in which an optically switchable device includes an ion conducting layer disposed between two electrically conductive layers.
  • a method in which an ion conducting layer includes silicon.
  • a method in which the ion conducting layer includes an oxide.
  • a method in which the two electrically conductive layers include a transparent conductive oxide.
  • the transparent conductive oxide includes indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, or doped ruthenium oxide.
  • a method in which the reduced magnitude voltage includes a value of about 1 volt or less.
  • Certain implementations may include a method of transitioning an optically switchable device between two optical states, including applying a ramp function to a voltage to drive the optically switchable device until one or more regions of the optically switchable device achieves a predetermined voltage.
  • a method of transitioning also includes, after the one or more regions of the optically switchable device achieves the predetermined voltage, reducing a magnitude of the voltage to generate a reduced magnitude voltage, such that a current delivered to the optically switchable device has a profile that is shaped in accordance with a profile of the reduced magnitude voltage, in which the profile is shaped as a function of time.
  • Some implementations may include a method where the optically switchable device is provided between two lites of an insulated glass unit.
  • the optically switchable device may include an ion conducting layer bounded on one or more opposing sides by conductive electrode layers.
  • the conducting layer of the method may include a thickness of between about one hundredth (0.01) ⁇ m to about one (1) micrometer ( ⁇ m).
  • a method may involve the ion conducting layer including silicon.
  • a method may include the conductive electrode layers include a transparent oxide.
  • a method may involve the transparent oxide including indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, or doped ruthenium oxide.
  • a method may include the reduced magnitude voltage having a value of at most about one (1) volt (v).
  • a method of transitioning between two optical states in an optically switchable device may include, during a first phase, controlling current conducted to the optically switchable device.
  • a method of transitioning may also include terminating the first phase responsive to one or more regions of the optically switchable device attaining a predetermined voltage magnitude; and, after the first phase, controlling a voltage applied to the optically switchable device, in which a profile of a current conducted to the optically switchable device is in accordance with a profile of the applied voltage.
  • a method may include the current conducted during the first phase conducting from a first conductive layer to a second conductive layer, the conducted current causing movement of ions in the optically switchable device to bring about an electrochromic phenomenon.
  • a method may include the current conducted in the first phase causing movement of one or more lithium ions.
  • a method may include the first and the second conductive layer each include indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, or doped ruthenium oxide.
  • Figure TA schematically depicts a planar bus bar arrangement.
  • FIG. 1B presents a simplified plot of the local voltage value on each transparent conductive layer as a function of position on the layer
  • FIG. 1C presents a simplified plot of V eff as a function of position across the device
  • FIG. 2 depicts voltage profiles for various device dimensions (bus bar separation) with a fixed value of V app .
  • FIG. 3 depicts voltage profiles for various device dimensions with V app supplied at different values as necessary to maintain V eff at suitable levels.
  • FIG. 4 presents device coloration profiles (V eff versus position) for various device dimensions using fixed and variable V app .
  • the upper curve is for the smallest device (10 inches) and the lowest curve is for the largest device (40 inches).
  • FIG. 5 shows V TCL and V eff as a function of device position for three different device dimensions when using a fixed conventional value of V app .
  • FIG. 6 shows V TCL and V eff as a function of device position for three different device dimensions when using variable values of V app optimized for driving transitions while maintaining safe V eff .
  • FIG. 7 is a graph depicting voltage and current profiles associated with driving an electrochromic device from bleached to colored and from colored to bleached.
  • FIG. 8 is a graph depicting certain voltage and current profiles associated with driving an electrochromic device from bleached to colored.
  • FIG. 9 is a cross-sectional axonometric view of an example electrochromic window that includes two lites.
  • FIG. 10 is a schematic representation of a window controller and associated components.
  • FIGS. 11A and 11B show current and voltage profiles resulting from a control method in accordance with certain embodiments.
  • FIG. 11C is a flow chart depicting control of current during an initial stage of an optical state transition.
  • Driving a color transition in a typical electrochromic device is accomplished by applying a defined voltage to two separated bus bars on the device.
  • bus bars In such a device, it is convenient to position bus bars perpendicular to the smaller dimension of a rectangular window (see FIG. 1A ). This is because transparent conducting layers have an associated sheet resistance and this arrangement allows for the shortest span over which current must travel to cover the entire area of the device, thus lowering the time it takes for the conductor layers to be fully charged across their respective areas, and thus lowering the time to transition the device.
  • V app While an applied voltage, V app , is supplied across the bus bars, essentially all areas of the device see a lower local effective voltage (V eff ) due to the sheet resistance of the transparent conducting layers and the ohmic drop in potential across the device.
  • the center of the device (the position midway between the two bus bars) frequently has the lowest value of V eff . This frequently results in an unacceptably small optical switching range and/or an unacceptably slow switching time in the center of the device.
  • V app refers the difference in potential applied to two bus bars of opposite polarity on the electrochromic device.
  • each bus bar is electronically connected to a separate transparent conductive layer. Between the transparent conductive layers are sandwiched the electrochromic device materials.
  • Each of the transparent conductive layers experiences a potential drop from a bus bar to which it is connected and a location remote from the bus bar. Generally, the greater the distance from the bus bar, the greater the potential drop in a transparent conducting layer.
  • the local potential of the transparent conductive layers is often referred to herein as the V TCL .
  • bus bars of opposite polarity are typically laterally separated from one another across the face of the electrochromic device.
  • V eff refers to the potential between the positive and negative transparent conducting layers at any particular location on the electrochromic device (x,y coordinate in Cartesian space). At the point where V eff is measured, the two transparent conducting layers are separated in the z-direction (by the EC device materials), but share the same x,y coordinate.
  • aspects of this disclosure concern controllers and control methods in which a voltage applied to the bus bars is at a level that drives a transition over the entire surface of the electrochromic device but does not damage or degrade the device.
  • This applied voltage produces an effective voltage at all locations on the face of the electrochromic device that is within a bracketed range.
  • the upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term.
  • At the lower boundary of this range is an effective voltage at which the transition between optical states of the electrochromic device occurs relatively rapidly.
  • the level of voltage applied between the bus bars is significantly greater than the maximum value of V eff within the bracketed range.
  • FIG. 1A shows a top-down view of an electrochromic lite, 100 , including bus bars having a planar configuration.
  • Electrochromic lite 100 includes a first bus bar, 105 , disposed on a first conductive layer, 110 , and a second bus bar, 115 , disposed on a second conductive layer, 120 .
  • An electrochromic stack (not shown) is sandwiched between first conductive layer 110 and second conductive layer 120 .
  • first bus bar 105 may extend substantially across one side of first conductive layer 110 .
  • Second bus bar 115 may extend substantially across one side of second conductive layer 120 opposite the side of electrochromic lite 100 on which first bus bar 105 is disposed.
  • Some devices may have extra bus bars, e.g.
  • bus bar configurations including planar configured bus bars, is found in U.S. patent application Ser. No. 13/452,032 filed Apr. 20, 2012, which is incorporated herein by reference in its entirety.
  • FIG. 1B is a graph showing a plot of the local voltage in first transparent conductive layer 110 and the voltage in second transparent conductive layer 120 that drives the transition of electrochromic lite 100 from a bleached state to a colored state, for example.
  • Plot 125 shows the local values of V TCL in first transparent conductive layer 110 . As shown, the voltage drops from the left-hand side (e.g., where first bus bar 105 is disposed on first conductive layer 110 and where the voltage is applied) to the right-hand side of first conductive layer 110 due to the sheet resistance and current passing through first conductive layer 110 .
  • Plot 130 also shows the local voltage V TCL in second conductive layer 120 .
  • FIG. 1C is a graph showing a plot of V eff across the electrochromic device between first and second conductive layers 110 and 120 of electrochromic lite 100 .
  • the effective voltage is the local voltage difference between the first conductive layer 110 and the second conductive layer 120 . Regions of an electrochromic device subjected to higher effective voltages transition between optical states faster than regions subjected to lower effective voltages. As shown, the effective voltage is the lowest at the center of electrochromic lite 100 and highest at the edges of electrochromic lite 100 .
  • the voltage drop across the device is an ohmic drop due to the current passing through the device (which is a sum of the electronic current between the layers capable of undergoing redox reactions in the electrochromic device and ionic current associated with the redox reaction).
  • the voltage drop across large electrochromic windows can be alleviated by configuring additional bus bars within the viewing area of the window, in effect dividing one large optical window into multiple smaller electrochromic windows which can be driven in series or parallel.
  • this approach is not aesthetically preferred due to the contrast between the viewable area and the bus bar(s) in the viewable area. That is, it is much more pleasing to the eye to have a monolithic electrochromic device without any distracting bus bars in the viewable area.
  • the resistance of the TCO layers between the points closest to the bus bar increases and this reduces the effective voltage at the center of the device.
  • edge of the device in following description the resistance of the TCO layers between the points closest to the bus bar
  • the center of the device in following description increases.
  • the effective voltage drop across the TCO increases and this reduces the effective voltage at the center of the device.
  • This effect is exacerbated by the fact that typically as window area increases, the leakage current density for the window stays constant but the total leakage current increases due to the increased area.
  • the effective voltage at the center of the electrochromic window falls substantially, and poor performance may be observed for electrochromic windows which are larger than, for example, about 30 inches across.
  • Some of the poor performance can be alleviated by using a higher V app such that the center of the device reaches a suitable effective voltage; however, the problem with this approach is that typical higher voltages at the edge of the window, needed to reach the suitable voltage at the center, can degrade the electrochromic device in the edge area, which can lead to poor performance.
  • the range of safe operation for solid state electrochromic-device based windows is between about 0.5V and 4V, or more typically between about 1V and about 3V, e.g. between 1.1V and 1.8V. These are local values of V eff .
  • an electrochromic device controller or control algorithm provides a driving profile where V eff is always below 3V, in another embodiment, the controller controls V eff so that it is always below 2.5V, in another embodiment, the controller controls V eff so that it is always below 1.8V.
  • these ranges are applicable to both transitions between optical states of the devices (e.g.
  • the recited voltage values refer to the time averaged voltage (where the averaging time is of the order of time required for small optical response, e.g. few seconds to few minutes).
  • Those of ordinary skill in the art will also understand that this description is applicable to various types of drive mechanism including fixed voltage (fixed DC), fixed polarity (time varying DC) or a reversing polarity (AC, MF, RF power etc. with a DC bias).
  • An added complexity of electrochromic windows is that the current drawn through the window is not fixed over time. Instead, during the initial transition from one state to the other, the current through the device is substantially larger (up to 30 ⁇ larger) than in the end state when the optical transition is complete. The problem of poor coloration in center of the device is further exacerbated during this initial transition period, as the V eff at the center is even lower than what it will be at the end of the transition period.
  • Electrochromic device controllers and control algorithms described herein overcome the above-described issues.
  • the applied voltage produces an effective voltage at all locations on the face of the electrochromic device that is within a bracketed range, and the level of voltage applied between the bus bars is significantly greater than the maximum value of V eff within the bracketed range.
  • V eff across a device with planar bus bars is generally given by:
  • V app is the voltage difference applied to the bus bars to drive the electrochromic window
  • ⁇ V(0) is V eff at the bus bar connected to the first transparent conducting layer (in the example below, TEC type TCO)
  • ⁇ V(L) is V eff at the bus bar connected to the second transparent conducting layer (in the example below, ITO type TCO)
  • ⁇ V(L/2) is V eff at the center of the device, midway between the two planar bus bars
  • R transparent conducting layer sheet resistance
  • J instantaneous local current density
  • L distance between the bus bars of the electrochromic device.
  • the transparent conducting layers are assumed to have substantially similar, if not the same, sheet resistance for the calculation. However, those of ordinary skill in the art will appreciate that the applicable physics of the ohmic voltage drop and local effective voltage s
  • certain embodiments pertain to controllers and control algorithms for driving optical transitions in devices having planar bus bars.
  • substantially linear bus bars of opposite polarity are disposed at opposite sides of a rectangular or other polygonally shaped electrochromic device.
  • devices with non-planar bus bars may be employed.
  • Such devices may employ, for example, angled bus bars disposed at vertices of the device.
  • the bus bar effective separation distance, L is determined based on the geometry of the device and bus bars.
  • V eff across the device decreases, thereby slowing or reducing the device coloration during transition and even in the final optical state.
  • FIG. 2 As shown in FIG. 2 , as the bus bar distance increases from 10 inches to 40 inches the voltage drop across the TEC and ITO layers (curves in upper plot) increases and this causes the V eff (lower curves) to fall across the device.
  • the V eff across the window is at least RJL 2 /2 lower than V app . It has been found that as the resistive voltage drop increases (due to increase in the window size, current draw etc.) some of the loss can be negated by increasing V app but doing so only to a value that keeps V eff at the edges of the device below the threshold where reliability degradation would occur. In other words, it has been recognized that both transparent conducting layers experience ohmic drop, and that drop increases with distance from the associated bus bar, and therefore V TCL decreases with distance from the bus bar for both transparent conductive layers and as a consequence V eff decreases across the whole electrochromic window.
  • V app that accounts for the size of the window and the ohmic drop in the transparent conducting layers
  • a safe but appropriately high V eff results over the entire surface of the electrochromic device.
  • the appropriate V app applied to the bus bars is greater in larger devices than in smaller devices. This is illustrated in more detail in FIG. 3 and the associated description.
  • the electrochromic device is driven using control mechanisms that apply V app so that V eff remains solidly above the threshold voltage of 1.2V (compare to FIG. 2 ).
  • V app the increase in V app required can be seen in the maximum value of V TCL increasing from about 2.5V to about 4V. However, this does not lead to increase in the V eff near the bus bars, where it stays at about 2.4V for all devices.
  • FIG. 4 is a plot comparing a conventional approach in V app is fixed for devices of different sizes a new approach in which V app varies for devices of different sizes.
  • the drive algorithms allow the performance (switching speed) of large electrochromic windows to be improved substantially without increasing risk of device degradation, because V eff is maintained above the threshold voltage in all cases but within a safe range.
  • Drive algorithms tailored for a given window's metrics e.g. window size, transparent conductive layer type, Rs, instantaneous current density through the device, etc., allow substantially larger electrochromic windows to function with suitable switching speed not otherwise possible without device degradation.
  • the upper and lower bounds of the range of V eff over the entire surface of the electrochromic device will now be further described.
  • V eff when V eff is too high it damages or degrades the electrochromic device at the location(s) where it is high.
  • the damage or degradation may be manifest as an irreversible electrochromic reaction which can reduce the optical switching range, degradation of aesthetics (appearance of pinholes, localized change in film appearance), increase in leakage current, film delamination etc.
  • the maximum value of V eff is about 4 volts or about 3 volts or about 2.5 volts or about 1.8 volts.
  • the upper bound of V eff is chosen to include a buffer range such that the maximum value of V eff is below the actual value expected to produce degradation. The difference between this actual value and the maximum value of V eff is the size of the buffer.
  • the buffer value is between about 0.2 and 0.6 volts.
  • the lower boundary of the range of effective voltages should be chosen to provide an acceptable and effective transition between optical states of the electrochromic device.
  • This transition may be characterized in terms of the speed at which the transition occurs after the voltage is applied, as well as other effects associated with the transition such as curtaining (non-uniform tinting across the face of the electrochromic device).
  • the minimum value of V eff may be chosen to effect a complete optical transition (e.g., fully bleached to fully tinted) over the face of the device of about 45 minutes or less, or about 10 minutes or less.
  • the maximum value of V eff is about 0.5 volts or about 0.7 volts or about 1 volt or about 1.2 volts.
  • V eff For devices having 3 or more states, the target range of V eff typically will not impact attaining and maintaining intermediate states in a multi-state electrochromic device. Intermediate states are driven at voltages between the end states, and hence V eff is always maintained within a safe range.
  • V app may be greater than the maximum acceptable value of V eff .
  • V app is greater (by any amount) than the maximum value of V eff .
  • the difference between V app and the maximum value of V eff has at least a defined magnitude.
  • the difference may be about 0.5 volts or about 1 volt, or about 1.5 volts, or about 2 volts.
  • the difference between the value of V app and the maximum value of V eff is determined in part by the separation distance between the bus bars in the device and possibly other parameters such as the sheet resistance of the device's transparent conductive layers and leakage current. As an example, if the leakage current of the device is quite low, then the difference between V eff and V app may be smaller than it otherwise might be.
  • the disclosed control algorithms are particularly useful in devices having large dimensions: e.g., large electrochromic windows.
  • the size is determined by the effective separation distance between bus bars, L.
  • the devices have a value of L of at least about 30 inches, or at least about 40 inches, or at least about 50 inches or at least about 60 inches.
  • the separation distance is not the only parameter that impacts the need for using an appropriately large value of V app to drive a transition.
  • Other parameters include the sheet resistances of the transparent conductive layers and the current density in the device during optical switching. In some embodiments, a combination of these and/or other parameters is employed to determine when to apply the large value of V app .
  • the parameters interoperate and collectively indicate whether or not there is a sufficiently large ohmic voltage drop across the face of a transparent conductive layer to require a large applied voltage.
  • a combination of parameters may be used to determine appropriate operating ranges.
  • a voltage loss parameter V loss
  • V loss can be used to define conditions under which a typical control algorithm would not work and the disclosed approach would be well suited to handle.
  • the V loss parameter is defined as RJL 2 (where L is the separation distance between bus bar, and R is the sheet resistance of a transparent conductive layer).
  • L is the separation distance between bus bar, and R is the sheet resistance of a transparent conductive layer.
  • the approaches described herein are most useful when V loss is greater than about 3V or more specifically greater than about 2V or more specifically greater than about 1V.
  • the current responsible for the ohmic voltage drop across the face of the transparent conductive layers has two components. It includes ionic current used to drive the optical transition and parasitic electronic current through the electrolyte or ion conducting layer.
  • the parasitic electronic current should be relatively constant for a given value of the applied voltage. It may also be referred to as leakage current.
  • the ionic current is due to the lithium ions moving between the electrochromic layer and a counter electrode layer to drive the optical transition. For a given applied voltage, the ionic current will undergo change during the transition. Prior to application of any V app , the ionic current is small or non-existent. Upon application of V app , the ionic current may grow and may even continue to after the applied voltage is held constant.
  • leakage current is a function of the effective voltage, which is a function of the applied voltage.
  • the control technique reduces the amount of leakage current and the value of V eff .
  • control techniques for driving optical transitions are designed with a varying V app that keeps the maximum V eff below a particular level (e.g., 2.5V) during the entire course of the optical transition.
  • V app is varied over time during transition from one state to another of the electrochromic device. The variation in V app is determined, at least in part, as a function of V eff .
  • V app is adjusted over the time of transition in a manner that maintains an acceptable V eff so as not to degrade device function.
  • V app Without adjusting V app during the optical transition, V eff could grow too large as the ionic current decays over the course of the transition. To maintain V eff at a safe level, V app may be decreased when the device current is largely leakage current. In certain embodiments, adjustment of V app is accomplished by a “ramp to hold” portion of a drive voltage profile as described below.
  • V app is chosen and adjusted based on the instantaneous current draw (J) during an optical transition. Initially, during such transition, V app is higher to account for the larger voltage draw.
  • FIG. 5 shows impact of current draw on V eff for a fixed window size (40 inches) using conventional drive algorithms.
  • the drive profile accounts for a medium current draw scenario (25 ⁇ A/cm 2 ) which leads to very low V eff during initial switching when the current draw is high (42 ⁇ A/cm 2 ) which leads to substantially longer switching times.
  • V eff is much higher (3.64V) than during transition. Since this is above the voltage threshold of safe operation this would be a long-term reliability risk.
  • FIG. 6 illustrates certain voltage control techniques that consider the instantaneous current draw.
  • the low current draw and high current draw conditions are now robustly within the required voltage window. Even for the high current draw condition, a large fraction of the device is now above the voltage threshold improving the switching speed of this device.
  • Drive profiles can be simplified by choosing a voltage ramp rate that allows the instantaneous voltage to be close to the desired set point rather than requiring a feedback loop on the voltage.
  • FIG. 7 shows a complete current profile and voltage profile for an electrochromic device employing a simple voltage control algorithm to cause an optical state transition cycle (coloration followed by bleaching) of an electrochromic device.
  • total current density (I) is represented as a function of time.
  • the total current density is a combination of the ionic current density associated with an electrochromic transition and electronic leakage current between the electrochemically active electrodes.
  • Many different types electrochomic device will have the depicted current profile.
  • a cathodic electrochromic material such as tungsten oxide is used in conjunction with an anodic electrochromic material such as nickel tungsten oxide in counter electrode. In such devices, negative currents indicate coloration of the device.
  • lithium ions flow from a nickel tungsten oxide anodically coloring electrochromic electrode into a tungsten oxide cathodically coloring electrochromic electrode.
  • electrons flow into the tungsten oxide electrode to compensate for the positively charged incoming lithium ions. Therefore, the voltage and current are shown to have a negative value.
  • the depicted profile results from ramping up the voltage to a set level and then holding the voltage to maintain the optical state.
  • the current peaks 701 are associated with changes in optical state, i.e., coloration and bleaching. Specifically, the current peaks represent delivery of the ionic charge needed to color or bleach the device. Mathematically, the shaded area under the peak represents the total charge required to color or bleach the device.
  • the portions of the curve after the initial current spikes (portions 703 ) represent electronic leakage current while the device is in the new optical state.
  • a voltage profile 705 is superimposed on the current curve.
  • the voltage profile follows the sequence: negative ramp ( 707 ), negative hold ( 709 ), positive ramp ( 711 ), and positive hold ( 713 ).
  • Voltage ramp 707 drives the device to its new the colored state and voltage hold 709 maintains the device in the colored state until voltage ramp 711 in the opposite direction drives the transition from colored to bleached states.
  • a current cap is imposed. That is, the current is not permitted to exceed a defined level in order to prevent damaging the device.
  • the coloration speed is a function of not only the applied voltage, but also the temperature and the voltage ramping rate.
  • FIG. 8 describes a voltage control profile in accordance with certain embodiments.
  • a voltage control profile is employed to drive the transition from a bleached state to a colored state (or to an intermediate state).
  • a similar but inverted profile is used to drive an electrochromic device in the reverse direction, from a colored state to a bleached state (or from a more colored to less colored state).
  • the voltage control profile for going from colored to bleached is a mirror image of the one depicted in FIG. 8 .
  • V app The voltage values depicted in FIG. 8 represent the applied voltage (V app ) values.
  • the applied voltage profile is shown by the dashed line.
  • the current density in the device is shown by the solid line.
  • V app includes four phases: a ramp to drive phase 803 , which initiates the transition, a V drive phase 811 , which continues to drive the transition, a ramp to hold phase 815 , and a V hold phase 817 .
  • the ramp phases are implemented as variations in V app and the V drive and V hold phases provide constant or substantially constant V app magnitudes.
  • the ramp to drive phase is characterized by a ramp rate (increasing magnitude) and a magnitude of V drive .
  • the V drive phase is characterized by the value of V drive as well as the duration of V drive .
  • the magnitude of V drive may be chosen to maintain V eff with a safe but effective range over the entire face of the electrochromic device as described above.
  • the ramp to hold phase is characterized by a voltage ramp rate (decreasing magnitude) and the value of V hold (or optionally the difference between V drive and V hold ). V app drops according to the ramp rate until the value of V hold is reached.
  • the V hold phase is characterized by the magnitude of V hold and the duration of V hold . Actually, the duration of V hold is typically governed by the length of time that the device is held in the colored state (or conversely in the bleached state). Unlike the ramp to drive, V drive , and ramp to hold phases, the V hold phase has an arbitrary length, which is independent of the physics of the optical transition of the device.
  • Each type of electrochromic device will have its own characteristic phases of the voltage profile for driving the optical transition. For example, a relatively large device and/or one with a more resistive conductive layer will require a higher value of V drive and possibly a higher ramp rate in the ramp to drive phase. Larger devices may also require higher values of V hold .
  • U.S. patent application Ser. No. 13/449,251, filed Apr. 17, 2012, and incorporated herein by reference discloses controllers and associated algorithms for driving optical transitions over a wide range of conditions. As explained therein, each of the phases of an applied voltage profile (ramp to drive, V drive , ramp to hold, and V hold , herein) may be independently controlled to address real-time conditions such as current temperature, current level of transmissivity, etc.
  • the values of each phase of the applied voltage profile is set for a particular electrochromic device (having its own bus bar separation, resistivity, etc.) and does vary based on current conditions.
  • the voltage profile does not consider feedback such as temperature, current density, and the like.
  • the ramp to drive phase of the voltage profile is chosen to safely but rapidly induce ionic current to flow between the electrochromic and counter electrodes.
  • the current in the device follows the profile of the ramp to drive voltage phase until the ramp to drive portion of the profile ends and the V drive portion begins. See current phase 801 in FIG. 8 .
  • Safe levels of current and voltage can be determined empirically or based on other feedback.
  • the value of V drive is chosen based on the considerations described above. Particularly, it is chosen so that the value of V eff over the entire surface of the electrochromic device remains within a range that effectively and safely transitions large electrochromic devices.
  • the duration of V drive can be chosen based on various considerations. One of these ensures that the drive potential is held for a period sufficient to cause the substantial coloration of the device. For this purpose, the duration of V drive may be determined empirically, by monitoring the optical density of the device as a function of the length of time that V drive remains in place. In some embodiments, the duration of V drive is set to a specified time period. In another embodiment, the duration of V drive is set to correspond to a desired amount of ionic charge being passed. As shown, the current ramps down during V drive . See current segment 807 .
  • Another consideration is the reduction in current density in the device as the ionic current decays as a consequence of the available lithium ions completing their journey from the anodic coloring electrode to the cathodic coloring electrode (or counter electrode) during the optical transition.
  • the transition is complete, the only current flowing across device is leakage current through the ion conducting layer.
  • the ohmic drop in potential across the face of the device decreases and the local values of V eff increase.
  • V eff can damage or degrade the device if the applied voltage is not reduced.
  • another consideration in determining the duration of V drive is the goal of reducing the level of V eff associated with leakage current.
  • V eff By dropping the applied voltage from V drive to V hold , not only is V eff reduced on the face of the device but leakage current decreases as well. As shown in FIG. 8 , the device current transitions in a segment 805 during the ramp to hold phase. The current settles to a stable leakage current 809 during V hold .
  • FIG. 9 shows a cross-sectional axonometric view of an embodiment of an IGU 102 that includes two window panes or lites 216 .
  • IGU 102 can include one, two, or more substantially transparent (e.g., at no applied voltage) lites 216 as well as a frame, 218 , that supports the lites 216 .
  • the IGU 102 shown in FIG. 9 is configured as a double-pane window.
  • One or more of the lites 216 can itself be a laminate structure of two, three, or more layers or lites (e.g., shatter-resistant glass similar to automotive windshield glass).
  • At least one of the lites 216 includes an electrochromic device or stack, 220 , disposed on at least one of its inner surface, 222 , or outer surface, 224 : for example, the inner surface 222 of the outer lite 216 .
  • each adjacent set of lites 216 can have an interior volume, 226 , disposed between them.
  • each of the lites 216 and the IGU 102 as a whole are rectangular and form a rectangular solid. However, in other embodiments other shapes (e.g., circular, elliptical, triangular, curvilinear, convex, concave) may be desired.
  • the volume 226 between the lites 116 is evacuated of air.
  • the IGU 102 is hermetically-sealed.
  • the volume 226 can be filled (to an appropriate pressure) with one or more gases, such as argon (Ar), krypton (Kr), or xenon (Xn), for example. Filling the volume 226 with a gas such as Ar, Kr, or Xn can reduce conductive heat transfer through the IGU 102 because of the low thermal conductivity of these gases. The latter two gases also can impart improved acoustic insulation due to their increased weight.
  • gases such as argon (Ar), krypton (Kr), or xenon (Xn)
  • frame 218 is constructed of one or more pieces.
  • frame 218 can be constructed of one or more materials such as vinyl, PVC, aluminum (Al), steel, or fiberglass.
  • the frame 218 may also include or hold one or more foam or other material pieces that work in conjunction with frame 218 to separate the lites 216 and to hermetically seal the volume 226 between the lites 216 .
  • a spacer lies between adjacent lites 216 and forms a hermetic seal with the panes in conjunction with an adhesive sealant that can be deposited between them. This is termed the primary seal, around which can be fabricated a secondary seal, typically of an additional adhesive sealant.
  • frame 218 can be a separate structure that supports the IGU construct.
  • Each lite 216 includes a substantially transparent or translucent substrate, 228 .
  • substrate 228 has a first (e.g., inner) surface 222 and a second (e.g., outer) surface 224 opposite the first surface 222 .
  • substrate 228 can be a glass substrate.
  • substrate 228 can be a conventional silicon oxide (SO x )-based glass substrate such as soda-lime glass or float glass, composed of, for example, approximately 75% silica (SiO 2 ) plus Na 2 O, CaO, and several minor additives.
  • SO x silicon oxide
  • SiO 2 silica
  • Na 2 O, CaO CaO
  • any material having suitable optical, electrical, thermal, and mechanical properties may be used as substrate 228 .
  • Such substrates also can include, for example, other glass materials, plastics and thermoplastics (e.g., poly(methyl methacrylate), polystyrene, polycarbonate, allyl diglycol carbonate, SAN (styrene acrylonitrile copolymer), poly(4-methyl-1-pentene), polyester, polyamide), or mirror materials.
  • substrate 228 can be strengthened, e.g., by tempering, heating, or chemically strengthening. In other implementations, the substrate 228 is not further strengthened, e.g., the substrate is untempered.
  • substrate 228 is a glass pane sized for residential or commercial window applications. The size of such a glass pane can vary widely depending on the needs of the residence or commercial enterprise.
  • substrate 228 can be formed of architectural glass.
  • Architectural glass is typically used in commercial buildings, but also can be used in residential buildings, and typically, though not necessarily, separates an indoor environment from an outdoor environment.
  • a suitable architectural glass substrate can be at least approximately 20 inches by approximately 20 inches, and can be much larger, for example, approximately 80 inches by approximately 120 inches, or larger.
  • Architectural glass is typically at least about 2 millimeters (mm) thick and may be as thick as 6 mm or more.
  • electrochromic devices 220 can be scalable to substrates 228 smaller or larger than architectural glass, including in any or all of the respective length, width, or thickness dimensions.
  • substrate 228 has a thickness in the range of approximately 1 mm to approximately 10 mm.
  • substrate 228 may be very thin and flexible, such as Gorilla Glass® or WillowTM Glass, each commercially available from Corning, Inc. of Corning, N.Y., these glasses may be less than 1 mm thick, as thin as 0.3 mm thick.
  • Electrochromic device 220 is disposed over, for example, the inner surface 222 of substrate 228 of the outer lite 216 (the pane adjacent the outside environment). In some other embodiments, such as in cooler climates or applications in which the IGUs 102 receive greater amounts of direct sunlight (e.g., perpendicular to the surface of electrochromic device 220 ), it may be advantageous for electrochromic device 220 to be disposed over, for example, the inner surface (the surface bordering the volume 226 ) of the inner pane adjacent the interior environment.
  • electrochromic device 220 includes a first conductive layer (CL) 230 (often transparent), an electrochromic layer (EC) 232 , an ion conducting layer (IC) 234 , a counter electrode layer (CE) 236 , and a second conductive layer (CL) 238 (often transparent).
  • CL first conductive layer
  • EC electrochromic layer
  • IC ion conducting layer
  • CE counter electrode layer
  • CL second conductive layer
  • a power source 240 operable to apply an electric potential (V app ) to the device and produce V eff across a thickness of electrochromic stack 220 and drive the transition of the electrochromic device 220 from, for example, a bleached or lighter state (e.g., a transparent, semitransparent, or translucent state) to a colored or darker state (e.g., a tinted, less transparent or less translucent state).
  • V app electric potential
  • the order of layers 230 , 232 , 234 , 236 , and 238 can be reversed or otherwise reordered or rearranged with respect to conductive layer 238 .
  • first conductive layer 230 and second conductive layer 238 is formed from an inorganic and solid material.
  • first conductive layer 230 can be made from a number of different materials, including conductive oxides, thin metallic coatings, conductive metal nitrides, and composite conductors, among other suitable materials.
  • conductive layers 230 and 238 are substantially transparent at least in the range of wavelengths where electrochromism is exhibited by the electrochromic layer 232 .
  • Transparent conductive oxides include metal oxides and metal oxides doped with one or more metals.
  • metal oxides and doped metal oxides suitable for use as first or second conductive layers 230 and 238 can include indium oxide, indium tin oxide (ITO), doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide, among others.
  • first and second conductive layers 230 and 238 are sometimes referred to as “transparent conductive oxide” (TCO) layers.
  • TEC GlassTM is, for example, a glass coated with a fluorinated tin oxide conductive layer.
  • first or second conductive layers 230 and 238 can each be deposited by physical vapor deposition processes including, for example, sputtering. In some embodiments, first and second conductive layers 230 and 238 can each have a thickness in the range of approximately 0.01 ⁇ m to approximately 1 ⁇ m. In some embodiments, it may be generally desirable for the thicknesses of the first and second conductive layers 230 and 238 as well as the thicknesses of any or all of the other layers described below to be individually uniform with respect to the given layer; that is, that the thickness of a given layer is uniform and the surfaces of the layer are smooth and substantially free of defects or other ion traps.
  • a primary function of the first and second conductive layers 230 and 238 is to spread an electric potential provided by a power source 240 , such as a voltage or current source, over surfaces of the electrochromic stack 220 from outer surface regions of the stack to inner surface regions of the stack.
  • a power source 240 such as a voltage or current source
  • the voltage applied to the electrochromic device experiences some Ohmic potential drop from the outer regions to the inner regions as a result of a sheet resistance of the first and second conductive layers 230 and 238 .
  • bus bars 242 and 244 are provided with bus bar 242 in contact with conductive layer 230 and bus bar 244 in contact with conductive layer 238 to provide electric connection between the voltage or current source 240 and the conductive layers 230 and 238 .
  • bus bar 242 can be electrically coupled with a first (e.g., positive) terminal 246 of power source 240 while bus bar 244 can be electrically coupled with a second (e.g., negative) terminal 248 of power source 240 .
  • IGU 102 includes a plug-in component 250 .
  • plug-in component 250 includes a first electrical input 252 (e.g., a pin, socket, or other electrical connector or conductor) that is electrically coupled with power source terminal 246 via, for example, one or more wires or other electrical connections, components, or devices.
  • plug-in component 250 can include a second electrical input 254 that is electrically coupled with power source terminal 248 via, for example, one or more wires or other electrical connections, components, or devices.
  • first electrical input 252 can be electrically coupled with bus bar 242 , and from there with first conductive layer 230
  • second electrical input 254 can be coupled with bus bar 244 , and from there with second conductive layer 238
  • the conductive layers 230 and 238 also can be connected to power source 240 with other conventional means as well as according to other means described below with respect to a window controller.
  • first electrical input 252 can be connected to a first power line while second electrical input 254 can be connected to a second power line.
  • third electrical input 256 can be coupled to a device, system, or building ground.
  • fourth and fifth electrical inputs/outputs 258 and 260 respectively, can be used for communication between, for example, a window controller or microcontroller and a network controller.
  • electrochromic layer 232 is deposited or otherwise formed over first conductive layer 230 .
  • electrochromic layer 232 is formed of an inorganic and solid material.
  • electrochromic layer 232 can include or be formed of one or more of a number of electrochromic materials, including electrochemically cathodic or electrochemically anodic materials.
  • metal oxides suitable for use as electrochromic layer 232 can include tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), copper oxide (CuO), iridium oxide (Ir 2 O 3 ), chromium oxide (Cr 2 O 3 ), manganese oxide (Mn 2 O 3 ), vanadium oxide (V 2 O 5 ), nickel oxide (Ni 2 O 3 ), and cobalt oxide (Co 2 O 3 ), among other materials.
  • electrochromic layer 232 can have a thickness in the range of approximately 0.05 ⁇ m to approximately 1 ⁇ m.
  • electrochromic layer 232 transfers or exchanges ions to or from counter electrode layer 236 resulting in the desired optical transitions in electrochromic layer 232 , and in some embodiments, also resulting in an optical transition in counter electrode layer 236 .
  • the choice of appropriate electrochromic and counter electrode materials governs the relevant optical transitions.
  • counter electrode layer 236 is formed of an inorganic and solid material.
  • Counter electrode layer 236 can generally include one or more of a number of materials or material layers that can serve as a reservoir of ions when the electrochromic device 220 is in, for example, the transparent state.
  • counter electrode layer 236 is a second electrochromic layer of opposite polarity as electrochromic layer 232 .
  • electrochromic layer 232 is formed from an electrochemically cathodic material
  • counter electrode layer 236 can be formed of an electrochemically anodic material.
  • counter electrode layer 236 examples include nickel oxide (NiO), nickel tungsten oxide (NiWO), nickel vanadium oxide, nickel chromium oxide, nickel aluminum oxide, nickel manganese oxide, nickel magnesium oxide, chromium oxide (Cr 2 O 3 ), manganese oxide (MnO 2 ), and Prussian blue.
  • counter electrode layer 236 can have a thickness in the range of approximately 0.05 ⁇ m to approximately 1 ⁇ m.
  • counter electrode layer 236 transfers all or a portion of the ions it holds to electrochromic layer 232 , causing the optical transition in the electrochromic layer 232 .
  • the counter electrode layer 236 also optically transitions with the loss of ions it has transferred to the electrochromic layer 232 .
  • a counter electrode layer 236 made of NiWO e.g., ions are transported from the counter electrode layer 236 to the electrochromic layer 232
  • the counter electrode layer 236 will transition in the opposite direction (e.g., from a transparent state to a darkened state).
  • ion conducting layer 234 serves as a medium through which ions are transported (e.g., in the manner of an electrolyte) when the electrochromic device 220 transitions between optical states.
  • ion conducting layer 234 is highly conductive to the relevant ions for the electrochromic and the counter electrode layers 232 and 236 , but also has sufficiently low electron conductivity such that negligible electron transfer occurs during normal operation.
  • a thin ion conducting layer 234 with high ionic conductivity permits fast ion conduction and hence fast switching for high performance electrochromic devices 220 .
  • Electronic leakage current passes through layer 234 during device operation.
  • ion conducting layer 234 can have a thickness in the range of approximately 0.01 ⁇ m to approximately 1 ⁇ m.
  • ion conducting layer 234 also is inorganic and solid.
  • ion conducting layer 234 can be formed from one or more silicates, silicon oxides, tungsten oxides, tantalum oxides, niobium oxides, and borates.
  • the silicon oxides include silicon-aluminum-oxide. These materials also can be doped with different dopants, including lithium. Lithium-doped silicon oxides include lithium silicon-aluminum-oxide.
  • the electrochromic and the counter electrode layers 232 and 236 are formed immediately adjacent one another, sometimes in direct contact, without separately depositing an ion conducting layer.
  • electrochromic devices having an interfacial region between first and second conductive electrode layers rather than a distinct ion conducting layer 234 can be utilized. Such devices, and methods of fabricating them, are described in U.S. patent application Ser. Nos. 12/772,055 and 12/772,075, each filed 30 Apr. 2010, and in U.S. patent application Ser. Nos. 12/814,277 and 12/814,279, each filed 11 Jun. 2010, all four of which are titled ELECTROCHROMIC DEVICES and name Zhongchun Wang et al. as inventors. Each of these four applications is incorporated by reference herein in its entirety.
  • electrochromic device 220 also can include one or more additional layers (not shown), such as one or more passive layers.
  • passive layers used to improve certain optical properties can be included in or on electrochromic device 220 .
  • Passive layers for providing moisture or scratch resistance also can be included in electrochromic device 220 .
  • the conductive layers 230 and 238 can be treated with anti-reflective or protective oxide or nitride layers.
  • Other passive layers can serve to hermetically seal the electrochromic device 220 .
  • one or more of the layers in electrochromic stack 220 can contain some amount of organic material. Additionally, or alternatively, in some embodiments, one or more of the layers in electrochromic stack 220 can contain some amount of liquids in one or more layers. Additionally, or alternatively, in some embodiments, solid state material can be deposited or otherwise formed by processes employing liquid components such as certain processes employing sol-gels or chemical vapor deposition.
  • transitions between a bleached or transparent state and a colored or opaque state are but one example, among many, of an optical or electrochromic transition that can be implemented.
  • the corresponding device or process described encompasses other optical state transitions such as, for example, intermediate state transitions such as percent transmission (% T) to % T transitions, non-reflective to reflective transitions (or to and from intermediate states in between), bleached to colored transitions (or to and from intermediate states in between), and color to color transitions (or to and from intermediate states in between).
  • the term “bleached” may refer to an optically neutral state, for example, uncolored, transparent or translucent.
  • the “color” of an electrochromic transition is not limited to any particular wavelength or range of wavelengths.
  • the colorization or other optical transition of the electrochromic material in electrochromic layer 232 is caused by reversible ion insertion into the material (for example, intercalation) and a corresponding injection of charge-balancing electrons.
  • some fraction of the ions responsible for the optical transition is irreversibly bound up in the electrochromic material.
  • Some or all of the irreversibly bound ions can be used to compensate “blind charge” in the material.
  • suitable ions include lithium ions (Li+) and hydrogen ions (H+) (i.e., protons). In some other embodiments, however, other ions can be suitable.
  • Intercalation of lithium ions, for example, into tungsten oxide causes the tungsten oxide to change from a transparent (e.g., bleached) state to a blue (e.g., colored) state.
  • the electrochromic device 220 reversibly cycles between a transparent state and an opaque or tinted state.
  • a potential is applied to the electrochromic stack 220 such that available ions in the stack reside primarily in the counter electrode layer 236 .
  • ions are transported back across the ion conducting layer 234 to the electrochromic layer 232 causing the electrochromic material to transition to an opaque, tinted, or darker state.
  • layers 232 and 236 are complementary coloring layers; that is, for example, when ions are transferred into the counter electrode layer it is not colored.
  • a potential is applied to the electrochromic stack 220 such that available ions in the stack reside primarily in the counter electrode layer 236 .
  • ions are transported back across the ion conducting layer 234 to the electrochromic layer 232 causing the electrochromic material to transition to a transparent or lighter state.
  • These layers may also be complementary coloring.
  • the optical transition driving logic can be implemented in many different controller configurations and coupled with other control logic.
  • Various examples of suitable controller design and operation are provided in the following patent applications, each incorporated herein by reference in its entirety: U.S. patent application Ser. No. 13/049,623, filed Mar. 16, 2011; U.S. patent application Ser. No. 13/049,756, filed Mar. 16, 2011; U.S. Pat. No. 8,213,074, filed Mar. 16, 2011; U.S. patent application Ser. No. 13/449,235, filed Apr. 17, 2012; U.S. patent application Ser. No. 13/449,248, filed Apr. 17, 2012; U.S. patent application Ser. No. 13/449,251, filed Apr. 17, 2012; and U.S. patent application Ser. No. 13/326,168, filed Dec. 14, 2011.
  • FIGS. 9 and 10 present certain non-limiting controller design options suitable for implementing the drive profiles described herein.
  • electrical input 252 and electrical input 254 receive, carry, or transmit complementary power signals.
  • electrical input 252 and its complement electrical input 254 can be directly connected to the bus bars 242 and 244 , respectively, and on the other side, to an external power source that provides a variable DC voltage (e.g., sign and magnitude).
  • the external power source can be a window controller (see element 114 of FIG. 10 ) itself, or power from a building transmitted to a window controller or otherwise coupled to electrical inputs 252 and 254 .
  • the electrical signals transmitted through electrical inputs/outputs 258 and 260 can be directly connected to a memory device to allow communication between the window controller and the memory device.
  • the electrical signal input to electrical input 256 can be internally connected or coupled (within IGU 102 ) to either electrical input 252 or 254 or to the bus bars 242 or 244 in such a way as to enable the electrical potential of one or more of those elements to be remotely measured (sensed). This can allow the window controller to compensate for a voltage drop on the connecting wires from the window controller to the electrochromic device 220 .
  • the window controller can be immediately attached (e.g., external to the IGU 102 but inseparable by the user) or integrated within the IGU 102 .
  • U.S. patent application Ser. No. 13/049,750 (Attorney Docket No. SLDMP008) naming Brown et al. as inventors, titled ONBOARD CONTROLLER FOR MULTISTATE WINDOWS and filed 16 Mar. 2011, incorporated by reference herein, describes in detail various embodiments of an “onboard” controller.
  • electrical input 252 can be connected to the positive output of an external DC power source.
  • electrical input 254 can be connected to the negative output of the DC power source.
  • electrical inputs 252 and 254 can, alternately, be connected to the outputs of an external low voltage AC power source (e.g., a typical 24 V AC transformer common to the HVAC industry).
  • electrical inputs/outputs 258 and 260 can be connected to the communication bus between the window controller and a network controller.
  • electrical input/output 256 can be eventually (e.g., at the power source) connected with the earth ground (e.g., Protective Earth, or PE in Europe) terminal of the system.
  • the voltages plotted in FIGS. 7 and 8 may be expressed as DC voltages, in some embodiments, the voltages actually supplied by the external power source are AC voltage signals. In some other embodiments, the supplied voltage signals are converted to pulse-width modulated voltage signals. However, the voltages actually “seen” or applied to the bus bars 242 and 244 are effectively DC voltages.
  • the voltage oscillations applied at terminals 246 and 248 are in the range of approximately 1 Hz to 1 MHz, and in particular embodiments, approximately 100 kHz. In various embodiments, the oscillations have asymmetric residence times for the darkening (e.g., tinting) and lightening (e.g., bleaching) portions of a period.
  • transitioning from a first less transparent state to a second more transparent state requires more time than the reverse; that is, transitioning from the more transparent second state to the less transparent first state.
  • a controller can be designed or configured to apply a driving voltage meeting these requirements.
  • the oscillatory applied voltage control allows the electrochromic device 220 to operate in, and transition to and from, one or more states without any necessary modification to the electrochromic device stack 220 or to the transitioning time.
  • the window controller can be configured or designed to provide an oscillating drive voltage of appropriate wave profile, considering such factors as frequency, duty cycle, mean voltage, amplitude, among other possible suitable or appropriate factors.
  • a level of control permits the transitioning to any state over the full range of optical states between the two end states.
  • an appropriately configured controller can provide a continuous range of transmissivity (% T) which can be tuned to any value between end states (e.g., opaque and bleached end states).
  • a controller could simply apply the appropriate intermediate voltage.
  • One technique for increasing the rate at which the electrochromic device 220 reaches a desired intermediate state is to first apply a high voltage pulse suitable for full transition (to an end state) and then back off to the voltage of the oscillating intermediate state (just described). Stated another way, an initial low frequency single pulse (low in comparison to the frequency employed to maintain the intermediate state) of magnitude and duration chosen for the intended final state can be employed to speed the transition. After this initial pulse, a higher frequency voltage oscillation can be employed to sustain the intermediate state for as long as desired.
  • each IGU 102 includes a component 250 that is “pluggable” or readily-removable from IGU 102 (e.g., for ease of maintenance, manufacture, or replacement).
  • each plug-in component 250 itself includes a window controller. That is, in some such embodiments, each electrochromic device 220 is controlled by its own respective local window controller located within plug-in component 250 .
  • the window controller is integrated with another portion of frame 218 , between the glass panes in the secondary seal area, or within volume 226 . In some other embodiments, the window controller can be located external to IGU 102 .
  • each window controller can communicate with the IGUs 102 it controls and drives, as well as communicate to other window controllers, the network controller, BMS, or other servers, systems, or devices (e.g., sensors), via one or more wired (e.g., Ethernet) networks or wireless (e.g., WiFi) networks, for example, via wired (e.g., Ethernet) interface 263 or wireless (WiFi) interface 265 . See FIG. 10 .
  • Ethernet or WiFi wireless
  • the communication can be direct or indirect, e.g., via an intermediate node between a master controller such as network controller 112 and the IGU 102 .
  • FIG. 10 depicts a window controller 114 , which may be deployed as, for example, component 250 .
  • window controller 114 communicates with a network controller over a communication bus 262 .
  • communication bus 262 can be designed according to the Controller Area Network (CAN) vehicle bus standard.
  • first electrical input 252 can be connected to a first power line 264 while second electrical input 254 can be connected to a second power line 266 .
  • the power signals sent over power lines 264 and 266 are complementary; that is, collectively they represent a differential signal (e.g., a differential voltage signal).
  • line 268 is coupled to a system or building ground (e.g., an Earth Ground).
  • communication over CAN bus 262 may proceed along first and second communication lines 270 and 272 transmitted through electrical inputs/outputs 258 and 260 , respectively, according to the CANopen communication protocol or other suitable open, proprietary, or overlying communication protocol.
  • the communication signals sent over communication lines 270 and 272 are complementary; that is, collectively they represent a differential signal (e.g., a differential voltage signal).
  • component 250 couples CAN communication bus 262 into window controller 114 , and in particular embodiments, into microcontroller 274 .
  • microcontroller 274 is also configured to implement the CANopen communication protocol.
  • Microcontroller 274 is also designed or configured (e.g., programmed) to implement one or more drive control algorithms in conjunction with pulse-width modulated amplifier or pulse-width modulator (PWM) 276 , smart logic 278 , and signal conditioner 280 .
  • PWM pulse-width modulated amplifier or pulse-width modulator
  • microcontroller 274 is configured to generate a command signal V COMMAND , e.g., in the form of a voltage signal, that is then transmitted to PWM 276 .
  • PWM 276 in turn, generates a pulse-width modulated power signal, including first (e.g., positive) component V PW1 and second (e.g., negative) component V PW2 , based on V COMMAND .
  • Power signals V PW1 and V PW2 are then transmitted over, for example, interface 288 , to IGU 102 , or more particularly, to bus bars 242 and 244 in order to cause the desired optical transitions in electrochromic device 220 .
  • PWM 276 is configured to modify the duty cycle of the pulse-width modulated signals such that the durations of the pulses in signals V PW1 and V PW2 are not equal: for example, PWM 276 pulses V PW1 with a first 60% duty cycle and pulses V PW2 for a second 40% duty cycle. The duration of the first duty cycle and the duration of the second duty cycle collectively represent the duration, t PWM of each power cycle. In some embodiments, PWM 276 can additionally or alternatively modify the magnitudes of the signal pulses V PW1 and V PW2 .
  • microcontroller 274 is configured to generate V COMMAND based on one or more factors or signals such as, for example, any of the signals received over CAN bus 262 as well as voltage or current feedback signals, V FB and I FB respectively, generated by PWM 276 .
  • microcontroller 274 determines current or voltage levels in the electrochromic device 220 based on feedback signals I FB or V FB , respectively, and adjusts V COMMAND according to one or more rules or algorithms to effect a change in the relative pulse durations (e.g., the relative durations of the first and second duty cycles) or amplitudes of power signals V PW1 and V PW2 to produce voltage profiles as described above.
  • microcontroller 274 can also adjust V COMMAND in response to signals received from smart logic 278 or signal conditioner 280 .
  • a conditioning signal V CON can be generated by signal conditioner 280 in response to feedback from one or more networked or non-networked devices or sensors, such as, for example, an exterior photosensor or photodetector 282 , an interior photosensor or photodetector 284 , a thermal or temperature sensor 286 , or a tint command signal V TC .
  • signal conditioner 280 and V CON are also described in U.S.
  • V TC can be an analog voltage signal between 0 V and 10 V that can be used or adjusted by users (such as residents or workers) to dynamically adjust the tint of an IGU 102 (for example, a user can use a control in a room or zone of building 104 similarly to a thermostat to finely adjust or modify a tint of the IGUs 102 in the room or zone) thereby introducing a dynamic user input into the logic within microcontroller 274 that determines V COMMAND .
  • users such as residents or workers
  • V TC when set in the 0 to 2.5 V range, V TC can be used to cause a transition to a 5% T state, while when set in the 2.51 to 5 V range, V TC can be used to cause a transition to a 20% T state, and similarly for other ranges such as 5.1 to 7.5 V and 7.51 to 10 V, among other range and voltage examples.
  • signal conditioner 280 receives the aforementioned signals or other signals over a communication bus or interface 290 .
  • PWM 276 also generates V COMMAND based on a signal V SMART received from smart logic 278 .
  • smart logic 278 transmits V SMART over a communication bus such as, for example, an Inter-Integrated Circuit (I 2 C) multi-master serial single-ended computer bus.
  • smart logic 278 communicates with memory device 292 over a 1-WIRE device communications bus system protocol (by Dallas Semiconductor Corp., of Dallas, Tex.).
  • microcontroller 274 includes a processor, chip, card, or board, or a combination of these, which includes logic for performing one or more control functions. Power and communication functions of microcontroller 274 may be combined in a single chip, for example, a programmable logic device (PLD) chip or field programmable gate array (FPGA), or similar logic. Such integrated circuits can combine logic, control and power functions in a single programmable chip.
  • PLD programmable logic device
  • FPGA field programmable gate array
  • Such integrated circuits can combine logic, control and power functions in a single programmable chip.
  • the logic can be configured to control each of the two electrochromic devices 220 independently from the other.
  • each of the two electrochromic devices 220 is controlled in a synergistic fashion, for example, such that each device is controlled in order to complement the other.
  • the desired level of light transmission, thermal insulative effect, or other property can be controlled via a combination of states for each of the individual electrochromic devices 220 .
  • one electrochromic device may be placed in a colored state while the other is used for resistive heating, for example, via a transparent electrode of the device.
  • the optical states of the two electrochromic devices are controlled so that the combined transmissivity is a desired outcome.
  • the logic used to control electrochromic device transitions can be designed or configured in hardware and/or software.
  • the instructions for controlling the drive circuitry may be hard coded or provided as software.
  • the instructions are provided by “programming”.
  • Such programming is understood to include logic of any form including hard coded logic in digital signal processors and other devices which have algorithms implemented as hardware.
  • Programming is also understood to include software or firmware instructions that may be executed on a general-purpose processor.
  • instructions for controlling application of voltage to the bus bars are stored on a memory device associated with the controller or are provided over a network. Examples of suitable memory devices include semiconductor memory, magnetic memory, optical memory, and the like.
  • the computer program code for controlling the applied voltage can be written in any conventional computer readable programming language such as assembly language, C, C++, Pascal, Fortran, and the like. Compiled object code or script is executed by the processor to perform the tasks identified in the program.
  • microcontroller 274 or window controller 114 generally, also can have wireless capabilities, such as wireless control and powering capabilities.
  • wireless control signals such as radio-frequency (RF) signals or infra-red (IR) signals can be used, as well as wireless communication protocols such as WiFi (mentioned above), Bluetooth, Zigbee, EnOcean, among others, to send instructions to the microcontroller 274 and for microcontroller 274 to send data out to, for example, other window controllers, a network controller 112 , or directly to a BMS 111 .
  • RF radio-frequency
  • IR infra-red
  • wireless communication can be used for at least one of programming or operating the electrochromic device 220 , collecting data or receiving input from the electrochromic device 220 or the IGU 102 generally, collecting data or receiving input from sensors, as well as using the window controller 114 as a relay point for other wireless communications.
  • Data collected from IGU 102 also can include count data, such as a number of times an electrochromic device 220 has been activated (cycled), an efficiency of the electrochromic device 220 over time, among other useful data or performance metrics.
  • the window controller 114 also can have wireless power capability.
  • window controller can have one or more wireless power receivers that receive transmissions from one or more wireless power transmitters as well as one or more wireless power transmitters that transmit power transmissions enabling window controller 114 to receive power wirelessly and to distribute power wirelessly to electrochromic device 220 .
  • Wireless power transmission includes, for example, induction, resonance induction, RF power transfer, microwave power transfer, and laser power transfer.
  • U.S. patent application Ser. No. 12/971,576 (Attorney Docket No. SLDMP003) naming Rozbicki as inventor, titled WIRELESS POWERED ELECTROCHROMIC WINDOWS and filed 17 Dec. 2010, incorporated by reference herein, describes in detail various embodiments of wireless power capabilities.
  • the pulse-width modulated power signal is generated such that the positive component V PW1 is supplied to, for example, bus bar 244 during the first portion of the power cycle, while the negative component V PW2 is supplied to, for example, bus bar 242 during the second portion of the power cycle.
  • bus bar 244 floating at substantially the fraction of the magnitude of V PW1 that is given by the ratio of the duration of the first duty cycle to the total duration t PWM of the power cycle.
  • bus bar 242 floating at substantially the fraction of the magnitude of V PW2 that is given by the ratio of the duration of the second duty cycle to the total duration t PWM of the power cycle.
  • the difference between the magnitudes of the pulse-width modulated signal components V PW1 and V PW2 is twice the effective DC voltage across terminals 246 and 248 , and consequently, across electrochromic device 220 .
  • the difference between the fraction (determined by the relative duration of the first duty cycle) of V PW1 applied to bus bar 244 and the fraction (determined by the relative duration of the second duty cycle) of V PW2 applied to bus bar 242 is the effective DC voltage V EFF applied to electrochromic device 220 .
  • the current IEFF through the load-electrochromic device 220 is roughly equal to the effective voltage VEFF divided by the effective resistance (represented by a resistor network comprising resistor 418 , 422 , and 448 ) or impedance of the load.
  • FIGS. 11A and 11B show current and voltage profiles resulting from a control method in accordance with certain embodiments.
  • FIG. 11C provides an associated flow chart for an initial portion (the controlled current portion) of the control sequence.
  • the negative current shown in these figures, as in FIG. 7 is assumed to drive the bleached to colored transition.
  • the example could apply equally to devices that operate in reverse, i.e., devices employing anodic electrochromic electrodes.
  • I target may be set a priori for the device in question—independent of temperature.
  • the control method described here may be beneficially implemented without knowing or inferring the device's temperature.
  • the temperature is detected and considered in setting the current level. In some cases, temperature may be inferred from the current-voltage response of the window.
  • the ramp rate is between about 10 ⁇ V/s and 100V/s. In more other examples, the ramp rate is between about 1 mV/s_and_500 mV/s.
  • the controller determines the current level resulting from application of voltage in operation 1 and compares it against a range of acceptable currents bounded by I slow at the lower end and I safe at the upper end.
  • I safe is the current level above which the device can become damaged or degraded.
  • I slow is the current level below which the device will switch at an unacceptably slow rate.
  • I target in an electrochomic window may be between about 30 and 70 pA/cm 2 .
  • typical examples of I slow range between about 1 and 30 ⁇ A/cm 2 and examples of I safe range between about 70 and 250 ⁇ A/cm 2 .
  • the voltage ramp is set, and adjusted as necessary, to control the current and typically produces a relatively consistent current level in the initial phase of the control sequence. This is illustrated by the flat current profile 1101 as shown in FIGS. 11A and 11B , which is bracketed between levels I safe 1107 and I slow 1109 .
  • control method employs one of the operations (a)-(c) below. Note that the controller not only checks current level immediately after t 0 , but it frequently checks the current level thereafter and makes adjustments as described here and as shown in FIG. 11C .
  • the measured current is between I slow and I safe ⁇ Continue to apply a voltage that maintains the current between I slow and I safe . See the loop defined by blocks 1153 , 1155 , 1159 , 1169 , and 1151 of FIG. 11C .
  • the measured current is below I slow (typically because the device temperature is low) ⁇ continue to ramp the applied voltage in order to bring the current above I slow but below I safe . See the loop of block 1153 and 1151 of FIG. 11C . If the current level is too low, it may be appropriate to increase the rate of increase of the voltage (i.e., increase the steepness of the voltage ramp).
  • the controller typically actively monitors current and voltage to ensure that the applied current remains above I slow .
  • the controller checks the current and/or voltage every few milliseconds. It may adjust the voltage on the same time scale. The controller may also ensure that the new increased level of applied voltage remains below V safe .
  • V safe is the maximum applied voltage magnitude, beyond which the device may become damaged or degraded.
  • the measured current is above I safe (typically because the device is operating at a high temperature) ⁇ decrease voltage (or rate of increase in the voltage) in order to bring the current below I safe but above I slow . See block 1155 and 1157 of FIG. 11C .
  • the controller may actively monitor current and voltage. As such, the controller can quickly adjust the applied voltage to ensure that the current remains below I safe during the entire controlled current phase of the transition. Thus, the current should not exceed I safe .
  • the voltage ramp 303 may be adjusted or even stopped temporarily as necessary to maintain the current between I slow and I safe .
  • the voltage ramp may be stopped, reversed in direction, slowed in rate, or increased in rate while in the controlled current regime.
  • the controller increases and/or decreases current, rather than voltage, as desired.
  • the above discussion should not be viewed as limiting to the option of ramping or otherwise controlling voltage to maintain current in the desired range. Whether voltage or current is controlled by the hardware (potentiostatic or galvanostatic control), the algorithm attains the desired result.
  • the controller maintain current in the target range, between I slow and I safe until a specified criterion is met.
  • the criterion is passing current for a defined length of time, t 1 , at which time the device reaches a defined voltage V 1 .
  • the controller transitions from controlled current to controlled voltage. See blocks 1159 and 1161 of FIG. 11C .
  • V 1 is a function of temperature, but as mentioned temperature need not be monitored or even detected in accordance with various embodiments.
  • t 1 is about 1 to 30 minutes, and in some examples, t 1 is about 2 to 5 minutes. Further, in some cases the magnitude of V 1 is about 1 to 7 volts, and more specifically about 2.5 to 4 volts.
  • the controller continues in the controlled current phase until a specified condition is met such as the passing of a defined period of time.
  • a timer is used to trigger the transition.
  • the specified condition is reaching a defined voltage (e.g., a maximum safe voltage) or passing of a defined amount of charge.
  • Operations 1-4 correspond to regime 1 in the above general algorithm-controlled current.
  • the goal during this phase is to prevent the current from exceeding a safe level while ensuring a reasonably rapid switching speed. It is possible that during this regime, the controller could supply a voltage exceeding the maximum safe voltage for the electrochromic device.
  • this concern is eliminated by employing a control algorithm in which the maximum safe value is much greater than V 1 across the operational temperature range.
  • I target and t 1 are chosen such that V 1 is well below the maximum voltage at lower temperatures while not degrading the window due to excessive current at higher temperatures.
  • the controller includes a safety feature that will alarm the window before the maximum safe voltage is reached. In a typical example, the value of the maximum safe voltage for an electrochromic window is between about 5 and 9 volts.
  • V 2 V 1 , as is shown in FIG. 11A .
  • This operation 5 corresponds to the regime 2 above-controlled voltage.
  • a goal during this phase is to maintain the voltage at V 1 for a sufficient length to ensure a desired coloration speed.
  • t 2 is about 2 to 30 minutes, and in some instances, t 2 is about 3 to 10 minutes. Further, in some cases V 2 is about 1 to 7 volts, and more specifically about 2.5 to 4 volts.
  • step 5 After the condition of step 5 is reached (e.g., after sufficient charge has passed or a timer indicates t 2 has been reached), the voltage is dropped from V 2 to a level V 3 . This reduces leakage current during while the coloration state is held.
  • the transition time t 2 is predetermined and chosen based on the time required for the center of the part, which is the slowest to color, to reach a certain percent transmissivity. In some embodiments, the t 2 is between about 4 and 6 minutes. This operation 6 corresponds to regime 3 above.

Abstract

Controllers and control methods apply a drive voltage to bus bars of a thin film optically switchable device. The applied drive voltage is provided at a level that drives a transition over the entire surface of the optically switchable device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of the effective voltage within the bracketed range.

Description

    INCORPORATION BY REFERENCE
  • An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.
  • BACKGROUND
  • Electrochromic (EC) devices typically comprise a multilayer stack including (a) at least one electrochromic material, that changes its optical properties, such as visible light transmitted through the layer, in response to the application of an electrical potential, (b) an ion conductor (IC), which allows ions (e.g. Li+) to move through it, into and out from the electrochromic material to cause the optical property change, while insulating against electrical shorting, and (c) transparent conductor layers (e.g. transparent conducting oxides or TCOs), over which an electrical potential is applied. In some cases, the electric potential is applied from opposing edges of an electrochromic device and across the viewable area of the device. The transparent conductor layers are designed to have relatively high electronic conductances. Electrochromic devices may have more than the above-described layers, e.g., ion storage layers that color, or not.
  • Due to the physics of the device operation, proper function of the electrochromic device depends upon many factors such as ion movement through the material layers, the electrical potential required to move the ions, the sheet resistance of the transparent conductor layers, and other factors. As the size of electrochromic devices increases, conventional techniques for driving electrochromic transitions fall short. For example, in conventional driving profiles, the device is driven carefully, at sufficiently low voltages so as not to damage the device by driving ions through it too hard, which slows the switching speed, or the device is operated at higher voltages to increase switching speed, but at the cost of premature degradation of the device.
  • What are needed are improved methods for driving electrochromic devices.
  • SUMMARY
  • Aspects of this disclosure concern controllers and control methods for applying a drive voltage to bus bars of a large electrochromic device. Such devices are often provided on windows such as architectural glass. In certain implementations, a method of transitioning an optically switchable device between two optical states, includes applying a ramp function to a voltage applied to drive the optically switchable device until one or more regions of the optically switchable device achieves a predetermined voltage. The method of transitioning also includes, after the one or more regions of the optically switchable device achieves the predetermined voltage, (a) reducing the voltage to generate a reduced magnitude voltage and (b) reducing a current delivered to the optically switchable device, in which a profile of the current as a function of time is shaped in accordance with a profile of the reduced magnitude voltage applied to the optically switchable device.
  • Certain implementations may include one or more of the following features. A method in which an optically switchable device is provided in an insulated glass unit. A method in which an optically switchable device includes an ion conducting layer disposed between two electrically conductive layers. A method in which an ion conducting layer includes silicon. A method in which the ion conducting layer includes an oxide. A method in which the two electrically conductive layers include a transparent conductive oxide. A method in which the transparent conductive oxide includes indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, or doped ruthenium oxide. A method in which the reduced magnitude voltage includes a value of about 1 volt or less.
  • Certain implementations may include a method of transitioning an optically switchable device between two optical states, including applying a ramp function to a voltage to drive the optically switchable device until one or more regions of the optically switchable device achieves a predetermined voltage. A method of transitioning also includes, after the one or more regions of the optically switchable device achieves the predetermined voltage, reducing a magnitude of the voltage to generate a reduced magnitude voltage, such that a current delivered to the optically switchable device has a profile that is shaped in accordance with a profile of the reduced magnitude voltage, in which the profile is shaped as a function of time. Some implementations may include a method where the optically switchable device is provided between two lites of an insulated glass unit. The optically switchable device may include an ion conducting layer bounded on one or more opposing sides by conductive electrode layers. The conducting layer of the method may include a thickness of between about one hundredth (0.01) μm to about one (1) micrometer (μm). A method may involve the ion conducting layer including silicon. A method may include the conductive electrode layers include a transparent oxide. A method may involve the transparent oxide including indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, or doped ruthenium oxide. A method may include the reduced magnitude voltage having a value of at most about one (1) volt (v).
  • In some implementations a method of transitioning between two optical states in an optically switchable device may include, during a first phase, controlling current conducted to the optically switchable device. A method of transitioning may also include terminating the first phase responsive to one or more regions of the optically switchable device attaining a predetermined voltage magnitude; and, after the first phase, controlling a voltage applied to the optically switchable device, in which a profile of a current conducted to the optically switchable device is in accordance with a profile of the applied voltage.
  • A method may include the current conducted during the first phase conducting from a first conductive layer to a second conductive layer, the conducted current causing movement of ions in the optically switchable device to bring about an electrochromic phenomenon. A method may include the current conducted in the first phase causing movement of one or more lithium ions. A method may include the first and the second conductive layer each include indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, or doped ruthenium oxide. A method may also include driving thin film switchable optical devices Implementations of the described techniques may include hardware, a method or process, or computer software on a computer-accessible medium.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure TA schematically depicts a planar bus bar arrangement.
  • FIG. 1B presents a simplified plot of the local voltage value on each transparent conductive layer as a function of position on the layer
  • FIG. 1C presents a simplified plot of Veff as a function of position across the device FIG. 2 depicts voltage profiles for various device dimensions (bus bar separation) with a fixed value of Vapp.
  • FIG. 3 depicts voltage profiles for various device dimensions with Vapp supplied at different values as necessary to maintain Veff at suitable levels.
  • FIG. 4 presents device coloration profiles (Veff versus position) for various device dimensions using fixed and variable Vapp. In each set of four curves, the upper curve is for the smallest device (10 inches) and the lowest curve is for the largest device (40 inches).
  • FIG. 5 shows VTCL and Veff as a function of device position for three different device dimensions when using a fixed conventional value of Vapp.
  • FIG. 6 shows VTCL and Veff as a function of device position for three different device dimensions when using variable values of Vapp optimized for driving transitions while maintaining safe Veff.
  • FIG. 7 is a graph depicting voltage and current profiles associated with driving an electrochromic device from bleached to colored and from colored to bleached.
  • FIG. 8 is a graph depicting certain voltage and current profiles associated with driving an electrochromic device from bleached to colored.
  • FIG. 9 is a cross-sectional axonometric view of an example electrochromic window that includes two lites.
  • FIG. 10 is a schematic representation of a window controller and associated components.
  • FIGS. 11A and 11B show current and voltage profiles resulting from a control method in accordance with certain embodiments.
  • FIG. 11C is a flow chart depicting control of current during an initial stage of an optical state transition.
  • DETAILED DESCRIPTION
  • Driving a color transition in a typical electrochromic device is accomplished by applying a defined voltage to two separated bus bars on the device. In such a device, it is convenient to position bus bars perpendicular to the smaller dimension of a rectangular window (see FIG. 1A). This is because transparent conducting layers have an associated sheet resistance and this arrangement allows for the shortest span over which current must travel to cover the entire area of the device, thus lowering the time it takes for the conductor layers to be fully charged across their respective areas, and thus lowering the time to transition the device.
  • While an applied voltage, Vapp, is supplied across the bus bars, essentially all areas of the device see a lower local effective voltage (Veff) due to the sheet resistance of the transparent conducting layers and the ohmic drop in potential across the device. The center of the device (the position midway between the two bus bars) frequently has the lowest value of Veff. This frequently results in an unacceptably small optical switching range and/or an unacceptably slow switching time in the center of the device. These problems may not exist at the edges of the device, nearer the bus bars. This is explained in more detail below with reference to FIGS. 1B and 1C.
  • As used herein, Vapp refers the difference in potential applied to two bus bars of opposite polarity on the electrochromic device. As explained below, each bus bar is electronically connected to a separate transparent conductive layer. Between the transparent conductive layers are sandwiched the electrochromic device materials. Each of the transparent conductive layers experiences a potential drop from a bus bar to which it is connected and a location remote from the bus bar. Generally, the greater the distance from the bus bar, the greater the potential drop in a transparent conducting layer. The local potential of the transparent conductive layers is often referred to herein as the VTCL. As indicated, bus bars of opposite polarity are typically laterally separated from one another across the face of the electrochromic device. The term Veff refers to the potential between the positive and negative transparent conducting layers at any particular location on the electrochromic device (x,y coordinate in Cartesian space). At the point where Veff is measured, the two transparent conducting layers are separated in the z-direction (by the EC device materials), but share the same x,y coordinate.
  • Aspects of this disclosure concern controllers and control methods in which a voltage applied to the bus bars is at a level that drives a transition over the entire surface of the electrochromic device but does not damage or degrade the device. This applied voltage produces an effective voltage at all locations on the face of the electrochromic device that is within a bracketed range. The upper bound of this range is associated with a voltage safely below the level at which the device may experience damage or degradation impacting its performance in the short term or the long term. At the lower boundary of this range is an effective voltage at which the transition between optical states of the electrochromic device occurs relatively rapidly. The level of voltage applied between the bus bars is significantly greater than the maximum value of Veff within the bracketed range.
  • FIG. 1A shows a top-down view of an electrochromic lite, 100, including bus bars having a planar configuration. Electrochromic lite 100 includes a first bus bar, 105, disposed on a first conductive layer, 110, and a second bus bar, 115, disposed on a second conductive layer, 120. An electrochromic stack (not shown) is sandwiched between first conductive layer 110 and second conductive layer 120. As shown, first bus bar 105 may extend substantially across one side of first conductive layer 110. Second bus bar 115 may extend substantially across one side of second conductive layer 120 opposite the side of electrochromic lite 100 on which first bus bar 105 is disposed. Some devices may have extra bus bars, e.g. on all four edges, but this complicates fabrication. A further discussion of bus bar configurations, including planar configured bus bars, is found in U.S. patent application Ser. No. 13/452,032 filed Apr. 20, 2012, which is incorporated herein by reference in its entirety.
  • FIG. 1B is a graph showing a plot of the local voltage in first transparent conductive layer 110 and the voltage in second transparent conductive layer 120 that drives the transition of electrochromic lite 100 from a bleached state to a colored state, for example. Plot 125 shows the local values of VTCL in first transparent conductive layer 110. As shown, the voltage drops from the left-hand side (e.g., where first bus bar 105 is disposed on first conductive layer 110 and where the voltage is applied) to the right-hand side of first conductive layer 110 due to the sheet resistance and current passing through first conductive layer 110. Plot 130 also shows the local voltage VTCL in second conductive layer 120. As shown, the voltage increases from the right-hand side (e.g., where second bus bar 115 is disposed on second conductive layer 120 and where the voltage is applied) to the left-hand side of second conductive layer 120 due to the sheet resistance of second conductive layer 120. The value of Vapp in this example is the difference in voltage between the right end of potential plot 130 and the left end of potential plot 125. The value of Veff at any location between the bus bars is the difference in values of curves 130 and 125 the position on the x-axis corresponding to the location of interest. FIG. 1C is a graph showing a plot of Veff across the electrochromic device between first and second conductive layers 110 and 120 of electrochromic lite 100. As explained, the effective voltage is the local voltage difference between the first conductive layer 110 and the second conductive layer 120. Regions of an electrochromic device subjected to higher effective voltages transition between optical states faster than regions subjected to lower effective voltages. As shown, the effective voltage is the lowest at the center of electrochromic lite 100 and highest at the edges of electrochromic lite 100. The voltage drop across the device is an ohmic drop due to the current passing through the device (which is a sum of the electronic current between the layers capable of undergoing redox reactions in the electrochromic device and ionic current associated with the redox reaction). The voltage drop across large electrochromic windows can be alleviated by configuring additional bus bars within the viewing area of the window, in effect dividing one large optical window into multiple smaller electrochromic windows which can be driven in series or parallel. However, this approach is not aesthetically preferred due to the contrast between the viewable area and the bus bar(s) in the viewable area. That is, it is much more pleasing to the eye to have a monolithic electrochromic device without any distracting bus bars in the viewable area.
  • As described above, as the window size increases, the resistance of the TCO layers between the points closest to the bus bar (referred to as edge of the device in following description) and in the points furthest away from the bus bars (referred to as the center of the device in following description) increases. For a fixed current passing through a TCO the effective voltage drop across the TCO increases and this reduces the effective voltage at the center of the device. This effect is exacerbated by the fact that typically as window area increases, the leakage current density for the window stays constant but the total leakage current increases due to the increased area. Thus, with both of these effects the effective voltage at the center of the electrochromic window falls substantially, and poor performance may be observed for electrochromic windows which are larger than, for example, about 30 inches across. Some of the poor performance can be alleviated by using a higher Vapp such that the center of the device reaches a suitable effective voltage; however, the problem with this approach is that typical higher voltages at the edge of the window, needed to reach the suitable voltage at the center, can degrade the electrochromic device in the edge area, which can lead to poor performance.
  • Typically, the range of safe operation for solid state electrochromic-device based windows is between about 0.5V and 4V, or more typically between about 1V and about 3V, e.g. between 1.1V and 1.8V. These are local values of Veff. In one embodiment, an electrochromic device controller or control algorithm provides a driving profile where Veff is always below 3V, in another embodiment, the controller controls Veff so that it is always below 2.5V, in another embodiment, the controller controls Veff so that it is always below 1.8V. Those of ordinary skill in the art will understand that these ranges are applicable to both transitions between optical states of the devices (e.g. transitions from bleached (clear) to tinted and from tinted to bleached in an absorptive device) and that the value of Veff for a particular transition may be different. The recited voltage values refer to the time averaged voltage (where the averaging time is of the order of time required for small optical response, e.g. few seconds to few minutes). Those of ordinary skill in the art will also understand that this description is applicable to various types of drive mechanism including fixed voltage (fixed DC), fixed polarity (time varying DC) or a reversing polarity (AC, MF, RF power etc. with a DC bias).
  • An added complexity of electrochromic windows is that the current drawn through the window is not fixed over time. Instead, during the initial transition from one state to the other, the current through the device is substantially larger (up to 30× larger) than in the end state when the optical transition is complete. The problem of poor coloration in center of the device is further exacerbated during this initial transition period, as the Veff at the center is even lower than what it will be at the end of the transition period.
  • Electrochromic device controllers and control algorithms described herein overcome the above-described issues. As mentioned, the applied voltage produces an effective voltage at all locations on the face of the electrochromic device that is within a bracketed range, and the level of voltage applied between the bus bars is significantly greater than the maximum value of Veff within the bracketed range.
  • In the case of an electrochromic device with a planar bus bar, it can be shown that the Veff across a device with planar bus bars is generally given by:

  • ΔV(0)=V app −RJL 2/2

  • ΔV(L)=V app −RJL 2/2

  • ΔV(L/2)=V app−3RJL 2/4  Equation 1
  • where:
    Vapp is the voltage difference applied to the bus bars to drive the electrochromic window;
    ΔV(0) is Veff at the bus bar connected to the first transparent conducting layer (in the example below, TEC type TCO);
    ΔV(L) is Veff at the bus bar connected to the second transparent conducting layer (in the example below, ITO type TCO);
    ΔV(L/2) is Veff at the center of the device, midway between the two planar bus bars;
    R=transparent conducting layer sheet resistance;
    J=instantaneous local current density; and
    L=distance between the bus bars of the electrochromic device.
  • The transparent conducting layers are assumed to have substantially similar, if not the same, sheet resistance for the calculation. However, those of ordinary skill in the art will appreciate that the applicable physics of the ohmic voltage drop and local effective voltage s
      • apply even if the transparent conducting layers have dissimilar sheet resistances.
  • As noted, certain embodiments pertain to controllers and control algorithms for driving optical transitions in devices having planar bus bars. In such devices, substantially linear bus bars of opposite polarity are disposed at opposite sides of a rectangular or other polygonally shaped electrochromic device. In some embodiments, devices with non-planar bus bars may be employed. Such devices may employ, for example, angled bus bars disposed at vertices of the device. In such devices, the bus bar effective separation distance, L, is determined based on the geometry of the device and bus bars. A discussion of bus bar geometries and separation distances may be found in U.S. patent application Ser. No. 13/452,032, entitled “Angled Bus Bar”, and filed Apr. 20, 2012, which is incorporated herein by reference in its entirety.
  • As R, J or L increase, Veff across the device decreases, thereby slowing or reducing the device coloration during transition and even in the final optical state. As shown in FIG. 2, as the bus bar distance increases from 10 inches to 40 inches the voltage drop across the TEC and ITO layers (curves in upper plot) increases and this causes the Veff (lower curves) to fall across the device.
  • Thus, using conventional driving algorithms, 10 inch and 20-inch electrochromic windows can be made to switch effectively, while 30-inch windows would have marginal performance in the center and 40-inch windows would not show good performance across the window. This limits scaling of electrochromic technology to larger size windows.
  • Again, referring to Equation 1, the Veff across the window is at least RJL2/2 lower than Vapp. It has been found that as the resistive voltage drop increases (due to increase in the window size, current draw etc.) some of the loss can be negated by increasing Vapp but doing so only to a value that keeps Veff at the edges of the device below the threshold where reliability degradation would occur. In other words, it has been recognized that both transparent conducting layers experience ohmic drop, and that drop increases with distance from the associated bus bar, and therefore VTCL decreases with distance from the bus bar for both transparent conductive layers and as a consequence Veff decreases across the whole electrochromic window.
  • While the applied voltage is increased to a level well above the upper bound of a safe Veff, Veff in fact never actually approaches this high value of the applied voltage. At locations near the bus bars, the voltage of the attached transparent conductive layers contacting the bus bars is quite high, but at the same location, the voltage of the opposite polarity transparent conductive layers falls reasonably close to the applied potential by the ohmic drop across the faces of the conductive layers. The driving algorithms described herein take this into account. In other words, the voltage applied to the bus bars can be higher than conventionally thought possible. A high Vapp provided at bus bars might be assumed to present too high of a Veff near the bus bars. However, by employing a Vapp that accounts for the size of the window and the ohmic drop in the transparent conducting layers, a safe but appropriately high Veff results over the entire surface of the electrochromic device. The appropriate Vapp applied to the bus bars is greater in larger devices than in smaller devices. This is illustrated in more detail in FIG. 3 and the associated description.
  • Referring to FIG. 3, the electrochromic device is driven using control mechanisms that apply Vapp so that Veff remains solidly above the threshold voltage of 1.2V (compare to FIG. 2). The increase in Vapp required can be seen in the maximum value of VTCL increasing from about 2.5V to about 4V. However, this does not lead to increase in the Veff near the bus bars, where it stays at about 2.4V for all devices.
  • FIG. 4 is a plot comparing a conventional approach in Vapp is fixed for devices of different sizes a new approach in which Vapp varies for devices of different sizes. By adjusting Vapp for device size, the drive algorithms allow the performance (switching speed) of large electrochromic windows to be improved substantially without increasing risk of device degradation, because Veff is maintained above the threshold voltage in all cases but within a safe range. Drive algorithms tailored for a given window's metrics, e.g. window size, transparent conductive layer type, Rs, instantaneous current density through the device, etc., allow substantially larger electrochromic windows to function with suitable switching speed not otherwise possible without device degradation.
  • Veff and Vapp Parameters
  • Controlling the upper and lower bounds of the range of Veff over the entire surface of the electrochromic device will now be further described. As mentioned, when Veff is too high it damages or degrades the electrochromic device at the location(s) where it is high. The damage or degradation may be manifest as an irreversible electrochromic reaction which can reduce the optical switching range, degradation of aesthetics (appearance of pinholes, localized change in film appearance), increase in leakage current, film delamination etc. For many devices, the maximum value of Veff is about 4 volts or about 3 volts or about 2.5 volts or about 1.8 volts. In some embodiments, the upper bound of Veff is chosen to include a buffer range such that the maximum value of Veff is below the actual value expected to produce degradation. The difference between this actual value and the maximum value of Veff is the size of the buffer. In certain embodiments, the buffer value is between about 0.2 and 0.6 volts.
  • The lower boundary of the range of effective voltages should be chosen to provide an acceptable and effective transition between optical states of the electrochromic device. This transition may be characterized in terms of the speed at which the transition occurs after the voltage is applied, as well as other effects associated with the transition such as curtaining (non-uniform tinting across the face of the electrochromic device). As an example, the minimum value of Veff may be chosen to effect a complete optical transition (e.g., fully bleached to fully tinted) over the face of the device of about 45 minutes or less, or about 10 minutes or less. For many devices, the maximum value of Veff is about 0.5 volts or about 0.7 volts or about 1 volt or about 1.2 volts.
  • For devices having 3 or more states, the target range of Veff typically will not impact attaining and maintaining intermediate states in a multi-state electrochromic device. Intermediate states are driven at voltages between the end states, and hence Veff is always maintained within a safe range.
  • As mentioned, for large electrochromic devices the value of Vapp may be greater than the maximum acceptable value of Veff. Thus, in some embodiments, Vapp is greater (by any amount) than the maximum value of Veff. However, in some implementations, the difference between Vapp and the maximum value of Veff has at least a defined magnitude. For example, the difference may be about 0.5 volts or about 1 volt, or about 1.5 volts, or about 2 volts. It should be understood that the difference between the value of Vapp and the maximum value of Veff is determined in part by the separation distance between the bus bars in the device and possibly other parameters such as the sheet resistance of the device's transparent conductive layers and leakage current. As an example, if the leakage current of the device is quite low, then the difference between Veff and Vapp may be smaller than it otherwise might be.
  • As noted, the disclosed control algorithms are particularly useful in devices having large dimensions: e.g., large electrochromic windows. Technically, the size is determined by the effective separation distance between bus bars, L. In some embodiments, the devices have a value of L of at least about 30 inches, or at least about 40 inches, or at least about 50 inches or at least about 60 inches. The separation distance is not the only parameter that impacts the need for using an appropriately large value of Vapp to drive a transition. Other parameters include the sheet resistances of the transparent conductive layers and the current density in the device during optical switching. In some embodiments, a combination of these and/or other parameters is employed to determine when to apply the large value of Vapp. The parameters interoperate and collectively indicate whether or not there is a sufficiently large ohmic voltage drop across the face of a transparent conductive layer to require a large applied voltage.
  • In certain embodiments, a combination of parameters (e.g., a dimensionless number) may be used to determine appropriate operating ranges. For example, a voltage loss parameter (Vloss) can be used to define conditions under which a typical control algorithm would not work and the disclosed approach would be well suited to handle. In certain embodiments, the Vloss parameter is defined as RJL2 (where L is the separation distance between bus bar, and R is the sheet resistance of a transparent conductive layer). In some implementations, the approaches described herein are most useful when Vloss is greater than about 3V or more specifically greater than about 2V or more specifically greater than about 1V.
  • Vapp Profile During Transition.
  • The current responsible for the ohmic voltage drop across the face of the transparent conductive layers has two components. It includes ionic current used to drive the optical transition and parasitic electronic current through the electrolyte or ion conducting layer. The parasitic electronic current should be relatively constant for a given value of the applied voltage. It may also be referred to as leakage current. The ionic current is due to the lithium ions moving between the electrochromic layer and a counter electrode layer to drive the optical transition. For a given applied voltage, the ionic current will undergo change during the transition. Prior to application of any Vapp, the ionic current is small or non-existent. Upon application of Vapp, the ionic current may grow and may even continue to after the applied voltage is held constant. Eventually, however, the ionic current will peak and drop off as all of the available ions move between the electrodes during the optical transition. After the optical transition is complete, only leakage current (electronic current through the electrolyte) continues. The value of this leakage current is a function of the effective voltage, which is a function of the applied voltage. As described in more detail below, by modifying the applied voltage after the optical transition is complete, the control technique reduces the amount of leakage current and the value of Veff.
  • In some embodiments, the control techniques for driving optical transitions are designed with a varying Vapp that keeps the maximum Veff below a particular level (e.g., 2.5V) during the entire course of the optical transition. In certain embodiments, Vapp is varied over time during transition from one state to another of the electrochromic device. The variation in Vapp is determined, at least in part, as a function of Veff. In certain embodiments, Vapp is adjusted over the time of transition in a manner that maintains an acceptable Veff so as not to degrade device function.
  • Without adjusting Vapp during the optical transition, Veff could grow too large as the ionic current decays over the course of the transition. To maintain Veff at a safe level, Vapp may be decreased when the device current is largely leakage current. In certain embodiments, adjustment of Vapp is accomplished by a “ramp to hold” portion of a drive voltage profile as described below.
  • In certain embodiments, Vapp is chosen and adjusted based on the instantaneous current draw (J) during an optical transition. Initially, during such transition, Vapp is higher to account for the larger voltage draw. FIG. 5 shows impact of current draw on Veff for a fixed window size (40 inches) using conventional drive algorithms. In this example, the drive profile accounts for a medium current draw scenario (25 □A/cm2) which leads to very low Veff during initial switching when the current draw is high (42 □A/cm2) which leads to substantially longer switching times. In addition, after the transition is complete and the window reaches the low current draw configuration (5 □A/cm2), Veff is much higher (3.64V) than during transition. Since this is above the voltage threshold of safe operation this would be a long-term reliability risk.
  • FIG. 6 illustrates certain voltage control techniques that consider the instantaneous current draw. In the depicted embodiment, the low current draw and high current draw conditions are now robustly within the required voltage window. Even for the high current draw condition, a large fraction of the device is now above the voltage threshold improving the switching speed of this device. Drive profiles can be simplified by choosing a voltage ramp rate that allows the instantaneous voltage to be close to the desired set point rather than requiring a feedback loop on the voltage.
  • FIG. 7 shows a complete current profile and voltage profile for an electrochromic device employing a simple voltage control algorithm to cause an optical state transition cycle (coloration followed by bleaching) of an electrochromic device. In the graph, total current density (I) is represented as a function of time. As mentioned, the total current density is a combination of the ionic current density associated with an electrochromic transition and electronic leakage current between the electrochemically active electrodes. Many different types electrochomic device will have the depicted current profile. In one example, a cathodic electrochromic material such as tungsten oxide is used in conjunction with an anodic electrochromic material such as nickel tungsten oxide in counter electrode. In such devices, negative currents indicate coloration of the device. In one example, lithium ions flow from a nickel tungsten oxide anodically coloring electrochromic electrode into a tungsten oxide cathodically coloring electrochromic electrode. Correspondingly, electrons flow into the tungsten oxide electrode to compensate for the positively charged incoming lithium ions. Therefore, the voltage and current are shown to have a negative value.
  • The depicted profile results from ramping up the voltage to a set level and then holding the voltage to maintain the optical state. The current peaks 701 are associated with changes in optical state, i.e., coloration and bleaching. Specifically, the current peaks represent delivery of the ionic charge needed to color or bleach the device. Mathematically, the shaded area under the peak represents the total charge required to color or bleach the device. The portions of the curve after the initial current spikes (portions 703) represent electronic leakage current while the device is in the new optical state.
  • In the figure, a voltage profile 705 is superimposed on the current curve. The voltage profile follows the sequence: negative ramp (707), negative hold (709), positive ramp (711), and positive hold (713). Note that the voltage remains constant after reaching its maximum magnitude and during the length of time that the device remains in its defined optical state. Voltage ramp 707 drives the device to its new the colored state and voltage hold 709 maintains the device in the colored state until voltage ramp 711 in the opposite direction drives the transition from colored to bleached states. In some switching algorithms, a current cap is imposed. That is, the current is not permitted to exceed a defined level in order to prevent damaging the device. The coloration speed is a function of not only the applied voltage, but also the temperature and the voltage ramping rate.
  • FIG. 8 describes a voltage control profile in accordance with certain embodiments. In the depicted embodiment, a voltage control profile is employed to drive the transition from a bleached state to a colored state (or to an intermediate state). To drive an electrochromic device in the reverse direction, from a colored state to a bleached state (or from a more colored to less colored state), a similar but inverted profile is used. In some embodiments, the voltage control profile for going from colored to bleached is a mirror image of the one depicted in FIG. 8.
  • The voltage values depicted in FIG. 8 represent the applied voltage (Vapp) values. The applied voltage profile is shown by the dashed line. For contrast, the current density in the device is shown by the solid line. In the depicted profile, Vapp includes four phases: a ramp to drive phase 803, which initiates the transition, a Vdrive phase 811, which continues to drive the transition, a ramp to hold phase 815, and a Vhold phase 817. The ramp phases are implemented as variations in Vapp and the Vdrive and Vhold phases provide constant or substantially constant Vapp magnitudes.
  • The ramp to drive phase is characterized by a ramp rate (increasing magnitude) and a magnitude of Vdrive. When the magnitude of the applied voltage reaches Vdrive, the ramp to drive phase is completed. The Vdrive phase is characterized by the value of Vdrive as well as the duration of Vdrive. The magnitude of Vdrive may be chosen to maintain Veff with a safe but effective range over the entire face of the electrochromic device as described above.
  • The ramp to hold phase is characterized by a voltage ramp rate (decreasing magnitude) and the value of Vhold (or optionally the difference between Vdrive and Vhold). Vapp drops according to the ramp rate until the value of Vhold is reached. The Vhold phase is characterized by the magnitude of Vhold and the duration of Vhold. Actually, the duration of Vhold is typically governed by the length of time that the device is held in the colored state (or conversely in the bleached state). Unlike the ramp to drive, Vdrive, and ramp to hold phases, the Vhold phase has an arbitrary length, which is independent of the physics of the optical transition of the device.
  • Each type of electrochromic device will have its own characteristic phases of the voltage profile for driving the optical transition. For example, a relatively large device and/or one with a more resistive conductive layer will require a higher value of Vdrive and possibly a higher ramp rate in the ramp to drive phase. Larger devices may also require higher values of Vhold. U.S. patent application Ser. No. 13/449,251, filed Apr. 17, 2012, and incorporated herein by reference discloses controllers and associated algorithms for driving optical transitions over a wide range of conditions. As explained therein, each of the phases of an applied voltage profile (ramp to drive, Vdrive, ramp to hold, and Vhold, herein) may be independently controlled to address real-time conditions such as current temperature, current level of transmissivity, etc. In some embodiments, the values of each phase of the applied voltage profile is set for a particular electrochromic device (having its own bus bar separation, resistivity, etc.) and does vary based on current conditions. In other words, in such embodiments, the voltage profile does not consider feedback such as temperature, current density, and the like.
  • As indicated, all voltage values shown in the voltage transition profile of FIG. 8 correspond to the Vapp values described above. They do not correspond to the Veff values described above. In other words, the voltage values depicted in FIG. 8 are representative of the voltage difference between the bus bars of opposite polarity on the electrochromic device.
  • In certain embodiments, the ramp to drive phase of the voltage profile is chosen to safely but rapidly induce ionic current to flow between the electrochromic and counter electrodes. As shown in FIG. 8, the current in the device follows the profile of the ramp to drive voltage phase until the ramp to drive portion of the profile ends and the Vdrive portion begins. See current phase 801 in FIG. 8. Safe levels of current and voltage can be determined empirically or based on other feedback. U.S. Pat. No. 8,254,013, filed Mar. 16, 2011, issued Aug. 28, 2012 and incorporated herein by reference, presents examples of algorithms for maintaining safe current levels during electrochromic device transitions.
  • In certain embodiments, the value of Vdrive is chosen based on the considerations described above. Particularly, it is chosen so that the value of Veff over the entire surface of the electrochromic device remains within a range that effectively and safely transitions large electrochromic devices. The duration of Vdrive can be chosen based on various considerations. One of these ensures that the drive potential is held for a period sufficient to cause the substantial coloration of the device. For this purpose, the duration of Vdrive may be determined empirically, by monitoring the optical density of the device as a function of the length of time that Vdrive remains in place. In some embodiments, the duration of Vdrive is set to a specified time period. In another embodiment, the duration of Vdrive is set to correspond to a desired amount of ionic charge being passed. As shown, the current ramps down during Vdrive. See current segment 807.
  • Another consideration is the reduction in current density in the device as the ionic current decays as a consequence of the available lithium ions completing their journey from the anodic coloring electrode to the cathodic coloring electrode (or counter electrode) during the optical transition. When the transition is complete, the only current flowing across device is leakage current through the ion conducting layer. As a consequence, the ohmic drop in potential across the face of the device decreases and the local values of Veff increase. These increased values of Veff can damage or degrade the device if the applied voltage is not reduced. Thus, another consideration in determining the duration of Vdrive is the goal of reducing the level of Veff associated with leakage current. By dropping the applied voltage from Vdrive to Vhold, not only is Veff reduced on the face of the device but leakage current decreases as well. As shown in FIG. 8, the device current transitions in a segment 805 during the ramp to hold phase. The current settles to a stable leakage current 809 during Vhold.
  • Electrochromic Devices and Controllers
  • FIG. 9 shows a cross-sectional axonometric view of an embodiment of an IGU 102 that includes two window panes or lites 216. In various embodiments, IGU 102 can include one, two, or more substantially transparent (e.g., at no applied voltage) lites 216 as well as a frame, 218, that supports the lites 216. For example, the IGU 102 shown in FIG. 9 is configured as a double-pane window. One or more of the lites 216 can itself be a laminate structure of two, three, or more layers or lites (e.g., shatter-resistant glass similar to automotive windshield glass). In IGU 102, at least one of the lites 216 includes an electrochromic device or stack, 220, disposed on at least one of its inner surface, 222, or outer surface, 224: for example, the inner surface 222 of the outer lite 216.
  • In multi-pane configurations, each adjacent set of lites 216 can have an interior volume, 226, disposed between them. Generally, each of the lites 216 and the IGU 102 as a whole are rectangular and form a rectangular solid. However, in other embodiments other shapes (e.g., circular, elliptical, triangular, curvilinear, convex, concave) may be desired. In some embodiments, the volume 226 between the lites 116 is evacuated of air. In some embodiments, the IGU 102 is hermetically-sealed. Additionally, the volume 226 can be filled (to an appropriate pressure) with one or more gases, such as argon (Ar), krypton (Kr), or xenon (Xn), for example. Filling the volume 226 with a gas such as Ar, Kr, or Xn can reduce conductive heat transfer through the IGU 102 because of the low thermal conductivity of these gases. The latter two gases also can impart improved acoustic insulation due to their increased weight.
  • In some embodiments, frame 218 is constructed of one or more pieces. For example, frame 218 can be constructed of one or more materials such as vinyl, PVC, aluminum (Al), steel, or fiberglass. The frame 218 may also include or hold one or more foam or other material pieces that work in conjunction with frame 218 to separate the lites 216 and to hermetically seal the volume 226 between the lites 216. For example, in a typical IGU implementation, a spacer lies between adjacent lites 216 and forms a hermetic seal with the panes in conjunction with an adhesive sealant that can be deposited between them. This is termed the primary seal, around which can be fabricated a secondary seal, typically of an additional adhesive sealant. In some such embodiments, frame 218 can be a separate structure that supports the IGU construct.
  • Each lite 216 includes a substantially transparent or translucent substrate, 228. Generally, substrate 228 has a first (e.g., inner) surface 222 and a second (e.g., outer) surface 224 opposite the first surface 222. In some embodiments, substrate 228 can be a glass substrate. For example, substrate 228 can be a conventional silicon oxide (SOx)-based glass substrate such as soda-lime glass or float glass, composed of, for example, approximately 75% silica (SiO2) plus Na2O, CaO, and several minor additives. However, any material having suitable optical, electrical, thermal, and mechanical properties may be used as substrate 228. Such substrates also can include, for example, other glass materials, plastics and thermoplastics (e.g., poly(methyl methacrylate), polystyrene, polycarbonate, allyl diglycol carbonate, SAN (styrene acrylonitrile copolymer), poly(4-methyl-1-pentene), polyester, polyamide), or mirror materials. If the substrate is formed from, for example, glass, then substrate 228 can be strengthened, e.g., by tempering, heating, or chemically strengthening. In other implementations, the substrate 228 is not further strengthened, e.g., the substrate is untempered.
  • In some embodiments, substrate 228 is a glass pane sized for residential or commercial window applications. The size of such a glass pane can vary widely depending on the needs of the residence or commercial enterprise. In some embodiments, substrate 228 can be formed of architectural glass. Architectural glass is typically used in commercial buildings, but also can be used in residential buildings, and typically, though not necessarily, separates an indoor environment from an outdoor environment. In certain embodiments, a suitable architectural glass substrate can be at least approximately 20 inches by approximately 20 inches, and can be much larger, for example, approximately 80 inches by approximately 120 inches, or larger. Architectural glass is typically at least about 2 millimeters (mm) thick and may be as thick as 6 mm or more. Of course, electrochromic devices 220 can be scalable to substrates 228 smaller or larger than architectural glass, including in any or all of the respective length, width, or thickness dimensions. In some embodiments, substrate 228 has a thickness in the range of approximately 1 mm to approximately 10 mm. In some embodiments, substrate 228 may be very thin and flexible, such as Gorilla Glass® or Willow™ Glass, each commercially available from Corning, Inc. of Corning, N.Y., these glasses may be less than 1 mm thick, as thin as 0.3 mm thick.
  • Electrochromic device 220 is disposed over, for example, the inner surface 222 of substrate 228 of the outer lite 216 (the pane adjacent the outside environment). In some other embodiments, such as in cooler climates or applications in which the IGUs 102 receive greater amounts of direct sunlight (e.g., perpendicular to the surface of electrochromic device 220), it may be advantageous for electrochromic device 220 to be disposed over, for example, the inner surface (the surface bordering the volume 226) of the inner pane adjacent the interior environment. In some embodiments, electrochromic device 220 includes a first conductive layer (CL) 230 (often transparent), an electrochromic layer (EC) 232, an ion conducting layer (IC) 234, a counter electrode layer (CE) 236, and a second conductive layer (CL) 238 (often transparent). Again, layers 230, 232, 234, 236, and 238 are also collectively referred to as electrochromic stack 220.
  • A power source 240 operable to apply an electric potential (Vapp) to the device and produce Veff across a thickness of electrochromic stack 220 and drive the transition of the electrochromic device 220 from, for example, a bleached or lighter state (e.g., a transparent, semitransparent, or translucent state) to a colored or darker state (e.g., a tinted, less transparent or less translucent state). In some other embodiments, the order of layers 230, 232, 234, 236, and 238 can be reversed or otherwise reordered or rearranged with respect to conductive layer 238.
  • In some embodiments, one or both of first conductive layer 230 and second conductive layer 238 is formed from an inorganic and solid material. For example, first conductive layer 230, as well as second conductive layer 238, can be made from a number of different materials, including conductive oxides, thin metallic coatings, conductive metal nitrides, and composite conductors, among other suitable materials. In some embodiments, conductive layers 230 and 238 are substantially transparent at least in the range of wavelengths where electrochromism is exhibited by the electrochromic layer 232. Transparent conductive oxides include metal oxides and metal oxides doped with one or more metals. For example, metal oxides and doped metal oxides suitable for use as first or second conductive layers 230 and 238 can include indium oxide, indium tin oxide (ITO), doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, doped ruthenium oxide, among others. As indicated above, first and second conductive layers 230 and 238 are sometimes referred to as “transparent conductive oxide” (TCO) layers.
  • In some embodiments, commercially available substrates, such as glass substrates, already contain a transparent conductive layer coating when purchased. In some embodiments, such a product can be used for both conductive layer 238 and conductive layer 230 collectively. Examples of such glass substrates include conductive layer-coated glasses sold under the trademark TEC Glass™ by Pilkington, of Toledo, Ohio and SUNGATE™ 300 and SUNGATE™ 500 by PPG Industries of Pittsburgh, Pa. Specifically, TEC Glass™ is, for example, a glass coated with a fluorinated tin oxide conductive layer.
  • In some embodiments, first or second conductive layers 230 and 238 can each be deposited by physical vapor deposition processes including, for example, sputtering. In some embodiments, first and second conductive layers 230 and 238 can each have a thickness in the range of approximately 0.01 μm to approximately 1 μm. In some embodiments, it may be generally desirable for the thicknesses of the first and second conductive layers 230 and 238 as well as the thicknesses of any or all of the other layers described below to be individually uniform with respect to the given layer; that is, that the thickness of a given layer is uniform and the surfaces of the layer are smooth and substantially free of defects or other ion traps.
  • A primary function of the first and second conductive layers 230 and 238 is to spread an electric potential provided by a power source 240, such as a voltage or current source, over surfaces of the electrochromic stack 220 from outer surface regions of the stack to inner surface regions of the stack. As mentioned, the voltage applied to the electrochromic device experiences some Ohmic potential drop from the outer regions to the inner regions as a result of a sheet resistance of the first and second conductive layers 230 and 238. In the depicted embodiment, bus bars 242 and 244 are provided with bus bar 242 in contact with conductive layer 230 and bus bar 244 in contact with conductive layer 238 to provide electric connection between the voltage or current source 240 and the conductive layers 230 and 238. For example, bus bar 242 can be electrically coupled with a first (e.g., positive) terminal 246 of power source 240 while bus bar 244 can be electrically coupled with a second (e.g., negative) terminal 248 of power source 240.
  • In some embodiments, IGU 102 includes a plug-in component 250. In some embodiments, plug-in component 250 includes a first electrical input 252 (e.g., a pin, socket, or other electrical connector or conductor) that is electrically coupled with power source terminal 246 via, for example, one or more wires or other electrical connections, components, or devices. Similarly, plug-in component 250 can include a second electrical input 254 that is electrically coupled with power source terminal 248 via, for example, one or more wires or other electrical connections, components, or devices. In some embodiments, first electrical input 252 can be electrically coupled with bus bar 242, and from there with first conductive layer 230, while second electrical input 254 can be coupled with bus bar 244, and from there with second conductive layer 238. The conductive layers 230 and 238 also can be connected to power source 240 with other conventional means as well as according to other means described below with respect to a window controller. For example, as described below with reference to FIG. 10, first electrical input 252 can be connected to a first power line while second electrical input 254 can be connected to a second power line. Additionally, in some embodiments, third electrical input 256 can be coupled to a device, system, or building ground. Furthermore, in some embodiments, fourth and fifth electrical inputs/ outputs 258 and 260, respectively, can be used for communication between, for example, a window controller or microcontroller and a network controller.
  • In some embodiments, electrochromic layer 232 is deposited or otherwise formed over first conductive layer 230. In some embodiments, electrochromic layer 232 is formed of an inorganic and solid material. In various embodiments, electrochromic layer 232 can include or be formed of one or more of a number of electrochromic materials, including electrochemically cathodic or electrochemically anodic materials. For example, metal oxides suitable for use as electrochromic layer 232 can include tungsten oxide (WO3), molybdenum oxide (MoO3), niobium oxide (Nb2O5), titanium oxide (TiO2), copper oxide (CuO), iridium oxide (Ir2O3), chromium oxide (Cr2O3), manganese oxide (Mn2O3), vanadium oxide (V2O5), nickel oxide (Ni2O3), and cobalt oxide (Co2O3), among other materials. In some embodiments, electrochromic layer 232 can have a thickness in the range of approximately 0.05 μm to approximately 1 μm.
  • During operation, in response to a voltage generated across the thickness of electrochromic layer 232 by first and second conductive layers 230 and 238, electrochromic layer 232 transfers or exchanges ions to or from counter electrode layer 236 resulting in the desired optical transitions in electrochromic layer 232, and in some embodiments, also resulting in an optical transition in counter electrode layer 236. In some embodiments, the choice of appropriate electrochromic and counter electrode materials governs the relevant optical transitions.
  • In some embodiments, counter electrode layer 236 is formed of an inorganic and solid material. Counter electrode layer 236 can generally include one or more of a number of materials or material layers that can serve as a reservoir of ions when the electrochromic device 220 is in, for example, the transparent state. In some embodiments, counter electrode layer 236 is a second electrochromic layer of opposite polarity as electrochromic layer 232. For example, when electrochromic layer 232 is formed from an electrochemically cathodic material, counter electrode layer 236 can be formed of an electrochemically anodic material. Examples of suitable materials for the counter electrode layer 236 include nickel oxide (NiO), nickel tungsten oxide (NiWO), nickel vanadium oxide, nickel chromium oxide, nickel aluminum oxide, nickel manganese oxide, nickel magnesium oxide, chromium oxide (Cr2O3), manganese oxide (MnO2), and Prussian blue. In some embodiments, counter electrode layer 236 can have a thickness in the range of approximately 0.05 μm to approximately 1 μm.
  • During an electrochromic transition initiated by, for example, application of an appropriate electric potential across a thickness of electrochromic stack 220, counter electrode layer 236 transfers all or a portion of the ions it holds to electrochromic layer 232, causing the optical transition in the electrochromic layer 232. In some embodiments, as for example in the case of a counter electrode layer 236 formed from NiWO, the counter electrode layer 236 also optically transitions with the loss of ions it has transferred to the electrochromic layer 232. When charge is removed from a counter electrode layer 236 made of NiWO (e.g., ions are transported from the counter electrode layer 236 to the electrochromic layer 232), the counter electrode layer 236 will transition in the opposite direction (e.g., from a transparent state to a darkened state).
  • In some embodiments, ion conducting layer 234 serves as a medium through which ions are transported (e.g., in the manner of an electrolyte) when the electrochromic device 220 transitions between optical states. In some embodiments, ion conducting layer 234 is highly conductive to the relevant ions for the electrochromic and the counter electrode layers 232 and 236, but also has sufficiently low electron conductivity such that negligible electron transfer occurs during normal operation. A thin ion conducting layer 234 with high ionic conductivity permits fast ion conduction and hence fast switching for high performance electrochromic devices 220. Electronic leakage current passes through layer 234 during device operation. In some embodiments, ion conducting layer 234 can have a thickness in the range of approximately 0.01 μm to approximately 1 μm.
  • In some embodiments, ion conducting layer 234 also is inorganic and solid. For example, ion conducting layer 234 can be formed from one or more silicates, silicon oxides, tungsten oxides, tantalum oxides, niobium oxides, and borates. The silicon oxides include silicon-aluminum-oxide. These materials also can be doped with different dopants, including lithium. Lithium-doped silicon oxides include lithium silicon-aluminum-oxide.
  • In some other embodiments, the electrochromic and the counter electrode layers 232 and 236 are formed immediately adjacent one another, sometimes in direct contact, without separately depositing an ion conducting layer. For example, in some embodiments, electrochromic devices having an interfacial region between first and second conductive electrode layers rather than a distinct ion conducting layer 234 can be utilized. Such devices, and methods of fabricating them, are described in U.S. patent application Ser. Nos. 12/772,055 and 12/772,075, each filed 30 Apr. 2010, and in U.S. patent application Ser. Nos. 12/814,277 and 12/814,279, each filed 11 Jun. 2010, all four of which are titled ELECTROCHROMIC DEVICES and name Zhongchun Wang et al. as inventors. Each of these four applications is incorporated by reference herein in its entirety.
  • In some embodiments, electrochromic device 220 also can include one or more additional layers (not shown), such as one or more passive layers. For example, passive layers used to improve certain optical properties can be included in or on electrochromic device 220. Passive layers for providing moisture or scratch resistance also can be included in electrochromic device 220. For example, the conductive layers 230 and 238 can be treated with anti-reflective or protective oxide or nitride layers. Other passive layers can serve to hermetically seal the electrochromic device 220.
  • Additionally, in some embodiments, one or more of the layers in electrochromic stack 220 can contain some amount of organic material. Additionally, or alternatively, in some embodiments, one or more of the layers in electrochromic stack 220 can contain some amount of liquids in one or more layers. Additionally, or alternatively, in some embodiments, solid state material can be deposited or otherwise formed by processes employing liquid components such as certain processes employing sol-gels or chemical vapor deposition.
  • Additionally, transitions between a bleached or transparent state and a colored or opaque state are but one example, among many, of an optical or electrochromic transition that can be implemented. Unless otherwise specified herein (including the foregoing discussion), whenever reference is made to a bleached-to-opaque transition (or to and from intermediate states in between), the corresponding device or process described encompasses other optical state transitions such as, for example, intermediate state transitions such as percent transmission (% T) to % T transitions, non-reflective to reflective transitions (or to and from intermediate states in between), bleached to colored transitions (or to and from intermediate states in between), and color to color transitions (or to and from intermediate states in between). Further, the term “bleached” may refer to an optically neutral state, for example, uncolored, transparent or translucent. Still further, unless specified otherwise herein, the “color” of an electrochromic transition is not limited to any particular wavelength or range of wavelengths.
  • Generally, the colorization or other optical transition of the electrochromic material in electrochromic layer 232 is caused by reversible ion insertion into the material (for example, intercalation) and a corresponding injection of charge-balancing electrons. Typically, some fraction of the ions responsible for the optical transition is irreversibly bound up in the electrochromic material. Some or all of the irreversibly bound ions can be used to compensate “blind charge” in the material. In some embodiments, suitable ions include lithium ions (Li+) and hydrogen ions (H+) (i.e., protons). In some other embodiments, however, other ions can be suitable. Intercalation of lithium ions, for example, into tungsten oxide (WO3-y (0<y≤˜0.3)) causes the tungsten oxide to change from a transparent (e.g., bleached) state to a blue (e.g., colored) state.
  • In particular embodiments described herein, the electrochromic device 220 reversibly cycles between a transparent state and an opaque or tinted state. In some embodiments, when the device is in a transparent state, a potential is applied to the electrochromic stack 220 such that available ions in the stack reside primarily in the counter electrode layer 236. When the magnitude of the potential on the electrochromic stack 220 is reduced or its polarity reversed, ions are transported back across the ion conducting layer 234 to the electrochromic layer 232 causing the electrochromic material to transition to an opaque, tinted, or darker state. In certain embodiments, layers 232 and 236 are complementary coloring layers; that is, for example, when ions are transferred into the counter electrode layer it is not colored. Similarly, when or after the ions are transferred out of the electrochromic layer it is also not colored. But when the polarity is switched, or the potential reduced, however, and the ions are transferred from the counter electrode layer into the electrochromic layer, both the counter electrode and the electrochromic layers become colored.
  • In some other embodiments, when the device is in an opaque state, a potential is applied to the electrochromic stack 220 such that available ions in the stack reside primarily in the counter electrode layer 236. In such embodiments, when the magnitude of the potential on the electrochromic stack 220 is reduced or its polarity reversed, ions are transported back across the ion conducting layer 234 to the electrochromic layer 232 causing the electrochromic material to transition to a transparent or lighter state. These layers may also be complementary coloring.
  • The optical transition driving logic can be implemented in many different controller configurations and coupled with other control logic. Various examples of suitable controller design and operation are provided in the following patent applications, each incorporated herein by reference in its entirety: U.S. patent application Ser. No. 13/049,623, filed Mar. 16, 2011; U.S. patent application Ser. No. 13/049,756, filed Mar. 16, 2011; U.S. Pat. No. 8,213,074, filed Mar. 16, 2011; U.S. patent application Ser. No. 13/449,235, filed Apr. 17, 2012; U.S. patent application Ser. No. 13/449,248, filed Apr. 17, 2012; U.S. patent application Ser. No. 13/449,251, filed Apr. 17, 2012; and U.S. patent application Ser. No. 13/326,168, filed Dec. 14, 2011. The following description and associated figures, FIGS. 9 and 10, present certain non-limiting controller design options suitable for implementing the drive profiles described herein.
  • In some embodiments, electrical input 252 and electrical input 254 receive, carry, or transmit complementary power signals. In some embodiments, electrical input 252 and its complement electrical input 254 can be directly connected to the bus bars 242 and 244, respectively, and on the other side, to an external power source that provides a variable DC voltage (e.g., sign and magnitude). The external power source can be a window controller (see element 114 of FIG. 10) itself, or power from a building transmitted to a window controller or otherwise coupled to electrical inputs 252 and 254. In such an embodiment, the electrical signals transmitted through electrical inputs/ outputs 258 and 260 can be directly connected to a memory device to allow communication between the window controller and the memory device. Furthermore, in such an embodiment, the electrical signal input to electrical input 256 can be internally connected or coupled (within IGU 102) to either electrical input 252 or 254 or to the bus bars 242 or 244 in such a way as to enable the electrical potential of one or more of those elements to be remotely measured (sensed). This can allow the window controller to compensate for a voltage drop on the connecting wires from the window controller to the electrochromic device 220.
  • In some embodiments, the window controller can be immediately attached (e.g., external to the IGU 102 but inseparable by the user) or integrated within the IGU 102. For example, U.S. patent application Ser. No. 13/049,750 (Attorney Docket No. SLDMP008) naming Brown et al. as inventors, titled ONBOARD CONTROLLER FOR MULTISTATE WINDOWS and filed 16 Mar. 2011, incorporated by reference herein, describes in detail various embodiments of an “onboard” controller. In such an embodiment, electrical input 252 can be connected to the positive output of an external DC power source. Similarly, electrical input 254 can be connected to the negative output of the DC power source. As described below, however, electrical inputs 252 and 254 can, alternately, be connected to the outputs of an external low voltage AC power source (e.g., a typical 24 V AC transformer common to the HVAC industry). In such an embodiment, electrical inputs/ outputs 258 and 260 can be connected to the communication bus between the window controller and a network controller. In this embodiment, electrical input/output 256 can be eventually (e.g., at the power source) connected with the earth ground (e.g., Protective Earth, or PE in Europe) terminal of the system.
  • Although the voltages plotted in FIGS. 7 and 8 may be expressed as DC voltages, in some embodiments, the voltages actually supplied by the external power source are AC voltage signals. In some other embodiments, the supplied voltage signals are converted to pulse-width modulated voltage signals. However, the voltages actually “seen” or applied to the bus bars 242 and 244 are effectively DC voltages. Typically, the voltage oscillations applied at terminals 246 and 248 are in the range of approximately 1 Hz to 1 MHz, and in particular embodiments, approximately 100 kHz. In various embodiments, the oscillations have asymmetric residence times for the darkening (e.g., tinting) and lightening (e.g., bleaching) portions of a period. For example, in some embodiments, transitioning from a first less transparent state to a second more transparent state requires more time than the reverse; that is, transitioning from the more transparent second state to the less transparent first state. As will be described below, a controller can be designed or configured to apply a driving voltage meeting these requirements.
  • The oscillatory applied voltage control allows the electrochromic device 220 to operate in, and transition to and from, one or more states without any necessary modification to the electrochromic device stack 220 or to the transitioning time. Rather, the window controller can be configured or designed to provide an oscillating drive voltage of appropriate wave profile, considering such factors as frequency, duty cycle, mean voltage, amplitude, among other possible suitable or appropriate factors. Additionally, such a level of control permits the transitioning to any state over the full range of optical states between the two end states. For example, an appropriately configured controller can provide a continuous range of transmissivity (% T) which can be tuned to any value between end states (e.g., opaque and bleached end states).
  • To drive the device to an intermediate state using the oscillatory driving voltage, a controller could simply apply the appropriate intermediate voltage. However, there can be more efficient ways to reach the intermediate optical state. This is partly because high driving voltages can be applied to reach the end states but are traditionally not applied to reach an intermediate state. One technique for increasing the rate at which the electrochromic device 220 reaches a desired intermediate state is to first apply a high voltage pulse suitable for full transition (to an end state) and then back off to the voltage of the oscillating intermediate state (just described). Stated another way, an initial low frequency single pulse (low in comparison to the frequency employed to maintain the intermediate state) of magnitude and duration chosen for the intended final state can be employed to speed the transition. After this initial pulse, a higher frequency voltage oscillation can be employed to sustain the intermediate state for as long as desired.
  • In some embodiments, each IGU 102 includes a component 250 that is “pluggable” or readily-removable from IGU 102 (e.g., for ease of maintenance, manufacture, or replacement). In some particular embodiments, each plug-in component 250 itself includes a window controller. That is, in some such embodiments, each electrochromic device 220 is controlled by its own respective local window controller located within plug-in component 250. In some other embodiments, the window controller is integrated with another portion of frame 218, between the glass panes in the secondary seal area, or within volume 226. In some other embodiments, the window controller can be located external to IGU 102. In various embodiments, each window controller can communicate with the IGUs 102 it controls and drives, as well as communicate to other window controllers, the network controller, BMS, or other servers, systems, or devices (e.g., sensors), via one or more wired (e.g., Ethernet) networks or wireless (e.g., WiFi) networks, for example, via wired (e.g., Ethernet) interface 263 or wireless (WiFi) interface 265. See FIG. 10. Embodiments having Ethernet or WiFi capabilities are also well-suited for use in residential homes and other smaller-scale non-commercial applications. Additionally, the communication can be direct or indirect, e.g., via an intermediate node between a master controller such as network controller 112 and the IGU 102.
  • FIG. 10 depicts a window controller 114, which may be deployed as, for example, component 250. In some embodiments, window controller 114 communicates with a network controller over a communication bus 262. For example, communication bus 262 can be designed according to the Controller Area Network (CAN) vehicle bus standard. In such embodiments, first electrical input 252 can be connected to a first power line 264 while second electrical input 254 can be connected to a second power line 266. In some embodiments, as described above, the power signals sent over power lines 264 and 266 are complementary; that is, collectively they represent a differential signal (e.g., a differential voltage signal). In some embodiments, line 268 is coupled to a system or building ground (e.g., an Earth Ground). In such embodiments, communication over CAN bus 262 (e.g., between microcontroller 274 and network controller 112) may proceed along first and second communication lines 270 and 272 transmitted through electrical inputs/ outputs 258 and 260, respectively, according to the CANopen communication protocol or other suitable open, proprietary, or overlying communication protocol. In some embodiments, the communication signals sent over communication lines 270 and 272 are complementary; that is, collectively they represent a differential signal (e.g., a differential voltage signal).
  • In some embodiments, component 250 couples CAN communication bus 262 into window controller 114, and in particular embodiments, into microcontroller 274. In some such embodiments, microcontroller 274 is also configured to implement the CANopen communication protocol. Microcontroller 274 is also designed or configured (e.g., programmed) to implement one or more drive control algorithms in conjunction with pulse-width modulated amplifier or pulse-width modulator (PWM) 276, smart logic 278, and signal conditioner 280. In some embodiments, microcontroller 274 is configured to generate a command signal VCOMMAND, e.g., in the form of a voltage signal, that is then transmitted to PWM 276. PWM 276, in turn, generates a pulse-width modulated power signal, including first (e.g., positive) component VPW1 and second (e.g., negative) component VPW2, based on VCOMMAND. Power signals VPW1 and VPW2 are then transmitted over, for example, interface 288, to IGU 102, or more particularly, to bus bars 242 and 244 in order to cause the desired optical transitions in electrochromic device 220. In some embodiments, PWM 276 is configured to modify the duty cycle of the pulse-width modulated signals such that the durations of the pulses in signals VPW1 and VPW2 are not equal: for example, PWM 276 pulses VPW1 with a first 60% duty cycle and pulses VPW2 for a second 40% duty cycle. The duration of the first duty cycle and the duration of the second duty cycle collectively represent the duration, tPWM of each power cycle. In some embodiments, PWM 276 can additionally or alternatively modify the magnitudes of the signal pulses VPW1 and VPW2.
  • In some embodiments, microcontroller 274 is configured to generate VCOMMAND based on one or more factors or signals such as, for example, any of the signals received over CAN bus 262 as well as voltage or current feedback signals, VFB and IFB respectively, generated by PWM 276. In some embodiments, microcontroller 274 determines current or voltage levels in the electrochromic device 220 based on feedback signals IFB or VFB, respectively, and adjusts VCOMMAND according to one or more rules or algorithms to effect a change in the relative pulse durations (e.g., the relative durations of the first and second duty cycles) or amplitudes of power signals VPW1 and VPW2 to produce voltage profiles as described above. Additionally, or alternatively, microcontroller 274 can also adjust VCOMMAND in response to signals received from smart logic 278 or signal conditioner 280. For example, a conditioning signal VCON can be generated by signal conditioner 280 in response to feedback from one or more networked or non-networked devices or sensors, such as, for example, an exterior photosensor or photodetector 282, an interior photosensor or photodetector 284, a thermal or temperature sensor 286, or a tint command signal VTC. For example, additional embodiments of signal conditioner 280 and VCON are also described in U.S. patent application Ser. No. 13/449,235, filed 17 Apr. 2012, and previously incorporated by reference.
  • In certain embodiments, VTC can be an analog voltage signal between 0 V and 10 V that can be used or adjusted by users (such as residents or workers) to dynamically adjust the tint of an IGU 102 (for example, a user can use a control in a room or zone of building 104 similarly to a thermostat to finely adjust or modify a tint of the IGUs 102 in the room or zone) thereby introducing a dynamic user input into the logic within microcontroller 274 that determines VCOMMAND. For example, when set in the 0 to 2.5 V range, VTC can be used to cause a transition to a 5% T state, while when set in the 2.51 to 5 V range, VTC can be used to cause a transition to a 20% T state, and similarly for other ranges such as 5.1 to 7.5 V and 7.51 to 10 V, among other range and voltage examples. In some embodiments, signal conditioner 280 receives the aforementioned signals or other signals over a communication bus or interface 290. In some embodiments, PWM 276 also generates VCOMMAND based on a signal VSMART received from smart logic 278. In some embodiments, smart logic 278 transmits VSMART over a communication bus such as, for example, an Inter-Integrated Circuit (I2C) multi-master serial single-ended computer bus. In some other embodiments, smart logic 278 communicates with memory device 292 over a 1-WIRE device communications bus system protocol (by Dallas Semiconductor Corp., of Dallas, Tex.).
  • In some embodiments, microcontroller 274 includes a processor, chip, card, or board, or a combination of these, which includes logic for performing one or more control functions. Power and communication functions of microcontroller 274 may be combined in a single chip, for example, a programmable logic device (PLD) chip or field programmable gate array (FPGA), or similar logic. Such integrated circuits can combine logic, control and power functions in a single programmable chip. In one embodiment, where one lite 216 has two electrochromic devices 220 (e.g., on opposite surfaces) or where IGU 102 includes two or more lites 216 that each include an electrochromic device 220, the logic can be configured to control each of the two electrochromic devices 220 independently from the other. However, in one embodiment, the function of each of the two electrochromic devices 220 is controlled in a synergistic fashion, for example, such that each device is controlled in order to complement the other. For example, the desired level of light transmission, thermal insulative effect, or other property can be controlled via a combination of states for each of the individual electrochromic devices 220. For example, one electrochromic device may be placed in a colored state while the other is used for resistive heating, for example, via a transparent electrode of the device. In another example, the optical states of the two electrochromic devices are controlled so that the combined transmissivity is a desired outcome.
  • In general, the logic used to control electrochromic device transitions can be designed or configured in hardware and/or software. In other words, the instructions for controlling the drive circuitry may be hard coded or provided as software. In may be said that the instructions are provided by “programming”. Such programming is understood to include logic of any form including hard coded logic in digital signal processors and other devices which have algorithms implemented as hardware. Programming is also understood to include software or firmware instructions that may be executed on a general-purpose processor. In some embodiments, instructions for controlling application of voltage to the bus bars are stored on a memory device associated with the controller or are provided over a network. Examples of suitable memory devices include semiconductor memory, magnetic memory, optical memory, and the like. The computer program code for controlling the applied voltage can be written in any conventional computer readable programming language such as assembly language, C, C++, Pascal, Fortran, and the like. Compiled object code or script is executed by the processor to perform the tasks identified in the program.
  • As described above, in some embodiments, microcontroller 274, or window controller 114 generally, also can have wireless capabilities, such as wireless control and powering capabilities. For example, wireless control signals, such as radio-frequency (RF) signals or infra-red (IR) signals can be used, as well as wireless communication protocols such as WiFi (mentioned above), Bluetooth, Zigbee, EnOcean, among others, to send instructions to the microcontroller 274 and for microcontroller 274 to send data out to, for example, other window controllers, a network controller 112, or directly to a BMS 111. In various embodiments, wireless communication can be used for at least one of programming or operating the electrochromic device 220, collecting data or receiving input from the electrochromic device 220 or the IGU 102 generally, collecting data or receiving input from sensors, as well as using the window controller 114 as a relay point for other wireless communications. Data collected from IGU 102 also can include count data, such as a number of times an electrochromic device 220 has been activated (cycled), an efficiency of the electrochromic device 220 over time, among other useful data or performance metrics.
  • The window controller 114 also can have wireless power capability. For example, window controller can have one or more wireless power receivers that receive transmissions from one or more wireless power transmitters as well as one or more wireless power transmitters that transmit power transmissions enabling window controller 114 to receive power wirelessly and to distribute power wirelessly to electrochromic device 220. Wireless power transmission includes, for example, induction, resonance induction, RF power transfer, microwave power transfer, and laser power transfer. For example, U.S. patent application Ser. No. 12/971,576 (Attorney Docket No. SLDMP003) naming Rozbicki as inventor, titled WIRELESS POWERED ELECTROCHROMIC WINDOWS and filed 17 Dec. 2010, incorporated by reference herein, describes in detail various embodiments of wireless power capabilities.
  • In order to achieve a desired optical transition, the pulse-width modulated power signal is generated such that the positive component VPW1 is supplied to, for example, bus bar 244 during the first portion of the power cycle, while the negative component VPW2 is supplied to, for example, bus bar 242 during the second portion of the power cycle.
  • In some cases, depending on the frequency (or inversely the duration) of the pulse-width modulated signals, this can result in bus bar 244 floating at substantially the fraction of the magnitude of VPW1 that is given by the ratio of the duration of the first duty cycle to the total duration tPWM of the power cycle. Similarly, this can result in bus bar 242 floating at substantially the fraction of the magnitude of VPW2 that is given by the ratio of the duration of the second duty cycle to the total duration tPWM of the power cycle. In this way, in some embodiments, the difference between the magnitudes of the pulse-width modulated signal components VPW1 and VPW2 is twice the effective DC voltage across terminals 246 and 248, and consequently, across electrochromic device 220. Said another way, in some embodiments, the difference between the fraction (determined by the relative duration of the first duty cycle) of VPW1 applied to bus bar 244 and the fraction (determined by the relative duration of the second duty cycle) of VPW2 applied to bus bar 242 is the effective DC voltage VEFF applied to electrochromic device 220. The current IEFF through the load-electrochromic device 220—is roughly equal to the effective voltage VEFF divided by the effective resistance (represented by a resistor network comprising resistor 418, 422, and 448) or impedance of the load.
  • FIGS. 11A and 11B show current and voltage profiles resulting from a control method in accordance with certain embodiments. FIG. 11C provides an associated flow chart for an initial portion (the controlled current portion) of the control sequence. For purposes of discussion, the negative current shown in these figures, as in FIG. 7, is assumed to drive the bleached to colored transition. Of course, the example could apply equally to devices that operate in reverse, i.e., devices employing anodic electrochromic electrodes.
  • In an example, the following procedure is followed:
  • 1. At time 0—Ramp the voltage at a rate intended to correspond to a current level “I target” 301. See block 1151 of FIG. 11C. See also a voltage ramp 1103 in FIG. 11A. I target may be set a priori for the device in question—independent of temperature. As mentioned, the control method described here may be beneficially implemented without knowing or inferring the device's temperature. In alternative embodiments, the temperature is detected and considered in setting the current level. In some cases, temperature may be inferred from the current-voltage response of the window.
  • In some examples, the ramp rate is between about 10 μV/s and 100V/s. In more other examples, the ramp rate is between about 1 mV/s_and_500 mV/s.
  • 2. Immediately after to, typically within a few milliseconds, the controller determines the current level resulting from application of voltage in operation 1 and compares it against a range of acceptable currents bounded by Islow at the lower end and Isafe at the upper end. Isafe is the current level above which the device can become damaged or degraded. Islow is the current level below which the device will switch at an unacceptably slow rate. As an example, Itarget in an electrochomic window may be between about 30 and 70 pA/cm2. Further, typical examples of Islow range between about 1 and 30 μA/cm2 and examples of Isafe range between about 70 and 250 μA/cm2.
  • The voltage ramp is set, and adjusted as necessary, to control the current and typically produces a relatively consistent current level in the initial phase of the control sequence. This is illustrated by the flat current profile 1101 as shown in FIGS. 11A and 11B, which is bracketed between levels Isafe 1107 and Islow 1109.
  • 3. Depending upon the results of the comparison in step 2, the control method employs one of the operations (a)-(c) below. Note that the controller not only checks current level immediately after t0, but it frequently checks the current level thereafter and makes adjustments as described here and as shown in FIG. 11C.
  • a. The measured current is between Islow and Isafe→Continue to apply a voltage that maintains the current between Islow and Isafe. See the loop defined by blocks 1153, 1155, 1159, 1169, and 1151 of FIG. 11C.
  • b. The measured current is below Islow (typically because the device temperature is low)→continue to ramp the applied voltage in order to bring the current above Islow but below Isafe. See the loop of block 1153 and 1151 of FIG. 11C. If the current level is too low, it may be appropriate to increase the rate of increase of the voltage (i.e., increase the steepness of the voltage ramp).
  • As indicated, the controller typically actively monitors current and voltage to ensure that the applied current remains above Islow. In one example, the controller checks the current and/or voltage every few milliseconds. It may adjust the voltage on the same time scale. The controller may also ensure that the new increased level of applied voltage remains below Vsafe. Vsafe is the maximum applied voltage magnitude, beyond which the device may become damaged or degraded.
  • c. The measured current is above Isafe (typically because the device is operating at a high temperature)→decrease voltage (or rate of increase in the voltage) in order to bring the current below Isafe but above Islow. See block 1155 and 1157 of FIG. 11C. As mentioned, the controller may actively monitor current and voltage. As such, the controller can quickly adjust the applied voltage to ensure that the current remains below Isafe during the entire controlled current phase of the transition. Thus, the current should not exceed Isafe.
  • As should be apparent, the voltage ramp 303 may be adjusted or even stopped temporarily as necessary to maintain the current between Islow and Isafe. For example, the voltage ramp may be stopped, reversed in direction, slowed in rate, or increased in rate while in the controlled current regime.
  • In other embodiments, the controller increases and/or decreases current, rather than voltage, as desired. Hence the above discussion should not be viewed as limiting to the option of ramping or otherwise controlling voltage to maintain current in the desired range. Whether voltage or current is controlled by the hardware (potentiostatic or galvanostatic control), the algorithm attains the desired result.
  • 4. Maintain current in the target range, between Islow and Isafe until a specified criterion is met. In one example, the criterion is passing current for a defined length of time, t1, at which time the device reaches a defined voltage V1. Upon achieving this condition, the controller transitions from controlled current to controlled voltage. See blocks 1159 and 1161 of FIG. 11C. Note that V1 is a function of temperature, but as mentioned temperature need not be monitored or even detected in accordance with various embodiments.
  • In certain embodiments t1 is about 1 to 30 minutes, and in some examples, t1 is about 2 to 5 minutes. Further, in some cases the magnitude of V1 is about 1 to 7 volts, and more specifically about 2.5 to 4 volts.
  • As mentioned the controller continues in the controlled current phase until a specified condition is met such as the passing of a defined period of time. In this example, a timer is used to trigger the transition. In other examples, the specified condition is reaching a defined voltage (e.g., a maximum safe voltage) or passing of a defined amount of charge.
  • Operations 1-4 correspond to regime 1 in the above general algorithm-controlled current. The goal during this phase is to prevent the current from exceeding a safe level while ensuring a reasonably rapid switching speed. It is possible that during this regime, the controller could supply a voltage exceeding the maximum safe voltage for the electrochromic device. In certain embodiments, this concern is eliminated by employing a control algorithm in which the maximum safe value is much greater than V1 across the operational temperature range. In some examples, Itarget and t1 are chosen such that V1 is well below the maximum voltage at lower temperatures while not degrading the window due to excessive current at higher temperatures. In some embodiments, the controller includes a safety feature that will alarm the window before the maximum safe voltage is reached. In a typical example, the value of the maximum safe voltage for an electrochromic window is between about 5 and 9 volts.
  • 5. Maintain the voltage at a defined level V2 until another specified condition is met such as reaching a time t2. See voltage segment 1113 in FIG. 11A. Typically, the time t2 or other specified condition is chosen such that a desired amount charge is passed sufficient to cause the desired change in coloration. In one example, the specified condition is passage of a pre-specified amount of charge. During this phase, the current may gradually decrease as illustrated by current profile segment 1115 in FIGS. 1A and 1B. In an embodiment, V2=V1, as is shown in FIG. 11A.
  • This operation 5 corresponds to the regime 2 above-controlled voltage. A goal during this phase is to maintain the voltage at V1 for a sufficient length to ensure a desired coloration speed.
  • In certain embodiments t2 is about 2 to 30 minutes, and in some instances, t2 is about 3 to 10 minutes. Further, in some cases V2 is about 1 to 7 volts, and more specifically about 2.5 to 4 volts.
  • 6. After the condition of step 5 is reached (e.g., after sufficient charge has passed or a timer indicates t2 has been reached), the voltage is dropped from V2 to a level V3. This reduces leakage current during while the coloration state is held. In one or more embodiments, the transition time t2 is predetermined and chosen based on the time required for the center of the part, which is the slowest to color, to reach a certain percent transmissivity. In some embodiments, the t2 is between about 4 and 6 minutes. This operation 6 corresponds to regime 3 above.
  • The following table presents an example of the algorithm described above.
  • End
    Variable Fixed Con-
    Time Current Voltage parameter parameter Constraints dition
    0 0 0 None
    t0 to t1 I0 = V0 to V1 V0, V1 t1, Itarget Islow < I0 < t > t1
    Itarget Isafe
    t1 to t2 I1 to I2 V2 = V1 I2 t2, V2 None t > t2
    t2 to t3 I2 to I3 V3 I3 V3 None State
    change
    request
  • Definition of parameters:
      • I0—targeted current value between Islow and Isafe
      • V0—voltage corresponding to current I0
      • T0—time at which current=I0.
      • I1—current at time t1. I1=I0
      • V1—voltage at time t1. Voltage ramps from V0 to V1 between t0 and t1 and is a function of temperature.
      • t1—time for which current is maintained between Islow and Isafe (e.g., about 3-4 minutes)
      • I2—current at time t2. Current decays from I1 to I2 when voltage is maintained at V1.
      • V2—voltage at time t2. V1=V2.
      • t2—time until which voltage V1 is maintained. May be between about 4 to 6 min from t1. After t2 the voltage is dropped from V2 to V3
      • V3—hold voltage between t2 and t3.
      • I3—current corresponding to voltage V3.
      • t3—time at which state change request is received.
    OTHER EMBODIMENTS
  • Although the foregoing embodiments have been described in some detail to facilitate understanding, the described embodiments are to be considered illustrative and not limiting. It will be apparent to one of ordinary skill in the art that certain changes and modifications can be practiced within the scope of the appended claims. For example, while the drive profiles have been described with reference to electrochromic devices having planar bus bars, they apply to any bus bar orientation in which bus bars of opposite polarity are separated by distances great enough to cause a significant ohmic voltage drop in a transparent conductor layer from one bus bar to another. Further, while the drive profiles have been described with reference to electrochromic devices, they can be applied to other devices in which bus bars of opposite polarity are disposed at opposite sides of the devices.

Claims (20)

What is claimed is:
1. A controller for controlling an optical state of an optically switchable device, the controller comprising:
circuitry for applying voltage or providing instructions to apply voltage between bus bars on the optically switchable device; and
a processing component configured to cause:
applying a ramp function to the voltage applied to the bus bars to drive the optically switchable device until one or more regions of the optically switchable device achieves a predetermined voltage;
after the one or more regions of the optically switchable device achieves the predetermined voltage,
(a) reducing the voltage applied to the bus bars to generate a reduced magnitude voltage; and
(b) reducing a current delivered to the optically switchable device, wherein a profile of the current as a function of time is shaped in accordance with a profile of the reduced magnitude voltage applied to the optically switchable device.
2. The controller of claim 1, wherein the reduced magnitude voltage comprises a value of about 1 V or less.
3. The controller of claim 1, wherein the controller is attached to or integrated in an insulated glass unit that comprises the optically switchable device.
4. The controller of claim 1, wherein the controller is configured to provide an alarm before the voltage applied to the bus bars reaches a maximum safe voltage.
5. The controller of claim 4, wherein the maximum safe voltage is between about 5-9 V.
6. The controller of claim 1, wherein after the one or more regions of the optically switchable device achieves the predetermined voltage and prior to (a), the predetermined voltage is maintained until a specified condition is met.
7. The controller of claim 6, wherein the specified condition is passage of a predetermined amount of time.
8. The controller of claim 6, wherein the specified condition is delivery of a predetermined amount of charge to the optically switchable device.
9. A controller for controlling an optical state of an optically switchable device, the controller comprising:
circuitry for applying voltage or providing instructions to apply voltage between bus bars on the optically switchable device; and
a processing component configured to cause:
applying a ramp function to a voltage to drive the optically switchable device until one or more regions of the optically switchable device achieves a predetermined voltage; and
after the one or more regions of the optically switchable device achieves the predetermined voltage, reducing a magnitude of the voltage to generate a reduced magnitude voltage, such that a current delivered to the optically switchable device has a profile that is shaped in accordance with a profile of the reduced magnitude voltage, in which the profile is shaped as a function of time.
10. The controller of claim 9, wherein the reduced magnitude voltage comprises a value of at most about 1 V.
11. The controller of claim 9, wherein the controller is attached to or integrated in an insulated glass unit that comprises the optically switchable device.
12. The controller of claim 1, wherein the controller is configured to provide an alarm before the voltage applied to the bus bars reaches a maximum safe voltage.
13. The controller of claim 12, wherein the maximum safe voltage is between about 5-9 V.
14. The controller of claim 1, wherein after the one or more regions of the optically switchable device achieves the predetermined voltage and prior reducing the magnitude of the voltage to generate the reduced magnitude voltage, the predetermined voltage is maintained until a specified condition is met.
15. The controller of claim 14, wherein the specified condition is passage of a predetermined amount of time.
16. The controller of claim 14, wherein the specified condition is delivery of a predetermined amount of charge to the optically switchable device.
17. A controller for controlling an optical state of an optically switchable device, the controller comprising:
circuitry for applying voltage or providing instructions to apply voltage between bus bars on the optically switchable device; and
a processing component configured to cause:
during a first phase, controlling current conducted to the optically switchable device;
terminating the first phase responsive to one or more regions of the optically switchable device attaining a predetermined voltage magnitude; and
after the first phase, controlling a voltage applied to the optically switchable device, wherein a profile of a current conducted to the optically switchable device is in accordance to a profile of the applied voltage.
18. The controller of claim 17, wherein the current conducted during the first phase conducts from a first conductive layer to a second conductive layer of the optically switchable device, the conducted current causing movement of ions in the optically switchable device to bring about an electrochromic phenomenon.
19. The controller of claim 18, wherein the current conducted in the first phase causes movement of one or more lithium ions within the optically switchable device.
20. The controller of claim 18, wherein the controller is attached to or integrated in an insulated glass unit that comprises the optically switchable device, wherein the first and the second conductive layers each comprise a material selected from the group consisting of indium oxide, indium tin oxide, doped indium oxide, tin oxide, doped tin oxide, zinc oxide, aluminum zinc oxide, doped zinc oxide, ruthenium oxide, and doped ruthenium oxide.
US17/247,825 2011-03-16 2020-12-23 Driving thin film switchable optical devices Active 2031-08-10 US11630367B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/247,825 US11630367B2 (en) 2011-03-16 2020-12-23 Driving thin film switchable optical devices
US18/154,396 US20230152655A1 (en) 2011-03-16 2023-01-13 Driving thin film switchable optical devices

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US13/049,623 US8254013B2 (en) 2011-03-16 2011-03-16 Controlling transitions in optically switchable devices
US13/309,990 US8864321B2 (en) 2011-03-16 2011-12-02 Controlling transitions in optically switchable devices
US13/449,248 US20130271813A1 (en) 2012-04-17 2012-04-17 Controller for optically-switchable windows
US13/452,032 US10429712B2 (en) 2012-04-20 2012-04-20 Angled bus bar
US201261680221P 2012-08-06 2012-08-06
US13/682,618 US9030725B2 (en) 2012-04-17 2012-11-20 Driving thin film switchable optical devices
US13/931,459 US9412290B2 (en) 2013-06-28 2013-06-28 Controlling transitions in optically switchable devices
PCT/US2014/043514 WO2014209812A1 (en) 2013-06-28 2014-06-20 Controlling transitions in optically switchable devices
US14/489,414 US9778532B2 (en) 2011-03-16 2014-09-17 Controlling transitions in optically switchable devices
US14/657,380 US9081247B1 (en) 2012-04-17 2015-03-13 Driving thin film switchable optical devices
US14/735,043 US9477131B2 (en) 2012-04-17 2015-06-09 Driving thin film switchable optical devices
US14/822,781 US9454056B2 (en) 2012-04-17 2015-08-10 Driving thin film switchable optical devices
US15/226,793 US9921450B2 (en) 2012-04-17 2016-08-02 Driving thin film switchable optical devices
US15/685,624 US10948797B2 (en) 2011-03-16 2017-08-24 Controlling transitions in optically switchable devices
US15/875,529 US10520785B2 (en) 2012-04-17 2018-01-19 Driving thin film switchable optical devices
US16/676,750 US10935865B2 (en) 2011-03-16 2019-11-07 Driving thin film switchable optical devices
US17/247,825 US11630367B2 (en) 2011-03-16 2020-12-23 Driving thin film switchable optical devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/676,750 Continuation US10935865B2 (en) 2011-03-16 2019-11-07 Driving thin film switchable optical devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,396 Continuation US20230152655A1 (en) 2011-03-16 2023-01-13 Driving thin film switchable optical devices

Publications (3)

Publication Number Publication Date
US20210116770A1 US20210116770A1 (en) 2021-04-22
US20220043317A9 true US20220043317A9 (en) 2022-02-10
US11630367B2 US11630367B2 (en) 2023-04-18

Family

ID=80115781

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/247,825 Active 2031-08-10 US11630367B2 (en) 2011-03-16 2020-12-23 Driving thin film switchable optical devices
US18/154,396 Pending US20230152655A1 (en) 2011-03-16 2023-01-13 Driving thin film switchable optical devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/154,396 Pending US20230152655A1 (en) 2011-03-16 2023-01-13 Driving thin film switchable optical devices

Country Status (1)

Country Link
US (2) US11630367B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
EP3449300B1 (en) 2016-04-29 2022-09-07 View, Inc. Calibration of electrical parameters in optically switchable windows

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062975A1 (en) * 2011-03-16 2012-03-15 Soladigm, Inc. Controlling transitions in optically switchable devices

Family Cites Families (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922949B2 (en) 1976-09-03 1984-05-30 シャープ株式会社 Display device drive method
JPS6081044A (en) 1983-10-11 1985-05-09 Toyoda Gosei Co Ltd Glass plate
JPS6311914A (en) 1986-07-02 1988-01-19 Shimadzu Corp Light quantity adjusting glass device
JP2696827B2 (en) 1987-02-25 1998-01-14 株式会社ニコン Driving method of electrochromic device
JP2600862B2 (en) 1988-11-14 1997-04-16 株式会社ニコン Control circuit for electrochromic device
FR2649691B1 (en) 1989-07-11 1992-10-30 Saint Gobain Vitrage Int ELECTROCHROME GLAZING
JP3041822B2 (en) 1989-07-11 2000-05-15 サン―ゴバン ヒトラージュ アンテルナショナル Electrochromic device and method of use
US5124832A (en) 1989-09-29 1992-06-23 Ppg Industries, Inc. Laminated and sealed electrochromic window
US5167993A (en) 1990-03-03 1992-12-01 Youhichiro Aoyagi Color changing transparent plate device
DE4006947A1 (en) 1990-03-06 1991-09-12 Bayerische Motoren Werke Ag METHOD AND ARRANGEMENT FOR APPLYING AN ELECTRICAL OPERATING VOLTAGE TO AN ELECTROOPTIC LAYER SYSTEM
FR2666804B1 (en) 1990-09-14 1993-05-28 Saint Gobain Vitrage Int ELECTROCHROME GLAZING.
US5220317A (en) 1990-12-11 1993-06-15 Donnelly Corporation Electrochromic device capable of prolonged coloration
US5170108A (en) 1991-01-31 1992-12-08 Daylighting, Inc. Motion control method and apparatus for motorized window blinds and and the like
US5451822A (en) 1991-03-15 1995-09-19 Gentex Corporation Electronic control system
FR2681444B1 (en) 1991-09-16 1994-09-30 Corning Inc ELECTROCHROME DEVICE.
US5290986A (en) 1991-10-22 1994-03-01 International Business Machines Corporation Thermally assisted shorts removal process for glass ceramic product using an RF field
US5204778A (en) 1992-04-06 1993-04-20 Gentex Corporation Control system for automatic rearview mirrors
FR2690536B1 (en) 1992-04-28 1994-06-17 Saint Gobain Vitrage Int ELECTROCHROME GLAZING.
FR2690763B1 (en) 1992-04-30 1995-06-09 Saint Gobain Vitrage Int METHOD AND DEVICE FOR SUPPLYING AN ELECTROCHROMIC SYSTEM.
FR2694820B1 (en) 1992-08-12 1994-09-16 Saint Gobain Vitrage Int Supply of an electrochromic cell.
US5673028A (en) 1993-01-07 1997-09-30 Levy; Henry A. Electronic component failure indicator
US8487653B2 (en) 2006-08-05 2013-07-16 Tang System SDOC with FPHA and FPXC: system design on chip with field programmable hybrid array of FPAA, FPGA, FPLA, FPMA, FPRA, FPTA and frequency programmable xtaless clockchip with trimless/trimfree self-adaptive bandgap reference xtaless clockchip
US9520827B2 (en) 2006-08-05 2016-12-13 Anlinx Zilinx : the 11 less green technology for FPIC of smart window
US20140371931A1 (en) 2013-06-16 2014-12-18 Mei-Jech Lin W5RS: Anlinx & Milinx & Zilinx - the 23Less Green Technology for FSOC of Scalable iPindow of iPhome & Scalable Smart Window of Smart Home with Wire/Wireless/Solar/Battery Communication, Power Supplies & Conversions
US8089323B2 (en) 2006-08-05 2012-01-03 Min Ming Tarng Green technology: green circuit and device designs of green chip
US5900720A (en) 1993-09-10 1999-05-04 Kallman; William R. Micro-electronic power supply for electrochromic eyewear
SG84490A1 (en) 1994-04-29 2001-11-20 Research Frontiers Inc Optical cell control system
FR2719915B1 (en) 1994-05-16 1996-06-14 Saint Gobain Vitrage Electrochromic system and its supply process.
JP2621796B2 (en) 1994-05-30 1997-06-18 日本電気株式会社 Interferometer
FR2728696A1 (en) 1994-12-23 1996-06-28 Saint Gobain Vitrage METHOD FOR ELECTRICALLY POWERING ELECTRO-CONTROLLABLE GLAZING
US5686979A (en) 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
US5830336A (en) 1995-12-05 1998-11-03 Minnesota Mining And Manufacturing Company Sputtering of lithium
US5598000A (en) 1996-02-22 1997-01-28 Popat; Pradeep P. Dual-mode automatic window covering system responsive to AC-induced flicker in ambient illumination
DE19631728A1 (en) 1996-08-06 1998-02-12 Bayer Ag Electrochromic display device
JPH1063216A (en) 1996-08-23 1998-03-06 Nikon Corp Driving device for electrochromic device
AUPO303096A0 (en) 1996-10-16 1996-11-14 Sustainable Technologies Australia Limited Control of electrochromic devices
DE19706918A1 (en) 1997-02-20 1998-08-27 Flachglas Ag Method for operating an electrochromic element
US6089721A (en) 1997-04-02 2000-07-18 Donnelly Corporation Digital electrochromic mirror system
US5956012A (en) 1997-04-02 1999-09-21 Gentex Corporation Series drive circuit
US6130772A (en) 1997-06-06 2000-10-10 Cava; Frank James Electrochromic device and method
US6247819B1 (en) 1997-09-16 2001-06-19 Gentex Corporation Individual mirror control system
JPH11154292A (en) 1997-11-21 1999-06-08 Kazuya Deguchi Integrated warning system
DE19804332C2 (en) 1998-02-04 2000-10-26 Bayer Ag Electrochromic measuring and display device for electrical measurands
US6084700A (en) 1998-04-29 2000-07-04 Gentex Corporation Reflectance control of an electrochromic element using a variable duty cycle drive
US6317248B1 (en) 1998-07-02 2001-11-13 Donnelly Corporation Busbars for electrically powered cells
US6130448A (en) 1998-08-21 2000-10-10 Gentex Corporation Optical sensor package and method of making same
US5973818A (en) 1998-09-21 1999-10-26 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
US5978126A (en) 1998-09-21 1999-11-02 Ppg Industries Ohio, Inc. Apparatus for controlling an electrochromic device
US5973819A (en) 1998-09-21 1999-10-26 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
US6222177B1 (en) 1999-01-19 2001-04-24 Gentex Corporation Electrochromic element driver with negative output resistance
US6055089A (en) 1999-02-25 2000-04-25 Minnesota Mining And Manufacturing Company Photovoltaic powering and control system for electrochromic windows
WO2000060407A1 (en) 1999-04-06 2000-10-12 Reveo, Inc. Electro-optical glazing structures having scattering and transparent modes of operation
DE19919750C1 (en) 1999-04-29 2001-01-18 Flabeg Gmbh Control method for electrochromic glazing
US6631022B1 (en) 1999-05-28 2003-10-07 Sony Corporation Optical device, a fabrication method thereof, a driving method thereof and a camera system
US6262831B1 (en) 1999-10-22 2001-07-17 Gentex Corporation Power supply for electrochromic mirrors in high voltage automotive power systems
DE10017834A1 (en) 2000-04-11 2014-09-04 Diehl Bgt Defence Gmbh & Co. Kg Electrically controlled light attenuator for laser annealing of targeted prosecuting missile, has upper and lower layers of doped semiconductor material that are switched when electric voltage is applied by inducing charge carriers
ATE415644T1 (en) 2000-05-04 2008-12-15 Schott Donnelly Llc METHOD FOR PRODUCING AN ELECTROCHROMIC PANEL
WO2001090809A1 (en) 2000-05-24 2001-11-29 Schott Donnelly Llc Electrochromic devices
US6407468B1 (en) 2000-05-25 2002-06-18 Gentex Corporation Rearview mirror with buttons incorporating display
US6407847B1 (en) 2000-07-25 2002-06-18 Gentex Corporation Electrochromic medium having a color stability
US6567708B1 (en) 2000-07-25 2003-05-20 Gentex Corporation System to interconnect, link, and control variable transmission windows and variable transmission window constructions
US6471360B2 (en) 2000-08-03 2002-10-29 Ppg Industries Ohio, Inc. Switchable electrochromic devices with uniform switching and preferential area shading
US6922701B1 (en) 2000-08-03 2005-07-26 John A. Ananian Generating cad independent interactive physical description remodeling, building construction plan database profile
US6614577B1 (en) 2000-08-23 2003-09-02 Ppg Industries Ohio, Inc. Method and apparatus for controlling an electrochromic device
SE0003112D0 (en) 2000-09-04 2000-09-04 Granqvist Claes Goeran Climate control system and method for controlling such
US20020075472A1 (en) 2000-09-22 2002-06-20 Holton Carvel E. Optical fiber ceilometer for meteorological cloud altitude sensing
US6535126B2 (en) 2000-12-15 2003-03-18 Ppg Industries Ohio, Inc. Electrochromic transparency incorporating security system
EP1354446B1 (en) 2001-01-12 2006-04-12 Novar Marketing Inc. Small building automation control system
DE10124673A1 (en) 2001-05-18 2002-11-21 Flabeg Gmbh & Co Kg Varying at least one control variable influencing at least one optical property of switchable element involves limiting temperature gradient produced by absorption of electromagnetic radiation
JP2003084733A (en) 2001-07-04 2003-03-19 Sharp Corp Display device and portable equipment
US7832177B2 (en) 2002-03-22 2010-11-16 Electronics Packaging Solutions, Inc. Insulated glazing units
US6856444B2 (en) 2002-05-10 2005-02-15 Sage Electrochromics, Inc. Inferential temperature measurement of an electrochromic device
JP3951950B2 (en) 2002-05-31 2007-08-01 ソニー株式会社 Driving method of display device
US7215318B2 (en) 2002-06-24 2007-05-08 Gentex Corporation Electrochromic element drive control circuit
US20040001056A1 (en) 2002-06-28 2004-01-01 Honeywell International Inc. Electrochromic window driver
JP2005534078A (en) 2002-07-26 2005-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electrochromic color display device with different electrochromic materials
US20090143141A1 (en) 2002-08-06 2009-06-04 Igt Intelligent Multiplayer Gaming System With Multi-Touch Display
KR20050040920A (en) 2002-08-15 2005-05-03 코닌클리케 필립스 일렉트로닉스 엔.브이. Full-color electrochromic display with stacked in cell monochromic electrochromes
US6940627B2 (en) 2002-10-30 2005-09-06 Finisar Corporation Control system for electrochromic devices
CN2590732Y (en) 2002-12-31 2003-12-10 湖北省荆门市龙华实业有限公司 Sandwich light modulating colour change glass
US20040135989A1 (en) 2003-01-09 2004-07-15 Klebe Dimitri I Cloud sensor
US7057512B2 (en) 2003-02-03 2006-06-06 Ingrid, Inc. RFID reader for a security system
JP2004246985A (en) 2003-02-14 2004-09-02 Canon Inc Manufacturing method and manufacture device of magneto-optical disk
KR20060017548A (en) 2003-06-26 2006-02-23 코닌클리케 필립스 일렉트로닉스 엔.브이. Method for calibrating an electrophoretic display panel
CN101882423B (en) 2003-06-30 2014-02-12 伊英克公司 Methods for driving electro-optic displays
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
TWI302568B (en) 2003-12-22 2008-11-01 Lg Chemical Ltd Electrochromic material with improved lifetime
US8988757B2 (en) 2004-03-12 2015-03-24 The Boeing Company Low vapor pressure solvent for electrochromic devices
KR100752041B1 (en) 2004-03-16 2007-08-23 주식회사 엘지화학 Driving circuit for electrochromic display
WO2005098811A1 (en) 2004-03-17 2005-10-20 Siemens Aktiengesellschaft Control of electrochromic displays
US7512450B2 (en) 2004-03-25 2009-03-31 Siemens Building Technologies, Inc. Method and apparatus for generating a building system model
US7610910B2 (en) 2004-03-25 2009-11-03 Siemens Building Technologies, Inc. Method and apparatus for controlling building component characteristics
US7548833B2 (en) 2004-03-25 2009-06-16 Siemens Building Technologies, Inc. Method and apparatus for graphical display of a condition in a building system with a mobile display unit
US6954299B1 (en) 2004-03-31 2005-10-11 Exon Science Incorporation Controlling system with fixed frequency driver for controlling an electrochromic element and method for the same
FR2868850B1 (en) 2004-04-09 2006-08-25 Saint Gobain METHOD FOR SUPPLYING AN ELECTROCOMMANDABLE DEVICE HAVING VARIABLE OPTICAL AND / OR ENERGY PROPERTIES
US7417397B2 (en) 2004-05-06 2008-08-26 Mechoshade Systems, Inc. Automated shade control method and system
US8723467B2 (en) 2004-05-06 2014-05-13 Mechoshade Systems, Inc. Automated shade control in connection with electrochromic glass
US8836263B2 (en) 2004-05-06 2014-09-16 Mechoshade Systems, Inc. Automated shade control in connection with electrochromic glass
US8120292B2 (en) 2004-05-06 2012-02-21 Mechoshade Systems, Inc. Automated shade control reflectance module
US7706046B2 (en) 2004-06-08 2010-04-27 Gentex Corporation Rearview mirror element having a circuit mounted to the rear surface of the element
US7133181B2 (en) 2004-07-23 2006-11-07 Sage Electrochromics, Inc. Control system for electrochromic devices
EP1779174A4 (en) 2004-07-27 2010-05-05 E Ink Corp Electro-optic displays
JP4694816B2 (en) 2004-09-17 2011-06-08 政安 宮崎 Multi-layer high airtight insulation member
US7796322B2 (en) 2004-10-08 2010-09-14 Massachusetts Institute Of Technology Programmable window: a device for controlling the opacity of small-scale areas within a large scale transparent membrane
EP2858461B1 (en) 2005-01-24 2017-03-22 Philips Lighting North America Corporation Methods and apparatus for providing workspace lighting and facilitating workspace customization
KR100733925B1 (en) 2005-03-16 2007-07-02 주식회사 엘지화학 ECD control apparatus
EP1742195A1 (en) 2005-07-04 2007-01-10 Seiko Epson Corporation Electrochromic display and method of operation
US20070143774A1 (en) 2005-07-29 2007-06-21 Anoop Agrawal Structures and processes for controlling access to optical media
DE102005039838B4 (en) 2005-08-23 2008-03-13 Airbus Deutschland Gmbh Transmission-controlled window glazing
JP4799113B2 (en) 2005-10-05 2011-10-26 株式会社村上開明堂 Electrochromic device and driving method thereof
US7873490B2 (en) 2005-12-28 2011-01-18 Solmetric Corporation Solar access measurement device
US7567183B2 (en) 2006-01-06 2009-07-28 Exatec Llc Printable sensors for plastic glazing
TW200736782A (en) 2006-01-13 2007-10-01 Ntera Ltd An electrochromic device employing gel or solid polymers having specific channel direction for the conduction of ions
KR200412640Y1 (en) 2006-01-16 2006-03-30 박기건 A glass window which have a function of controlling blackout
EP2426552A1 (en) 2006-03-03 2012-03-07 Gentex Corporation Electro-optic elements incorporating improved thin-film coatings
GB0610634D0 (en) 2006-05-30 2006-07-05 Dow Corning Insulating glass unit
US7990603B2 (en) 2006-06-09 2011-08-02 Gentex Corporation Variable transmission window system
CA2654930C (en) 2006-06-09 2014-11-04 Gentex Corporation Variable transmission window system
KR101268954B1 (en) 2006-06-29 2013-05-30 엘지디스플레이 주식회사 Liquid crystal display controllable viewing angle and manufacturing method thereof
KR100931183B1 (en) 2006-09-06 2009-12-10 주식회사 엘지화학 Electrochromic device driving device and control method thereof
EP2092756A4 (en) 2006-10-12 2010-05-19 Ntera Inc Distributed display apparatus
EP1935452A1 (en) 2006-12-19 2008-06-25 Koninklijke Philips Electronics N.V. Electrochromic device and photodynamic treatment device comprising such an electrochromic device
US8292228B2 (en) 2007-03-30 2012-10-23 The Boeing Company Control system for dimmable windows
JP5542297B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
JP5542296B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
US7941245B1 (en) 2007-05-22 2011-05-10 Pradeep Pranjivan Popat State-based system for automated shading
WO2008147322A1 (en) 2007-06-01 2008-12-04 Chromogenics Sweden Ab Control of electrochromic device
US8102586B2 (en) 2007-07-23 2012-01-24 Kuwait University Electronic window shading system for houses, transport vehicles and the like
TWI336228B (en) 2007-10-24 2011-01-11 Inventec Besta Co Ltd Device and method for automatic color adjustment of appearance
US11159909B2 (en) 2008-02-05 2021-10-26 Victor Thomas Anderson Wireless location establishing device
US8004739B2 (en) 2008-04-10 2011-08-23 Saint-Gobain Glass France Control device for at least one electrochromic window and method for activating the same
WO2009129217A2 (en) 2008-04-14 2009-10-22 E Ink Corporation Methods for driving electro-optic displays
US7940457B2 (en) 2008-05-30 2011-05-10 The Board Of Trustees Of The University Of Illinois Energy-efficient optoelectronic smart window
US8514476B2 (en) 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
FR2933504B1 (en) 2008-07-04 2011-11-04 Saint Gobain METHOD FOR ELECTRICALLY SECURING AN ELECTRICAL POWER SUPPLY OF AN ELECTROCOMMANDABLE SYSTEM WITH VARIABLE OR LIGHTING OPTICAL PROPERTIES, USES OF THE ELECTRICALLY SECURED SYSTEM
US8274213B2 (en) 2008-08-12 2012-09-25 Samsung Electronics Co., Ltd. Electrochromic materials and electrochromic devices using the same
JP5112228B2 (en) 2008-09-04 2013-01-09 株式会社東芝 Display device and driving method of display device
EP2161615B1 (en) 2008-09-04 2013-12-04 EControl-Glas GmbH & Co. KG Process and apparatus for switching large-area electrochromic devices
CN101673018B (en) 2008-09-10 2011-08-31 财团法人工业技术研究院 Solar photovoltaic electrochromic device
US8248203B2 (en) 2008-09-15 2012-08-21 Martin James Hanwright Remote monitor/control for billboard lighting or standby power system
KR20100034361A (en) 2008-09-23 2010-04-01 이종오 A automatic sunshine filter control unit for a glass door and method thereof
US20100235206A1 (en) 2008-11-14 2010-09-16 Project Frog, Inc. Methods and Systems for Modular Buildings
DE102008061403B4 (en) 2008-12-10 2012-02-09 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Structure and method for adjusting the polarity of a power source to an electrochromic device
DE102008064357A1 (en) 2008-12-20 2010-06-24 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Optically active glazing with overvoltage protection
KR100904847B1 (en) 2008-12-23 2009-06-25 박기건 Window equipped with shade function
AU2009208112C1 (en) 2009-01-02 2014-04-24 Econtrol-Glas Gmbh & Co. Kg Process and apparatus for switching large-area electrochromic devices
US7835060B2 (en) 2009-03-30 2010-11-16 Honda Motor Co., Ltd. Variable attenuated transmittance device control system
US8432603B2 (en) 2009-03-31 2013-04-30 View, Inc. Electrochromic devices
US7817326B1 (en) 2009-04-08 2010-10-19 Stmicroelectronics Design And Application Gmbh Electrochrome element driver
US8781633B2 (en) 2009-04-15 2014-07-15 Roberto Fata Monitoring and control systems and methods
KR101669100B1 (en) 2009-05-12 2016-10-25 오엘이디워크스 게엠베하 Driver for analysing condition of, and supplying healing voltage to, an oled device
CA2764751C (en) 2009-06-11 2018-01-09 Switch Materials Inc. Variable transmittance optical filter and uses thereof
KR101252294B1 (en) 2009-07-06 2013-04-05 한국전자통신연구원 Transparent information window
US8456729B2 (en) 2009-07-07 2013-06-04 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Weather-responsive shade control system
EP2467975B1 (en) 2009-08-17 2015-12-02 VKR Holding A/S Method and apparatus for control of household devices
CN102033380B (en) 2009-09-29 2013-03-27 财团法人工业技术研究院 Multi-color solar photovoltaic electrochromic device
EP2357544B1 (en) 2009-11-03 2014-10-22 VKR Holding A/S Shading means control
JP5805658B2 (en) 2009-12-22 2015-11-04 ビュー, インコーポレイテッド Electrochromic window powered wirelessly
US8213074B1 (en) 2011-03-16 2012-07-03 Soladigm, Inc. Onboard controller for multistate windows
US20130271813A1 (en) 2012-04-17 2013-10-17 View, Inc. Controller for optically-switchable windows
WO2011087681A1 (en) 2010-01-13 2011-07-21 Masco Corporation Low voltage control systems and associated methods
WO2011087684A1 (en) 2010-01-13 2011-07-21 Masco Corporation Low voltage control systems and associated methods
KR20110094672A (en) 2010-02-17 2011-08-24 박기건 Window system with high thermal efficiency
EP2556406B1 (en) 2010-04-05 2019-09-18 Alphamicron Incorporated Electronically switchable optical device with a multi-functional optical control apparatus and methods for operating the same
WO2011124720A2 (en) 2010-04-09 2011-10-13 Siemens Concentrated Solar Power Ltd. Clouds managing system for a solar field, method for operating the clouds management system and solar field with the clouds managing system
US8493646B2 (en) 2010-04-22 2013-07-23 Sage Electrochromics, Inc. Series connected electrochromic devices
US8450677B2 (en) 2010-05-03 2013-05-28 GM Global Technology Operations LLC Methods and systems for controlling a reflectance of mirror in a vehicle
JP5852793B2 (en) 2010-05-21 2016-02-03 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
US8605350B2 (en) 2010-05-24 2013-12-10 Industrial Technology Research Institute Tunable photovoltaic electrochromic device and module
US8699114B2 (en) 2010-06-01 2014-04-15 Ravenbrick Llc Multifunctional building component
CN101969207A (en) 2010-09-16 2011-02-09 国网电力科学研究院 Photovoltaic ultra-short term power predicting method based on satellite remote sensing and meteorology telemetry technology
US8164818B2 (en) 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
US8643933B2 (en) 2011-12-14 2014-02-04 View, Inc. Connectors for smart windows
WO2012079159A1 (en) 2010-12-15 2012-06-21 Switch Materials Inc. Variable transmittance optical devices
FR2969326B1 (en) 2010-12-16 2012-12-28 Saint Gobain ACTIVE GLAZING CONTROL SYSTEM WITH BLEEDING SENSOR
FR2969204B1 (en) 2010-12-16 2015-02-20 Schneider Electric Ind Sas METHOD FOR THE INDIVIDUALIZED AND AUTOMATED CONTROL OF THE OCCULTATION MEANS OF AT LEAST ONE WINDOW, CONTROL ARRANGEMENT FOR CARRYING OUT SAID METHOD, AND PARAMETERING TOOL FOR THE SAME
FR2969325B1 (en) 2010-12-16 2013-08-16 Saint Gobain SYSTEM FOR CONTROLLING ACTIVE GLAZING MANAGING THE COLOR OF LIGHT IN A BUILDING
FR2969327B1 (en) 2010-12-16 2012-12-28 Saint Gobain ACTIVE GLAZING CONTROL SYSTEM MANAGING TEMPERATURE AND BRIGHTNESS IN A BUILDING
KR20140004175A (en) 2011-01-24 2014-01-10 세이지 일렉트로크로믹스, 인크. Control system for electrochromic device
US8717658B2 (en) 2011-02-09 2014-05-06 Kinestral Technologies, Inc. Electrochromic multi-layer devices with spatially coordinated switching
TW201237525A (en) 2011-03-04 2012-09-16 J Touch Corp Grating structure of 2D/3D switching display device
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US8705162B2 (en) 2012-04-17 2014-04-22 View, Inc. Controlling transitions in optically switchable devices
US10429712B2 (en) 2012-04-20 2019-10-01 View, Inc. Angled bus bar
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US9030725B2 (en) 2012-04-17 2015-05-12 View, Inc. Driving thin film switchable optical devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US20120268803A1 (en) 2011-04-20 2012-10-25 Sage Electrochromics, Inc. Electrochromic systems and controls comprising unique identifiers
TW201248486A (en) 2011-05-19 2012-12-01 Waltop Int Corp Digitizer circuit with phase lock loop circuit
CN202110359U (en) 2011-05-25 2012-01-11 王麒 Intelligent nanometer glass
WO2013059674A1 (en) 2011-10-21 2013-04-25 View, Inc. Mitigating thermal shock in tintable windows
US8781676B2 (en) 2011-12-16 2014-07-15 Continental Automotive Systems, Inc. Photo-electrochromic window tinter
US9281672B2 (en) 2012-01-20 2016-03-08 Sage Electrochromics, Inc. Electrical connectivity within architectural glazing frame systems
CN202563220U (en) 2012-01-31 2012-11-28 亚树科技股份有限公司 Electrochromic device
US8976440B2 (en) 2012-02-03 2015-03-10 Itn Energy Systems, Inc. Autonomous electrochromic assembly
RU2636811C2 (en) 2012-04-13 2017-12-01 Вью, Инк. Applications for controlling optically switchable devices
US20220334445A1 (en) 2012-04-13 2022-10-20 View, Inc. Controlling transitions in optically switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
CN104364706B (en) 2012-04-17 2017-08-18 唯景公司 Controller for optical switchable window
US20130271814A1 (en) 2012-04-17 2013-10-17 View, Inc. Controller for optically-switchable windows
EP2839338B1 (en) 2012-04-18 2018-01-10 Switch Materials, Inc. System and method for controlling an optical filter assembly
DK177557B1 (en) 2012-04-27 2013-10-14 Sl Holding Kolding Aps Intelligent temperature controlled window
RU2018103078A (en) 2012-08-06 2019-02-22 Вью, Инк. MANAGEMENT OF THIN-FILM SWITCHED OPTICAL DEVICES
US9406028B2 (en) 2012-08-31 2016-08-02 Christian Humann Expert system for prediction of changes to local environment
TWI475307B (en) 2012-09-24 2015-03-01 Wistron Corp Electrichromism panel and control device
US20140148996A1 (en) 2012-11-26 2014-05-29 James Wilbert Watkins System for adjusting the visible light transmission level of a window
WO2014121863A1 (en) 2013-02-05 2014-08-14 Siemens Aktiengesellschaft Method and device for controlling an energy-generating system which can be operated with a renewable energy source
EP2764998B1 (en) 2013-02-06 2019-09-11 ISOCLIMA S.p.A. Window construction
EP2962235A4 (en) 2013-03-01 2017-01-04 New Energy Technologies, Inc. Building intergrated photovoltaic devices as smart sensors for intelligent building energy management systems
CA2846049A1 (en) 2013-03-15 2014-09-15 Andersen Corporation Glazing units with cartridge-based control units
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US20220357626A1 (en) 2013-06-28 2022-11-10 View, Inc. Controlling transitions in optically switchable devices
US8902486B1 (en) 2013-11-20 2014-12-02 Ashwin-Ushas Corporation, Inc. Method and apparatus for control of electrochromic devices
US10859983B2 (en) 2014-03-05 2020-12-08 View, Inc. Monitoring sites containing switchable optical devices and controllers
US9188828B1 (en) 2014-06-10 2015-11-17 Tintable Kibing Co., Ltd. Control circuit and method for maintaining light transmittance of electrochromic device
US10365532B2 (en) 2015-09-18 2019-07-30 View, Inc. Power distribution networks for electrochromic devices
US20160041447A1 (en) 2014-08-05 2016-02-11 Canon Kabushiki Kaisha Method and apparatus for driving an electrochromic element
CN104198829B (en) 2014-09-09 2017-10-27 大连理工大学 Electromagnetic radiation measuring device and measuring method with humiture self-correction based on ARM
JP6720210B2 (en) 2015-01-12 2020-07-08 キネストラル・テクノロジーズ・インコーポレイテッドKinestral Technologies,Inc. Driver for electrochromic glass unit
CN104504292A (en) 2015-01-14 2015-04-08 济南大学 Method for predicting optimum working temperature of circulating fluidized bed boiler based on BP neural network
CN104806128A (en) 2015-03-18 2015-07-29 哈尔滨工业大学 Electrochromic smart window and preparation method thereof
RU2018119490A (en) 2015-10-29 2019-12-02 Вью, Инк. CONTROLLERS FOR OPTICALLY SWITCHED DEVICES
SE539529C2 (en) 2016-01-12 2017-10-10 Chromogenics Ab A method for controlling an electrochromic device and an electrochromic device
EP3449300B1 (en) 2016-04-29 2022-09-07 View, Inc. Calibration of electrical parameters in optically switchable windows
US11194213B2 (en) 2016-11-23 2021-12-07 Halio, Inc. Electrochromic panel transmission level synchronization
JP2022530547A (en) 2019-04-29 2022-06-29 カーディナル アイジー カンパニー Staggered drive electrical control of multiple electrically controllable privacy glass structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062975A1 (en) * 2011-03-16 2012-03-15 Soladigm, Inc. Controlling transitions in optically switchable devices

Also Published As

Publication number Publication date
US11630367B2 (en) 2023-04-18
US20210116770A1 (en) 2021-04-22
US20230152655A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
US11592724B2 (en) Driving thin film switchable optical devices
US10935865B2 (en) Driving thin film switchable optical devices
EP2880492B1 (en) Driving large thin-film electrochromic devices suitable for switchable windows
US10451950B2 (en) Controlling transitions in optically switchable devices
US11630367B2 (en) Driving thin film switchable optical devices
US20240142844A1 (en) Driving thin film switchable optical devices

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: VIEW, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRADHAN, ANSHU A.;MEHTANI, DISHA;JACK, GORDON;SIGNING DATES FROM 20200824 TO 20200910;REEL/FRAME:055146/0655

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: CANTOR FITZGERALD SECURITIES, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:VIEW, INC.;REEL/FRAME:065266/0810

Effective date: 20231016

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY