JP4694816B2 - Multi-layer high airtight insulation member - Google Patents

Multi-layer high airtight insulation member Download PDF

Info

Publication number
JP4694816B2
JP4694816B2 JP2004303540A JP2004303540A JP4694816B2 JP 4694816 B2 JP4694816 B2 JP 4694816B2 JP 2004303540 A JP2004303540 A JP 2004303540A JP 2004303540 A JP2004303540 A JP 2004303540A JP 4694816 B2 JP4694816 B2 JP 4694816B2
Authority
JP
Japan
Prior art keywords
vacuum
airtight
glass
heat insulating
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004303540A
Other languages
Japanese (ja)
Other versions
JP2006083675A (en
Inventor
政安 宮崎
Original Assignee
政安 宮崎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政安 宮崎 filed Critical 政安 宮崎
Priority to JP2004303540A priority Critical patent/JP4694816B2/en
Publication of JP2006083675A publication Critical patent/JP2006083675A/en
Application granted granted Critical
Publication of JP4694816B2 publication Critical patent/JP4694816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Landscapes

  • Securing Of Glass Panes Or The Like (AREA)
  • Special Wing (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Burglar Alarm Systems (AREA)

Description

本発明は、1〜複数の気密空間部をもつ複層高気密断熱部材(以下、高気密断熱部材と言う)の気密空間部を真空制御装置で真空度を保持し断熱性能を半永久的に得ることと、併せて真空度の異常変化を検知し防犯警備システムに接続したサッシやドアーまた壁材などの建築用の高気密断熱部材に関する。  The present invention obtains heat insulation performance semipermanently by maintaining the degree of vacuum in a hermetic space part of a multi-layer high hermetic heat insulating member (hereinafter referred to as a high airtight heat insulating member) having one to a plurality of hermetic space parts with a vacuum controller. In addition, the present invention relates to a highly airtight insulating member for buildings such as a sash, a door, and a wall material, which is connected to a security system by detecting an abnormal change in the degree of vacuum.

一般的な住宅の断熱工法として内断熱工法と外断熱工法があり、最近は後者の外断熱工法の方が結露の発生が少なく建物の寿命や人に与える健康面からも良いとされている。特に、住宅でのカビやダニの増殖また増加は湿度に大きく関係し湿度が70%を超えると増殖や増加に大きく転じ変化する。その為に・湿気の根源を断つ・断熱効果を高める・すきま風を防ぐ・自然換気を取り入れる等、住宅には多く工夫が行われている。  There are two methods of heat insulation for general houses: the inner heat insulation method and the outer heat insulation method. Recently, the latter heat insulation method is less likely to cause condensation and is considered to be better from the viewpoint of building life and health. In particular, the growth and increase of mold and mites in a house are greatly related to humidity, and when the humidity exceeds 70%, the growth and increase greatly change. For this purpose, many ideas have been made in the house, such as cutting off the source of moisture, increasing the heat insulation effect, preventing drafts, and incorporating natural ventilation.

ところで近年、社会的ニーズの高まりは広範囲におよび地球温暖化への抑制や防犯警備の強化さらに便利さや快適さの追求など・安全・安心・健康・癒しに関する多くの工夫をもつ住宅工法の開発が進められているのが現状である。より良い住宅工法の開発においては適切な24時間機械換気システムの基で高気密化と高断熱化への開発が進められまた、犯罪の増加に対する予防策としても数多の開発が進められている。  By the way, in recent years, there has been a widespread increase in social needs, and the development of housing construction methods with many ingenuity related to safety, security, health and healing, such as the suppression of global warming and the strengthening of crime prevention security, the pursuit of convenience and comfort, etc. The current situation is progressing. In the development of better housing construction methods, development of high airtightness and high thermal insulation has been promoted based on an appropriate 24-hour mechanical ventilation system, and many developments have been promoted as preventive measures against crime increase. .

真空断熱の考え方には数多くの実例もあり一般常識となっていることも多い。
次に、圧力の変化を防犯警備システムに接続するものとしては、特開2002−32870公報、実開平6−4890公報に開示されているが、いずれも気体封入方式である。
特開2002−32870公報(複層ガラス部に大気圧より高い気体を封入)実開平6−4890公報 (複層ガラス部に大気圧より低い気体を封入)
There are many examples of the concept of vacuum insulation, and it is often common sense.
Next, as what connects the change of a pressure to a security system, it is disclosed by Unexamined-Japanese-Patent No. 2002-32870 and Unexamined-Japanese-Patent No. 6-4890, but all are gas enclosure systems.
JP 2002-32870 (enclosed with a gas higher than atmospheric pressure in a double-layer glass part) JP-A-6-4890 (enclose a gas lower than atmospheric pressure in a multi-layer glass part)

高気密断熱部材の断熱性能を半永久的に維持する真空制御装置と防犯警備システムを組み合わせる。特に真空保持された高気密断熱部材、例えば高断熱防犯サッシやドアーまた壁材の開発は・安全・安心・健康快適住宅の建築用部材として役立つ。  Combines a vacuum control device that maintains semi-permanent insulation performance of a highly airtight insulation member and a security system. In particular, the development of highly airtight heat insulating members that are kept in vacuum, such as high heat insulating security sashes, doors and wall materials, is useful as building materials for safe, secure, healthy and comfortable houses.

本発明の目的は、高気密断熱部材の断熱性能を半永久的に維持する真空制御装置とその真空度の異常変化を検知し防犯警備システムと組み合わせることにある。高い断熱性能と高い安全性が確保できる高気密断熱部材と真空制御装置の提供にあり、将来に向けて高い省エネルギー型住宅の具現化は社会に大きく貢献でき、この種の開発によって都市のヒートアイランド現象を防ぎ地球環境負荷の大幅な低減に結び付けることができるのである。  An object of the present invention is to combine a vacuum control device that maintains the heat insulation performance of a highly airtight heat insulating member semipermanently and an abnormal change in the degree of vacuum of the vacuum control device and a security guard system. The realization of high energy-saving housing for the future can greatly contribute to society by providing high airtight insulation members and vacuum control devices that can ensure high heat insulation performance and high safety, and this kind of development makes urban heat island phenomenon This can be linked to a significant reduction in environmental impact.

本発明は、上記目的を達成するために以下の技術的手段を講じた。
第1に、2枚以上の部材で隔離された1〜複数の気密空間部(14)をもつ構造部材で、前記気密空間部(14)を常に真空に保持するため前記気密空間部(14)ごとに各々の吸引接続ノズル(11)を備えた高気密断熱部材(10)は、高い断熱性能を半永久的に有し構造部材自体の軽量化が図れ厚みも薄くできる。
In order to achieve the above object, the present invention has taken the following technical means.
First, in the structural member having one to a plurality of airtight spaces (14) separated by two or more members, the airtight space (14) in order to keep the airtight space (14) in a vacuum at all times. Each highly airtight heat insulating member (10) provided with each suction connection nozzle (11) has a high heat insulating performance semipermanently, and the structural member itself can be reduced in weight and thickness.

第2に、2枚以上の部材で隔離された1〜複数の気密空間部(14)をもつ構造部材で、前記気密空間部(14)を常に真空に保持するため前記気密空間部(14)ごとに各々の吸引接続ノズル(11)を備え、その真空度の異常変化を検知し防犯警備システム(99)に接続した高気密断熱部材(10)は、建築物の防犯警備上の充実と確保が図れる。  Secondly, in the structural member having one to a plurality of airtight spaces (14) separated by two or more members, the airtight space (14) in order to keep the airtight space (14) always in vacuum. Highly airtight insulation member (10) equipped with each suction connection nozzle (11), detecting abnormal changes in the degree of vacuum and connected to the security system (99), enhances and secures the security of the building Can be planned.

第3に、前記高気密断熱部材(10)は、サッシ、ドアー、嵌め込みガラス、壁、床、天板、屋根や建物基礎部に使用する建物部材で、前記サッシ、ドアー、嵌め込みガラスのガラス部の前記気密空間部(14)にあっては、2枚のガラス板で1か所の気密空間または2枚以上のガラス板で複数の気密空間を有する場合であっても前記気密空間部(14)の隙間を保持する隙間保持部材がなく、ガラス板一枚一枚の強度と制御された真空度によって最小限の隙間を保持する前記高気密断熱部材(10)で、ガラス部にあっては一枚一枚の各部材の強度と真空度とのバランスを保持確保することで隙間保持部材がない透明ガラス部の具現化が可能となる。  Thirdly, the high airtight heat insulating member (10) is a building member used for a sash, a door, a fitted glass, a wall, a floor, a top plate, a roof or a building foundation, and the glass part of the sash, the door, the fitted glass. In the airtight space portion (14), the airtight space portion (14) even in the case where two glass plates have one airtight space or two or more glass plates have a plurality of airtight spaces. ) In the glass part, there is no gap holding member for holding the gap, and the high airtight heat insulating member (10) that holds the minimum gap according to the strength of each glass plate and the degree of vacuum controlled. By ensuring the balance between the strength of each member and the degree of vacuum, it is possible to realize a transparent glass portion without a gap holding member.

第4に、前記高気密断熱部材(10)の2枚以上の部材で隔離された1〜複数の気密空間部(14)を各々の真空度に設定制御し維持する真空制御装置(80)で、前記高気密断熱部材(10)の各々の吸引接続ノズル(11)に接続する前記真空制御装置(80)によって、前記気密空間部(14)の各々の真空度を任意に真空度制御できる。  Fourth, a vacuum control device (80) that controls and maintains one to a plurality of airtight spaces (14) separated by two or more members of the high airtight heat insulating member (10) at respective vacuum degrees. The degree of vacuum of each of the airtight spaces (14) can be arbitrarily controlled by the vacuum control device (80) connected to each suction connection nozzle (11) of the high airtight heat insulating member (10).

将来の住宅にあっては、本発明の高気密断熱部材とそれに接続する真空制御装置によって・安全・安心・健康快適住宅を目指すことができる。高気密断熱部材の断熱性能を半永久的に維持する真空制御装置と防犯警備システムを組み合わせることで高い断熱性能と高い安全性が確保できる。  In future homes, the highly airtight heat insulating member of the present invention and the vacuum control device connected to the high airtightness insulating member can aim for a safe, secure, healthy and comfortable home. High heat insulation performance and high safety can be secured by combining a vacuum control device that maintains the heat insulation performance of the high airtight heat insulation member semipermanently and a security system.

以下、本発明の実施の形態を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1、図2は、本発明の第一の実施形態で、サッシやドアーまた嵌め込みガラスのガラス部の気密空間部の概念図である。
気密空間部14の隙間を保持する隙間保持部材がなく、ガラス一枚一枚の強度と制御された真空度によって最小限の隙間を保持する複層の高気密断熱部材10で、ガラス部にあっては一枚一枚の各部材の強度と真空制御装置80による真空度とのバランスを保持確保することで隙間保持部材がない透明ガラス部の具現化が可能となっている。
1 and 2 are conceptual views of a hermetic space portion of a glass portion of a sash, a door, or a fitted glass in the first embodiment of the present invention.
There is no gap holding member for holding the gap of the airtight space portion 14, and a multi-layer high airtight heat insulating member 10 that holds a minimum gap according to the strength of each glass and the degree of vacuum controlled. Thus, by ensuring the balance between the strength of each member and the degree of vacuum by the vacuum control device 80, it is possible to realize a transparent glass portion without a gap holding member.

図1の(a)と(b)は、ガラス12の一枚一枚は各真空度に耐えるように厚みを増したり、2枚のガラス板の間に特殊フイルムを挟み貼り合わせた合わせガラス15で強化されている高気密断熱部材10である。  1 (a) and 1 (b) show that each glass 12 is reinforced with a laminated glass 15 in which the thickness of each glass 12 is increased to withstand each degree of vacuum or a special film is sandwiched between two glass plates. It is the high airtight heat insulation member 10 currently made.

図1の(a)複層の高気密断熱部材10の各々のガラス板、ガラス91、ガラス92、ガラス93、ガラス94は設計上で真空断熱に必要とされる最小限の隙間である第一気密空間部95、第二気密空間部96、第三気密空間部97を配設するため、その端部はガスケットパッキン13やコーキングで気密構造となっていて所ゆる複層ガラスである。  The glass plates, glass 91, glass 92, glass 93, and glass 94 of each of the multi-layer high airtight heat insulating member 10 in FIG. 1 are the minimum gaps required for vacuum insulation by design. Since the airtight space portion 95, the second airtight space portion 96, and the third airtight space portion 97 are disposed, the end portions of the airtight structure are made of gasket packing 13 or caulking, and are a multilayer glass.

吸引接続ノズル11は、第一気密空間部95、第二気密空間部96、第三気密空間部97の各気密空間部14ごとに最低1箇所以上配設されている。各吸引接続ノズル11と真空制御装置80の高真空度部また中真空度部とは高真空度チューブ81と中真空度チューブ86でそれぞれ結合している。図示では、第二気密空間部96の吸引接続ノズル11と高真空度チューブ81を通じて真空制御装置80の高真空度部に結合されまた、第一気密空間部95と第三気密空間部97は中真空度チューブ86を通じて中真空度部と結合し連通している。  At least one suction connection nozzle 11 is disposed for each of the airtight space portions 14 of the first airtight space portion 95, the second airtight space portion 96, and the third airtight space portion 97. Each suction connection nozzle 11 and the high vacuum degree unit or medium vacuum degree unit of the vacuum control device 80 are connected by a high vacuum degree tube 81 and a medium vacuum degree tube 86, respectively. In the figure, the suction connection nozzle 11 of the second hermetic space 96 and the high vacuum degree tube 81 are coupled to the high vacuum degree of the vacuum controller 80, and the first hermetic space 95 and the third hermetic space 97 are intermediate. The vacuum degree tube 86 is connected to and communicated with the medium vacuum degree part.

真空制御装置80の真空度制御は、絶対真空に近い高真空度と絶対真空の略半分程度の中真空度に制御されている。この各々の真空度の設定はガラス91、ガラス92、ガラス93、ガラス94の強度にしたがって設計上で設定する。  The vacuum control of the vacuum controller 80 is controlled to a high vacuum level close to absolute vacuum and a medium vacuum level about half of the absolute vacuum. Each vacuum degree is set according to the strength of the glass 91, the glass 92, the glass 93, and the glass 94.

このように真空度制御された第一気密空間部95、第二気密空間部96、第三気密空間部97をもつことで第二気密空間部96を絶対真空に近い高真空度に保持し高い断熱性能を得ることができ、ガラス91、ガラス92、ガラス93、ガラス94の厚みを必要以上に増すことなく高真空度を保持する手段として有効である。すなわち2枚のガラス板だけで高真空度を保持しようとするとかなりの肉厚のガラスが必要となったりまたは隙間保持部材が必要となるからなのである。  By having the first hermetic space portion 95, the second hermetic space portion 96, and the third hermetic space portion 97 that are controlled in this way, the second hermetic space portion 96 is maintained at a high vacuum level close to absolute vacuum and is high. Heat insulation performance can be obtained, and it is effective as a means for maintaining a high vacuum without increasing the thickness of the glass 91, glass 92, glass 93, and glass 94 more than necessary. That is, if a high degree of vacuum is to be maintained with only two glass plates, a considerably thick glass is required or a gap holding member is required.

例示では、4枚のガラス12で気密空間部14を3箇所としたが、気密空間部14を例示よりさらに増やし各々の気密空間部14の真空度の差を小さくすれば、ガラス一枚一枚の厚みを薄くしても気密空間部14に隙間保持部材を入れないで絶対真空部が確保できる複層の高気密断熱部材10が具現化できる。  In the example, the airtight space portions 14 are formed in three places with four glasses 12. However, if the airtight space portions 14 are further increased from the illustration to reduce the difference in the degree of vacuum of each airtight space portion 14, the glass one by one. Even if the thickness of the airtight space portion 14 is reduced, it is possible to embody the multi-layer high airtight heat insulating member 10 that can secure an absolute vacuum portion without inserting a gap holding member in the airtight space portion 14.

次に、防犯警備に関しては、サッシやドアーまた嵌め込みガラスのガラス部の気密空間部14の真空度の異常変化を検知して防犯警備システム99に接続し通信できるようになっている。図示では、真空度の異常変化の検知部を第二気密空間部96の高真空度側としたが中真空度側の第一気密空間部95と第三気密空間部97に接続している中真空度チューブ86側としてもよくまたは両方でもよい。  Next, regarding the security guard, an abnormal change in the vacuum degree of the airtight space 14 of the glass part of the sash, door, or fitted glass is detected and connected to the security guard system 99 for communication. In the figure, the detection unit for the abnormal change in the vacuum degree is the high vacuum degree side of the second hermetic space part 96, but is connected to the first hermetic space part 95 and the third hermetic space part 97 on the medium vacuum degree side. It may be the vacuum degree tube 86 side or both.

図1(b)は2枚のガラス板の間に特殊フイルムを挟み貼り合わせた合わせガラス15で強化するやり方での高気密断熱部材10である。
図2(c)は、本発明の第一の実施形態で、サッシとドアーに真空制御装置を接続し防犯警備システムとを組み合わせた概略図である。
高気密断熱部材10であるサッシやドアーまた嵌め込みガラスのガラス部に隙間保持部材を使用しないことで、違和感がなく透明度を確保しつつ高い断熱性能と防犯性の高いサッシやドアーまた嵌め込みガラスの高気密断熱部材10が具現化できる。
FIG.1 (b) is the high airtight heat insulation member 10 in the method strengthened with the laminated glass 15 which pinched | interposed and bonded the special film between the two glass plates.
FIG. 2C is a schematic diagram in which a vacuum control device is connected to a sash and a door and a security guard system is combined in the first embodiment of the present invention.
By not using a gap retaining member in the glass portion of the sash, door, or fitted glass that is the high airtight heat insulating member 10, the sash, the door, or the fitted glass has high heat insulation performance and high crime prevention while ensuring transparency without causing a sense of incongruity. The airtight heat insulating member 10 can be realized.

前記真空制御装置80の真空度制御方法を説明する。中真空度の制御には真空制御弁83と真空抑制弁84で精密に真空度制御される。真空制御弁83は設定真空度までは弁が開き、設定真空度に達すると弁が閉止する。一方の真空抑制弁84は設定真空度に達した後さらに高真空側に移行しようとした場合に外気を吸い込み過大な真空度になるのを防ぐ役割がある。  A vacuum degree control method of the vacuum control device 80 will be described. The degree of vacuum is precisely controlled by the vacuum control valve 83 and the vacuum suppression valve 84 for controlling the degree of medium vacuum. The vacuum control valve 83 opens until the set vacuum level, and closes when the set vacuum level is reached. One vacuum suppression valve 84 has a role to prevent an excessive vacuum from being sucked in when outside air is sucked into the high vacuum after reaching the set vacuum.

図3は、本発明の第二の実施形態で、多孔質セラミックス板を・壁材・床材・天板材・屋根材に使用する場合の概略図である。
図示した図3の(e),(f)では、住宅用建材として広く使用されている独立気孔の多い多孔質セラミックス板20を2枚合わせたものを例示している。独立気孔の多い多孔質セラミックス板自体でも高い断熱性能を有しているが、2枚の多孔質セラミックス板20を組み合わせ高真空度の気密空間部14を設けることで、例えば既存の120mm多孔質セラミックス板一枚の断熱性能より60mm多孔質セラミックス板20を2枚合わせ高真空度の気密空間部14を設けることで前者よりはるかに高い断熱性能を確保できる。
従って、2枚の60mm多孔質セラミックス板20の厚み120mmより最終的にはかなり薄くもできるのである。
FIG. 3 is a schematic view when a porous ceramic plate is used for a wall material, a floor material, a top plate material, and a roof material in the second embodiment of the present invention.
3 (e) and (f) shown in FIG. 3 exemplify a combination of two porous ceramic plates 20 having many independent pores that are widely used as residential building materials. Although the porous ceramic plate itself with many independent pores has high heat insulation performance, by combining the two porous ceramic plates 20 and providing the airtight space portion 14 having a high vacuum degree, for example, an existing 120 mm porous ceramic plate is provided. By providing two 60 mm porous ceramic plates 20 and providing an airtight space 14 with a high degree of vacuum, the heat insulation performance far higher than that of the former can be ensured.
Accordingly, the thickness of the two 60 mm porous ceramic plates 20 can finally be made considerably thinner than 120 mm.

図示では、2枚の多孔質セラミックス板20において外壁側の多孔質セラミックス板22には防水層25と塗装があり、他方の内壁側の多孔質セラミックス板24には防水層がなく室内の湿度の調湿機能を持たせている。また隔離された真空となる気密空間部14の内側壁面の全面は塗装し壁面からの空気の漏れ込みがないようになっているが、真空制御装置80に殆ど影響がなければ好ましくは塗装をしない方がよい。  In the figure, the porous ceramic plate 22 on the outer wall side of the two porous ceramic plates 20 has a waterproof layer 25 and a coating, and the porous ceramic plate 24 on the other inner wall side has no waterproof layer and has a room humidity. Has a humidity control function. Further, the entire inner wall surface of the isolated airtight space portion 14 that is in a vacuum is painted so that air does not leak from the wall surface. However, if there is almost no influence on the vacuum control device 80, it is preferably not painted. Better.

次に、図示した図3の(g)では、真空断熱により高い断熱性能の高気密断熱部材10が具現化できるので、多孔質セラミックス板24壁面を室内の直接壁面として他の断熱材であるロックウールやグラスウールまたセルロースファイバーや難燃性発泡スチロールを使用することなく内断熱と外断熱との両方を兼用する最高級の不燃断熱構造体の高気密断熱部材10が実現できる。無機質板である多孔質セラミックス板24が内壁面となるため健康面にも良く、もしもの火災でも有毒ガスの発生のない住宅工法への具現化に近づけることが可能となるのである。Next, in FIG. 3 (g), since the highly airtight heat insulating member 10 having high heat insulating performance can be realized by vacuum heat insulation, the wall surface of the porous ceramic plate 24 is used as a direct wall surface in the room and is a lock as another heat insulating material. Without using wool, glass wool, cellulose fiber, or flame retardant foamed polystyrene, the high airtight heat insulating member 10 of the highest class non-combustible heat insulating structure that can be used for both internal heat insulation and external heat insulation can be realized. Since the porous ceramic plate 24, which is an inorganic plate, becomes the inner wall surface, it is good for health, and it is possible to approach the realization of a house construction method that does not generate toxic gas even in the event of a fire.

防犯警備に関しては、2枚の多孔質セラミックス板22、24で隔離され真空となる気密空間部14の真空度の異常変化を検知し通信接続することで建物の異常を何処にいても入手できる。真空度の異常変化の検知場所や方法に関しては第一の実施形態で説明しているので詳細は省略する。  With regard to security, the abnormalities in the building can be obtained anywhere by detecting abnormal changes in the degree of vacuum in the airtight space 14 that is isolated by the two porous ceramic plates 22 and 24 and forming a vacuum. Since the detection location and method of the abnormal change in the degree of vacuum are described in the first embodiment, the details are omitted.

図4は、本発明の第三の実施形態で、木質系2X4住宅用建材である合板パネルで・壁材・床材・天板材・屋根材の概略図である。
図4の(h)(j)(k)は合板パネルを図示している。この例示は木質系2X4住宅用建材である合板パネルの断熱性能の向上にある。構造用面材である2枚の合板32の間には隙間保持部材36をポリエチレンフィルムやポリエステルフィルム等のフィルムバック37で包み、高真空に耐えるようにしたフィルムバック37の部材を入れ貼り合わせ合板パネルにしたもので、他の断熱材であるロックウールやグラスウールまたセルロースファイバーや難燃性発泡スチロールを使用することなく内断熱と外断熱との両方を兼用する高級な真空断熱構造体の高気密断熱部材10が具現化できる。
FIG. 4 is a schematic view of a plywood panel, which is a wood-based 2 × 4 residential building material, a wall material, a floor material, a top plate material, and a roof material, according to a third embodiment of the present invention.
(H), (j), and (k) in FIG. 4 illustrate a plywood panel. This example is in the improvement of the heat insulation performance of the plywood panel which is a wood-based 2X4 residential building material. A gap holding member 36 is wrapped in a film back 37 such as a polyethylene film or a polyester film between two plywoods 32 that are structural face materials, and a film back 37 member that can withstand high vacuum is put into a laminated plywood. Highly airtight insulation of a high-grade vacuum insulation structure that combines both internal insulation and external insulation without using any other insulation materials such as rock wool, glass wool, cellulose fiber or flame retardant foamed polystyrene. The member 10 can be embodied.

防犯警備に関しては、隙間保持部材をポリエチレンフィルムやポリエステルフィルム等で包み高真空に耐えるようにしたフィルムバック37内の気密空間部14の真空度の異常変化を検知し通信接続することで建物の異常を何処にいても入手できる。真空度の異常変化の検知場所や方法に関しては第一の実施形態で説明しているので詳細は省略する。  Concerning security, the abnormalities of the building are detected by detecting abnormal changes in the degree of vacuum in the airtight space 14 in the film back 37 that is wrapped in a polyethylene film or polyester film, etc. so as to withstand high vacuum, and connected to the network. Can be obtained anywhere. Since the detection location and method of the abnormal change in the degree of vacuum are described in the first embodiment, the details are omitted.

図5の(m)は、外断熱工法と通気路55との関係を示す概略図である。外装材52に高真空度の気密空間部14を構成できる部材を貼り合わせた外壁用の高気密断熱部材10で、住宅の断熱工法としては外断熱工法を図示している。
通気は外壁用の高気密断熱部材10と内壁構造面材53との隙間を通気路55として配設し通気を確保している。この通気路55の確保と外断熱工法の組み合わせによって通気路55内で結露を起こさない24時間換気システムが構築でき、基礎部と建物とを一体化できるのですきま風が少く冬場も暖かな高気密高断熱住宅が具現化できる。
後記に記載する図5の(n)の内断熱工法と比較対象したい。
(M) of FIG. 5 is a schematic diagram showing the relationship between the outer heat insulating method and the air passage 55. A high airtight heat insulating member 10 for an outer wall in which a member capable of forming a high vacuum hermetic space portion 14 is bonded to an exterior material 52, and an external heat insulating method is illustrated as a heat insulating method for a house.
Ventilation is ensured by arranging a gap between the outer wall high hermetic heat insulating member 10 and the inner wall structural face material 53 as a ventilation path 55. The combination of securing the air passage 55 and the outer heat insulation method allows the construction of a 24-hour ventilation system that does not cause dew condensation in the air passage 55, and the foundation and the building can be integrated. Insulated housing can be realized.
I would like to compare with the inner heat insulation method of FIG. 5 (n) described later.

図5の(n)は、内断熱工法と通気路との関係を示す概略図である。
図示では、既存の住宅工法で一般的な内断熱工法を例示している。住宅用建材の2枚の合板73の間に断熱材71であるロックウールやグラスウールまたはセルロースファイバーを入れた、一般的な木質系2X4住宅用建材の合板パネル77である。
通気は、外気が直接床下や通気路75を流れすきま風も多くなることなど高気密高断熱住宅を実現するには難しい住宅工法である。特に冬場、住宅のすきま風が局所で発生するとその部分が局所的に結露しカビの根源となることなど危険性をはらんでいる住宅工法と言える。
(N) of FIG. 5 is the schematic which shows the relationship between an internal heat insulation construction method and a ventilation path.
In the figure, an internal heat insulation method that is common to existing housing methods is illustrated. This is a general wood-based 2 × 4 building material plywood panel 77 in which rock wool, glass wool, or cellulose fiber, which is a heat insulating material 71, is placed between two plywoods 73 of residential building material.
Ventilation is a difficult house construction method for realizing a highly airtight and highly insulated house such that outside air flows directly under the floor or through the air passage 75 and increases the draft. Especially in winter, when the draft of a house is generated locally, it can be said that this part is a house construction method that is dangerous due to local condensation and the root of mold.

このように住宅用建材の断熱方法を真空断熱化することでパネル自体を薄くもでき軽量化が可能となり、さらに他の断熱材であるロックウールやグラスウールまたセルロースファイバーや難燃性発泡スチロールを使用する必要のない建築部材が実用化できる。
特に、内断熱と外断熱との両方を兼用する多孔質セラミックス板の開発は最高級の断熱構造体の高気密断熱部材となり得るので、この多孔質セラミックス板が直接室内壁となる住宅工法の推進は、もし将来、新たに住宅を建て替える場合にその廃材量も少なく廃棄部材の分別リサイクルも容易となり廃棄処理費の低減に大きく結び付く。
また、真空度の異常変化を検知し通信接続できるのでその通信を携帯電話に送信することも可能となる。
従って、本発明は、住宅での消費エネルギーを最少限にでき住宅用建材の部品点数と数量や重量も最少にできるので、人に優しく地球環境に優しい・安全・安心・健康快適住宅の実現化に大きく結び付き社会に貢献できのである。
更に、本発明の技術応用によれば、真空ポンプと組み合わせた真空断熱方式はその断熱性能を半永久的に保持できるので、例えば家庭用の冷蔵庫や高温または低温流体が流れる配管の断熱や寒冷地等に敷設する原油の配管の断熱工法として応用できる。
また、定期肉厚検査を必要とする配管構造体では、流体が流れる本管の肉厚検査必要箇所の外装配管にハンドホールを設け、真空を解除するだけで簡単に本管の肉厚検査ができるのである。
尚、本例示では真空制御装置の真空度制御方法を制御弁方式で説明したが、別方式として水封方式である水封する深さの位置を変えて真空度を各々設定する方式等であってもよい。
In this way, the heat insulation method for residential building materials is reduced to vacuum insulation, making the panel itself thinner and lighter, and using other heat insulation materials such as rock wool, glass wool, cellulose fiber, and flame retardant foamed polystyrene. Unnecessary building materials can be put into practical use.
In particular, the development of porous ceramic plates that can be used for both internal and external heat insulation can be a highly airtight insulation member of the finest thermal insulation structure. If a new house is rebuilt in the future, the amount of waste materials will be small, and it will be easy to separate and recycle waste materials, which will greatly reduce the cost of disposal.
In addition, since an abnormal change in the degree of vacuum can be detected and communication can be established, the communication can be transmitted to the mobile phone.
Therefore, the present invention minimizes the energy consumption in the house and minimizes the number, quantity and weight of the building materials for the house. It is possible to contribute to society.
Furthermore, according to the technical application of the present invention, the vacuum heat insulation method combined with the vacuum pump can maintain its heat insulation performance semi-permanently, for example, a domestic refrigerator, a heat insulation of a pipe through which high-temperature or low-temperature fluid flows, a cold district, etc. It can be applied as a thermal insulation method for crude oil pipes laid on the ground.
For piping structures that require periodic wall thickness inspection, it is possible to easily perform main wall thickness inspection simply by releasing a vacuum by providing a hand hole in the exterior piping of the main wall where fluid flow is required. It can be done.
In this example, the vacuum control method of the vacuum control device has been described by the control valve method. However, as another method, the method of setting the vacuum degree by changing the position of the water sealing depth, which is a water seal method, etc. May be.

産業上の利用の可能性Industrial applicability

本発明に係わる高気密断熱部材は、防犯警備面もに優れ住むのに安心で健康で快適な省エネルギー住宅の具現化に大きく結び付き、地球環境に優しく安全で安心な健康快適住宅が実現できる。  The highly airtight heat insulating member according to the present invention is highly connected to the realization of a safe, healthy and comfortable energy-saving house with excellent security and security, and can realize a safe and secure healthy comfortable house that is friendly to the global environment.

図1は、本発明の第一の実施形態で、サッシやドアーまた嵌め込みガラスのガラス部の気密空間部の概念図である。FIG. 1 is a conceptual diagram of an airtight space portion of a glass portion of a sash, a door, or a fitted glass in the first embodiment of the present invention. 図2は、本発明の第一の実施形態で、サッシとドアーに真空制御装置を接続し防犯警備システムとを組み合わせた概略図である。FIG. 2 is a schematic view of a first embodiment of the present invention in which a vacuum control device is connected to a sash and a door and a security system is combined. 図3は、本発明の第二の実施形態で、多孔質セラミックス板を・壁材・床材・天板材・屋根材に使用する場合の概略図である。FIG. 3 is a schematic view when a porous ceramic plate is used for a wall material, a floor material, a top plate material, and a roof material in the second embodiment of the present invention. 図4は、本発明の第三の実施形態で、木質系2X4住宅用建材である合板パネルで・壁材・床材・天板材・屋根材の概略図である。FIG. 4 is a schematic view of a plywood panel, which is a wood-based 2 × 4 residential building material, a wall material, a floor material, a top plate material, and a roof material, according to a third embodiment of the present invention. 図5(m)は、外断熱工法と通気路との関係を示す概略図である。図5(n)は、内断熱工法と通気路との関係を示す概略図である。FIG.5 (m) is the schematic which shows the relationship between an outer heat insulation construction method and a ventilation path. FIG.5 (n) is the schematic which shows the relationship between an inner heat insulation construction method and a ventilation path.

符号の説明Explanation of symbols

10、高気密断熱部材
11、吸引接続ノズル
12、91、92、93、94、ガラス
13、ガスケットパッキン
14、95、96、97、気密空間部
15、合わせガラス
20、22、24、多孔質セラミックス板
32、73、合板
36、隙間保持部材
37、フィルムバック
52、外装材
53、内壁構造面材
55、75、通気路
80、真空制御装置
83、真空制御弁
84、真空抑制弁
85、真空ポンプ
99、防犯警備システム
10, high airtight heat insulating member 11, suction connection nozzle 12, 91, 92, 93, 94, glass 13, gasket packing 14, 95, 96, 97, airtight space 15, laminated glass 20, 22, 24, porous ceramics Plates 32 and 73, plywood 36, gap holding member 37, film back 52, exterior material 53, inner wall structure face material 55 and 75, air passage 80, vacuum control device 83, vacuum control valve 84, vacuum suppression valve 85, vacuum pump 99, security system

Claims (2)

2枚以上の部材で隔離された複数の気密空間部(14)をもつ構造部材で、前記気密空間部(14)を常に真空に保持するため前記気密空間部(14)ごとに各々の吸引接続ノズル(11)を備えた高気密断熱部材(10)。  A structural member having a plurality of airtight spaces (14) separated by two or more members, and each airtight space (14) is connected to each other in order to keep the airtight space (14) in a vacuum. Highly airtight heat insulating member (10) provided with a nozzle (11). 高気密断熱部材(10)がサッシ、ドアー、嵌め込みガラスのガラス部にあっては、2枚以上のガラス板で複数の気密空間を有する場合であっても前記気密空間部(14)の隙間を保持する隙間保持部材がなく、ガラス板1枚1枚の強度と制御された真空度によって隙間を保持する請求項1の高気密断熱部材(10)。  When the high airtight heat insulating member (10) is in the glass portion of the sash, door, and fitted glass, the gap between the airtight space portion (14) is provided even when there are a plurality of airtight spaces with two or more glass plates. The airtight heat insulating member (10) according to claim 1, wherein there is no gap holding member to hold, and the gap is held by the strength of each glass plate and the controlled degree of vacuum.
JP2004303540A 2004-09-17 2004-09-17 Multi-layer high airtight insulation member Expired - Fee Related JP4694816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303540A JP4694816B2 (en) 2004-09-17 2004-09-17 Multi-layer high airtight insulation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303540A JP4694816B2 (en) 2004-09-17 2004-09-17 Multi-layer high airtight insulation member

Publications (2)

Publication Number Publication Date
JP2006083675A JP2006083675A (en) 2006-03-30
JP4694816B2 true JP4694816B2 (en) 2011-06-08

Family

ID=36162409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303540A Expired - Fee Related JP4694816B2 (en) 2004-09-17 2004-09-17 Multi-layer high airtight insulation member

Country Status (1)

Country Link
JP (1) JP4694816B2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987909A (en) * 2011-10-21 2014-08-13 唯景公司 MITIGATING THERMAL SHOCK IN TINTABLE WINDOWs
US9348192B2 (en) 2012-04-17 2016-05-24 View, Inc. Controlling transitions in optically switchable devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9436055B2 (en) 2009-12-22 2016-09-06 View, Inc. Onboard controller for multistate windows
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US9454056B2 (en) 2012-04-17 2016-09-27 View, Inc. Driving thin film switchable optical devices
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
CN107575133A (en) * 2017-08-31 2018-01-12 安徽信息工程学院 Glass structure
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US12061404B2 (en) 2013-06-28 2024-08-13 View, Inc. Controlling transitions in optically switchable devices
US12073752B2 (en) 2022-09-16 2024-08-27 View, Inc. Calibration of electrical parameters in optically switchable windows

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904847B1 (en) 2008-12-23 2009-06-25 박기건 Window equipped with shade function
CN102121284A (en) * 2010-01-05 2011-07-13 北京环能海臣科技有限公司 Laminated sheet glass curtain wall for regulating cavity vacuum degree for thermal insulation
CN101967948B (en) * 2010-10-11 2012-03-07 陈若 Vacuum self-adsorptive heat insulation and noise reduction reinforced plastic flat plate
WO2014066638A1 (en) * 2012-10-25 2014-05-01 Jones Robert S Vacuum system comprising vacuum insulated glass units
EP3127096A4 (en) 2014-03-31 2018-03-21 Glass Security Pte Ltd A tamper detection device and a method for installing the device
LT3202727T (en) * 2014-09-30 2019-06-10 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and inspection method thereof
KR101763108B1 (en) * 2016-10-26 2017-07-31 (주)부양소재 A Double Window Having a Polycarbonate Layer
CN110230460A (en) * 2019-07-26 2019-09-13 青岛克瑞克绿色建材有限公司 A kind of reconstruction structure of double pane
KR102241283B1 (en) * 2020-05-13 2021-04-16 주식회사 경연 Smart window system
WO2024116632A1 (en) * 2022-11-30 2024-06-06 パナソニックIpマネジメント株式会社 Cooling/warming apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679590U (en) * 1979-11-24 1981-06-27
JPS5829991A (en) * 1981-08-14 1983-02-22 松下電工株式会社 Composite layered glass shoji
JPH07150870A (en) * 1993-11-26 1995-06-13 Toshimasa Nakayama Window structure having heat ray protecting function
JP2003026453A (en) * 2001-07-10 2003-01-29 Naoyoshi Kayama Pair glass
JP2004206675A (en) * 2003-06-26 2004-07-22 Toshiaki Eto Crime prevention system for door and crime prevention door
JP2004220545A (en) * 2003-03-03 2004-08-05 Toshiaki Eto Crime prevention system for multilayer window material and multilayer window material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679590U (en) * 1979-11-24 1981-06-27
JPS5829991A (en) * 1981-08-14 1983-02-22 松下電工株式会社 Composite layered glass shoji
JPH07150870A (en) * 1993-11-26 1995-06-13 Toshimasa Nakayama Window structure having heat ray protecting function
JP2003026453A (en) * 2001-07-10 2003-01-29 Naoyoshi Kayama Pair glass
JP2004220545A (en) * 2003-03-03 2004-08-05 Toshiaki Eto Crime prevention system for multilayer window material and multilayer window material
JP2004206675A (en) * 2003-06-26 2004-07-22 Toshiaki Eto Crime prevention system for door and crime prevention door

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9946138B2 (en) 2009-12-22 2018-04-17 View, Inc. Onboard controller for multistate windows
US11754902B2 (en) 2009-12-22 2023-09-12 View, Inc. Self-contained EC IGU
US11592723B2 (en) 2009-12-22 2023-02-28 View, Inc. Automated commissioning of controllers in a window network
US11314139B2 (en) 2009-12-22 2022-04-26 View, Inc. Self-contained EC IGU
US9436055B2 (en) 2009-12-22 2016-09-06 View, Inc. Onboard controller for multistate windows
US9442341B2 (en) 2009-12-22 2016-09-13 View, Inc. Onboard controller for multistate windows
US11067869B2 (en) 2009-12-22 2021-07-20 View, Inc. Self-contained EC IGU
US11016357B2 (en) 2009-12-22 2021-05-25 View, Inc. Self-contained EC IGU
US10303035B2 (en) 2009-12-22 2019-05-28 View, Inc. Self-contained EC IGU
US10268098B2 (en) 2009-12-22 2019-04-23 View, Inc. Onboard controller for multistate windows
US10001691B2 (en) 2009-12-22 2018-06-19 View, Inc. Onboard controller for multistate windows
US11668991B2 (en) 2011-03-16 2023-06-06 View, Inc. Controlling transitions in optically switchable devices
US11640096B2 (en) 2011-03-16 2023-05-02 View, Inc. Multipurpose controller for multistate windows
US9778532B2 (en) 2011-03-16 2017-10-03 View, Inc. Controlling transitions in optically switchable devices
US10908470B2 (en) 2011-03-16 2021-02-02 View, Inc. Multipurpose controller for multistate windows
US10935865B2 (en) 2011-03-16 2021-03-02 View, Inc. Driving thin film switchable optical devices
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US9927674B2 (en) 2011-03-16 2018-03-27 View, Inc. Multipurpose controller for multistate windows
US11073800B2 (en) 2011-03-16 2021-07-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US10948797B2 (en) 2011-03-16 2021-03-16 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
US11630367B2 (en) 2011-03-16 2023-04-18 View, Inc. Driving thin film switchable optical devices
US10712627B2 (en) 2011-03-16 2020-07-14 View, Inc. Controlling transitions in optically switchable devices
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
US9523902B2 (en) 2011-10-21 2016-12-20 View, Inc. Mitigating thermal shock in tintable windows
US10254618B2 (en) 2011-10-21 2019-04-09 View, Inc. Mitigating thermal shock in tintable windows
CN103987909A (en) * 2011-10-21 2014-08-13 唯景公司 MITIGATING THERMAL SHOCK IN TINTABLE WINDOWs
CN103987909B (en) * 2011-10-21 2017-03-22 唯景公司 MITIGATING THERMAL SHOCK IN TINTABLE WINDOWs
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US10365531B2 (en) 2012-04-13 2019-07-30 View, Inc. Applications for controlling optically switchable devices
US10964320B2 (en) 2012-04-13 2021-03-30 View, Inc. Controlling optically-switchable devices
US11735183B2 (en) 2012-04-13 2023-08-22 View, Inc. Controlling optically-switchable devices
US11687045B2 (en) 2012-04-13 2023-06-27 View, Inc. Monitoring sites containing switchable optical devices and controllers
US9454056B2 (en) 2012-04-17 2016-09-27 View, Inc. Driving thin film switchable optical devices
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US9423664B2 (en) 2012-04-17 2016-08-23 View, Inc. Controlling transitions in optically switchable devices
US11796886B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US10809589B2 (en) 2012-04-17 2020-10-20 View, Inc. Controller for optically-switchable windows
US10895796B2 (en) 2012-04-17 2021-01-19 View, Inc. Driving thin film switchable optical devices
US10520785B2 (en) 2012-04-17 2019-12-31 View, Inc. Driving thin film switchable optical devices
US10520784B2 (en) 2012-04-17 2019-12-31 View, Inc. Controlling transitions in optically switchable devices
US11592724B2 (en) 2012-04-17 2023-02-28 View, Inc. Driving thin film switchable optical devices
US11927867B2 (en) 2012-04-17 2024-03-12 View, Inc. Driving thin film switchable optical devices
US9921450B2 (en) 2012-04-17 2018-03-20 View, Inc. Driving thin film switchable optical devices
US9348192B2 (en) 2012-04-17 2016-05-24 View, Inc. Controlling transitions in optically switchable devices
US9477131B2 (en) 2012-04-17 2016-10-25 View, Inc. Driving thin film switchable optical devices
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
US10539854B2 (en) 2013-02-21 2020-01-21 View, Inc. Control method for tintable windows
US11126057B2 (en) 2013-02-21 2021-09-21 View, Inc. Control method for tintable windows
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
US10802372B2 (en) 2013-02-21 2020-10-13 View, Inc. Control method for tintable windows
US10401702B2 (en) 2013-06-28 2019-09-03 View, Inc. Controlling transitions in optically switchable devices
US10514582B2 (en) 2013-06-28 2019-12-24 View, Inc. Controlling transitions in optically switchable devices
US11835834B2 (en) 2013-06-28 2023-12-05 View, Inc. Controlling transitions in optically switchable devices
US12061404B2 (en) 2013-06-28 2024-08-13 View, Inc. Controlling transitions in optically switchable devices
US11112674B2 (en) 2013-06-28 2021-09-07 View, Inc. Controlling transitions in optically switchable devices
US10969646B2 (en) 2013-06-28 2021-04-06 View, Inc. Controlling transitions in optically switchable devices
US11579509B2 (en) 2013-06-28 2023-02-14 View, Inc. Controlling transitions in optically switchable devices
US11829045B2 (en) 2013-06-28 2023-11-28 View, Inc. Controlling transitions in optically switchable devices
US9412290B2 (en) 2013-06-28 2016-08-09 View, Inc. Controlling transitions in optically switchable devices
US9885935B2 (en) 2013-06-28 2018-02-06 View, Inc. Controlling transitions in optically switchable devices
US10503039B2 (en) 2013-06-28 2019-12-10 View, Inc. Controlling transitions in optically switchable devices
US10451950B2 (en) 2013-06-28 2019-10-22 View, Inc. Controlling transitions in optically switchable devices
US10120258B2 (en) 2013-06-28 2018-11-06 View, Inc. Controlling transitions in optically switchable devices
US10221612B2 (en) 2014-02-04 2019-03-05 View, Inc. Infill electrochromic windows
US11733660B2 (en) 2014-03-05 2023-08-22 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11261654B2 (en) 2015-07-07 2022-03-01 View, Inc. Control method for tintable windows
US11237449B2 (en) 2015-10-06 2022-02-01 View, Inc. Controllers for optically-switchable devices
US11300848B2 (en) 2015-10-06 2022-04-12 View, Inc. Controllers for optically-switchable devices
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US10495939B2 (en) 2015-10-06 2019-12-03 View, Inc. Controllers for optically-switchable devices
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US10809587B2 (en) 2015-10-06 2020-10-20 View, Inc. Controllers for optically-switchable devices
US11175178B2 (en) 2015-10-06 2021-11-16 View, Inc. Adjusting window tint based at least in part on sensed sun radiation
US11709409B2 (en) 2015-10-06 2023-07-25 View, Inc. Controllers for optically-switchable devices
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
US11030929B2 (en) 2016-04-29 2021-06-08 View, Inc. Calibration of electrical parameters in optically switchable windows
US11482147B2 (en) 2016-04-29 2022-10-25 View, Inc. Calibration of electrical parameters in optically switchable windows
US11467464B2 (en) 2017-04-26 2022-10-11 View, Inc. Displays for tintable windows
US11454854B2 (en) 2017-04-26 2022-09-27 View, Inc. Displays for tintable windows
US11493819B2 (en) 2017-04-26 2022-11-08 View, Inc. Displays for tintable windows
US11513412B2 (en) 2017-04-26 2022-11-29 View, Inc. Displays for tintable windows
CN107575133A (en) * 2017-08-31 2018-01-12 安徽信息工程学院 Glass structure
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US12073752B2 (en) 2022-09-16 2024-08-27 View, Inc. Calibration of electrical parameters in optically switchable windows

Also Published As

Publication number Publication date
JP2006083675A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4694816B2 (en) Multi-layer high airtight insulation member
Johansson Vacuum insulation panels in buildings: Literature review
KR100592052B1 (en) Multi-layer reflective insulation using polyurethane foam
KR200432912Y1 (en) Balcony system
Boafo et al. Slim curtain wall spandrel integrated with vacuum insulation panel: A state-of-the-art review and future opportunities
Peng et al. Structure, mechanism, and application of vacuum insulation panels in Chinese buildings
WO2008029462A1 (en) Exterior wall body
CN103485447B (en) A kind of moistureproof sound-absorbing space enclosing structure with air layer
JP4889453B2 (en) Fireproof double-layer pipe or fireproof double-layer pipe joint for penetration
JP2007247372A (en) Panel for building such as house and panel for refrigerator
Park et al. Recent research trends for green building thermal insulation materials
JP5162434B2 (en) Thermal insulation wall structure and thermal insulation wall system using the same
CN205804651U (en) A kind of external wall insulation
KR101105393B1 (en) A high efficiency thermal insulation for building structure
JP2006249769A (en) Thermal insulation/moistureproof/heat reflection structure of house
US11891798B1 (en) Method and apparatus for vacuum thermal and acoustical insulation
KR101597890B1 (en) Water film forming fire protecting doorframe and its construction method
JP2008255733A (en) Heat insulating structure and heat insulating panel of building
CN219261374U (en) Building waterproof structure
CN215594444U (en) Building insulation board for building design and construction
JP2014163179A (en) Heat insulation method of building
KR200417640Y1 (en) toxin, Acoustic, thermos, Humidity, Insulation material.
CN215631331U (en) Be applied to air conditioner heat preservation fire prevention's tuber pipe structure
CN219887232U (en) Wall structure and assembled building
CN211144248U (en) Steel-wood fireproof door

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees