US20210261465A1 - Ceramic material for high temperature service - Google Patents
Ceramic material for high temperature service Download PDFInfo
- Publication number
- US20210261465A1 US20210261465A1 US17/318,631 US202117318631A US2021261465A1 US 20210261465 A1 US20210261465 A1 US 20210261465A1 US 202117318631 A US202117318631 A US 202117318631A US 2021261465 A1 US2021261465 A1 US 2021261465A1
- Authority
- US
- United States
- Prior art keywords
- weight percent
- stabilizer
- powder
- oxide
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010293 ceramic material Inorganic materials 0.000 title description 17
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 219
- 239000000843 powder Substances 0.000 claims abstract description 93
- 239000012535 impurity Substances 0.000 claims abstract description 57
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims description 154
- 239000003381 stabilizer Substances 0.000 claims description 106
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 60
- 239000000919 ceramic Substances 0.000 claims description 37
- 241000588731 Hafnia Species 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 24
- 230000008018 melting Effects 0.000 claims description 23
- 238000002844 melting Methods 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 13
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 12
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 10
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 9
- 229910052593 corundum Inorganic materials 0.000 claims description 9
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 9
- 229910052681 coesite Inorganic materials 0.000 claims description 7
- 229910052906 cristobalite Inorganic materials 0.000 claims description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052682 stishovite Inorganic materials 0.000 claims description 7
- 229910052905 tridymite Inorganic materials 0.000 claims description 7
- 229910002076 stabilized zirconia Inorganic materials 0.000 abstract description 9
- 238000000576 coating method Methods 0.000 description 107
- 239000011248 coating agent Substances 0.000 description 95
- 239000000758 substrate Substances 0.000 description 35
- 239000007921 spray Substances 0.000 description 23
- 239000012720 thermal barrier coating Substances 0.000 description 23
- 239000012071 phase Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 15
- 238000005245 sintering Methods 0.000 description 15
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 14
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 12
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 12
- 230000035882 stress Effects 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 10
- 230000009466 transformation Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000010587 phase diagram Methods 0.000 description 8
- 238000005382 thermal cycling Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000000395 magnesium oxide Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000292 calcium oxide Substances 0.000 description 6
- 235000012255 calcium oxide Nutrition 0.000 description 6
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 6
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- RSEIMSPAXMNYFJ-UHFFFAOYSA-N europium(III) oxide Inorganic materials O=[Eu]O[Eu]=O RSEIMSPAXMNYFJ-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000007750 plasma spraying Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000005019 vapor deposition process Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- -1 yttria Chemical compound 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 241000968352 Scandia <hydrozoan> Species 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910000310 actinide oxide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 229910000311 lanthanide oxide Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- HJGMWXTVGKLUAQ-UHFFFAOYSA-N oxygen(2-);scandium(3+) Chemical compound [O-2].[O-2].[O-2].[Sc+3].[Sc+3] HJGMWXTVGKLUAQ-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium(III) oxide Inorganic materials O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/482—Refractories from grain sized mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62665—Flame, plasma or melting treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24471—Crackled, crazed or slit
Definitions
- the invention relates to ceramic materials for thermal barriers and abradable coating systems in high temperature and high temperature cycling applications, and more particularly to ultra-pure zirconia materials for use in thermal barrier and abradable coating applications.
- Superior high-temperature properties are required to improve the performance of heat resistant and corrosion resistant members.
- These members include, for example gas turbine blades, combustor cans, ducting and nozzle guide vanes in combustion turbines and combined cycle power plants.
- Turbine blades are driven by hot gasses, and the efficiency of the gas turbine increases with the rise in operational temperature. The demand for continued improvement in efficiency has driven the system designers to specify increasingly higher turbine operating temperatures. Thus, there is a continuing need for materials that can achieve higher operational temperatures.
- Thermal barrier coatings are used to insulate components, such as those in a gas turbine, operating at elevated temperatures. Thermal barriers allow increased operating temperature of gas turbines by protecting the coated part (or substrate) from direct exposure to the operating environment.
- An important consideration in the design of a thermal barrier is that the coating be a ceramic material having a crystalline structure containing beneficial cracks and voids, imparting strain tolerance. If there were no cracks in the coating, the thermal barrier would not function, because the differences in thermal expansion between the metal substrate system and the coating will cause interfacial stresses upon thermal cycling that are greater than the bond strength between them. By the creation of a crack network into the coating, a stress relief mechanism is introduced that allows the coating to survive numerous thermal cycles.
- crack networks are typically imparted into the coating on varying space scales by manipulating the thermodynamic and kinetic conditions of the manufacturing method, and different structures known to perform the coating task have been optimized likewise.
- cracks are also formed during service, so the structure formed upon coating manufacture changes with time, depending on the starting material phases in the manufactured coating and thermal conditions during service.
- Another design factor determining coating lifetime is the sintering rate of the coating.
- the coating When the coating is cycled above half of its absolute melting temperature, the coating begins to sinter causing volume shrinkage. As the coating shrinks, the stress difference between the coating and substrate increases. At a certain amount of shrinkage (which varies depending on the type of structure and thermal conditions during service), the stress difference exceeds the bonding strength of the coating and it becomes detached. Decreasing the sintering rate of the thermal barrier increases the amount of time before the catastrophic shrinkage is experienced, so it can become a major design consideration. For high purity zirconia alloys, the onset of sintering commences at temperatures above 1000° C.
- high temperature thermal barrier coatings have been based on alloys of zirconia.
- Hafnia may also be employed due to its chemical similarity to zirconia, but is generally cost-prohibitive. Hafnia also is typically present in most zirconia materials in more than trace amounts due to difficulty in separating the two oxides.
- Zirconia and/or hafnia have the following combination of desirable properties that other known ceramic systems do not possesses for the application.
- zirconia alloys have some of the highest melting points of all ceramics, and this means theoretically some of the highest temperatures for which the onset of sintering occurs.
- zirconia alloys have one of the lowest thermal conductivities of all ceramics.
- zirconia has one of the highest coefficients of thermal expansion of all ceramics, so it is most compatible with transition metal alloys during thermal cycling.
- Zirconia alone cannot fulfill the coating requirements because it undergoes a phase transformation from tetragonal to monoclinic during thermal cycling. This transformation is presumed to cause a detrimental volume change resulting in large strain differences between the coating and the substrate. When the resulting stresses exceed the bond strength of the coating to the substrate, the coating will detach. For this reason a phase stabilizer is added to the zirconia and/or hafnia, such as yttria, which suppresses the tetragonal to monoclinic phase transformation.
- Thermal spray abradable coatings are commonly used in gas turbine applications. Abradable coatings are designed to preferentially abrade when contact is made with a mating part. These coatings have low structural integrity so they are readily abraded when they come into contact with a moving surface with higher structural integrity (such as the blade of a turbine). The coatings are designed so as not to damage the mating surface. In many applications abradable coatings are subject to the same thermal cycling conditions as the thermal barriers described above. Thus, there is a continuing need for materials suitable for abradable coatings that can achieve higher operational temperatures.
- the invention is directed to a ceramic material for use in thermal barriers for high temperature cycling applications and high temperature abradable coatings.
- the material is an alloy formed predominantly from ultra-pure stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) alloys that have uncharacteristically high sintering resistance to achieve a high service lifetime.
- the invention provides a desired coating material so that the changes in the coating microstructure over the in-service lifetime are retarded.
- Oxide impurities are defined as materials which, when combined with each other or with zirconia and/or hafnia, form phases with melting points much lower than that of pure zirconia and/or hafnia.
- the invention provides a ceramic material for use in high-temperature thermal barriers or abradable seal coatings.
- the said material has about 4 to 20 weight percent of a stabilizer of one or more rare earth oxides; and a balance of at least one of zirconia (ZrO 2 ), hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the stabilizer, and wherein the total amount of impurities is less than or equal to 0.15 weight percent.
- a blended ceramic material of one or more ceramic materials is provided.
- Each of the ceramic materials is for use in high-temperature thermal barriers or abradable seal coatings and is supplied in the form of one of a powder or a slurry of partially stabilized powder.
- Each of the ceramic materials has about 4 to 20 weight percent of a stabilizer of one or more rare earth oxides and a balance of at least one of zirconia (ZrO 2 ), hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the stabilizer, and wherein the total amount of impurities of the blended ceramic material is less than or equal to 0.15 weight percent. Additional ceramic materials or placeholder materials may also be included in the blended material.
- a high purity yttria or ytterbia stabilized zirconia powder wherein a purity of the zirconia is at least 99.5 weight percent purity and a maximum amount of oxide impurities is as follows: less than 0.005 weight percent SiO 2 ; less than 0.015 weight percent Al 2 O 3 ; less than 0.002 weight percent TiO 2 ; less than 0.04 weight percent Fe 2 O 3 ; less than 0.02 weight percent CaO; less than 0.002 weight percent MgO.
- the impurities may include less than 0.001 weight percent Cr 2 O 3 and less than 0.002 weight percent Na 2 O.
- the powder is a thermal sprayable powder.
- the zirconia is partially stabilized by the yttria.
- the powder has a particle size of from about 5 to 150 microns.
- a method of applying a thermal barrier coating on a substrate comprising thermally spraying the powder of claim 1 onto the substrate so as to form the thermal barrier coating having from about 5 to 250 vertical macro cracks per 25.4 mm length measured along a coating surface and being oriented perpendicular to a surface of the substrate containing said coating.
- a high purity yttria or ytterbia stabilized hafnia powder wherein a purity of the hafnia is at least 99.5 weight percent purity and a maximum amount of oxide impurities is as follows: less than 0.002 weight percent Na 2 O; less than 0.005 weight percent SiO 2 ; less than 0.015 weight percent Al 2 O 3 ; less than 0.002 weight percent TiO 2 ; less than 0.04 weight percent Fe 2 O 3 ; less than 0.02 weight percent CaO; less than 0.002 weight percent MgO; and less than 0.001 weight percent Cr 2 O 3 .
- the powder is a thermal sprayable powder.
- the hafnia is partially stabilized by the yttria.
- the powder has a particle size of from about 5 to 150 microns.
- a method of applying a thermal barrier coating on a substrate comprising thermally spraying the powder of claim 6 onto the substrate so as to form the thermal barrier coating having from about 5 to 250 vertical macro cracks per 25.4 mm length measured along a coating surface and being oriented perpendicular to a surface of the substrate containing said coating.
- a high purity yttria stabilized zirconia powder comprising a purity of the zirconia being at least 99.5 weight percent purity, less than about 0.005 weight percent silicon dioxide (silica), less than about 0.015 weight percent aluminum oxide (alumina), less than about 0.02 weight percent calcium oxide, less than about 0.04 weight percent ferric oxide, less than about 0.002 weight percent magnesium oxide, and less than about 0.002 weight percent titanium dioxide.
- the powder is a thermal sprayable powder.
- the zirconia is partially stabilized by the yttria.
- the powder has a particle size of from about 5 to 150 microns.
- a method of applying a thermal barrier coating on a substrate comprising thermally spraying the powder of claim 11 onto the substrate so as to form the thermal barrier coating having from about 5 to 250 vertical macro cracks per 25.4 mm length measured along a coating surface and being oriented perpendicular to a surface of the substrate containing said coating.
- a method of coating a substrate with a thermal barrier coating (TBC) on a substrate via thermal spray comprising spraying a powder coating material comprising a yttria stabilized material comprising zirconia and hafnia, wherein a purity of each of said zirconia and said hafnia being at least 99.5 weight percent and total impurities of said zirconia and said hafnia comprises less than or equal to: about 0.005 weight percent silica, about 0.002 weight percent titania, and about 0.002 weight percent magnesia and forming a TBC coating by depositing the coating material in the form of a collection of frozen droplets or splats, wherein the TBC coating comprises vertical cracks arranged at repeating intervals and extending in a thickness direction of said thermal barrier coating.
- TBC thermal barrier coating
- Embodiments are directed to a ceramic powder that includes a primary stabilizer oxide comprising 4-20 weight percent and oxide impurities up to a maximum of 0.15 weight percent and a first material comprising a balance of the ceramic powder.
- the first material is partially stabilized by the primary stabilizer oxide into a first partially stabilized material.
- the oxide impurities when combined with each other or with the first partially stabilized material, form phases with melting temperatures at least 100° C. lower than the melting temperature of the first material.
- the first material can include at least one of zirconia or hafnia; and the primary stabilizer oxide can include at least one of a yttria or a ytterbia stabilizer.
- the oxide impurities may include less than 0.005 weight percent SiO 2 ; less than 0.015 weight percent Al 2 O 3 ; less than 0.002 weight percent TiO 2 ; and less than 0.002 weight percent MgO.
- the oxide impurities may further include less than 0.04 weight percent Fe 2 O 3 ; less than 0.02 weight percent CaO; less than 0.001 weight percent Cr 2 O 3 ; and less than 0.002 weight percent Na 2 O.
- the powder can be a thermal sprayable powder.
- powder may have a high purity of at least 99.5 weight percent purity.
- the powder may have a particle size of from about 5 to 150 microns.
- Embodiments are directed to a blended ceramic powder that includes a first material composition having: a first primary stabilizer oxide comprising 4-16 weight percent and first oxide impurities up to a maximum of 0.15 weight percent and a first material comprising a balance of the first material composition, wherein the first material is partially stabilized by the first primary stabilizer oxide into a first partially stabilized material.
- the first oxide impurities when combined with each other or with the first partially stabilized material, form phases with melting temperatures at least 100° C. lower than the melting temperature of the first material.
- the blended ceramic powder also includes a second material composition having: a second primary stabilizer oxide comprising 4-20 weight percent and second oxide impurities up to a maximum of 0.15 weight percent and a second material comprising a balance of the second material composition, wherein the second material is partially stabilized by the second primary stabilizer oxide into a second partially stabilized material.
- the second oxide impurities when combined with each other or with the second partially stabilized material, form phases with melting temperatures at least 100° C. lower than the melting temperature of the second material.
- the first material may include at least one of zirconia or hafnia
- the first primary stabilizer oxide may include 4-12 weight percent of a yttria stabilizer, and a fraction of the first material in the blended powder may be 5-50 weight percent
- the second material may include at least one of zirconia or hafnia
- the second primary stabilizer oxide may include 4-16 weight percent of a ytterbia stabilizer
- a fraction of the second material in the blended powder may be 50-95 weight percent.
- the blended ceramic powder may further include a third material composition having a third primary stabilizer oxide comprising 4-20 weight percent and second oxide impurities up to a maximum of 0.15 weight percent and a third material including a balance of the third material composition, wherein the third material is partially stabilized by the third primary stabilizer oxide into a second partially stabilized material.
- the third first oxide impurities when combined with each other or with the third partially stabilized material, may form phases with melting temperatures at least 100° C. lower than the melting temperature of the third material.
- the third material composition can include at least one of zirconia or hafnia and the third primary stabilizer oxide can include at least one of 4-16 weight percent of a neodymium stabilizer or 4-20 weight percent Europa stabilizer.
- the fraction of the first material in the blended powder can be 10-90 weight percent
- the fraction of the second material in the blended powder can be 5-45 weight percent
- the fraction of the third material in the blended powder can be 5-45 weight percent.
- the first material can include at least one of zirconia or hafnia
- the first primary stabilizer oxide can include 4-16 weight percent of a ytterbia stabilizer
- the first material fraction of the blended powder can be 5-50 weight percent
- the second material can include at least one of zirconia or hafnia
- the second primary stabilizer oxide can include at least one of 4-16 weight percent of a neodymium stabilizer or 4-20 weight percent Europa stabilizer
- the second material fraction of the blended powder can be 50-95 weight percent.
- the first material may include at least one of zirconia or hafnia
- the first primary stabilizer oxide may include 4-12 weight percent of a yttria stabilizer
- the first material fraction of the blended powder may be 50-95 weight percent
- the second material may include at least one of zirconia or hafnia
- the second primary stabilizer oxide may include at least one of 4-16 weight percent of a neodymium stabilizer or 4-20 weight percent Europa stabilizer
- the second material fraction of the blended powder may be 5-50 weight percent.
- At least one of the first, second and third oxide impurities can include less than 0.005 weight percent SiO 2 ; less than 0.015 weight percent Al 2 O 3 ; less than 0.002 weight percent TiO 2 ; and less than 0.002 weight percent MgO.
- the at least one of the first, second or third oxide impurities can further include less than 0.04 weight percent Fe 2 O 3 ; less than 0.02 weight percent CaO; less than 0.001 weight percent Cr 2 O 3 ; and less than 0.002 weight percent Na 2 O.
- the blended ceramic powder may be a thermal sprayable powder.
- the blended ceramic powder can have a particle size of from about 5 to 150 microns.
- the blended ceramic powder may have a high purity of at least 99.5 weight percent purity.
- FIG. 1 illustrates a perspective view of a turbine blade coated with a thermal barrier of ceramic material
- FIG. 2 provides a graph showing the effect of impurities on the sintering rates
- FIG. 3 provides a phase diagram for ZrO 2 ;
- FIG. 4 provides a standard phase diagram for stabilized ZrO 2 showing the general alloying trends for various stabilizers [Ceramic Phase Diagram, Volume 4, Fig 05241];
- FIG. 5 provides a phase diagram for ZrO 2 with stabilizer
- FIG. 6 provides a diagram showing a lamellar thermal barrier coating structure containing porosity and microcracks
- FIG. 7 provides a diagram showing a thermal barrier coating containing porosity, microcracks and macrocracks
- FIG. 8 provides a diagram showing a thermal barrier coating deposited from the vapor phase
- FIG. 9 provides a diagram showing the Thornton model for predicting structure of a coating formed from the gas phase.
- FIG. 10 provides a diagram showing a thermal barrier coating deposited from both vapor and liquid phase.
- FIG. 1 shows one component of a turbine.
- Turbine blade 100 has a leading edge 102 and an airfoil section 104 , against which hot combustion gases are directed during operation of the turbine, and which undergoes severe thermal stresses, oxidation and corrosion.
- a root end 106 of the blade anchors the blade 100 .
- Venting passages 108 may be included through the blade 100 to allow cooling air to transfer heat from the blade 100 .
- the blade 100 can be made from a high temperature resistant material.
- the surface of the blade 100 is coated with a thermal barrier coating 110 made of ultra-pure zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) alloys in accordance with the invention.
- ZrO 2 ultra-pure zirconia
- HfO 2 hafnia
- the thermal barrier coating 110 may be applied on, for example, a MCrAlY bonding layer with an alumina scale (not shown) applied between the blade surface and the coating 110 .
- the coating 110 may be applied onto the bond coating surface through a variety of methods known in the art including thermal spray techniques such as powder flame spray and plasma spray and vapor deposition methods such as electron beam physical vapor deposition (EBPVD), high speed physical vapor deposition and low pressure plasma spraying (LPPS).
- thermal spray techniques such as powder flame spray and plasma spray and vapor deposition methods such as electron beam physical vapor deposition (EBPVD), high speed physical vapor deposition and low pressure plasma spraying (LPPS).
- EBPVD electron beam physical vapor deposition
- LPPS low pressure plasma spraying
- the coating 110 When applied, the coating 110 contains a crack network that allows it to survive the stress of numerous thermal cycles. As described in the above background section, the crack network is altered to a less desirable state by sintering and temperature cycling during service. Thus the structure formed upon coating manufacture changes with time, the rate depending on the starting material phases. Decreasing the sintering rate increases the amount of time before the closing of microcracks and creation of massive cracks, increasing coating lifetime.
- a dominant factor affecting sintering is the presence of specific impurity phases within the structure made up of oxides which when combined with each other or the zirconia alloy result in melting points hundreds of degrees lower than that of the zirconia alloy itself. These impurity oxides increase the sintering rate.
- FIG. 2 shows the effect of impurity on the sintering rate.
- the material contains zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) partially stabilized by a total of 4 to 20 weight percent of one or more rare earth oxides having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- rare earth oxides can be defined as any oxide from group IIIB (column 3) of the periodic table of elements, which includes scandia (Sc 2 O 3 ), yttria (Y 2 O 3 ), lanthanide oxides and actinide oxides.
- the material of the present invention contains zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) partially stabilized by a total of 4 to 20 weight percent of a primary stabilizing oxide such as ytterbia and/or yttria, (and optionally additional stabilizers of one or more rare earth oxides) having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- a primary stabilizing oxide such as ytterbia and/or yttria
- additional stabilizers of one or more rare earth oxides having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- oxide impurities can be defined as materials which when combined with each other or with zirconia form phases with melting points much lower than that of pure zirconia, especially—but not limited to—soda (Na 2 O), silica (SiO 2 ), and alumina (Al 2 O 3 ).
- Other specific concentration ranges of stabilizers are provided herein and in co-pending and commonly assigned U.S. patent application Ser. No. 11/520,041, entitled “HIGH PURITY CERAMIC ABRADABLE COATINGS,” U.S. patent application Ser. No. 11/520,044, entitled “OPTIMIZED HIGH TEMPERATURE THERMAL BARRIER,” and U.S. application Ser. No. 11/520,042, entitled “OPTIMIZED HIGH PURITY COATING FOR HIGH TEMPERATURE THERMAL CYCLING APPLICATIONS” each filed on Sep. 13, 2006 and each incorporated herein by reference.
- the limits for known impurities in order to achieve a desirable sintering rate and therefore increase service lifetime when used as a coating are about:
- the limits for known impurities are about:
- the impurity limits in the embodiments above are not indicative that any or all of the impurities listed will be included in the material in any amount.
- the embodiment of the invention may include zero weight percent of one or more of the above-listed impurities.
- FIG. 3 provides a phase diagram for pure zirconia.
- the diagram can be found, for example, in Ceramic Phase Diagrams vol. 3, figure 04259.
- pure zirconia exists in three crystal phases at different temperatures.
- very high temperatures >2370.degree. C.
- the material has a cubic structure.
- intermediate temperatures (1200 to 2372.degree. C.
- it has a tetragonal structure.
- relatively lower temperatures below 1200.degree. C.
- pure zirconia cannot fulfill the coating requirements for high-temperature cycling.
- the resulting strain difference between the coating and substrate caused by the phase transformation results in a stress that is greater than the bond strength between them, so the coating will detach.
- one or more elements are added to the zirconia to modify the amount of phase transformation that occurs.
- the stabilizing elements which are suitable for changing the amount and rate of phase transformation that occurs in the oxide coating, may include the following: scandium, yttrium and the rare earths, particularly the lanthanides, since they have solubility in zirconia. Scandium is not typically used due to its rarity and resulting prohibitive cost. Use of rare earths metals from the actinide group such as uranium and thorium may be limited due to their radioactivity. Thus, yttrium is a preferred stabilizing element.
- FIG. 4 provides a standard phase diagram for stabilized zirconia showing the general alloying trends for the zirconia stabilizers.
- a specific diagram for zirconia with yttria as a stabilizer is given in FIG. 5 . (The diagram can be found, for example, in Ceramic Phase Diagram, vol. Zirconia, figure Zr-157.)
- Phase transformation in partially stabilized zirconia may possibly cause localized stresses that lead to the formation of micron-sized micro-cracks in the coating upon thermal cycling that cancel out some of the massive stress caused by coating volume shrinkage.
- these two phenomena of the coating structure—shrinking and cracking—work against each other and finding a balance between them will maximize coating lifetime.
- This mechanism implies then that the structure of the crack network of the coating is changing with time as the phase of the ceramic material changes. This mechanism is required for a thermal barrier or high temperature abradable coatings to survive thermal cycling.
- the addition of a stabilizing element affects two main properties of the zirconia coating system in a positive manner.
- a blend of two or more partially stabilized high-purity material compositions may also be used.
- a blended ceramic material for use in high-temperature thermal barriers is provided.
- the blended materials include a first material with a yttria (Y 2 O 3 ) stabilizer, and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the yttria stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Y 2 O 3 stabilizer is about 4-12 weight percent, and preferably 6-9 weight percent.
- the second material of the blended material may contain a ytterbia (Yb 2 O 5 ) stabilizer and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the ytterbia stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Yb 2 O 5 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent.
- the ytterbia (Yb 2 O 5 ) stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 5-50 weight percent of the total and preferably about 15-30 weight percent of the total.
- the yttria stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 50-95 weight percent of the total and preferably about 70-85 weight percent of the total blend.
- the blended material includes a first material with a ytterbia (Yb 2 O 5 ) stabilizer, and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the ytterbia stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Yb 2 O 5 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent.
- the second material of the blended material may contain a stabilizer of at least one of neodymium (Nd 2 O 3 ), europia (Eu 2 O 5 ), and combinations thereof and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the balance is partially stabilized by the stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Nd 2 O 3 stabilizer is about 4-20 weight percent, and preferably 8-16 weight percent.
- the range of Eu 2 O 3 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent.
- the range of the combined Nd 2 O 3 and Nd 2 O 3 stabilizer is about 4-16 weight percent.
- the ytterbia (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 5-50 weight percent of the total and preferably about 15-30 weight percent of the total.
- the yttria stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 50-95 weight percent of the total and preferably about 70-85 weight percent of the total blend.
- the blended material includes a first material with a yttria (Y 2 O 3 ) stabilizer, and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the yttria stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Y 2 O 3 stabilizer is about 4-12 weight percent, and preferably 6-9 weight percent.
- the second material of the blended material may contain a stabilizer of at least one of neodymium (Nd 2 O 3 ), europia (Eu 2 O 5 ), and combinations thereof and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the balance is partially stabilized by the stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Nd 2 O 3 stabilizer is about 4-20 weight percent, and preferably 8-16 weight percent.
- the range of Eu 2 O 3 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent.
- the range of the combined Nd 2 O 3 and Eu 2 O 3 stabilizer is about 4-16 weight percent.
- the neodymium (Nd 2 O 3 ) and/or europia (Eu 2 O 5 ) stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 5-50 weight percent of the total and preferably about 15-30 weight percent of the total.
- the yttria stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 50-95 weight percent of the total and preferably about 70-85 weight percent of the total blend.
- the blended material includes a blend of at least three materials.
- the first material may contain a yttria (Y 2 O 3 ) stabilizer, and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the yttria stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Y 2 O 3 stabilizer is about 4-12 weight percent, and preferably 6-9 weight percent.
- the second material of the blend may contain a ytterbia (Yb 2 O 5 ) stabilizer, and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) is partially stabilized by the ytterbia stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Yb 2 O 5 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent.
- the third material of the blend may contain a stabilizer of at least one of neodymium (Nd 2 O 3 ), europia (Eu 2 O 5 ), and combinations thereof and a balance of at least one of zirconia (ZrO 2 ) and hafnia (HfO 2 ) and combinations thereof, wherein the balance is partially stabilized by the stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent.
- the range of Nd 2 O 3 stabilizer is about 4-20 weight percent, and preferably 8-16 weight percent.
- the range of Eu 2 O 3 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent.
- the range of the combined Nd 2 O 3 and Eu 2 O 3 stabilizer is about 4-16 weight percent.
- the ytterbia (Y 2 O 3 ) stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 5-45 weight percent of the total, and preferably about 15-30 weight percent of the total.
- the neodymium (Nd 2 O 3 ) and/or europia (Eu 2 O 5 ) stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may also include about 5-45 weight percent of the total and preferably about 15-30 weight percent of the total.
- the yttria stabilized zirconia (ZrO 2 ) and/or hafnia (HfO 2 ) fraction may include about 10-90 weight percent of the total, and preferably about 30-60 weight percent of the total blend.
- Material of embodiments of the present invention can be provided in a variety of forms for use in thermal spray applications.
- the material is supplied in the form of a powder, a slurry of powder, or a chemical solution of the constituents.
- the powder may be in the form of a spray dried powder of the individual constituents and organic binder, spray dried powder of the combined individual constituents and organic binder, fused and crushed powder, agglomerated and sintered powder, plasma densified material or powder from chemical solution routes.
- Typical particle sizes for the powders may vary but typically range between about 5-150 microns when deposited by various thermal spray equipment, preferably ranging between about 15-125 microns for air plasma spray and ranging between about 5-30 microns for low pressure plasma spray.
- a polymer or organic material in powder form can be added to the material blend.
- Powder may be in the form of a spray dried powder of the individual constituents and an organic binder, spray dried powder of the combined individual constituents and an organic binder, fused and crushed powder, agglomerated and sintered powder, plasma densified material or powder from chemical solution routes.
- the organic binder may be used to at least partially bond together the placeholder material and the ceramic material.
- a coating material may have about 70 to 99 weight percent of an ultra-pure ceramic material as previously described and about 1-30 weight percent (and preferably 2-15 weight percent) of a placeholder material.
- the placeholder material may be an organic powder material or an inorganic powder material that can be burned out subsequent to deposition of the coating material.
- Porosities and cracks provide strain tolerance to TBCs and help to reduce thermal conductivities.
- thermal spray process such as air plasma spray, flame spray or low pressure plasma spray
- a high purity coating structure 120 that comprise a ceramic matrix, porosity and microcracks can be achieved.
- the high purity coating structure is formed by injecting particles of invention high purity materials into a high temperature and high velocity flame. These particles are then heated and accelerated in the flame. Before reaching the substrate, some particles are molten, while some other particles are semi-molten or not melted. Referring to FIG.
- molten and semi-molten particles strike on the substrate 100 (or optional bond coat 112 ) and then spread and solidify rapidly to form disk-like deposits 111 , which are referred to as splats.
- splats disk-like deposits 111
- some unmelted particles are entrapped and incorporated into the coating, most of them bounce off when they hit the substrate.
- the accumulation of splats and small amount of unmelted particles results in the coating formation. Due to shrinkage occurred during rapid solidification and imperfect packing of splats and unmelted particles, voids and cracks are generated in the coating.
- porosity refers to a void with an aspect ratio (length divided by width) of less than about 10.
- Typical porosity is in the range of about 5.about.20 volume percent, preferably in the range of about 7.about.15 volume percent.
- Micro cracks refers to a void with an aspect ratio (length divided by width) of larger than about 10 and the length of the void is less than about 100 micrometers.
- Typical volume percentage of micro cracks is in the range of about 2.about.15 volume percent, preferably in the range of about 5.about.10 volume percent.
- FIG. 7 Another high purity coating structure that comprise a ceramic matrix, porosity, macro cracks and micro cracks ( FIG. 7 ) can be achieved by thermal spray processes, such as air plasma spray, flame spray or low pressure plasma spray.
- the high purity coating structure 130 of FIG. 7 is formed by injecting particles of inventive materials into a high temperature and high velocity flame. These particles are then heated and accelerated in the flame. Before reaching the substrate, some particles are molten, while some other particles are semi-molten or not melted.
- splats Molten and semi-molten particles strike on the substrate 100 (or optional bond coat 112 ) and then spread and solidify rapidly to form disk-like deposits, which is referred to as splats. Although some unmelted particles are entrapped and incorporated into the coating, most of them bounce off when they hit the substrate. The accumulation of splats 131 and small amount of unmelted particles results in the coating formation 130 . Due to shrinkage occurred during rapid solidification and imperfect packing of splats and unmelted particles, voids and cracks are generated in the coating. When coating deposition conditions are controlled to generate large shrinkage stress and improve the packing of splats to reduce voids and gaps between splats, cracks 132 normal to the coating 130 and substrate 100 interface are created.
- macro cracks refers to a void with an aspect ratio (length divided by width) of larger than about 10 and the length of the void is longer than about 100 micrometers. More than about 90% of the macro cracks are arranged in the direction normal to the top coat and substrate interface. These macro cracks are referred to as vertical macro cracks, while the macro cracks parallel to the top coat and substrate interface are referred to as horizontal vertical cracks.
- typical volume percentage of porosity and micro cracks is less than about 10% and 5%, preferably less than about 5% and 3%, respectively.
- the average number of vertical macro cracks in a length of 25.4 mm along the top coat and substrate interface is in the range of about 5 to 250, preferably in the range of about 50 to 150.
- TBCs produce using vapor deposition process such as EB-PVD or low pressure (lower than ambient) plasma spraying
- TBCs produced using thermal spray processes usually have a higher durability than TBCs produced using thermal spray processes.
- FIG. 8 if vapor deposition process was employed, another high purity coating structure 140 that comprises ceramic columns 143 and gaps 141 between them can be achieved.
- An optional bond coat 112 is shown between the substrate 100 and the coating 140 .
- the high purity coating structure 140 is formed by vaporizing the inventive high purity materials in a form of powder, ingot, target, solution or suspension. The formed vapor then deposited atomically on the substrate. By controlling processing temperature and pressure according to the Thornton's model ( FIG. 9 ), a coating with columnar structure is formed.
- ceramic columns 143 are basically a cluster of crystals. More than about 90% of the crystals are at an angle of about 45 to 135 degree to the top coat and substrate interface. Within the cluster of crystals, voids smaller than about 20 micrometers are present.
- the gaps 141 between the columns have an aspect ratio (length divided by width) of larger than about 10. More than about 90% of the gaps are at an angle of about 45 to 135 degree to the top coat and substrate interface.
- the high purity coating structure 150 comprises ceramic columns 143 , gaps between the columns 141 , and nodules 142 distributing randomly in the gaps and columns.
- An optional bond coat 112 is shown between the substrate 100 and the coating 150 .
- ceramic columns 143 are basically a cluster of crystals. More than 90% of the crystals are oriented at an angle of 45 to 135 degree to the top coat and substrate interface. Within the cluster of crystals 143 , voids smaller than 20 micrometers are present.
- the gaps 141 between the columns have an aspect ratio (length divided by width) of larger than about 10. More than 90% of the gaps 141 are oriented at an angle of 45 to 135 degree to the top coat and substrate interface.
- the nodules 142 distributing randomly in the gaps and columns are frozen droplets. The size of these nodules 142 is typically less than about 45 micrometers, preferably less than about 30 micrometers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Structural Engineering (AREA)
- Plasma & Fusion (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Coating By Spraying Or Casting (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
- The present application is a continuation of parent U.S. application Ser. No. 15/836,369 filed Dec. 8, 2017, which is a continuation of U.S. application Ser. No. 13/913,101 filed Jun. 7, 2013 (now U.S. Pat. No. 9,975,812 issued May 22, 2018), which is a continuation of U.S. application Ser. No. 11/790,430 filed Apr. 25, 2007 (now U.S. Pat. No. 8,603,930 issued Dec. 10, 2013), which is a continuation-in-part of U.S. patent application Ser. No. 11/520,043 filed Sep. 13, 2006 (now U.S. Pat. No. 7,723,249 issued May 25, 2010), which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 60/724,268 filed Oct. 7, 2005, the disclosures of which are expressly incorporated by reference herein in their entireties.
- Not Applicable.
- Not Applicable.
- The invention relates to ceramic materials for thermal barriers and abradable coating systems in high temperature and high temperature cycling applications, and more particularly to ultra-pure zirconia materials for use in thermal barrier and abradable coating applications.
- Superior high-temperature properties are required to improve the performance of heat resistant and corrosion resistant members. These members include, for example gas turbine blades, combustor cans, ducting and nozzle guide vanes in combustion turbines and combined cycle power plants. Turbine blades are driven by hot gasses, and the efficiency of the gas turbine increases with the rise in operational temperature. The demand for continued improvement in efficiency has driven the system designers to specify increasingly higher turbine operating temperatures. Thus, there is a continuing need for materials that can achieve higher operational temperatures.
- Thermal barrier coatings are used to insulate components, such as those in a gas turbine, operating at elevated temperatures. Thermal barriers allow increased operating temperature of gas turbines by protecting the coated part (or substrate) from direct exposure to the operating environment. An important consideration in the design of a thermal barrier is that the coating be a ceramic material having a crystalline structure containing beneficial cracks and voids, imparting strain tolerance. If there were no cracks in the coating, the thermal barrier would not function, because the differences in thermal expansion between the metal substrate system and the coating will cause interfacial stresses upon thermal cycling that are greater than the bond strength between them. By the creation of a crack network into the coating, a stress relief mechanism is introduced that allows the coating to survive numerous thermal cycles. Repeating crack networks are typically imparted into the coating on varying space scales by manipulating the thermodynamic and kinetic conditions of the manufacturing method, and different structures known to perform the coating task have been optimized likewise. In addition to this, cracks are also formed during service, so the structure formed upon coating manufacture changes with time, depending on the starting material phases in the manufactured coating and thermal conditions during service.
- Another design factor determining coating lifetime is the sintering rate of the coating. When the coating is cycled above half of its absolute melting temperature, the coating begins to sinter causing volume shrinkage. As the coating shrinks, the stress difference between the coating and substrate increases. At a certain amount of shrinkage (which varies depending on the type of structure and thermal conditions during service), the stress difference exceeds the bonding strength of the coating and it becomes detached. Decreasing the sintering rate of the thermal barrier increases the amount of time before the catastrophic shrinkage is experienced, so it can become a major design consideration. For high purity zirconia alloys, the onset of sintering commences at temperatures above 1000° C.
- Historically, high temperature thermal barrier coatings have been based on alloys of zirconia. Hafnia may also be employed due to its chemical similarity to zirconia, but is generally cost-prohibitive. Hafnia also is typically present in most zirconia materials in more than trace amounts due to difficulty in separating the two oxides. Zirconia and/or hafnia have the following combination of desirable properties that other known ceramic systems do not possesses for the application. First, zirconia alloys have some of the highest melting points of all ceramics, and this means theoretically some of the highest temperatures for which the onset of sintering occurs. Second, zirconia alloys have one of the lowest thermal conductivities of all ceramics. Third, zirconia has one of the highest coefficients of thermal expansion of all ceramics, so it is most compatible with transition metal alloys during thermal cycling.
- Zirconia alone cannot fulfill the coating requirements because it undergoes a phase transformation from tetragonal to monoclinic during thermal cycling. This transformation is presumed to cause a detrimental volume change resulting in large strain differences between the coating and the substrate. When the resulting stresses exceed the bond strength of the coating to the substrate, the coating will detach. For this reason a phase stabilizer is added to the zirconia and/or hafnia, such as yttria, which suppresses the tetragonal to monoclinic phase transformation.
- Thermal spray abradable coatings are commonly used in gas turbine applications. Abradable coatings are designed to preferentially abrade when contact is made with a mating part. These coatings have low structural integrity so they are readily abraded when they come into contact with a moving surface with higher structural integrity (such as the blade of a turbine). The coatings are designed so as not to damage the mating surface. In many applications abradable coatings are subject to the same thermal cycling conditions as the thermal barriers described above. Thus, there is a continuing need for materials suitable for abradable coatings that can achieve higher operational temperatures.
- Some previous efforts to improve coating life have focused on the coating material and microstructure upon entry into service. However, the heat cycle of in service parts also causes cracks throughout the service life of the part. Thus, the microstructure formed upon coating manufacture changes with time, depending on the starting material phases in the manufactured coating and thermal conditions during service. Because a consistent optimal crack network is not typically maintainable throughout the service life of the part, coating lifetime is ultimately determined by the material selection and its manufacturing process. There remains a need in the art for a coating material, coating material manufacturing method, and coating manufacturing method that address the changes in the coating microstructure during its service lifetime.
- Accordingly, the invention is directed to a ceramic material for use in thermal barriers for high temperature cycling applications and high temperature abradable coatings. The material is an alloy formed predominantly from ultra-pure stabilized zirconia (ZrO2) and/or hafnia (HfO2) alloys that have uncharacteristically high sintering resistance to achieve a high service lifetime. The invention provides a desired coating material so that the changes in the coating microstructure over the in-service lifetime are retarded.
- The limits for impurities discovered to decrease sintering rate and therefore increase service lifetime compared with current impurity concentrations when used as a coating and partially stabilized with a rare earth oxide, for example, yttria (Y2O3) and/or ytterbia (Yb2O5), are disclosed herein. Oxide impurities are defined as materials which, when combined with each other or with zirconia and/or hafnia, form phases with melting points much lower than that of pure zirconia and/or hafnia.
- In one aspect, the invention provides a ceramic material for use in high-temperature thermal barriers or abradable seal coatings. The said material has about 4 to 20 weight percent of a stabilizer of one or more rare earth oxides; and a balance of at least one of zirconia (ZrO2), hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the stabilizer, and wherein the total amount of impurities is less than or equal to 0.15 weight percent.
- In another aspect of the invention a blended ceramic material of one or more ceramic materials is provided. Each of the ceramic materials is for use in high-temperature thermal barriers or abradable seal coatings and is supplied in the form of one of a powder or a slurry of partially stabilized powder. Each of the ceramic materials has about 4 to 20 weight percent of a stabilizer of one or more rare earth oxides and a balance of at least one of zirconia (ZrO2), hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the stabilizer, and wherein the total amount of impurities of the blended ceramic material is less than or equal to 0.15 weight percent. Additional ceramic materials or placeholder materials may also be included in the blended material.
- Conventional approaches to improving coating life-cycles have focused on adding stabilizers to the base ceramic material. The approach of the present invention provides previously unexpected results in sintering data by identifying low-impurity materials. When looking at the sintering data, changing the amount of impurities slightly has a much greater effect on performance compared with changing the amount and types of stabilizers.
- In embodiments, there is provided a high purity yttria or ytterbia stabilized zirconia powder wherein a purity of the zirconia is at least 99.5 weight percent purity and a maximum amount of oxide impurities is as follows: less than 0.005 weight percent SiO2; less than 0.015 weight percent Al2O3; less than 0.002 weight percent TiO2; less than 0.04 weight percent Fe2O3; less than 0.02 weight percent CaO; less than 0.002 weight percent MgO. The impurities may include less than 0.001 weight percent Cr2O3 and less than 0.002 weight percent Na2O.
- In embodiments, the powder is a thermal sprayable powder.
- In embodiments, the zirconia is partially stabilized by the yttria.
- In embodiments, the powder has a particle size of from about 5 to 150 microns.
- In embodiments, there is provided a method of applying a thermal barrier coating on a substrate, the method comprising thermally spraying the powder of
claim 1 onto the substrate so as to form the thermal barrier coating having from about 5 to 250 vertical macro cracks per 25.4 mm length measured along a coating surface and being oriented perpendicular to a surface of the substrate containing said coating. - In embodiments, there is provided a high purity yttria or ytterbia stabilized hafnia powder wherein a purity of the hafnia is at least 99.5 weight percent purity and a maximum amount of oxide impurities is as follows: less than 0.002 weight percent Na2O; less than 0.005 weight percent SiO2; less than 0.015 weight percent Al2O3; less than 0.002 weight percent TiO2; less than 0.04 weight percent Fe2O3; less than 0.02 weight percent CaO; less than 0.002 weight percent MgO; and less than 0.001 weight percent Cr2O3.
- In embodiments, the powder is a thermal sprayable powder.
- In embodiments, the hafnia is partially stabilized by the yttria.
- In embodiments, the powder has a particle size of from about 5 to 150 microns.
- In embodiments, there is provided a method of applying a thermal barrier coating on a substrate, the method comprising thermally spraying the powder of
claim 6 onto the substrate so as to form the thermal barrier coating having from about 5 to 250 vertical macro cracks per 25.4 mm length measured along a coating surface and being oriented perpendicular to a surface of the substrate containing said coating. - In embodiments, there is provided a high purity yttria stabilized zirconia powder comprising a purity of the zirconia being at least 99.5 weight percent purity, less than about 0.005 weight percent silicon dioxide (silica), less than about 0.015 weight percent aluminum oxide (alumina), less than about 0.02 weight percent calcium oxide, less than about 0.04 weight percent ferric oxide, less than about 0.002 weight percent magnesium oxide, and less than about 0.002 weight percent titanium dioxide.
- In embodiments, the powder is a thermal sprayable powder.
- In embodiments, the zirconia is partially stabilized by the yttria.
- In embodiments, the powder has a particle size of from about 5 to 150 microns.
- In embodiments, there is provided a method of applying a thermal barrier coating on a substrate, the method comprising thermally spraying the powder of claim 11 onto the substrate so as to form the thermal barrier coating having from about 5 to 250 vertical macro cracks per 25.4 mm length measured along a coating surface and being oriented perpendicular to a surface of the substrate containing said coating.
- In embodiments, there is provided a method of coating a substrate with a thermal barrier coating (TBC) on a substrate via thermal spray, the method comprising spraying a powder coating material comprising a yttria stabilized material comprising zirconia and hafnia, wherein a purity of each of said zirconia and said hafnia being at least 99.5 weight percent and total impurities of said zirconia and said hafnia comprises less than or equal to: about 0.005 weight percent silica, about 0.002 weight percent titania, and about 0.002 weight percent magnesia and forming a TBC coating by depositing the coating material in the form of a collection of frozen droplets or splats, wherein the TBC coating comprises vertical cracks arranged at repeating intervals and extending in a thickness direction of said thermal barrier coating.
- Embodiments are directed to a ceramic powder that includes a primary stabilizer oxide comprising 4-20 weight percent and oxide impurities up to a maximum of 0.15 weight percent and a first material comprising a balance of the ceramic powder. The first material is partially stabilized by the primary stabilizer oxide into a first partially stabilized material. The oxide impurities, when combined with each other or with the first partially stabilized material, form phases with melting temperatures at least 100° C. lower than the melting temperature of the first material.
- According to embodiments, the first material can include at least one of zirconia or hafnia; and the primary stabilizer oxide can include at least one of a yttria or a ytterbia stabilizer. The oxide impurities may include less than 0.005 weight percent SiO2; less than 0.015 weight percent Al2O3; less than 0.002 weight percent TiO2; and less than 0.002 weight percent MgO. The oxide impurities may further include less than 0.04 weight percent Fe2O3; less than 0.02 weight percent CaO; less than 0.001 weight percent Cr2O3; and less than 0.002 weight percent Na2O.
- In embodiments, the powder can be a thermal sprayable powder.
- In accordance with other embodiments, powder may have a high purity of at least 99.5 weight percent purity.
- According to still other embodiments, the powder may have a particle size of from about 5 to 150 microns.
- Embodiments are directed to a blended ceramic powder that includes a first material composition having: a first primary stabilizer oxide comprising 4-16 weight percent and first oxide impurities up to a maximum of 0.15 weight percent and a first material comprising a balance of the first material composition, wherein the first material is partially stabilized by the first primary stabilizer oxide into a first partially stabilized material. The first oxide impurities, when combined with each other or with the first partially stabilized material, form phases with melting temperatures at least 100° C. lower than the melting temperature of the first material. The blended ceramic powder also includes a second material composition having: a second primary stabilizer oxide comprising 4-20 weight percent and second oxide impurities up to a maximum of 0.15 weight percent and a second material comprising a balance of the second material composition, wherein the second material is partially stabilized by the second primary stabilizer oxide into a second partially stabilized material. The second oxide impurities, when combined with each other or with the second partially stabilized material, form phases with melting temperatures at least 100° C. lower than the melting temperature of the second material.
- In accordance with embodiments, the first material may include at least one of zirconia or hafnia, the first primary stabilizer oxide may include 4-12 weight percent of a yttria stabilizer, and a fraction of the first material in the blended powder may be 5-50 weight percent, and the second material may include at least one of zirconia or hafnia, the second primary stabilizer oxide may include 4-16 weight percent of a ytterbia stabilizer, and a fraction of the second material in the blended powder may be 50-95 weight percent.
- According to further embodiments, the blended ceramic powder may further include a third material composition having a third primary stabilizer oxide comprising 4-20 weight percent and second oxide impurities up to a maximum of 0.15 weight percent and a third material including a balance of the third material composition, wherein the third material is partially stabilized by the third primary stabilizer oxide into a second partially stabilized material. The third first oxide impurities, when combined with each other or with the third partially stabilized material, may form phases with melting temperatures at least 100° C. lower than the melting temperature of the third material. Moreover, the third material composition can include at least one of zirconia or hafnia and the third primary stabilizer oxide can include at least one of 4-16 weight percent of a neodymium stabilizer or 4-20 weight percent Europa stabilizer. The fraction of the first material in the blended powder can be 10-90 weight percent, the fraction of the second material in the blended powder can be 5-45 weight percent and the fraction of the third material in the blended powder can be 5-45 weight percent.
- In other embodiments, the first material can include at least one of zirconia or hafnia, the first primary stabilizer oxide can include 4-16 weight percent of a ytterbia stabilizer, and the first material fraction of the blended powder can be 5-50 weight percent, and the second material can include at least one of zirconia or hafnia, the second primary stabilizer oxide can include at least one of 4-16 weight percent of a neodymium stabilizer or 4-20 weight percent Europa stabilizer, and the second material fraction of the blended powder can be 50-95 weight percent.
- According to other embodiments, the first material may include at least one of zirconia or hafnia, the first primary stabilizer oxide may include 4-12 weight percent of a yttria stabilizer, and the first material fraction of the blended powder may be 50-95 weight percent, and the second material may include at least one of zirconia or hafnia, the second primary stabilizer oxide may include at least one of 4-16 weight percent of a neodymium stabilizer or 4-20 weight percent Europa stabilizer, and the second material fraction of the blended powder may be 5-50 weight percent.
- In accordance with still other embodiments, at least one of the first, second and third oxide impurities can include less than 0.005 weight percent SiO2; less than 0.015 weight percent Al2O3; less than 0.002 weight percent TiO2; and less than 0.002 weight percent MgO. Moreover, the at least one of the first, second or third oxide impurities can further include less than 0.04 weight percent Fe2O3; less than 0.02 weight percent CaO; less than 0.001 weight percent Cr2O3; and less than 0.002 weight percent Na2O.
- In embodiments, the blended ceramic powder may be a thermal sprayable powder.
- In other embodiments, the blended ceramic powder can have a particle size of from about 5 to 150 microns.
- In accordance with still yet other embodiments, the blended ceramic powder may have a high purity of at least 99.5 weight percent purity.
- Additional aspects, embodiments and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
- The accompanying drawings are included to provide further understanding of the invention and are incorporated in and constitute a part of this specification. The accompanying drawings illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the figures:
-
FIG. 1 illustrates a perspective view of a turbine blade coated with a thermal barrier of ceramic material; -
FIG. 2 provides a graph showing the effect of impurities on the sintering rates; -
FIG. 3 provides a phase diagram for ZrO2; -
FIG. 4 provides a standard phase diagram for stabilized ZrO2 showing the general alloying trends for various stabilizers [Ceramic Phase Diagram,Volume 4, Fig 05241]; -
FIG. 5 provides a phase diagram for ZrO2 with stabilizer; -
FIG. 6 provides a diagram showing a lamellar thermal barrier coating structure containing porosity and microcracks; -
FIG. 7 provides a diagram showing a thermal barrier coating containing porosity, microcracks and macrocracks; -
FIG. 8 provides a diagram showing a thermal barrier coating deposited from the vapor phase; -
FIG. 9 provides a diagram showing the Thornton model for predicting structure of a coating formed from the gas phase; and -
FIG. 10 provides a diagram showing a thermal barrier coating deposited from both vapor and liquid phase. - Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
- In an exemplary use of a material of the invention,
FIG. 1 shows one component of a turbine.Turbine blade 100 has aleading edge 102 and anairfoil section 104, against which hot combustion gases are directed during operation of the turbine, and which undergoes severe thermal stresses, oxidation and corrosion. Aroot end 106 of the blade anchors theblade 100. Ventingpassages 108 may be included through theblade 100 to allow cooling air to transfer heat from theblade 100. Theblade 100 can be made from a high temperature resistant material. The surface of theblade 100 is coated with athermal barrier coating 110 made of ultra-pure zirconia (ZrO2) and/or hafnia (HfO2) alloys in accordance with the invention. Thethermal barrier coating 110 may be applied on, for example, a MCrAlY bonding layer with an alumina scale (not shown) applied between the blade surface and thecoating 110. Thecoating 110 may be applied onto the bond coating surface through a variety of methods known in the art including thermal spray techniques such as powder flame spray and plasma spray and vapor deposition methods such as electron beam physical vapor deposition (EBPVD), high speed physical vapor deposition and low pressure plasma spraying (LPPS). - When applied, the
coating 110 contains a crack network that allows it to survive the stress of numerous thermal cycles. As described in the above background section, the crack network is altered to a less desirable state by sintering and temperature cycling during service. Thus the structure formed upon coating manufacture changes with time, the rate depending on the starting material phases. Decreasing the sintering rate increases the amount of time before the closing of microcracks and creation of massive cracks, increasing coating lifetime. - A dominant factor affecting sintering is the presence of specific impurity phases within the structure made up of oxides which when combined with each other or the zirconia alloy result in melting points hundreds of degrees lower than that of the zirconia alloy itself. These impurity oxides increase the sintering rate.
FIG. 2 shows the effect of impurity on the sintering rate. - In one embodiment of the present invention, the material contains zirconia (ZrO2) and/or hafnia (HfO2) partially stabilized by a total of 4 to 20 weight percent of one or more rare earth oxides having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. For purposes of the invention, rare earth oxides can be defined as any oxide from group IIIB (column 3) of the periodic table of elements, which includes scandia (Sc2O3), yttria (Y2O3), lanthanide oxides and actinide oxides.
- The material of the present invention contains zirconia (ZrO2) and/or hafnia (HfO2) partially stabilized by a total of 4 to 20 weight percent of a primary stabilizing oxide such as ytterbia and/or yttria, (and optionally additional stabilizers of one or more rare earth oxides) having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. For purposes of the present invention, oxide impurities can be defined as materials which when combined with each other or with zirconia form phases with melting points much lower than that of pure zirconia, especially—but not limited to—soda (Na2O), silica (SiO2), and alumina (Al2O3). Other specific concentration ranges of stabilizers are provided herein and in co-pending and commonly assigned U.S. patent application Ser. No. 11/520,041, entitled “HIGH PURITY CERAMIC ABRADABLE COATINGS,” U.S. patent application Ser. No. 11/520,044, entitled “OPTIMIZED HIGH TEMPERATURE THERMAL BARRIER,” and U.S. application Ser. No. 11/520,042, entitled “OPTIMIZED HIGH PURITY COATING FOR HIGH TEMPERATURE THERMAL CYCLING APPLICATIONS” each filed on Sep. 13, 2006 and each incorporated herein by reference.
- In accordance with embodiments of the invention, the limits for known impurities in order to achieve a desirable sintering rate and therefore increase service lifetime when used as a coating are about:
-
soda (Na2O) 0.1 weight percent silica (SiO2) 0.05 weight percent alumina (Al2O3) 0.01 weight percent titania (TiO2) 0.05 weight percent hematite (Fe2O3) 0.05 weight percent calcia (CaO) 0.05 weight percent, and magnesia (MgO) 0.05 weight percent. - In a preferred embodiment, the limits for known impurities are about:
-
Na2O 0.01 weight percent SiO2 0.01 weight percent Al2O3 0.01 weight percent TiO2 0.01 weight percent Fe2O3 0.01 weight percent CaO 0.025 weight percent, and MgO 0.025 weight percent. - The impurity limits in the embodiments above are not indicative that any or all of the impurities listed will be included in the material in any amount. The embodiment of the invention may include zero weight percent of one or more of the above-listed impurities.
-
FIG. 3 provides a phase diagram for pure zirconia. (The diagram can be found, for example, in Ceramic Phase Diagrams vol. 3, figure 04259.) As shown inFIG. 3 , pure zirconia exists in three crystal phases at different temperatures. At very high temperatures (>2370.degree. C.) the material has a cubic structure. At intermediate temperatures (1200 to 2372.degree. C.) it has a tetragonal structure. At relatively lower temperatures (below 1200.degree. C.) the material transforms to the monoclinic structure. The transformation from tetragonal to monoclinic is rapid and is accompanied by a 3 to 5 percent volume increase that causes extensive stress in the material. Thus, pure zirconia cannot fulfill the coating requirements for high-temperature cycling. The resulting strain difference between the coating and substrate caused by the phase transformation results in a stress that is greater than the bond strength between them, so the coating will detach. - In accordance with embodiments of the invention, in order to overcome the volume change caused by the undesired phase transformation described above, one or more elements are added to the zirconia to modify the amount of phase transformation that occurs. The stabilizing elements, which are suitable for changing the amount and rate of phase transformation that occurs in the oxide coating, may include the following: scandium, yttrium and the rare earths, particularly the lanthanides, since they have solubility in zirconia. Scandium is not typically used due to its rarity and resulting prohibitive cost. Use of rare earths metals from the actinide group such as uranium and thorium may be limited due to their radioactivity. Thus, yttrium is a preferred stabilizing element.
-
FIG. 4 provides a standard phase diagram for stabilized zirconia showing the general alloying trends for the zirconia stabilizers. A specific diagram for zirconia with yttria as a stabilizer is given inFIG. 5 . (The diagram can be found, for example, in Ceramic Phase Diagram, vol. Zirconia, figure Zr-157.) - Phase transformation in partially stabilized zirconia may possibly cause localized stresses that lead to the formation of micron-sized micro-cracks in the coating upon thermal cycling that cancel out some of the massive stress caused by coating volume shrinkage. Thus, these two phenomena of the coating structure—shrinking and cracking—work against each other and finding a balance between them will maximize coating lifetime. This mechanism implies then that the structure of the crack network of the coating is changing with time as the phase of the ceramic material changes. This mechanism is required for a thermal barrier or high temperature abradable coatings to survive thermal cycling.
- The addition of a stabilizing element affects two main properties of the zirconia coating system in a positive manner. First, the addition of a stabilizer as illustrated in
FIG. 4 generally increases the melting temperature of the zirconia (in the partially stabilized composition ranges). Second, the addition of a stabilizer generally decreases the thermal conductivity. Once the critical composition that has the highest thermal cycling values is found experimentally for a stabilizer, the stabilizers can be compared by the melting point at the critical composition. - Rising fuel cost and other factors continue to drive the need for improved operational efficiency, and thus higher operating temperatures, of gas turbines. While yttria stabilized zirconia is the material of choice for stabilization, greater operational temperatures can be achieved using ytterbia (
FIG. 4 ) for example. Zirconia partially stabilized by ytterbia provides a better composition, since it also has one of the lowest thermal conductivities of the potential stabilizers when alloyed with zirconia. As the need for higher operating temperatures increases, a higher coating material cost may be tolerated, so ytterbia partially stabilized zirconia may become a preferred thermal barrier or high temperature abradable coating system. Given then the trade-offs of cost and performance, a combination of both yttria and ytterbia stabilizers is expected to have optimum performance to cost ratio. - A blend of two or more partially stabilized high-purity material compositions may also be used. For example, in another embodiment, a blended ceramic material for use in high-temperature thermal barriers is provided. The blended materials include a first material with a yttria (Y2O3) stabilizer, and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the yttria stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Y2O3 stabilizer is about 4-12 weight percent, and preferably 6-9 weight percent. The second material of the blended material may contain a ytterbia (Yb2O5) stabilizer and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the ytterbia stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Yb2O5 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent. In the blended material, the ytterbia (Yb2O5) stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 5-50 weight percent of the total and preferably about 15-30 weight percent of the total. The yttria stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 50-95 weight percent of the total and preferably about 70-85 weight percent of the total blend.
- In another embodiment the blended material includes a first material with a ytterbia (Yb2O5) stabilizer, and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the ytterbia stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Yb2O5 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent. The second material of the blended material may contain a stabilizer of at least one of neodymium (Nd2O3), europia (Eu2O5), and combinations thereof and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the balance is partially stabilized by the stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Nd2O3 stabilizer is about 4-20 weight percent, and preferably 8-16 weight percent. The range of Eu2O3 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent. The range of the combined Nd2O3 and Nd2O3 stabilizer is about 4-16 weight percent. In the blended material, the ytterbia (Y2O3) stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 5-50 weight percent of the total and preferably about 15-30 weight percent of the total. The yttria stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 50-95 weight percent of the total and preferably about 70-85 weight percent of the total blend.
- In another embodiment of the invention the blended material includes a first material with a yttria (Y2O3) stabilizer, and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the yttria stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Y2O3 stabilizer is about 4-12 weight percent, and preferably 6-9 weight percent. The second material of the blended material may contain a stabilizer of at least one of neodymium (Nd2O3), europia (Eu2O5), and combinations thereof and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the balance is partially stabilized by the stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Nd2O3 stabilizer is about 4-20 weight percent, and preferably 8-16 weight percent. The range of Eu2O3 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent. The range of the combined Nd2O3 and Eu2O3 stabilizer is about 4-16 weight percent. In the blended material, the neodymium (Nd2O3) and/or europia (Eu2O5) stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 5-50 weight percent of the total and preferably about 15-30 weight percent of the total. The yttria stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 50-95 weight percent of the total and preferably about 70-85 weight percent of the total blend.
- In a further embodiment of the invention the blended material includes a blend of at least three materials. The first material may contain a yttria (Y2O3) stabilizer, and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the yttria stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Y2O3 stabilizer is about 4-12 weight percent, and preferably 6-9 weight percent. The second material of the blend may contain a ytterbia (Yb2O5) stabilizer, and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the zirconia (ZrO2) and/or hafnia (HfO2) is partially stabilized by the ytterbia stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Yb2O5 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent. The third material of the blend may contain a stabilizer of at least one of neodymium (Nd2O3), europia (Eu2O5), and combinations thereof and a balance of at least one of zirconia (ZrO2) and hafnia (HfO2) and combinations thereof, wherein the balance is partially stabilized by the stabilizer, and having total impurities less than or equal to 0.15 weight percent, and preferably less than or equal to 0.1 weight percent. The range of Nd2O3 stabilizer is about 4-20 weight percent, and preferably 8-16 weight percent. The range of Eu2O3 stabilizer is about 4-16 weight percent, and preferably 10-16 weight percent. The range of the combined Nd2O3 and Eu2O3 stabilizer is about 4-16 weight percent. In the blended material, the ytterbia (Y2O3) stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 5-45 weight percent of the total, and preferably about 15-30 weight percent of the total. The neodymium (Nd2O3) and/or europia (Eu2O5) stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may also include about 5-45 weight percent of the total and preferably about 15-30 weight percent of the total. The yttria stabilized zirconia (ZrO2) and/or hafnia (HfO2) fraction may include about 10-90 weight percent of the total, and preferably about 30-60 weight percent of the total blend.
- Material of embodiments of the present invention can be provided in a variety of forms for use in thermal spray applications. For example, the material is supplied in the form of a powder, a slurry of powder, or a chemical solution of the constituents. If in powder form, the powder may be in the form of a spray dried powder of the individual constituents and organic binder, spray dried powder of the combined individual constituents and organic binder, fused and crushed powder, agglomerated and sintered powder, plasma densified material or powder from chemical solution routes. Typical particle sizes for the powders may vary but typically range between about 5-150 microns when deposited by various thermal spray equipment, preferably ranging between about 15-125 microns for air plasma spray and ranging between about 5-30 microns for low pressure plasma spray.
- Typically for thermal spray applications, a polymer or organic material in powder form can be added to the material blend. Powder may be in the form of a spray dried powder of the individual constituents and an organic binder, spray dried powder of the combined individual constituents and an organic binder, fused and crushed powder, agglomerated and sintered powder, plasma densified material or powder from chemical solution routes. The organic binder may be used to at least partially bond together the placeholder material and the ceramic material. For high temperature abradable coatings, the benefit of adding a fugitive phase is that a higher porosity than is achievable with conventional deposition methods. The increased porosity aids abradability by introducing more surfaces to the crack network of the coating, decreasing the coating elastic modulus and thus promoting controlled material removal. Thus, according to an embodiment of the invention, a coating material may have about 70 to 99 weight percent of an ultra-pure ceramic material as previously described and about 1-30 weight percent (and preferably 2-15 weight percent) of a placeholder material. The placeholder material may be an organic powder material or an inorganic powder material that can be burned out subsequent to deposition of the coating material.
- Porosities and cracks provide strain tolerance to TBCs and help to reduce thermal conductivities. Using thermal spray process, such as air plasma spray, flame spray or low pressure plasma spray, a high purity coating structure 120 (shown in
FIG. 6 ) that comprise a ceramic matrix, porosity and microcracks can be achieved. The high purity coating structure is formed by injecting particles of invention high purity materials into a high temperature and high velocity flame. These particles are then heated and accelerated in the flame. Before reaching the substrate, some particles are molten, while some other particles are semi-molten or not melted. Referring toFIG. 6 , molten and semi-molten particles strike on the substrate 100 (or optional bond coat 112) and then spread and solidify rapidly to form disk-like deposits 111, which are referred to as splats. Although some unmelted particles are entrapped and incorporated into the coating, most of them bounce off when they hit the substrate. The accumulation of splats and small amount of unmelted particles results in the coating formation. Due to shrinkage occurred during rapid solidification and imperfect packing of splats and unmelted particles, voids and cracks are generated in the coating. Herein, porosity refers to a void with an aspect ratio (length divided by width) of less than about 10. Typical porosity is in the range of about 5.about.20 volume percent, preferably in the range of about 7.about.15 volume percent. Micro cracks refers to a void with an aspect ratio (length divided by width) of larger than about 10 and the length of the void is less than about 100 micrometers. Typical volume percentage of micro cracks is in the range of about 2.about.15 volume percent, preferably in the range of about 5.about.10 volume percent. - In order to enhance the strain tolerance of the aforementioned high purity TBCs, macro cracks that runs normal to the top coat and substrate interface can be introduced into the coating. As a result, another high purity coating structure that comprise a ceramic matrix, porosity, macro cracks and micro cracks (
FIG. 7 ) can be achieved by thermal spray processes, such as air plasma spray, flame spray or low pressure plasma spray. The high purity coating structure 130 ofFIG. 7 is formed by injecting particles of inventive materials into a high temperature and high velocity flame. These particles are then heated and accelerated in the flame. Before reaching the substrate, some particles are molten, while some other particles are semi-molten or not melted. Molten and semi-molten particles strike on the substrate 100 (or optional bond coat 112) and then spread and solidify rapidly to form disk-like deposits, which is referred to as splats. Although some unmelted particles are entrapped and incorporated into the coating, most of them bounce off when they hit the substrate. The accumulation ofsplats 131 and small amount of unmelted particles results in the coating formation 130. Due to shrinkage occurred during rapid solidification and imperfect packing of splats and unmelted particles, voids and cracks are generated in the coating. When coating deposition conditions are controlled to generate large shrinkage stress and improve the packing of splats to reduce voids and gaps between splats, cracks 132 normal to the coating 130 andsubstrate 100 interface are created. Herein, macro cracks refers to a void with an aspect ratio (length divided by width) of larger than about 10 and the length of the void is longer than about 100 micrometers. More than about 90% of the macro cracks are arranged in the direction normal to the top coat and substrate interface. These macro cracks are referred to as vertical macro cracks, while the macro cracks parallel to the top coat and substrate interface are referred to as horizontal vertical cracks. For this coating structure, typical volume percentage of porosity and micro cracks is less than about 10% and 5%, preferably less than about 5% and 3%, respectively. The average number of vertical macro cracks in a length of 25.4 mm along the top coat and substrate interface is in the range of about 5 to 250, preferably in the range of about 50 to 150. - When coatings are produced using a vapor deposition process, such as electron beam assisted physical vapor deposition process (EB-PVD) or low pressure (lower than ambient) plasma spraying, the resulting coating has a unique columnar structure. The gaps between columns impart excellent strain tolerance to the coating. Accordingly, TBCs produce using vapor deposition process, such as EB-PVD or low pressure (lower than ambient) plasma spraying, usually have a higher durability than TBCs produced using thermal spray processes. As illustrated in
FIG. 8 , if vapor deposition process was employed, another highpurity coating structure 140 that comprisesceramic columns 143 andgaps 141 between them can be achieved. Anoptional bond coat 112 is shown between thesubstrate 100 and thecoating 140. The highpurity coating structure 140 is formed by vaporizing the inventive high purity materials in a form of powder, ingot, target, solution or suspension. The formed vapor then deposited atomically on the substrate. By controlling processing temperature and pressure according to the Thornton's model (FIG. 9 ), a coating with columnar structure is formed. Herein,ceramic columns 143 are basically a cluster of crystals. More than about 90% of the crystals are at an angle of about 45 to 135 degree to the top coat and substrate interface. Within the cluster of crystals, voids smaller than about 20 micrometers are present. Thegaps 141 between the columns have an aspect ratio (length divided by width) of larger than about 10. More than about 90% of the gaps are at an angle of about 45 to 135 degree to the top coat and substrate interface. - In low pressure (lower than ambient) plasma spraying process, if molten droplets are also generated during the vaporization of the invention high purity materials, then the entrapment and incorporation of these droplets into the coating results in the formation of another high purity coating structure. As illustrated in
FIG. 9 , the highpurity coating structure 150 comprisesceramic columns 143, gaps between thecolumns 141, andnodules 142 distributing randomly in the gaps and columns. Anoptional bond coat 112 is shown between thesubstrate 100 and thecoating 150. Herein,ceramic columns 143 are basically a cluster of crystals. More than 90% of the crystals are oriented at an angle of 45 to 135 degree to the top coat and substrate interface. Within the cluster ofcrystals 143, voids smaller than 20 micrometers are present. Thegaps 141 between the columns have an aspect ratio (length divided by width) of larger than about 10. More than 90% of thegaps 141 are oriented at an angle of 45 to 135 degree to the top coat and substrate interface. Thenodules 142 distributing randomly in the gaps and columns are frozen droplets. The size of thesenodules 142 is typically less than about 45 micrometers, preferably less than about 30 micrometers. - While exemplary embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous insubstantial variations, changes, and substitutions will now be apparent to those skilled in the art without departing from the scope of the invention disclosed herein by the Applicants. Accordingly, it is intended that the invention be limited only by the spirit and scope of the claims, as they will be allowed.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/318,631 US20210261465A1 (en) | 2005-10-07 | 2021-05-12 | Ceramic material for high temperature service |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US72426805P | 2005-10-07 | 2005-10-07 | |
US11/520,043 US7723249B2 (en) | 2005-10-07 | 2006-09-13 | Ceramic material for high temperature service |
US11/790,430 US8603930B2 (en) | 2005-10-07 | 2007-04-25 | High-purity fused and crushed zirconia alloy powder and method of producing same |
US13/913,101 US9975812B2 (en) | 2005-10-07 | 2013-06-07 | Ceramic material for high temperature service |
US15/836,369 US11046614B2 (en) | 2005-10-07 | 2017-12-08 | Ceramic material for high temperature service |
US17/318,631 US20210261465A1 (en) | 2005-10-07 | 2021-05-12 | Ceramic material for high temperature service |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/836,369 Continuation US11046614B2 (en) | 2005-10-07 | 2017-12-08 | Ceramic material for high temperature service |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210261465A1 true US20210261465A1 (en) | 2021-08-26 |
Family
ID=46455464
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/790,430 Active 2031-03-01 US8603930B2 (en) | 2005-10-07 | 2007-04-25 | High-purity fused and crushed zirconia alloy powder and method of producing same |
US13/913,101 Active US9975812B2 (en) | 2005-10-07 | 2013-06-07 | Ceramic material for high temperature service |
US15/836,369 Active 2027-10-23 US11046614B2 (en) | 2005-10-07 | 2017-12-08 | Ceramic material for high temperature service |
US17/318,631 Pending US20210261465A1 (en) | 2005-10-07 | 2021-05-12 | Ceramic material for high temperature service |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/790,430 Active 2031-03-01 US8603930B2 (en) | 2005-10-07 | 2007-04-25 | High-purity fused and crushed zirconia alloy powder and method of producing same |
US13/913,101 Active US9975812B2 (en) | 2005-10-07 | 2013-06-07 | Ceramic material for high temperature service |
US15/836,369 Active 2027-10-23 US11046614B2 (en) | 2005-10-07 | 2017-12-08 | Ceramic material for high temperature service |
Country Status (1)
Country | Link |
---|---|
US (4) | US8603930B2 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8603930B2 (en) * | 2005-10-07 | 2013-12-10 | Sulzer Metco (Us), Inc. | High-purity fused and crushed zirconia alloy powder and method of producing same |
US10242888B2 (en) | 2007-04-27 | 2019-03-26 | Applied Materials, Inc. | Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance |
US10622194B2 (en) | 2007-04-27 | 2020-04-14 | Applied Materials, Inc. | Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance |
US9023486B2 (en) | 2011-10-13 | 2015-05-05 | General Electric Company | Thermal barrier coating systems and processes therefor |
US9034479B2 (en) * | 2011-10-13 | 2015-05-19 | General Electric Company | Thermal barrier coating systems and processes therefor |
US9139477B2 (en) * | 2013-02-18 | 2015-09-22 | General Electric Company | Ceramic powders and methods therefor |
US10311996B2 (en) | 2013-02-20 | 2019-06-04 | Oerlikon Metco (Us) Inc. | Electrically insulating material for thermal sprayed coatings matching the coefficient of thermal expansion of the underlying body |
FR3013360B1 (en) * | 2013-11-19 | 2015-12-04 | Snecma | INTEGRATED SINTERING PROCESS FOR MICROFILERATION AND EROSION PROTECTION OF THERMAL BARRIERS |
WO2017058859A1 (en) | 2015-09-29 | 2017-04-06 | Celgene Corporation | Pd-1 binding proteins and methods of use thereof |
EA201990747A1 (en) | 2016-09-19 | 2019-10-31 | METHODS FOR TREATING IMMUNE DISORDERS WITH APPLICATION OF PROTEINS BINDING PD – 1 | |
JP2019534859A (en) | 2016-09-19 | 2019-12-05 | セルジーン コーポレイション | Method for treating vitiligo using PD-1 binding protein |
FR3058469B1 (en) | 2016-11-09 | 2020-08-21 | Safran | TURBOMACHINE PART COATED WITH A THERMAL BARRIER AND PROCEDURE TO OBTAIN IT |
US10294962B2 (en) * | 2017-06-30 | 2019-05-21 | United Technologies Corporation | Turbine engine seal for high erosion environment |
EP3428136B1 (en) * | 2017-07-14 | 2020-04-01 | Ansaldo Energia IP UK Limited | High temperature thermal insulation material, particularly for gas turbine, and manufacturing method thereof |
FR3077289A1 (en) | 2018-01-31 | 2019-08-02 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | POWDER FOR THERMAL BARRIER |
FR3077288A1 (en) * | 2018-01-31 | 2019-08-02 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | POWDER FOR THERMAL BARRIER |
US11014853B2 (en) | 2018-03-07 | 2021-05-25 | Applied Materials, Inc. | Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments |
US11167864B2 (en) * | 2018-04-27 | 2021-11-09 | The Boeing Company | Applying cold spray erosion protection to an airfoil |
US11021989B2 (en) * | 2018-07-18 | 2021-06-01 | Raytheon Technologies Corporation | Environmental barrier multi-phase abradable coating |
WO2020018855A1 (en) * | 2018-07-18 | 2020-01-23 | Quantum Industrial Development Corporation | External combustion heat engine combustion chamber |
US20210380675A1 (en) | 2018-09-28 | 2021-12-09 | Kyowa Kirin Co., Ltd. | Il-36 antibodies and uses thereof |
WO2020142125A2 (en) | 2018-10-09 | 2020-07-09 | Oerlikon Metco (Us) Inc. | High-entropy oxides for thermal barrier coating (tbc) top coats |
EP3663706B1 (en) * | 2018-12-06 | 2022-08-24 | General Electric Company | Quantitative multilayer assessment method |
US11866379B2 (en) | 2020-08-14 | 2024-01-09 | Rtx Corporation | Hafnon and zircon environmental barrier coatings for silicon-based components |
JP2024502832A (en) | 2020-12-31 | 2024-01-23 | アラマー バイオサイエンシーズ, インコーポレイテッド | Binding agent molecules with high affinity and/or specificity and methods for their production and use |
TW202337904A (en) | 2022-01-07 | 2023-10-01 | 美商壯生和壯生企業創新公司 | Materials and methods of il-1β binding proteins |
CN114672756B (en) * | 2022-04-02 | 2023-11-17 | 华东理工大学 | High-entropy superhigh-temperature zirconia-based thermal barrier coating material, preparation method and application thereof, and zirconia-based thermal barrier coating |
WO2024013727A1 (en) | 2022-07-15 | 2024-01-18 | Janssen Biotech, Inc. | Material and methods for improved bioengineered pairing of antigen-binding variable regions |
WO2024089551A1 (en) | 2022-10-25 | 2024-05-02 | Janssen Biotech, Inc. | Msln and cd3 binding agents and methods of use thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849142A (en) * | 1986-01-03 | 1989-07-18 | Jupiter Technologies, Inc. | Superplastic forging of zirconia ceramics |
US4939107A (en) * | 1988-09-19 | 1990-07-03 | Corning Incorporated | Transformation toughened ceramic alloys |
US20080213617A1 (en) * | 2006-05-26 | 2008-09-04 | Thomas Alan Taylor | Coated articles |
US9975812B2 (en) * | 2005-10-07 | 2018-05-22 | Oerlikon Metco (Us) Inc. | Ceramic material for high temperature service |
Family Cites Families (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU34279A1 (en) | 1955-03-28 | |||
IT1029806B (en) | 1975-02-20 | 1979-03-20 | Vtro Siv Spa Soc It | CONVEYOR ROLL FOR GLASS SHEET HEAT TREATMENT OVENS |
US4360598A (en) | 1980-03-26 | 1982-11-23 | Ngk Insulators, Ltd. | Zirconia ceramics and a method of producing the same |
US4377371A (en) | 1981-03-11 | 1983-03-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Laser surface fusion of plasma sprayed ceramic turbine seals |
US4430360A (en) | 1981-03-11 | 1984-02-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of fabricating an abradable gas path seal |
US4503130A (en) | 1981-12-14 | 1985-03-05 | United Technologies Corporation | Prestressed ceramic coatings |
US4481237A (en) | 1981-12-14 | 1984-11-06 | United Technologies Corporation | Method of applying ceramic coatings on a metallic substrate |
US4485151A (en) * | 1982-05-06 | 1984-11-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal barrier coating system |
US4457948A (en) | 1982-07-26 | 1984-07-03 | United Technologies Corporation | Quench-cracked ceramic thermal barrier coatings |
US4565792A (en) | 1983-06-20 | 1986-01-21 | Norton Company | Partially stabilized zirconia bodies |
US4535033A (en) | 1983-08-16 | 1985-08-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal barrier coating system |
US4520114A (en) | 1983-09-26 | 1985-05-28 | Celanese Corporation | Production of metastable tetragonal zirconia |
US4519840A (en) | 1983-10-28 | 1985-05-28 | Union Carbide Corporation | High strength, wear and corrosion resistant coatings |
US4626476A (en) | 1983-10-28 | 1986-12-02 | Union Carbide Corporation | Wear and corrosion resistant coatings applied at high deposition rates |
US4588607A (en) | 1984-11-28 | 1986-05-13 | United Technologies Corporation | Method of applying continuously graded metallic-ceramic layer on metallic substrates |
FR2578241B1 (en) | 1985-03-01 | 1990-03-30 | Rhone Poulenc Spec Chim | STABILIZED ZIRCONIA, ITS PREPARATION PROCESS AND ITS APPLICATION IN CERAMIC COMPOSITIONS |
US4822689A (en) | 1985-10-18 | 1989-04-18 | Union Carbide Corporation | High volume fraction refractory oxide, thermal shock resistant coatings |
US4639356A (en) | 1985-11-05 | 1987-01-27 | American Cyanamid Company | High technology ceramics with partially stabilized zirconia |
US4884820A (en) | 1987-05-19 | 1989-12-05 | Union Carbide Corporation | Wear resistant, abrasive laser-engraved ceramic or metallic carbide surfaces for rotary labyrinth seal members |
JPH01179725A (en) | 1988-01-08 | 1989-07-17 | Daido Steel Co Ltd | Production of partially stabilized zirconia having extremely high purity |
JPH01317167A (en) | 1988-03-15 | 1989-12-21 | Tosoh Corp | Calcined zirconium oxide compact for forming thin film and production thereof |
US4898368A (en) | 1988-08-26 | 1990-02-06 | Union Carbide Corporation | Wear resistant metallurgical tuyere |
US5015502A (en) | 1988-11-03 | 1991-05-14 | Allied-Signal Inc. | Ceramic thermal barrier coating with alumina interlayer |
US4936745A (en) | 1988-12-16 | 1990-06-26 | United Technologies Corporation | Thin abradable ceramic air seal |
US5073433B1 (en) | 1989-10-20 | 1995-10-31 | Praxair Technology Inc | Thermal barrier coating for substrates and process for producing it |
US5059095A (en) | 1989-10-30 | 1991-10-22 | The Perkin-Elmer Corporation | Turbine rotor blade tip coated with alumina-zirconia ceramic |
JPH03223455A (en) | 1990-01-29 | 1991-10-02 | Sugitani Kinzoku Kogyo Kk | Ceramic thermal spraying material |
JP3223455B2 (en) | 1991-10-21 | 2001-10-29 | 大日本印刷株式会社 | Method for producing liquid crystal / polymer composite film |
AU3323193A (en) | 1991-12-24 | 1993-07-28 | Detroit Diesel Corporation | Thermal barrier coating and method of depositing the same on combustion chamber component surfaces |
US5372845A (en) | 1992-03-06 | 1994-12-13 | Sulzer Plasma Technik, Inc. | Method for preparing binder-free clad powders |
US5630314A (en) | 1992-09-10 | 1997-05-20 | Hitachi, Ltd. | Thermal stress relaxation type ceramic coated heat-resistant element |
US5418003A (en) | 1993-09-10 | 1995-05-23 | General Electric Company | Vapor deposition of ceramic materials |
US5455119A (en) | 1993-11-08 | 1995-10-03 | Praxair S.T. Technology, Inc. | Coating composition having good corrosion and oxidation resistance |
US5520516A (en) | 1994-09-16 | 1996-05-28 | Praxair S.T. Technology, Inc. | Zirconia-based tipped blades having macrocracked structure |
US6102656A (en) | 1995-09-26 | 2000-08-15 | United Technologies Corporation | Segmented abradable ceramic coating |
EP0780484B1 (en) | 1995-12-22 | 2001-09-26 | General Electric Company | Thermal barrier coated articles and method for coating |
US6123997A (en) | 1995-12-22 | 2000-09-26 | General Electric Company | Method for forming a thermal barrier coating |
US6069103A (en) | 1996-07-11 | 2000-05-30 | Saint-Gobain/Norton Industrial Ceramics Corporation | LTD resistant, high strength zirconia ceramic |
US6117560A (en) | 1996-12-12 | 2000-09-12 | United Technologies Corporation | Thermal barrier coating systems and materials |
US6042878A (en) * | 1996-12-31 | 2000-03-28 | General Electric Company | Method for depositing a ceramic coating |
US5981088A (en) * | 1997-08-18 | 1999-11-09 | General Electric Company | Thermal barrier coating system |
US5993976A (en) * | 1997-11-18 | 1999-11-30 | Sermatech International Inc. | Strain tolerant ceramic coating |
US6190124B1 (en) | 1997-11-26 | 2001-02-20 | United Technologies Corporation | Columnar zirconium oxide abrasive coating for a gas turbine engine seal system |
US6180262B1 (en) | 1997-12-19 | 2001-01-30 | United Technologies Corporation | Thermal coating composition |
US5879753A (en) | 1997-12-19 | 1999-03-09 | United Technologies Corporation | Thermal spray coating process for rotor blade tips using a rotatable holding fixture |
SG72959A1 (en) | 1998-06-18 | 2000-05-23 | United Technologies Corp | Article having durable ceramic coating with localized abradable portion |
EP1126044A1 (en) | 2000-02-16 | 2001-08-22 | General Electric Company | High purity yttria stabilized zirconia for physical vapor deposition |
US6352788B1 (en) | 2000-02-22 | 2002-03-05 | General Electric Company | Thermal barrier coating |
JP3825231B2 (en) * | 2000-07-24 | 2006-09-27 | 三菱重工業株式会社 | Method for producing hollow ceramic powder for thermal spraying |
JP4463472B2 (en) | 2000-12-08 | 2010-05-19 | サルツァー・メトコ(ユーエス)・インコーポレーテッド | Pre-alloyed stabilized zirconia powder and improved thermal barrier coating |
US6432487B1 (en) | 2000-12-28 | 2002-08-13 | General Electric Company | Dense vertically cracked thermal barrier coating process to facilitate post-coat surface finishing |
US6544665B2 (en) | 2001-01-18 | 2003-04-08 | General Electric Company | Thermally-stabilized thermal barrier coating |
US7001859B2 (en) | 2001-01-22 | 2006-02-21 | Ohio Aerospace Institute | Low conductivity and sintering-resistant thermal barrier coatings |
US6812176B1 (en) | 2001-01-22 | 2004-11-02 | Ohio Aerospace Institute | Low conductivity and sintering-resistant thermal barrier coatings |
WO2002103074A1 (en) | 2001-06-15 | 2002-12-27 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine |
US6703334B2 (en) | 2001-12-17 | 2004-03-09 | Praxair S.T. Technology, Inc. | Method for manufacturing stabilized zirconia |
US20030118873A1 (en) | 2001-12-21 | 2003-06-26 | Murphy Kenneth S. | Stabilized zirconia thermal barrier coating with hafnia |
US6682821B2 (en) * | 2001-12-28 | 2004-01-27 | Kyocera Corporation | Corrosion-resistant ceramics |
UA74150C2 (en) | 2002-01-09 | 2005-11-15 | Дженерал Електрік Компані | method fOR formING thermal barrier coating (VARIANTS) and thermal barrier coating |
US20030138658A1 (en) | 2002-01-22 | 2003-07-24 | Taylor Thomas Alan | Multilayer thermal barrier coating |
US6503290B1 (en) | 2002-03-01 | 2003-01-07 | Praxair S.T. Technology, Inc. | Corrosion resistant powder and coating |
US6893994B2 (en) | 2002-08-13 | 2005-05-17 | Saint-Gobain Ceramics & Plastics, Inc. | Plasma spheroidized ceramic powder |
WO2005017226A1 (en) | 2003-01-10 | 2005-02-24 | University Of Connecticut | Coatings, materials, articles, and methods of making thereof |
JP2005002409A (en) | 2003-06-11 | 2005-01-06 | Toshiba Corp | Ceramic-coated member, method for manufacturing the same, and thermal-barrier coated high-temperature component using the ceramic-coated member |
US6960395B2 (en) | 2003-12-30 | 2005-11-01 | General Electric Company | Ceramic compositions useful for thermal barrier coatings having reduced thermal conductivity |
US6887595B1 (en) | 2003-12-30 | 2005-05-03 | General Electric Company | Thermal barrier coatings having lower layer for improved adherence to bond coat |
US20050142393A1 (en) | 2003-12-30 | 2005-06-30 | Boutwell Brett A. | Ceramic compositions for thermal barrier coatings stabilized in the cubic crystalline phase |
JP4531404B2 (en) * | 2004-01-13 | 2010-08-25 | 財団法人電力中央研究所 | Environment-resistant film structure and ceramic structure |
US7291403B2 (en) | 2004-02-03 | 2007-11-06 | General Electric Company | Thermal barrier coating system |
US20050238894A1 (en) | 2004-04-22 | 2005-10-27 | Gorman Mark D | Mixed metal oxide ceramic compositions for reduced conductivity thermal barrier coatings |
US7927722B2 (en) | 2004-07-30 | 2011-04-19 | United Technologies Corporation | Dispersion strengthened rare earth stabilized zirconia |
US20060141283A1 (en) | 2004-12-29 | 2006-06-29 | Honeywell International, Inc. | Low cost inovative diffused MCrAIY coatings |
US7723249B2 (en) | 2005-10-07 | 2010-05-25 | Sulzer Metco (Us), Inc. | Ceramic material for high temperature service |
EP1777302B1 (en) | 2005-10-21 | 2009-07-15 | Sulzer Metco (US) Inc. | Plasma remelting method for making high purity and free flowing metal oxides powder |
US20070274837A1 (en) | 2006-05-26 | 2007-11-29 | Thomas Alan Taylor | Blade tip coatings |
WO2007139694A2 (en) | 2006-05-26 | 2007-12-06 | Praxair Technology, Inc. | Blade tip coatings using high purity powders |
US7776459B2 (en) | 2006-08-18 | 2010-08-17 | United Technologies Corporation | High sodium containing thermal barrier coating |
FR2910466A1 (en) | 2006-12-21 | 2008-06-27 | Commissariat Energie Atomique | Preparation of refractory ceramic material powder comprises e.g. obtaining hafnium dioxide and yttrium oxide powder dry mixture, granulating, drying, filling mold with the mixture, isostatic/semi-isostatic pressing and sintering |
US7846561B2 (en) | 2007-09-19 | 2010-12-07 | Siemens Energy, Inc. | Engine portions with functional ceramic coatings and methods of making same |
-
2007
- 2007-04-25 US US11/790,430 patent/US8603930B2/en active Active
-
2013
- 2013-06-07 US US13/913,101 patent/US9975812B2/en active Active
-
2017
- 2017-12-08 US US15/836,369 patent/US11046614B2/en active Active
-
2021
- 2021-05-12 US US17/318,631 patent/US20210261465A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4849142A (en) * | 1986-01-03 | 1989-07-18 | Jupiter Technologies, Inc. | Superplastic forging of zirconia ceramics |
US4939107A (en) * | 1988-09-19 | 1990-07-03 | Corning Incorporated | Transformation toughened ceramic alloys |
US9975812B2 (en) * | 2005-10-07 | 2018-05-22 | Oerlikon Metco (Us) Inc. | Ceramic material for high temperature service |
US11046614B2 (en) * | 2005-10-07 | 2021-06-29 | Oerlikon Metco (Us) Inc. | Ceramic material for high temperature service |
US20080213617A1 (en) * | 2006-05-26 | 2008-09-04 | Thomas Alan Taylor | Coated articles |
US20140334939A1 (en) * | 2006-05-26 | 2014-11-13 | Praxair S.T. Technology, Inc. | High purity powders |
Also Published As
Publication number | Publication date |
---|---|
US20130295326A1 (en) | 2013-11-07 |
US20180099909A1 (en) | 2018-04-12 |
US8603930B2 (en) | 2013-12-10 |
US20120177836A1 (en) | 2012-07-12 |
US11046614B2 (en) | 2021-06-29 |
US9975812B2 (en) | 2018-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210261465A1 (en) | Ceramic material for high temperature service | |
US7723249B2 (en) | Ceramic material for high temperature service | |
US9034479B2 (en) | Thermal barrier coating systems and processes therefor | |
US6586115B2 (en) | Yttria-stabilized zirconia with reduced thermal conductivity | |
US9023486B2 (en) | Thermal barrier coating systems and processes therefor | |
EP1375701B1 (en) | Thermal barrier coating material | |
JP2010209472A (en) | Target for vaporizing under electron beam, method for manufacturing the same, thermal barrier material and coating obtained from the target, and mechanical parts including the coating | |
JP2003138368A (en) | Thermal barrier coating | |
EP2767525B1 (en) | Ceramic powders and methods therefor | |
EP1666627A2 (en) | Low thermal conductivity thermal barrier coating system and method therefor | |
US8784944B2 (en) | Plasma-spray powder manufacture technique | |
KR101166150B1 (en) | Durable thermal barrier coating having low thermal conductivity | |
JP7516293B2 (en) | Heat-resistant components and power generation systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |