US20210109019A1 - Apparatus and Method for Analyzing a Material - Google Patents

Apparatus and Method for Analyzing a Material Download PDF

Info

Publication number
US20210109019A1
US20210109019A1 US17/131,032 US202017131032A US2021109019A1 US 20210109019 A1 US20210109019 A1 US 20210109019A1 US 202017131032 A US202017131032 A US 202017131032A US 2021109019 A1 US2021109019 A1 US 2021109019A1
Authority
US
United States
Prior art keywords
excitation
optical medium
response signal
analysis device
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/131,032
Inventor
Alexander Bauer
Otto Hertzberg
Thorsten LUBINSKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DiaMonTech AG
Original Assignee
DiaMonTech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DiaMonTech AG filed Critical DiaMonTech AG
Priority to US17/131,032 priority Critical patent/US20210109019A1/en
Assigned to DIAMONTECH AG reassignment DIAMONTECH AG CHANGE OF CORPORATE ORGANIZATION Assignors: DIAMONTECH GMBH
Assigned to DIAMONTECH GMBH reassignment DIAMONTECH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUBINSKI, Thorsten, BAUER, ALEXANDER, HERTZBERG, OTTO
Publication of US20210109019A1 publication Critical patent/US20210109019A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0238Means for recording calibration data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1725Modulation of properties by light, e.g. photoreflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood

Definitions

  • the present intellectual property right relates to a device and a method for analyzing a material.
  • the device described here and the procedure described here can be used for example for the analysis of animal or human tissue, in one embodiment for the measuring of glucose or blood sugar.
  • the object of the invention is to specify a device with which a material, in particular an animal or human tissue or a component or ingredient of the tissue, can be analyzed particularly simply and cost-effectively.
  • German patent DE 10 2014 108 424 B3 the content of which is referred to specifically, and the content of which this application extends; by this explicit reference made here, the full contents of German patent DE 10 2014 108 424 B3 is therefore also to be regarded as part of the disclosure of this application (“incorporation by reference” for all details of that disclosure).
  • this reference relates to all the features given in the patent claims as granted.
  • the reference relates in particular to details of the excitation light beam mentioned there, for example, to the numerical values of the pulse frequencies and wavelengths (wavelength ranges) cited there, and also to the details relating to the measurement of glucose content in the interstitial fluid.
  • the present PCT property rights application also relates to other aspects, which are listed at the end of the present description. These aspects can be combined, either individually or in groups, with features of the claims cited at the time of filing. These aspects, whether taken alone or combined with each other or with the subject matter of the claims, represent stand-alone inventions. The applicant reserves the right to make these inventions the subject matter of claims at a later date. This can be done in the context of this application or else in the context of subsequent divisional applications, continuation applications (in the USA), continuation-in-part applications (in the USA) or subsequent applications claiming the priority of this application.
  • a device for analyzing a material with an excitation transmission device for generating at least one electromagnetic excitation beam, in particular an excitation light beam with at least one excitation wavelength, a detection device for detecting a response signal and a device for analyzing the material on the basis of the detected response signal.
  • a major advantage of this device is the fact that it can be used to analyze a material in a very simple and reliable way.
  • light is understood here to mean electromagnetic waves or electromagnetic radiation in the visible range, in the near and far infrared range and in the UV range.
  • the device has an optical medium which is in direct contact with the material, in particular with a first region of the surface of the material, in one embodiment the skin of a human being, wherein for detecting a response signal the detection device detects a parameter change of the optical medium, in particular in a region adjacent to the first region, as a result of the response signal, in particular a deformation and/or density change of the optical medium as a result of a local, time-dependent heating.
  • the optical medium may consist of a material which is optically transparent or transparent to infrared radiation or ultraviolet radiation, in general to the excitation beam and the measuring beam, such as glass, crystal, zinc sulphide (ZnS), zinc selenide (ZnSe), germanium (Ge), silicon (Si) and diamond or a transparent plastic, in one embodiment a polyethylene.
  • ZnS zinc sulphide
  • ZnSe zinc selenide
  • Ge germanium
  • Si silicon
  • diamond diamond or a transparent plastic, in one embodiment a polyethylene.
  • a local heating in response to a transport or transfer of heat from the material to be analyzed or from a substance of the material into the optical medium leads to a change therein, for example, a material deformation or thermal stresses or local changes in refractive index, which are detectable.
  • the material can in one embodiment be the tissue of a living organism, in particular a human being, wherein the material surface can be the skin. Substances in the tissue can then be analyzed or measured.
  • the detection device has a piezo-element connected to the optical medium or integrated into it, as a detector for detecting a stress, deformation and/or density change.
  • the detection device has at least one temperature sensor as a detector for detecting the response signal. This can be arranged directly on the optical medium or in its surroundings, depending on the measuring principle.
  • the device has a system for intensity modulation of the excitation light beam.
  • the detection device is preferably suitable for detecting a time-dependent response signal as a function of the wavelength of the excitation light and/or the intensity modulation of the excitation light.
  • the excitation transmission device radiates at least one electromagnetic excitation beam into a volume of material, which is underneath a first region of the surface of the material.
  • the excitation transmission device comprises two or more transmission elements, in particular in the form of a one-, two- or multi-dimensional transmission element array.
  • This can therefore be implemented as a surface array of transmission elements, or else as a transmission element strip (in one embodiment semiconductor laser arrays or QCL arrays, wherein QCL stands for quantum cascade laser).
  • the two or more transmission elements each generate their own electromagnetic excitation beam and radiate this into the volume underneath the first region.
  • the different excitation beams can also be emitted successively, or else at least partially at the same time.
  • the different transmission elements can also be operated with different modulation frequencies at the same time.
  • the wavelengths of the electromagnetic excitation beams of the two or more transmission elements are preferably different.
  • the wavelengths are preferably chosen in such a way that a substance to be detected in the material to be analysed absorbs radiation of these wavelengths particularly well. Additionally or alternatively, wavelengths or wavelength ranges can also be selected, which the substance to be detected does not absorb, but which are absorbed by other substances (so-called tolerant wavelengths), to distinguish the substance to be analyzed from other substances.
  • the excitation transmission device comprises two or more lasers, in particular in the form of a one- or two-dimensional laser array, wherein a plurality of rows of laser elements can be staggered and arranged offset one behind another in order to save space, in one embodiment in the form of a laser strip and/or two or more light-emitting diodes, in particular in the form of a one- or two-dimensional diode array, in a depth-staggered manner and offset relative to one another, in one embodiment of a two-dimensional array or a strip.
  • the output beams of the arrays can either have individual beam axes, close together or in parallel, for each beam element, or can have a same beam axis, by means of already integrated sets of optics.
  • the excitation transmission device is directly or indirectly—preferably by means of an adjustment device—mechanically fixedly connected to an optical medium, which is in direct contact with the material, in particular with the first region of the surface of the material. Therefore, the excitation transmission device can be aligned and fixed relative to the optical medium as early as the manufacturing stage, or at least before deployment.
  • the optical medium can have at least one built-in elevation and/or indentation, such as a bridge, a shoulder, a half-sphere mounted thereon, a mounted block, a cone or a drilled hole, a groove, a hollow or other recess, in or on which the above-mentioned elements (the excitation transmission device and/or elements of a detection device) can be placed, rested on or to which they can be aligned or fixed. It is also possible that aligned matching surfaces be formed on the optical medium by machining or in a casting process
  • the device for intensity modulation comprises an electrical or electro-mechanical modulation device, which is electrically connected to the excitation transmission device and in particular, electrically controls the same, or is formed by such a device.
  • the modulation device can generate an intensity modulation of the excitation beam, in one embodiment a periodic intensity modulation, also for example in the form of rectangular pulses, a sawtooth function or a sine-wave function or other periodic function.
  • the device for intensity modulation can comprise at least one controlled mirror arranged in the beam path, by the control of which the intensity of the excitation beam can be modulated by deflection.
  • the device for intensity modulation can comprise at least one layer, which is arranged in the beam path and is controllable with respect to its transparency, or can be formed by such a layer. Therefore, the modulation element can be designed in the form of a transmission element which is controlled with respect to its transmission. The modulation element can generate a plurality of spatially separated light beams from one light beam. It can also be provided in one embodiment that the surface of a sample can be scanned with the modulation element. In one embodiment, the modulation element can be controlled together with the array of light sources/laser sources.
  • a device for emitting a measuring beam, in particular a measuring light beam is in one embodiment provided for emitting the measuring beam into the particular area of an optical medium, which is in contact with the first region of the surface of the material.
  • the device for emitting a measuring beam and the detection device are aligned to each other in one embodiment in such a way that the detection device detects the measuring beam as the time-dependent response signal, after this beam has been reflected at least once at the interface of the optical medium that is in contact with the material, in particular with the first region of the surface of the material.
  • the device for emitting a measuring beam and/or the detection device and/or the excitation transmission device are directly fixedly mechanically connected to the optical medium and/or are coupled to the same by means of one or more fiber-optic cables.
  • Embodiments are also possible, in which the optical medium directly supports an imaging optics and/or an imaging optics is integrated into the optical medium.
  • the surface of the optical medium has a plurality of partial faces inclined towards each other, at which the measuring beam, in particular the measuring light beam, is reflected multiple times.
  • Embodiments can also be provided, in which one or more mirror surfaces for reflection of the measuring beam, in particular the measuring light beam, are provided in or on the optical medium.
  • the excitation transmission device and/or the device for emitting the measuring beam and/or the detection device are directly attached to each other or to a common support.
  • the various devices can be fixed to the support by welding or gluing or by screws or a snap-in connection, wherein an adjustment facility can be provided, either during assembly or else at a later time, by means of an adjusting screw or other mechanical adjustment device.
  • the device for emitting the measuring beam and/or the detection device should be, or capable of being, easily aligned with respect to each other. Therefore, it can be useful to attach these two devices directly to the optical medium.
  • the device for emitting the measuring beam and/or the detection device can also be arranged next to each other on the same side of the optical medium and on a common support, in one embodiment attached to a common printed circuit board or a common semiconductor, or else implemented as a common integrated semiconductor device, in one embodiment as a common integrated semiconductor component.
  • This support can then be adjusted as a unit relative to the optical medium, in a particular embodiment, even without further changing the relative position between the device for transmitting the measuring beam and/or the detection device.
  • the support is preferably formed by a printed circuit board, a metal plate or plastic plate or a housing or part of a housing of the device.
  • the excitation transmission device comprises an integrated semiconductor device, which has one or more laser elements and at least one micro-optical component and preferably an additional modulation element.
  • the above-mentioned elements can be manufactured, in one embodiment etched, jointly from one semiconductor blank or at least accommodated in a common housing.
  • the modulation element has at least one element, in particular a mirror, which is movable relative to the rest of the semiconductor device and is controllable with respect to its position. This can be controlled by means of a MEMS device.
  • the modulation element has a layer which is controllable in terms of its radiation permeability.
  • the modulation element has an electronic control circuit for the modulation of the one or more laser elements.
  • the modulation element can be constructed in such way that it varies the excitation beam in a time-dependent manner by interference, phase offset/path offset or a polarizing filter device or other known modulation mechanisms.
  • the micro-optical component or components can be mirrors or lenses that are either integrated into the semiconductor component or made from it in a subtractive process, in particular by etching.
  • the described device for analyzing a material can determine a measurement value of a material concentration, in one embodiment a glucose concentration.
  • the device can have an interface to a device for displaying measurement values and their analysis, for example by means of a color code for a user of the device, and/or to a dosing device for a substance which can be dispensed into the material, in particular the tissue or, more generally, the body of an organism.
  • the device can also directly comprise such a dosing device.
  • the device can also have a system for detecting or analyzing the material surface, in one embodiment the skin surface or in another embodiment the ocular surface or iris of a living being, which enables the identification of a person or a living being based on a comparison with reference data and can therefore be used to ensure that appropriate reference values and/or calibration values are provided for the analysis of the material and the control of the dosing device.
  • Determined characteristic values of the material surface in one embodiment a fingerprint or the structure of an iris of the eye, can, in addition to identifying and authenticating a person, e.g. against a database, also be used for encrypting the communication of status values and controlling the dosing device which, encrypted or unencrypted, can in principle be originated from the database.
  • the dosing device can be equipped with a sensor to determine a fill level of a substance to be dispensed, such as in one embodiment insulin and/or glucagon, and can have a device for transmitting the fill level to the device for material analysis and/or directly to the database.
  • a sensor to determine a fill level of a substance to be dispensed, such as in one embodiment insulin and/or glucagon
  • the device can have an interface, in one embodiment a radio interface to the database, to which the measurement values can be sent and which can process the data.
  • the database can be created in such a way that it processes and stores the data from a plurality of patients, that is, in one embodiment also the data from a plurality of similar devices for analyzing a material, and in one embodiment it also controls individual dosing devices for dispensing substances.
  • the database can also further process the measured data relating to the analyzed material and determine derived analysis results, such as any trend in the values, first and second time derivatives, minima, maxima, standard deviations of material quantities or concentrations, blood sugar values or other physiological values of patients, compare them and derive signals from them, which in one embodiment also includes alarm signals.
  • the fill level of the dosing device can also be detected and processed by the database in order to determine, in one embodiment, a temporal extent of the fill level or the need for refilling and to signal this directly to the patient's device or to a service facility.
  • the database can be connected to a communication device in a service facility, in one embodiment in a hospital or a medical practice.
  • the device can in one embodiment be connected to a mobile device or a pager by means of a radio link, in one embodiment Bluetooth or WLAN or Wifi, or other transmission methods.
  • the device can also be directly equipped with a WLAN interface and an internet client.
  • the subject matter also relates to a method for analyzing a material, wherein in the method at least one electromagnetic excitation beam with at least one excitation wavelength is generated with an excitation transmission device by the successive operation or the at least partially simultaneous operation of a plurality of laser emitters of a laser light source, and a response signal is detected with a detection device and the material is analyzed on the basis of the detected response signal.
  • the thermal diffusivity in the material and the temporal evolution or waveform of the response signal can be used to characterize the nature of the material or a spatial distribution of a substance in the material or to characterize the depth at which the excitation beam is absorbed.
  • response signals in particular temporal response signal waveforms or patterns
  • response signals can be successively determined and that a plurality of response signal waveforms or patterns at different modulation frequencies can be combined with each other and that, in particular, specific information for a depth range under the surface is obtained from this.
  • response signal waveforms or patterns are determined at different modulation frequencies for different wavelengths of the excitation beam and from these, in particular specific information is obtained for each depth range under the surface.
  • modulation frequencies of the pump beam it is possible, for example, to resolve the detected signal into its frequencies using an appropriate analysis method, for example a Fourier transformation; the FT would only filter out the signal that corresponds to the desired frequency.
  • an optical medium is brought into direct contact with the material, in particular with a first region of the surface of the material, the emitted excitation beam is generated and, in particular, emitted with the excitation transmission device in such a way that it penetrates into the optical medium and exits it again at a predetermined point on the surface of the optical medium, that a measuring beam, in particular a measuring light beam, is generated with a device for emitting a measuring beam in such a way that this beam penetrates the optical medium and that in particular, in operation, the measuring beam and the excitation beam overlap at an interface of the optical medium and the surface of the material at which the measuring beam is reflected, and that a reflected measuring beam which forms the response signal is measured and/or the deflection of the reflected beam is directly or indirectly detected with the detection device.
  • D the thermal diffusivity of the sample (here for example, skin)
  • f the modulation frequency of the excitation beam.
  • changes in the measurements compared to previous measurements can be used, in case the measurements in the top layers change more or less slowly in comparison to other, deeper layers.
  • the time derivative of measurements can also be applied to provide response signals to exclude the signals from the topmost layers of the skin.
  • the measurement, or at least the evaluation can be limited to or focused on the interstitial fluid in the skin.
  • a dosing device for dispensing a substance, in particular into a patient's body is controlled and/or an acoustic and/or visual signal is output and/or a signal is output to a processing device via a wireless connection.
  • a processing device in addition to a currently determined measurement a temporal development or evolution of the measurement values, a derivative of the measurement value, average values of the measurements, maxima, minima, a standard deviation and predefined thresholds for measurement values can be taken into account and combined with the current measurement value.
  • the processing device can be a database or connected to a database, which collects and processes data from a plurality of patients.
  • the database can be either directly connected to a control system of the device or be remote from and connected to it via a communication interface.
  • this is operated locally or from a database under the control of a preset standard procedure with preselected quantity deliveries at times that are or can be specified, and that by means of the above-described device meaningful deviations from preset delivery values can be determined that are used for the correction and improvement of the control of the dosing device. In this way, even in the event of a failure of the device at least a normal or emergency operation of the dosing device is guaranteed.
  • FIGS. 1 to 13 schematically show different elements of the device and its elements, in some cases in different embodiments. Specifically,
  • FIG. 1 shows a device in accordance with an embodiment of the invention
  • FIG. 2 shows an excitation transmission device in accordance with an embodiment of the invention
  • FIG. 3 shows a device in accordance with an embodiment of the invention
  • FIG. 4 shows a device in accordance with an embodiment of the invention
  • FIG. 5 shows a connector body in accordance with an embodiment of the invention
  • FIG. 6 shows a device in accordance with an embodiment of the invention
  • FIG. 7 shows a device in accordance with an embodiment of the invention
  • FIG. 8 shows a device in accordance with an embodiment of the invention
  • FIG. 9 shows a modulation device in accordance with an embodiment of the invention.
  • FIG. 10 shows an excitation light source in accordance with an embodiment of the invention
  • FIG. 11 shows an excitation light source in accordance with an embodiment of the invention
  • FIG. 12 shows a device in accordance with an embodiment of the invention.
  • FIG. 13 shows a graph of a wavelength range blocked by a filter in accordance with an embodiment of the invention.
  • FIG. 1 shows an exemplary embodiment of a device 10 for analyzing a material 101 .
  • the material 101 is preferably placed directly on an optical medium 108 , which can be designed as an optically transparent crystal or glass body.
  • the device for analyzing the material 101 is used for example to measure the glucose or blood sugar content in a fluid, such as in one embodiment blood, and for producing a glucose or blood sugar level indication BZA.
  • the device comprises an excitation transmission device 100 for emitting one or more electromagnetic excitation beams SA, preferably in the form of excitation light beams with one or more excitation wavelengths, into a volume 103 which is located in the material 101 below a first region 102 of the surface of the material.
  • the excitation transmission device 100 is also referred to in the following as “excitation light source” 100 for brevity.
  • the excitation light source 100 can be a laser which is tunable with respect to its wavelength, in particular a tunable quantum cascade lasers; it is preferable, as will be explained below, to use a light source strip or a light source array with at least two single emitters, in particular semiconductor lasers, each of which emits a specified individual wavelength.
  • a device 104 for the intensity modulation of the excitation light beam or beams SA is provided, which is preferably formed by a modulation device for the excitation light source, in particular for controlling it, and/or by at least one controlled mirror arranged in the beam path and/or by a layer, which is arranged in the beam path and is controllable with respect to its transparency.
  • the device has a system 105 for emitting an electromagnetic measuring beam 112 , in particular a measuring light beam, which is reflected, preferably totally reflected, at the interface GF between the material 101 and the optical medium 108 .
  • a detection device 106 is used for the detection of the reflected measuring beam 112 , which forms a time-dependent response signal SR; the amplitude of the response signal SR is influenced by the wavelength of the excitation light SA and the intensity modulation of the excitation light SA, as will be explained in more detail below by means of examples.
  • the amplitude of the measuring signal depends on the wavelength of the excitation beam, the absorption properties of the sample and the thermal properties, in particular the thermal diffusivity and thermal conductivity of the sample and of the optical element.
  • the coupling of the thermal signal from the sample into the optical element also plays a role.
  • a device 107 for analyzing the material evaluates the detected response signals SR and in one embodiment generates a glucose or blood sugar level indication BZA.
  • the operation of the device 10 in accordance with FIG. 1 and in this connection an example of a method for analyzing a material 101 will be described in more detail for the case in which the material 101 to be analyzed is human or animal tissue, and as part of the analysis of the material a glucose or blood sugar level indication BZA is to be determined.
  • an electromagnetic measurement beam 112 which is preferably a light beam in the visible wavelength range or an infrared light beam, is irradiated into the optical medium 108 ; this measurement beam 112 impinges on the interface GF below the first region 102 of the surface of the tissue. At the interface GF the measuring beam 112 is reflected and reaches the detection device 106 , which measures the reflected measurement beam 112 .
  • one or more excitation beams SA which are preferably infrared beams, are generated with the excitation light source 100 .
  • the wavelength of the infrared beams is preferably in a range between 3 ⁇ m and 20 ⁇ m, particularly preferably in a range between 8 ⁇ m and 11 ⁇ m.
  • the excitation beams SA are intensity- or amplitude-modulated with the device 104 for intensity modulation.
  • short light pulses are generated with the device 104 for intensity modulation, preferably with a pulse frequency of between 1 kHz and 1 MHz, or else pulse packets (double or multiple modulation), preferably with envelope frequencies of 1-10 kHz.
  • the modulated excitation beams SA are coupled into the optical medium 108 and after passing through the interface GF arrive in the volume 103 within the tissue.
  • the wavelength of the excitation beams SA is preferably chosen such that the excitation beams SA are significantly absorbed by glucose or blood sugar.
  • the following infrared wavelengths are particularly well suited (vacuum wavelengths): 8.1 ⁇ m, 8.3 ⁇ m, 8.5 ⁇ m, 8.8 ⁇ m, 9.2 ⁇ m, 9.4 ⁇ m and 9.7 ⁇ m.
  • glucose-tolerant wavelengths can be used, which are not absorbed by glucose, in order to identify other substances present and allow for excluding their effect on the measurement.
  • the extent of the intensity modulation depends on the wavelength of the excitation beams SA (because of the necessary absorption in the tissue) and on the pulse frequency of the excitation beams SA (due to the temperature transport and the pressure waves from the tissue interior in the direction of the interface GF) and on the thermal properties of the sample and the medium.
  • the change in the reflection of the measuring beam 112 and/or the time-dependent change in the response signal SR is quantitatively acquired by the detection device 106 , and the detection result D reaches the device 107 .
  • the current concentration of glucose or blood sugar within the tissue or within the volume 103 can be deduced and a corresponding glucose or blood sugar indication BZA can be produced.
  • the comparison tables or comparison curves may have been created, for example on the basis of glucose or blood sugar levels which were determined based on blood samples.
  • the excitation transmission device 100 for emitting the excitation light beam or beams can be designed as an array, as shown in FIG. 2 .
  • the array has at least 5, advantageously at least 10, more advantageously at least 15 or at least 50 or 100 individually controllable emitters 100 a for monochromatic light in the absorption spectrum of a material to be analyzed.
  • the array preferably generates beams with monochromatic light with one or more, particularly preferably all of the following wavelengths (vacuum wavelengths): 8.1 ⁇ m, 8.3 ⁇ m, 8.5 ⁇ m, 8.8 ⁇ m, 9.2 ⁇ m, 9.4 ⁇ m and 9.7 ⁇ m and if desired, in addition glucose-tolerant wavelengths.
  • the device 105 for emission of the measuring light beam 112 and the detection device 106 can be arranged separately from the optical medium 108 , as shown in FIG. 1 . With a view to a minimal space requirement and minimal installation effort, it is regarded as advantageous if the device 105 for the emission of the measuring light beam 112 and the detection device 106 108 are mounted directly on the optical medium, preferably on opposite surface sections 108 a and 108 b of the optical medium 108 , as FIG. 3 shows.
  • the excitation device/excitation light source 100 is permanently mechanically connected to the optical medium 108 either directly or by means of an adjustment device 109 .
  • the adjustment device 109 preferably allows an adjustment of the distance of the excitation light source 100 from the optical medium 108 , and/or an adjustment in the beam longitudinal direction and/or an adjustment in a plane perpendicular thereto (see FIG. 4 ).
  • the device 105 can be provided for emission of the measuring light beam 112 into the region of the optical medium 108 that is in contact with the first region 102 of the material surface.
  • Such an arrangement allows the measuring light beam 112 to be irradiated at a flat angle and a total internal reflection to be induced at the interface of the optical medium 108 with the material 101 .
  • the mirage deflection analogously to the known photothermal ‘Bouncing Method’, can be made more effective and at the same time the deformation-induced deflection of the measuring beam can be reduced.
  • the angle between the sample surface and the measuring beam in one embodiment can be selected to be less than 20 degrees, less than 10 degrees, in particular less than 5 degrees, more particularly less than 2 degrees or 1 degree, in order to exploit this effect.
  • the deflection can be made more effective and at the same time the mirage-effect related deflection of the measuring beam can be reduced.
  • the angle between the material surface and the measuring beam in one embodiment can be selected to be greater than 20 degrees, greater than 30 degrees, in particular greater than 45 degrees, more particularly greater than 60 degrees or 70 degrees, to exploit this effect.
  • the device 105 for emitting the measuring light beam 112 and/or the detection device 106 for detecting the measuring light beam 112 and/or the response signal SR can be mechanically connected to the optical medium 108 in a supportive manner either directly or by means of an adjustment device, and/or coupled thereto by means of one or more fiber-optic cables 120 .
  • the optical medium 108 directly supports an imaging optics 128 and/or an imaging optics 129 (in each case) in the form of a lens or other reflection or refraction means, and/or that an imaging optics is integrated into the optical medium 108 .
  • the imaging optics can, however also be integrated into the excitation transmission device or the device for generating the measuring beam, for example, in the form of a lens or other reflection or diffraction element, if these are designed as integrated components and/or as a semiconductor component.
  • the imaging optics can in one embodiment be subtractively formed from the same semiconductor element by etching as the respective integrated circuit, which has a radiation source for the excitation or measuring beam.
  • the surface of the optical medium 108 has a plurality of partial faces 110 , 111 inclined towards each other, at which the measuring light beam 112 , is reflected or refracted multiple times.
  • mirror surfaces 113 , 114 are provided for reflecting the measuring light beam 112 (and therefore the response signal SR.)
  • These mirror surfaces can be formed by inhomogeneities within the optical medium 108 or by its outer surfaces or by means of, for example, metallic or metallic coated mirror elements that are integrated/fitted/cast-in or mounted on the optical medium.
  • the deflection can then be detected in the detection device 106 as an absolute deflection.
  • the detection device 106 can have a plurality of optically sensitive surfaces, such as optically sensitive semiconductor diodes, or else a plurality of staggered openings 116 , 117 , 118 in a connector body 119 ( FIG. 5 ), at which individual fiber-optic cables 120 end ( FIG. 4 ), into which the light of the measuring light beam 112 is coupled depending on its deflection.
  • the fiber-optic cables 120 are then connected to a connector body 119 , which can be fixed to the optical medium 108 , and direct the light to the part of the detection device 106 arranged at the end of the fiber-optic cable 120 ( FIG. 4 ).
  • the connector body 119 is then, in the same way as the fiber-optic cable 120 , also part of the detection device 106 for detecting the measuring light beam.
  • the excitation transmission device can also send the excitation to the material surface either as a whole or section by section by means of one or more fiber-optic cables, and in one embodiment the excitation transmission device can be directly coupled to one or more fiber-optic cables, which are coupled to the optical medium.
  • the excitation transmission device 100 , the device 105 for emitting the measuring light beam 112 , and the detection device 106 are directly attached to each other or to a common support 121 .
  • the support can be formed by a plastic part, a printed circuit board or a metal sheet, which is mounted in a housing 122 .
  • the support which in FIG. 8 is formed with a U-shaped cross section, can then at least partially surround the optical medium 108 in one embodiment.
  • the optical medium can be attached to the support and adjusted relative to it.
  • the support can also be formed by the housing 122 itself or a housing part.
  • the device with the housing 122 can be fastened to the body 123 of a person, wherein the excitation transmission device 100 for emitting one or more excitation light beams SA, the device 105 for emitting the measuring light beam 112 and the detection device 106 for detecting the time-dependent response signal SR are arranged and configured in such a way that the side that is suitable for performing the measurement (with a measuring window transparent to the excitation radiation) of the device is located on the side of the device facing away from the body, so that the material to be analyzed can be measured on the side 124 of the housing 122 facing away from the body 123 .
  • the housing 122 is attached to the body 123 of a person by means of a belt 125 belonging to the housing 123 , in one embodiment being in the form of a bracelet on a wrist.
  • the housing On the opposite side 124 from the wrist, the housing then has a window which is transparent to the excitation light beam SA, or the optical medium 108 is fitted directly into the outwards facing side 124 of the housing and itself forms the surface of some sections of the housing.
  • a fingertip 126 shown schematically by a dashed line can then be placed on the optical medium 108 and measured.
  • the optical medium 108 can be attached within the housing 122 , in the same way as the support 121 , or else directly attached to the housing 122 .
  • the optical medium 108 can also be directly connected to the support 121 , wherein an adjustment device 127 should be provided for the relative positioning of the support 121 with respect to the optical medium.
  • an optical detector 130 in the form of a camera can be fastened to the support 121 , which records a digital image of the material surface through the optical medium 108 .
  • This image is processed within a processing unit 107 , which can be directly connected to the detection device and also to the excitation transmission device, in the same way as the measurement information by the detection device 106 .
  • the processing device can also perform control tasks for the measurement. It can also be at least partially separated and remote from the remaining parts of the device and communicate with these by means of a wireless connection.
  • the image data from the camera 130 can thus be further processed inside the housing, or via a radio link even outside the housing, and compared with a personal identity database to retrieve calibration data of the identified person.
  • This type of calibration data can also be stored for remote retrieval in a database, in one embodiment, a cloud.
  • the measurement data from the detection device 106 can also be further processed both within and outside of the housing.
  • the resulting data should preferably be sent back to the device within the housing by radio to be displayed there.
  • a display can be provided on the housing 122 , which advantageously can be read through the optical window, and in one embodiment also to some extent through the optical medium.
  • the display can also project an optical indicator through the optical window onto a display surface and can have a projection device for this purpose.
  • the display can be used in one embodiment to display a measurement or analysis result, in particular a glucose concentration.
  • the information can be output in one embodiment via a symbolic or color code.
  • connection of the device to and from an external data processing device 131 can be implemented using all common standards, such as fiber-optic cables, cable, wireless (e.g. Bluetooth, WiFi), or else ultrasound or infrared signals.
  • FIG. 9 shows a modulation device with a controller 132 , which activates the excitation transmission device in a modulated manner. Both the controller 132 and the detection device 106 for the measuring light beam are connected to the evaluation device 107 .
  • FIG. 10 shows an excitation light source 100 , in front of which a mirror device driven by a MEMS (micro-electromechanical system) 135 is arranged, with one or more micro-mirrors 133 , 134 , such as those known from optical image projector technology, for the occasional deflection of the excitation light beam in a deflection direction 136 .
  • MEMS micro-electromechanical system
  • FIG. 11 shows an excitation light source 100 , in front of which an optical layer 138 with a transmission that can be controlled by means of a control device 137 is arranged in the excitation light beam, in one embodiment with LCD cells.
  • a method for analyzing a material in a body comprising:
  • the modulation can be performed by interference or by influencing the phase or polarization of the radiation of the excitation transmission device, in particular if it comprises a laser light device.
  • the excitation light beam is generated by a plurality of emitters or multi-emitters, in particular in the form of a laser array, which emit light with different wavelengths either simultaneously or sequentially, or in arbitrary pulse patterns.
  • a response signal is detected on the first region of the surface of the body by means of an infrared radiation sensor, in particular a thermocouple, a bolometer or a semiconductor detector, for example a quantum cascade detector.
  • an infrared radiation sensor in particular a thermocouple, a bolometer or a semiconductor detector, for example a quantum cascade detector.
  • the method according to aspect 5, characterized by emitting a measurement light beam through the optical medium ( 10 ) onto the region of the surface ( 12 ) of the optical medium ( 10 ) which is in direct contact with the material surface, in such a way that the measurement light beam and the excitation light beam overlap at the interface of the optical medium ( 10 ) and the material surface, at which the measurement light beam is reflected;
  • the method according to aspect 1 or any one of the other preceding or following aspects characterized in that the measuring light beam is an intensity-modulated, in particular pulsed excitation light beam in particular in the infrared spectral range, wherein in particular the modulation rate is between 1 Hz and 10 kHz, preferably between 10 Hz and 3000 Hz.
  • the device according to aspect 16 with a device for determining response signals separately according to different intensity modulation frequencies and/or with a device for determining response signals as a function of the phase position of the respective response signal relative to the phase of the modulation of the excitation light beam, in particular as a function of the modulation frequency of the excitation light beam.
  • the device according to aspect 18, characterized in that a device is provided for emitting a measurement light beam into the region of the optical medium which is in contact with the first region of the material surface, and that in order to detect the measurement light beam this device and/or the detection device is directly fixedly mechanically connected to the optical medium and/or coupled thereto by means of a fibre-optic cable.
  • the detection device has an acoustic detector for detecting acoustic waves on the material surface, in particular with a resonator, more particularly with a Helmholtz resonator.
  • a quartz fork is used, preferably with the same resonance frequency as the resonator.
  • the resonator can be open or closed.
  • the quartz fork is preferably in or on the neck of the resonator (off-beam) or inside or outside of the resonator (in-beam).
  • the detection device has a thermal radiation detector for detecting the heat radiation at the material surface, in particular an infrared detector, more particularly a thermocouple, a bolometer, or a semiconductor detector.
  • a device for analyzing a material with an excitation transmission device for generating at least one electromagnetic excitation beam, in particular an excitation light beam, with at least one excitation wavelength, a detection device for detecting a response signal and a device for analyzing the material on the basis of the detected response signal.
  • the deformation can be measured more effectively by analogy with the photothermal ‘Bouncing method’ by the selection of steeper (larger) angles of incidence of the measuring beam to the sample surface and the influence of the mirage effect-related deflection of the measuring beam can be minimized.
  • a cantilever can be placed either directly on the sample or on a sufficiently thin optical medium, on which the sample is placed on the one side and the cantilever on the opposite side. Due to the thermal expansion of the sample or the optical element, the cantilever is set into vibration by the thermal expansion caused by the absorption of the modulated pumped beam. The measuring beam is reflected onto the upper side of the tip of the cantilever and is deflected due to the vibration, by an amount depending on the irradiated wavelength and the thermal properties of the sample, and on the modulation frequency. This deflection is detected.
  • the excitation transmission device contains an interrogation laser or an LED, for example an NIR (near-infrared) LED.
  • the excitation transmission device comprises a probe laser, which has a smaller diameter than an additional pump laser.
  • thermo conducting paste a special coating, in particular of the optical emitter, for example IRE is provided, so that heat is dissipated better (e.g. “thermal conducting paste”).
  • the optical element can be coated on the contact surface in such a way that an improved conduction of the thermal signal into the optical medium can be provided.
  • the coating can also serve as protection against scratches, and by intelligent choice of material can also implement a reflective surface for the measuring beam. In this case, the transparency for the excitation light must be maintained.
  • the device according to any one of the preceding aspects 16 to 34, characterized in that the device is designed to be permanently wearable by a person on the body, in one embodiment by means of a retaining device connected to the housing, such as a belt, a band or a chain or a clasp, and/or in that the detection device has a detection surface, which can also be used as a display surface for information such as measurement values, clock times and/or textual information.
  • a retaining device connected to the housing such as a belt, a band or a chain or a clasp
  • the detection device has a detection surface, which can also be used as a display surface for information such as measurement values, clock times and/or textual information.
  • the device according to the preceding aspect 35 characterized in that the device has a pull-off film in the area of the detection surface, preferably next to the detection surface, for the pre-treatment of the material surface and for ensuring a clean surface and/or which in one embodiment in the case of glucose measurement, is specifically provided for the purpose of skin cleansing.
  • the detection device is configured to read and recognize fingerprints to retrieve certain values/calibrations of a person and/or to detect the location of a finger, preferably to detect and determine an unintended movement during the measurement.
  • the detection device has a results display, which is implemented, preferably with color coding, as an analogue display, in one embodiment including an error indication (for example: “100 mg/dl plus/minus 5 mg/dl”), acoustically and/or with a result display of measurements in larger steps than the accuracy of the device allows.
  • a results display which is implemented, preferably with color coding, as an analogue display, in one embodiment including an error indication (for example: “100 mg/dl plus/minus 5 mg/dl”), acoustically and/or with a result display of measurements in larger steps than the accuracy of the device allows. This means that, for example, small fluctuations which could unsettle a user are not communicated.
  • the device comprises data interfaces for the transfer of measured data and the retrieval of calibration data or other data from other devices or cloud systems, wherein the device is preferably configured in such a way that the data can be transmitted in encrypted form, in particular can be encrypted by fingerprint or other biometric data of the operator.
  • the device according to any one of the preceding aspects 16 to 39 characterized in that the device is configured in such a way that a proposed insulin dose to be given to a person can be determined by the device in conjunction with other data (e.g. insulin correction factor) and/or weight, body fat can be measured and/or manually specified at the same time or can be transmitted from other devices to the device.
  • other data e.g. insulin correction factor
  • body fat can be measured and/or manually specified at the same time or can be transmitted from other devices to the device.
  • the device according to any one of the preceding aspects 16 to 40, characterized in that in order to increase the measurement accuracy, the device is configured to identify further parameters, in one embodiment using sensors for determining the skin temperature, diffusivity, conductivity/moisture level of the skin, for measuring the polarization of the light (secretion of water/sweat on the finger surface) or such like.
  • Water and sweat on the skin surface of a person which can influence the glucose measurement, can be detected by a test stimulus with an excitation radiation using the excitation transmission device with the water-specific bands at 1640 cm ⁇ 1 (6.1 ⁇ m) and 690 cm ⁇ 1 (15 ⁇ m). If the absorption should exceed a certain value, the measurement site/material surface/skin surface is too wet for a reliable measurement. Alternatively, the conductivity of the substance in the vicinity or directly at the measurement site can be measured, in order to determine the moisture level. An error message and an instruction to dry the surface can then be output.
  • the device according to any one of the preceding aspects 16 to 41 characterized in that the device has a cover in the beam path of the pumping and/or measuring beam laser. This ensures the compulsory eye safety for human beings is provided.
  • the device according to any one of the preceding aspects 16 to 43 characterized in that the device is provided in some areas with a grooved or roughened crystal as an optical medium, which allows a better adjustment of the sample (e.g. the finger).
  • the measuring point, on which the surface of the material to be analyzed is placed, is preferably designed without grooves and smooth.
  • a cylindrical TEMpl TEM00 mode can be used, or other modes can be used instead of the cylindrical TEMpl TEM00 mode, e.g. TEM01 (Doughnut), TEM02 or TEM03.
  • TEM01 Densham
  • TEM02 TEM03
  • TEMmn rectangular modes TEMmn can be used, such as TEM30 or TEM03 or higher. This allows sampling/measuring beams to be used which are less prone to interference in the horizontal or vertical direction.
  • the device according to any one of the preceding aspects 16 to 45 characterized in that the device measures not only at a point but in a grid. This can be done either by displacing the pumped or probe laser or the detection unit. Instead of a displacement, one or more arrays of pumping or probe lasers are possible.
  • measured values of a phase shift of the response signal relative to a periodic modulation of the excitation beam can be used for depth profiling.
  • warming/cooling phases of the material surface should be more accurately evaluated with regard to their waveform or pattern.
  • the device described can be associated with a supply of adhesive strips for removing dead skin layers, in order to allow a maximally undistorted measurement on a human body, as well as plasters with thermal conductive paste that can be applied to the optical medium on a regular basis.
  • the optical medium can be replaceable, given suitable fastening and adjustment of the remaining parts.
  • the device can be provided and configured not only on a person's finger, but also on a lip or an earlobe.
  • the measurement can work even without direct contact and placement of the finger or other part of the body (at a distance), resulting in a contact-free measurement.
  • the measurement can be improved with regard to its accuracy and reliability by combination of a plurality of the measuring systems described and explained, with similar susceptibility to error.
  • DAQ and lock-in amplifiers in the evaluation can be combined in one device and overall the evaluation can be digitized.
  • the measuring device can also be performed on a moving surface, so that in the course of a grid measurement: excitation light source and and/or measuring light source move over the skin in a grid pattern during the measurement, which allows skin irregularities to be compensated for or even eliminated.
  • the sensitivity of the detection device/deflection unit can be optimized by adjustment/variation of the wavelength of the probe beam/measurement light source.
  • the measurement light source can be varied with respect to wavelength or else contain a plurality of laser light sources at different wavelengths for selection or combination.
  • TEM transverse mode
  • the excitation transmission device, measuring light source and detector can be configured as a common array and the beams can be suitably deflected in the optical medium to concentrate the emission and reception of all beams at one point.
  • a lens on or in the crystal of the optical medium can contribute to deflecting the measuring light beam more strongly depending on the response signal.
  • a method is described with which the concentration of the glucose or another material in the interstitial fluid (ISF) in the skin can be determined.
  • ISF interstitial fluid
  • Glucose in the ISF is representative of blood glucose and follows it rapidly in the event of changes. The method consists of at least individual steps or groups of the following steps or of the entire sequence:
  • the point on the skin 102 (in this case, the first region of the material surface), is irradiated with a beam of a quantum cascade laser, which is focused and possibly reflected at a mirror or parabolic mirror 140 , and which is incrementally or continuously tuned over a specific infrared range, in which glucose is specifically absorbed.
  • a laser array with a plurality of lasers radiating at single wavelengths can also be used.
  • the spectral range (or the individual wavelengths, typically 5 or more wavelengths) can be in particular between approximately 900 and approximately 1300 cm ⁇ 1 , in which glucose has an absorption fingerprint, that is to say, typical and representative absorption lines. 2.
  • the excitation beam designated with SA is employed continuously (CW lasers) or in pulsed mode with a high pulse repetition rate or in a modulated manner.
  • the excitation beam is low-frequency modulated, in particular in the frequency range between 10 and 1000 Hz.
  • the low-frequency modulation can be performed with a variety of periodic functions, in various embodiments sine-wave, square wave or sawtooth wave, or the likes.
  • a thermal wave is formed, which propagates isotropically from the place of absorption.
  • the thermal wave reaches the surface of the skin periodically at the modulation frequency. 5.
  • the periodic emergence of the thermal wave at the surface corresponds to a periodic modulation of the thermal radiation property of the skin (material surface of the sample).
  • the skin can be described here approximately as a black body radiator, whose entire emission according to the Stefan-Boltzmann law is proportional to the fourth power of the surface temperature. 6.
  • a detector 139 for heat radiation i.e., an infrared detector, i.e.
  • thermocouple which is directed at the point of the skin under irradiation, the periodic temperature increase described under (5) is recorded. It depends on the irradiation of infrared light described under (1) and (2), and on the absorption described under (3), and therefore depends on the concentration of glucose.
  • the thermal radiation SR (in this case, the response signal) is collected by means of an optical element, in one embodiment an infrared lens or a minor, in particular a concave parabolic mirror 141 , and, in one embodiment is directed via a convex minor 141 a on to the detector 139 .
  • a collection minor used in one embodiment can have an opening 142 , through which the collected beam is directed.
  • a filter 143 can also be provided in the beam path, which only allows infrared radiation of a certain wavelength range to pass. 7 .
  • the modulation frequency can be specifically taken into account, for which the response signal can be processed in a lock-in amplifier 144 .
  • the depth information relating to the depth below the surface can be obtained, from which the response signals are largely obtained. 8 .
  • the depth information can also be obtained by the selection and analysis of various low-frequency modulation frequencies as described in (2) for the excitation beam and the combination of the results for different modulation frequencies (wherein the results can also be weighted differently for different modulation frequencies).
  • Difference methods or other calculation methods can be used for this, to compensate for the absorption of the topmost skin layers.
  • 9. To maximize the sensitivity in the detection of the thermal radiation according to point (6), it is used over a broad spectral band for the entire available infrared range. As many regions of the Planck radiation curve as possible should be used.
  • the detection of the heat radiation is provided with blocking filter (notch filter) 143 for these excitation wavelengths.
  • the wavelength range 148 transmitted through the blocking filter 143 is also apparent from the diagram of FIG. 13 .
  • the intensity of the response signal is shown both as a function of the wavelength, in a first (solid) curve 145 without an excitation beam or only with excitation radiation in non-specific wavelengths for the material to be identified (i.e. without the wavelengths where specific absorption bands of the material exist), and then in a second (dashed) curve 146 a similar curve is shown, wherein an excitation beam is irradiated which contains specific absorption wavelengths of the material to be identified. 10.
  • the background is determined first with non-glucose-relevant wavelengths (or excluding them) of the excitation beam (curve 145 ), and then with (or including) the glucose-relevant wavelengths the difference from the background signal is determined. This results in the glucose concentration in the skin layer or skin layers, which are defined by the selected phase position according to (7) or the different modulation frequencies according to (8) or a combination of these.

Abstract

The invention relates, inter alia, to an apparatus for analyzing a material, including an excitation emission device for generating at least one electromagnetic excitation beam, in particular an exciting light beam, having at least one excitation wavelength, further including a detection device for detecting a reaction signal, and a device for analyzing the material on the basis of the detected reaction signal.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This Application is a continuation application of and claims priority to U.S. patent application Ser. No. 15/781,176, filed Jun. 4, 2018, and issuing as U.S. Pat. No. 10,876,965 on Dec. 29, 2020, which is a U.S. national stage entry under 35 U.S.C. § 371 of Patent Cooperation Treaty Application PCT/DE2015/200532, filed Dec. 9, 2015. The foregoing applications are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • The present intellectual property right relates to a device and a method for analyzing a material. The device described here and the procedure described here can be used for example for the analysis of animal or human tissue, in one embodiment for the measuring of glucose or blood sugar.
  • BACKGROUND
  • Known methods for analyzing a material, in particular for the measurement of blood sugar are described in the following publications, for example:
      • Guo et al.: “Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry”, Biomedical Optics Express, Vol, 3, 2012, No. 11,
      • Uemura et al.: “Non-invasive blood glucose measurement by Fourier transform infrared spectroscopic analysis through the mucous membrane of the lip: application of a chalcogenide optical fiber System”, Front Med Biol Eng. 1999; 9(2): 137-153,
      • Farahi et al.: “Pump probe photothermal spectroscopy using quantum cascade lasers”, J. Phys. D. Appl. Phys. 2012 and
      • M. Fujinami et al.: “Highly sensitive detection of molecules at the liquid/liquid interface using total internal reflection-optical beam deflection based on photothermal spectroscopy”, Rev. Sei. Instrum., Vol. 74, Number 1 (2003).
      • (1) von Lilienfeld-Toal, H. Weidenmüller, M. Xhelaj , A. Mäntele, W. A Novel Approach to Non-Invasive Glucose Measurement by Mid-Infrared Spectroscopy: The Combination of Quantum Cascade Lasers (QCL) and Photoacoustic Detection Vibrational Spectroscopy, 38:209-215, 2005.
      • (2) Pleitez, M. von Lilienfeld-Toal, H. Mäntele W. Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non-invasive glucose measurement Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 85:61-65, 2012
      • (3) Pleitez, M. et al. In Vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy Analytical Chemistry, 85: 1013 -1020, 2013
      • (4) Pleitez, M. Lieblein, T. Bauer, A. Hertzberg, 0. von Lilienfeld-Toal, H. Mäntele, W. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid Review of Scientific Instruments 84, 2013
      • (5) M. A. Pleitez Rafael, 0. Hertzberg, A. Bauer, M. Seeger, T. Lieblein, H. von Lilienfeld-Toal, and W. Mäntele. Photo-thermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis. The Analyst, November 2014.
    SUMMARY OF THE EMBODIMENTS
  • The object of the invention is to specify a device with which a material, in particular an animal or human tissue or a component or ingredient of the tissue, can be analyzed particularly simply and cost-effectively.
  • This object is achieved by, inter alia, a device having the features as defined in claim 1. Embodiments of the device are specified in dependent claims.
  • Reference is made to the German patent DE 10 2014 108 424 B3, the content of which is referred to specifically, and the content of which this application extends; by this explicit reference made here, the full contents of German patent DE 10 2014 108 424 B3 is therefore also to be regarded as part of the disclosure of this application (“incorporation by reference” for all details of that disclosure). In particular, this reference relates to all the features given in the patent claims as granted. In addition, the reference relates in particular to details of the excitation light beam mentioned there, for example, to the numerical values of the pulse frequencies and wavelengths (wavelength ranges) cited there, and also to the details relating to the measurement of glucose content in the interstitial fluid.
  • In addition to the subject matter of the claims and exemplary embodiments which are directly and explicitly mentioned at the time of filing, the present PCT property rights application also relates to other aspects, which are listed at the end of the present description. These aspects can be combined, either individually or in groups, with features of the claims cited at the time of filing. These aspects, whether taken alone or combined with each other or with the subject matter of the claims, represent stand-alone inventions. The applicant reserves the right to make these inventions the subject matter of claims at a later date. This can be done in the context of this application or else in the context of subsequent divisional applications, continuation applications (in the USA), continuation-in-part applications (in the USA) or subsequent applications claiming the priority of this application.
  • In the following, however, the subject matter of the claims mentioned at the time of filing will be discussed first.
  • A device for analyzing a material is provided, with an excitation transmission device for generating at least one electromagnetic excitation beam, in particular an excitation light beam with at least one excitation wavelength, a detection device for detecting a response signal and a device for analyzing the material on the basis of the detected response signal.
  • A major advantage of this device is the fact that it can be used to analyze a material in a very simple and reliable way.
  • The term light is understood here to mean electromagnetic waves or electromagnetic radiation in the visible range, in the near and far infrared range and in the UV range.
  • In an exemplary embodiment of the device it is provided that
      • the excitation transmission device is a radiation source, in one embodiment a monochromatic, in particular polarized radiation source or light source, more particularly a laser light source,
      • the device has an optical medium, which is in direct contact with the material, in particular with a first region of the surface of the material,
      • wherein the excitation transmission device is preferably arranged in such a way that the emitted excitation beam penetrates the optical medium and exits the same again at a predetermined point on the surface of the optical medium, and
      • the device comprises a system for emitting a measuring beam, in particular a measuring light beam, which is arranged in such a way that the emitted measuring beam penetrates into the optical medium and wherein in operation the measuring beam and the excitation beam preferably overlap at an interface of the optical medium and the surface of the material at which the measuring beam is reflected, and
      • the detection device is a device for receiving the reflected measuring beam which forms the response signal, and/or for directly or indirectly detecting a deflection of the reflected measuring beam.
  • Preferably, the device has an optical medium which is in direct contact with the material, in particular with a first region of the surface of the material, in one embodiment the skin of a human being, wherein for detecting a response signal the detection device detects a parameter change of the optical medium, in particular in a region adjacent to the first region, as a result of the response signal, in particular a deformation and/or density change of the optical medium as a result of a local, time-dependent heating. The optical medium may consist of a material which is optically transparent or transparent to infrared radiation or ultraviolet radiation, in general to the excitation beam and the measuring beam, such as glass, crystal, zinc sulphide (ZnS), zinc selenide (ZnSe), germanium (Ge), silicon (Si) and diamond or a transparent plastic, in one embodiment a polyethylene. A local heating in response to a transport or transfer of heat from the material to be analyzed or from a substance of the material into the optical medium leads to a change therein, for example, a material deformation or thermal stresses or local changes in refractive index, which are detectable.
  • The material can in one embodiment be the tissue of a living organism, in particular a human being, wherein the material surface can be the skin. Substances in the tissue can then be analyzed or measured.
  • It can also be provided that the detection device has a piezo-element connected to the optical medium or integrated into it, as a detector for detecting a stress, deformation and/or density change.
  • It can also be provided that the detection device has at least one temperature sensor as a detector for detecting the response signal. This can be arranged directly on the optical medium or in its surroundings, depending on the measuring principle.
  • Preferably, the device has a system for intensity modulation of the excitation light beam.
  • The detection device is preferably suitable for detecting a time-dependent response signal as a function of the wavelength of the excitation light and/or the intensity modulation of the excitation light.
  • It can also be provided that the excitation transmission device radiates at least one electromagnetic excitation beam into a volume of material, which is underneath a first region of the surface of the material.
  • Particularly preferably the excitation transmission device comprises two or more transmission elements, in particular in the form of a one-, two- or multi-dimensional transmission element array. This can therefore be implemented as a surface array of transmission elements, or else as a transmission element strip (in one embodiment semiconductor laser arrays or QCL arrays, wherein QCL stands for quantum cascade laser).
  • It can also be provided that the two or more transmission elements each generate their own electromagnetic excitation beam and radiate this into the volume underneath the first region. The different excitation beams can also be emitted successively, or else at least partially at the same time. The different transmission elements can also be operated with different modulation frequencies at the same time.
  • The wavelengths of the electromagnetic excitation beams of the two or more transmission elements are preferably different. The wavelengths are preferably chosen in such a way that a substance to be detected in the material to be analysed absorbs radiation of these wavelengths particularly well. Additionally or alternatively, wavelengths or wavelength ranges can also be selected, which the substance to be detected does not absorb, but which are absorbed by other substances (so-called tolerant wavelengths), to distinguish the substance to be analyzed from other substances.
  • In one embodiment the excitation transmission device comprises two or more lasers, in particular in the form of a one- or two-dimensional laser array, wherein a plurality of rows of laser elements can be staggered and arranged offset one behind another in order to save space, in one embodiment in the form of a laser strip and/or two or more light-emitting diodes, in particular in the form of a one- or two-dimensional diode array, in a depth-staggered manner and offset relative to one another, in one embodiment of a two-dimensional array or a strip. The output beams of the arrays can either have individual beam axes, close together or in parallel, for each beam element, or can have a same beam axis, by means of already integrated sets of optics.
  • Regarding the structure of the device, it can be provided that the excitation transmission device is directly or indirectly—preferably by means of an adjustment device—mechanically fixedly connected to an optical medium, which is in direct contact with the material, in particular with the first region of the surface of the material. Therefore, the excitation transmission device can be aligned and fixed relative to the optical medium as early as the manufacturing stage, or at least before deployment.
  • For the purpose of mounting and/or alignment or adjustment of an excitation transmission device and/or elements of a detection device, the optical medium can have at least one built-in elevation and/or indentation, such as a bridge, a shoulder, a half-sphere mounted thereon, a mounted block, a cone or a drilled hole, a groove, a hollow or other recess, in or on which the above-mentioned elements (the excitation transmission device and/or elements of a detection device) can be placed, rested on or to which they can be aligned or fixed. It is also possible that aligned matching surfaces be formed on the optical medium by machining or in a casting process
  • With regard to the device for intensity modulation it can be provided that it comprises an electrical or electro-mechanical modulation device, which is electrically connected to the excitation transmission device and in particular, electrically controls the same, or is formed by such a device. The modulation device can generate an intensity modulation of the excitation beam, in one embodiment a periodic intensity modulation, also for example in the form of rectangular pulses, a sawtooth function or a sine-wave function or other periodic function.
  • Alternatively or additionally, the device for intensity modulation can comprise at least one controlled mirror arranged in the beam path, by the control of which the intensity of the excitation beam can be modulated by deflection.
  • Alternatively or additionally, the device for intensity modulation can comprise at least one layer, which is arranged in the beam path and is controllable with respect to its transparency, or can be formed by such a layer. Therefore, the modulation element can be designed in the form of a transmission element which is controlled with respect to its transmission. The modulation element can generate a plurality of spatially separated light beams from one light beam. It can also be provided in one embodiment that the surface of a sample can be scanned with the modulation element. In one embodiment, the modulation element can be controlled together with the array of light sources/laser sources.
  • A device for emitting a measuring beam, in particular a measuring light beam, is in one embodiment provided for emitting the measuring beam into the particular area of an optical medium, which is in contact with the first region of the surface of the material.
  • The device for emitting a measuring beam and the detection device are aligned to each other in one embodiment in such a way that the detection device detects the measuring beam as the time-dependent response signal, after this beam has been reflected at least once at the interface of the optical medium that is in contact with the material, in particular with the first region of the surface of the material.
  • With a view to ease of assembly, it is advantageous if the device for emitting a measuring beam and/or the detection device and/or the excitation transmission device are directly fixedly mechanically connected to the optical medium and/or are coupled to the same by means of one or more fiber-optic cables.
  • Embodiments are also possible, in which the optical medium directly supports an imaging optics and/or an imaging optics is integrated into the optical medium.
  • In addition, embodiments are conceivable in which the surface of the optical medium has a plurality of partial faces inclined towards each other, at which the measuring beam, in particular the measuring light beam, is reflected multiple times.
  • Embodiments can also be provided, in which one or more mirror surfaces for reflection of the measuring beam, in particular the measuring light beam, are provided in or on the optical medium.
  • With a view to a compact design, it is conceivable that the excitation transmission device and/or the device for emitting the measuring beam and/or the detection device are directly attached to each other or to a common support. In one embodiment, the various devices can be fixed to the support by welding or gluing or by screws or a snap-in connection, wherein an adjustment facility can be provided, either during assembly or else at a later time, by means of an adjusting screw or other mechanical adjustment device. In particular, the device for emitting the measuring beam and/or the detection device should be, or capable of being, easily aligned with respect to each other. Therefore, it can be useful to attach these two devices directly to the optical medium. The device for emitting the measuring beam and/or the detection device, given suitable guidance of the measuring beam, can also be arranged next to each other on the same side of the optical medium and on a common support, in one embodiment attached to a common printed circuit board or a common semiconductor, or else implemented as a common integrated semiconductor device, in one embodiment as a common integrated semiconductor component. This support can then be adjusted as a unit relative to the optical medium, in a particular embodiment, even without further changing the relative position between the device for transmitting the measuring beam and/or the detection device.
  • The support is preferably formed by a printed circuit board, a metal plate or plastic plate or a housing or part of a housing of the device.
  • It can also be provided that the excitation transmission device comprises an integrated semiconductor device, which has one or more laser elements and at least one micro-optical component and preferably an additional modulation element. The above-mentioned elements can be manufactured, in one embodiment etched, jointly from one semiconductor blank or at least accommodated in a common housing.
  • It can also be provided that the modulation element has at least one element, in particular a mirror, which is movable relative to the rest of the semiconductor device and is controllable with respect to its position. This can be controlled by means of a MEMS device.
  • It can also be provided that the modulation element has a layer which is controllable in terms of its radiation permeability.
  • It can also be provided that the modulation element has an electronic control circuit for the modulation of the one or more laser elements. In one embodiment the modulation element can be constructed in such way that it varies the excitation beam in a time-dependent manner by interference, phase offset/path offset or a polarizing filter device or other known modulation mechanisms.
  • The micro-optical component or components can be mirrors or lenses that are either integrated into the semiconductor component or made from it in a subtractive process, in particular by etching.
  • The described device for analyzing a material can determine a measurement value of a material concentration, in one embodiment a glucose concentration. The device can have an interface to a device for displaying measurement values and their analysis, for example by means of a color code for a user of the device, and/or to a dosing device for a substance which can be dispensed into the material, in particular the tissue or, more generally, the body of an organism. The device can also directly comprise such a dosing device. In this case, the device can also have a system for detecting or analyzing the material surface, in one embodiment the skin surface or in another embodiment the ocular surface or iris of a living being, which enables the identification of a person or a living being based on a comparison with reference data and can therefore be used to ensure that appropriate reference values and/or calibration values are provided for the analysis of the material and the control of the dosing device. Determined characteristic values of the material surface, in one embodiment a fingerprint or the structure of an iris of the eye, can, in addition to identifying and authenticating a person, e.g. against a database, also be used for encrypting the communication of status values and controlling the dosing device which, encrypted or unencrypted, can in principle be originated from the database. In one embodiment the dosing device can be equipped with a sensor to determine a fill level of a substance to be dispensed, such as in one embodiment insulin and/or glucagon, and can have a device for transmitting the fill level to the device for material analysis and/or directly to the database.
  • In addition, the device can have an interface, in one embodiment a radio interface to the database, to which the measurement values can be sent and which can process the data. The database can be created in such a way that it processes and stores the data from a plurality of patients, that is, in one embodiment also the data from a plurality of similar devices for analyzing a material, and in one embodiment it also controls individual dosing devices for dispensing substances. The database can also further process the measured data relating to the analyzed material and determine derived analysis results, such as any trend in the values, first and second time derivatives, minima, maxima, standard deviations of material quantities or concentrations, blood sugar values or other physiological values of patients, compare them and derive signals from them, which in one embodiment also includes alarm signals. The fill level of the dosing device can also be detected and processed by the database in order to determine, in one embodiment, a temporal extent of the fill level or the need for refilling and to signal this directly to the patient's device or to a service facility. For this purpose, the database can be connected to a communication device in a service facility, in one embodiment in a hospital or a medical practice. For the purpose of sending data from and/or to a database, the device can in one embodiment be connected to a mobile device or a pager by means of a radio link, in one embodiment Bluetooth or WLAN or Wifi, or other transmission methods. The device can also be directly equipped with a WLAN interface and an internet client.
  • The subject matter also relates to a method for analyzing a material, wherein in the method at least one electromagnetic excitation beam with at least one excitation wavelength is generated with an excitation transmission device by the successive operation or the at least partially simultaneous operation of a plurality of laser emitters of a laser light source, and a response signal is detected with a detection device and the material is analyzed on the basis of the detected response signal. In the method, the thermal diffusivity in the material and the temporal evolution or waveform of the response signal can be used to characterize the nature of the material or a spatial distribution of a substance in the material or to characterize the depth at which the excitation beam is absorbed.
  • In one embodiment it can be provided that using different modulation frequencies of the excitation transmission device, response signals, in particular temporal response signal waveforms or patterns, can be successively determined and that a plurality of response signal waveforms or patterns at different modulation frequencies can be combined with each other and that, in particular, specific information for a depth range under the surface is obtained from this.
  • It can also be provided that response signal waveforms or patterns are determined at different modulation frequencies for different wavelengths of the excitation beam and from these, in particular specific information is obtained for each depth range under the surface. When using a plurality of modulation frequencies of the pump beam at the same time, it is possible, for example, to resolve the detected signal into its frequencies using an appropriate analysis method, for example a Fourier transformation; the FT would only filter out the signal that corresponds to the desired frequency.
  • It can also be provided that an optical medium is brought into direct contact with the material, in particular with a first region of the surface of the material, the emitted excitation beam is generated and, in particular, emitted with the excitation transmission device in such a way that it penetrates into the optical medium and exits it again at a predetermined point on the surface of the optical medium, that a measuring beam, in particular a measuring light beam, is generated with a device for emitting a measuring beam in such a way that this beam penetrates the optical medium and that in particular, in operation, the measuring beam and the excitation beam overlap at an interface of the optical medium and the surface of the material at which the measuring beam is reflected, and that a reflected measuring beam which forms the response signal is measured and/or the deflection of the reflected beam is directly or indirectly detected with the detection device.
  • One aspect of the method is the focusing of the measurement of the response signal on selected depth ranges underneath the (distance intervals from the) material surface. The thermal wavelength d has the greatest influence on the depth range measured with the method. It is defined as d=√(D/(π*f)), where D is the thermal diffusivity of the sample (here for example, skin) and f is the modulation frequency of the excitation beam. Literature on the thermal diffusivity of skin:
      • U. Werner, K. Giese, B. Sennhenn, K. Piamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol. 37(1), 21-35 (1992).
      • A. M. Stoll, Heat Transfer in Biotechnology, Vol 4 of Advances in Heat Transfer, J. P. Hartnett and T. Irvin, eds. (New York, Academic, 1967), p 117.
  • In one embodiment, to eliminate response signals from the topmost layers of the material, changes in the measurements compared to previous measurements can be used, in case the measurements in the top layers change more or less slowly in comparison to other, deeper layers.
  • This can be the case in an embodiment in measurements on human skin, where the topmost layers of the skin undergo virtually no exchange with the lower layers and therefore physiological parameters change very little. The time derivative of measurements can also be applied to provide response signals to exclude the signals from the topmost layers of the skin. Thus the measurement, or at least the evaluation, can be limited to or focused on the interstitial fluid in the skin.
  • It can also be provided that depending on a material concentration identified in the material, a dosing device for dispensing a substance, in particular into a patient's body, is controlled and/or an acoustic and/or visual signal is output and/or a signal is output to a processing device via a wireless connection. In this case, in addition to a currently determined measurement a temporal development or evolution of the measurement values, a derivative of the measurement value, average values of the measurements, maxima, minima, a standard deviation and predefined thresholds for measurement values can be taken into account and combined with the current measurement value. In one embodiment, the processing device can be a database or connected to a database, which collects and processes data from a plurality of patients. The database can be either directly connected to a control system of the device or be remote from and connected to it via a communication interface.
  • To obtain increased security when operating a dosing device, in particular for insulin, it can be provided that this is operated locally or from a database under the control of a preset standard procedure with preselected quantity deliveries at times that are or can be specified, and that by means of the above-described device meaningful deviations from preset delivery values can be determined that are used for the correction and improvement of the control of the dosing device. In this way, even in the event of a failure of the device at least a normal or emergency operation of the dosing device is guaranteed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1 to 13 schematically show different elements of the device and its elements, in some cases in different embodiments. Specifically,
  • FIG. 1 shows a device in accordance with an embodiment of the invention;
  • FIG. 2 shows an excitation transmission device in accordance with an embodiment of the invention;
  • FIG. 3 shows a device in accordance with an embodiment of the invention;
  • FIG. 4 shows a device in accordance with an embodiment of the invention;
  • FIG. 5 shows a connector body in accordance with an embodiment of the invention;
  • FIG. 6 shows a device in accordance with an embodiment of the invention;
  • FIG. 7 shows a device in accordance with an embodiment of the invention;
  • FIG. 8 shows a device in accordance with an embodiment of the invention;
  • FIG. 9 shows a modulation device in accordance with an embodiment of the invention;
  • FIG. 10 shows an excitation light source in accordance with an embodiment of the invention;
  • FIG. 11 shows an excitation light source in accordance with an embodiment of the invention;
  • FIG. 12 shows a device in accordance with an embodiment of the invention; and
  • FIG. 13 shows a graph of a wavelength range blocked by a filter in accordance with an embodiment of the invention.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • FIG. 1 shows an exemplary embodiment of a device 10 for analyzing a material 101. The material 101 is preferably placed directly on an optical medium 108, which can be designed as an optically transparent crystal or glass body. The device for analyzing the material 101 is used for example to measure the glucose or blood sugar content in a fluid, such as in one embodiment blood, and for producing a glucose or blood sugar level indication BZA.
  • The device comprises an excitation transmission device 100 for emitting one or more electromagnetic excitation beams SA, preferably in the form of excitation light beams with one or more excitation wavelengths, into a volume 103 which is located in the material 101 below a first region 102 of the surface of the material. The excitation transmission device 100 is also referred to in the following as “excitation light source” 100 for brevity. The excitation light source 100 can be a laser which is tunable with respect to its wavelength, in particular a tunable quantum cascade lasers; it is preferable, as will be explained below, to use a light source strip or a light source array with at least two single emitters, in particular semiconductor lasers, each of which emits a specified individual wavelength.
  • In addition, a device 104 for the intensity modulation of the excitation light beam or beams SA is provided, which is preferably formed by a modulation device for the excitation light source, in particular for controlling it, and/or by at least one controlled mirror arranged in the beam path and/or by a layer, which is arranged in the beam path and is controllable with respect to its transparency.
  • In addition, the device has a system 105 for emitting an electromagnetic measuring beam 112, in particular a measuring light beam, which is reflected, preferably totally reflected, at the interface GF between the material 101 and the optical medium 108.
  • A detection device 106 is used for the detection of the reflected measuring beam 112, which forms a time-dependent response signal SR; the amplitude of the response signal SR is influenced by the wavelength of the excitation light SA and the intensity modulation of the excitation light SA, as will be explained in more detail below by means of examples.
  • The amplitude of the measuring signal depends on the wavelength of the excitation beam, the absorption properties of the sample and the thermal properties, in particular the thermal diffusivity and thermal conductivity of the sample and of the optical element. In addition, the coupling of the thermal signal from the sample into the optical element also plays a role.
  • A device 107 for analyzing the material evaluates the detected response signals SR and in one embodiment generates a glucose or blood sugar level indication BZA.
  • Hereafter, the operation of the device 10 in accordance with FIG. 1 and in this connection, an example of a method for analyzing a material 101 will be described in more detail for the case in which the material 101 to be analyzed is human or animal tissue, and as part of the analysis of the material a glucose or blood sugar level indication BZA is to be determined.
  • With the device 105 an electromagnetic measurement beam 112, which is preferably a light beam in the visible wavelength range or an infrared light beam, is irradiated into the optical medium 108; this measurement beam 112 impinges on the interface GF below the first region 102 of the surface of the tissue. At the interface GF the measuring beam 112 is reflected and reaches the detection device 106, which measures the reflected measurement beam 112.
  • At the same time, one or more excitation beams SA, which are preferably infrared beams, are generated with the excitation light source 100. The wavelength of the infrared beams is preferably in a range between 3 μm and 20 μm, particularly preferably in a range between 8 μm and 11 μm.
  • The excitation beams SA are intensity- or amplitude-modulated with the device 104 for intensity modulation. In one embodiment short light pulses are generated with the device 104 for intensity modulation, preferably with a pulse frequency of between 1 kHz and 1 MHz, or else pulse packets (double or multiple modulation), preferably with envelope frequencies of 1-10 kHz.
  • The modulated excitation beams SA are coupled into the optical medium 108 and after passing through the interface GF arrive in the volume 103 within the tissue.
  • The wavelength of the excitation beams SA—with a view to the example of blood glucose measurement explained here—is preferably chosen such that the excitation beams SA are significantly absorbed by glucose or blood sugar. For measuring glucose or blood sugar the following infrared wavelengths are particularly well suited (vacuum wavelengths): 8.1 μm, 8.3 μm, 8.5 μm, 8.8 μm, 9.2 μm, 9.4 μm and 9.7 μm. In addition, glucose-tolerant wavelengths can be used, which are not absorbed by glucose, in order to identify other substances present and allow for excluding their effect on the measurement.
  • Due to the absorption of the excitation beams SA in the tissue in the region of the volume 103, a local temperature increase is induced, which triggers a heat transfer and thereby pressure waves in the direction of the interface GF; due to the resulting temperature and pressure fluctuations at the interface GF, the refractive index and/or the deformation, microstructure and the reflection behavior are modulated in the region 102 and/or in the reflection region of the interface GF, and the beam path of the measuring beams 112 is affected.
  • If it is assumed, for example, that without excitation beams SA the alignment between the system 105 and the detection device 106 is optimal and a maximum received power is detected by the detection device 106, then due to the absorption of the excitation beams SA in the region of the volume 103 and due to the heat transport and the pressure waves, an (at least temporary) change in the amplitude or, in the case of a periodic modulation, the phase of the reflected measuring beam 112 can be induced, or an intensity modulation of the reflected measurement beam 112 can occur. The extent of the intensity modulation depends on the wavelength of the excitation beams SA (because of the necessary absorption in the tissue) and on the pulse frequency of the excitation beams SA (due to the temperature transport and the pressure waves from the tissue interior in the direction of the interface GF) and on the thermal properties of the sample and the medium.
  • The change in the reflection of the measuring beam 112 and/or the time-dependent change in the response signal SR is quantitatively acquired by the detection device 106, and the detection result D reaches the device 107.
  • On the basis of previously carried out calibration or comparison measurements, which in one embodiment are stored in a memory 107 a of the device 107 in the form of comparison tables or comparison curves, the current concentration of glucose or blood sugar within the tissue or within the volume 103 can be deduced and a corresponding glucose or blood sugar indication BZA can be produced. The comparison tables or comparison curves may have been created, for example on the basis of glucose or blood sugar levels which were determined based on blood samples.
  • Particularly preferred embodiments and variants of devices 10 for analyzing a material 101 are described below with reference to FIGS. 2 to 10.
  • The excitation transmission device 100 for emitting the excitation light beam or beams can be designed as an array, as shown in FIG. 2. The array has at least 5, advantageously at least 10, more advantageously at least 15 or at least 50 or 100 individually controllable emitters 100 a for monochromatic light in the absorption spectrum of a material to be analyzed.
  • The array preferably generates beams with monochromatic light with one or more, particularly preferably all of the following wavelengths (vacuum wavelengths): 8.1 μm, 8.3 μm, 8.5 μm, 8.8 μm, 9.2 μm, 9.4 μm and 9.7 μm and if desired, in addition glucose-tolerant wavelengths.
  • The device 105 for emission of the measuring light beam 112 and the detection device 106 can be arranged separately from the optical medium 108, as shown in FIG. 1. With a view to a minimal space requirement and minimal installation effort, it is regarded as advantageous if the device 105 for the emission of the measuring light beam 112 and the detection device 106 108 are mounted directly on the optical medium, preferably on opposite surface sections 108 a and 108 b of the optical medium 108, as FIG. 3 shows.
  • It can be provided that the excitation device/excitation light source 100 is permanently mechanically connected to the optical medium 108 either directly or by means of an adjustment device 109. The adjustment device 109 preferably allows an adjustment of the distance of the excitation light source 100 from the optical medium 108, and/or an adjustment in the beam longitudinal direction and/or an adjustment in a plane perpendicular thereto (see FIG. 4).
  • As shown in FIGS. 3, 4, 6, 7 and 8, the device 105 can be provided for emission of the measuring light beam 112 into the region of the optical medium 108 that is in contact with the first region 102 of the material surface. Such an arrangement allows the measuring light beam 112 to be irradiated at a flat angle and a total internal reflection to be induced at the interface of the optical medium 108 with the material 101.
  • By injecting the radiation at a flat (small) angle (to the sample surface), the mirage deflection, analogously to the known photothermal ‘Bouncing Method’, can be made more effective and at the same time the deformation-induced deflection of the measuring beam can be reduced. The angle between the sample surface and the measuring beam in one embodiment can be selected to be less than 20 degrees, less than 10 degrees, in particular less than 5 degrees, more particularly less than 2 degrees or 1 degree, in order to exploit this effect.
  • Conversely, by providing the irradiation at steeper (larger) angles (to the material surface), by analogy to the known photothermal ‘Bouncing Method’ the deflection can be made more effective and at the same time the mirage-effect related deflection of the measuring beam can be reduced. The angle between the material surface and the measuring beam in one embodiment can be selected to be greater than 20 degrees, greater than 30 degrees, in particular greater than 45 degrees, more particularly greater than 60 degrees or 70 degrees, to exploit this effect.
  • See related literature:
      • M. Bertolotti, G. L. Liakhou, R. Li Voti, S. Paolino, and C. Sibilia. Analysis of the photothermal deflection technique in the surface refection theme: Theory and Experiment. Journal of Applied Physics 83, 966 (1998)
  • The device 105 for emitting the measuring light beam 112 and/or the detection device 106 for detecting the measuring light beam 112 and/or the response signal SR, can be mechanically connected to the optical medium 108 in a supportive manner either directly or by means of an adjustment device, and/or coupled thereto by means of one or more fiber-optic cables 120.
  • It can also be provided, as shown in FIG. 6, that the optical medium 108 directly supports an imaging optics 128 and/or an imaging optics 129 (in each case) in the form of a lens or other reflection or refraction means, and/or that an imaging optics is integrated into the optical medium 108. The imaging optics can, however also be integrated into the excitation transmission device or the device for generating the measuring beam, for example, in the form of a lens or other reflection or diffraction element, if these are designed as integrated components and/or as a semiconductor component. The imaging optics can in one embodiment be subtractively formed from the same semiconductor element by etching as the respective integrated circuit, which has a radiation source for the excitation or measuring beam.
  • It can also be provided, as shown in FIG. 7, that the surface of the optical medium 108 has a plurality of partial faces 110, 111 inclined towards each other, at which the measuring light beam 112, is reflected or refracted multiple times.
  • It can also be provided, as shown in FIG. 3, that in or on the optical medium 108 one or more mirror surfaces 113, 114 are provided for reflecting the measuring light beam 112 (and therefore the response signal SR.) These mirror surfaces can be formed by inhomogeneities within the optical medium 108 or by its outer surfaces or by means of, for example, metallic or metallic coated mirror elements that are integrated/fitted/cast-in or mounted on the optical medium. This extends the optical path of the measuring light beam 112 in the optical medium 108 until its entry into the detection device 106, so that in the case of reflection at the region of the surface of the medium 108, which is in contact with the first region 102 of the material surface, a response signal-dependent deflection of the measuring light beam 112 within the optical medium 108 is increased. The deflection can then be detected in the detection device 106 as an absolute deflection.
  • The detection device 106 can have a plurality of optically sensitive surfaces, such as optically sensitive semiconductor diodes, or else a plurality of staggered openings 116, 117, 118 in a connector body 119 (FIG. 5), at which individual fiber-optic cables 120 end (FIG. 4), into which the light of the measuring light beam 112 is coupled depending on its deflection. The fiber-optic cables 120 are then connected to a connector body 119, which can be fixed to the optical medium 108, and direct the light to the part of the detection device 106 arranged at the end of the fiber-optic cable 120 (FIG. 4). The connector body 119 is then, in the same way as the fiber-optic cable 120, also part of the detection device 106 for detecting the measuring light beam.
  • For the sake of completeness, it should be noted that the excitation transmission device can also send the excitation to the material surface either as a whole or section by section by means of one or more fiber-optic cables, and in one embodiment the excitation transmission device can be directly coupled to one or more fiber-optic cables, which are coupled to the optical medium.
  • It can also be provided, as shown in FIG. 8, that the excitation transmission device 100, the device 105 for emitting the measuring light beam 112, and the detection device 106 are directly attached to each other or to a common support 121. The support can be formed by a plastic part, a printed circuit board or a metal sheet, which is mounted in a housing 122. The support, which in FIG. 8 is formed with a U-shaped cross section, can then at least partially surround the optical medium 108 in one embodiment. The optical medium can be attached to the support and adjusted relative to it.
  • The support can also be formed by the housing 122 itself or a housing part.
  • It can also be provided that the device with the housing 122 can be fastened to the body 123 of a person, wherein the excitation transmission device 100 for emitting one or more excitation light beams SA, the device 105 for emitting the measuring light beam 112 and the detection device 106 for detecting the time-dependent response signal SR are arranged and configured in such a way that the side that is suitable for performing the measurement (with a measuring window transparent to the excitation radiation) of the device is located on the side of the device facing away from the body, so that the material to be analyzed can be measured on the side 124 of the housing 122 facing away from the body 123. In relation to this, FIG. 8 shows that the housing 122 is attached to the body 123 of a person by means of a belt 125 belonging to the housing 123, in one embodiment being in the form of a bracelet on a wrist. On the opposite side 124 from the wrist, the housing then has a window which is transparent to the excitation light beam SA, or the optical medium 108 is fitted directly into the outwards facing side 124 of the housing and itself forms the surface of some sections of the housing.
  • As shown in FIG. 8, a fingertip 126 shown schematically by a dashed line can then be placed on the optical medium 108 and measured.
  • The optical medium 108 can be attached within the housing 122, in the same way as the support 121, or else directly attached to the housing 122. The optical medium 108 can also be directly connected to the support 121, wherein an adjustment device 127 should be provided for the relative positioning of the support 121 with respect to the optical medium.
  • It is also conceivable to attach the excitation light source 100, the device 105 and the detection device 106, or even just one or two of these elements, directly to the optical medium 108 and the other element or elements to the support 121.
  • Through the optical window in the housing 122 and/or through the optical medium 108, other parameters of the material surface or the positioned fingertip 126 can be measured, such as in one embodiment, a fingerprint. For this purpose, in the housing an optical detector 130 in the form of a camera, for example, can be fastened to the support 121, which records a digital image of the material surface through the optical medium 108. This image is processed within a processing unit 107, which can be directly connected to the detection device and also to the excitation transmission device, in the same way as the measurement information by the detection device 106. The processing device can also perform control tasks for the measurement. It can also be at least partially separated and remote from the remaining parts of the device and communicate with these by means of a wireless connection.
  • The image data from the camera 130 can thus be further processed inside the housing, or via a radio link even outside the housing, and compared with a personal identity database to retrieve calibration data of the identified person.
  • This type of calibration data can also be stored for remote retrieval in a database, in one embodiment, a cloud. The measurement data from the detection device 106 can also be further processed both within and outside of the housing.
  • If data are processed outside the housing, then the resulting data should preferably be sent back to the device within the housing by radio to be displayed there.
  • In either case, a display can be provided on the housing 122, which advantageously can be read through the optical window, and in one embodiment also to some extent through the optical medium. The display can also project an optical indicator through the optical window onto a display surface and can have a projection device for this purpose. The display can be used in one embodiment to display a measurement or analysis result, in particular a glucose concentration. The information can be output in one embodiment via a symbolic or color code. By means of the display or a signaling device parallel thereto, in one embodiment a proposal for an insulin dose can be presented, dependent on other patient parameters (e.g. insulin correction factor), or a signal can be transmitted automatically to a dosing device in the form of an insulin pump.
  • The connection of the device to and from an external data processing device 131 can be implemented using all common standards, such as fiber-optic cables, cable, wireless (e.g. Bluetooth, WiFi), or else ultrasound or infrared signals.
  • FIG. 9 shows a modulation device with a controller 132, which activates the excitation transmission device in a modulated manner. Both the controller 132 and the detection device 106 for the measuring light beam are connected to the evaluation device 107.
  • FIG. 10 shows an excitation light source 100, in front of which a mirror device driven by a MEMS (micro-electromechanical system) 135 is arranged, with one or more micro-mirrors 133, 134, such as those known from optical image projector technology, for the occasional deflection of the excitation light beam in a deflection direction 136.
  • FIG. 11 shows an excitation light source 100, in front of which an optical layer 138 with a transmission that can be controlled by means of a control device 137 is arranged in the excitation light beam, in one embodiment with LCD cells.
  • The present property rights application (as already mentioned), in addition to the subject matter of the claims and exemplary embodiments described above, also relates to the following aspects. These aspects can be combined individually or in groups, in each case with features of the claims. Furthermore, these aspects, whether taken alone or combined with each other or with the subject matter of the claims, represent stand-alone inventions. The applicant reserves the right to make these inventions the subject matter of claims at a later date. This can be done either in the context of this application or else in the context of subsequent divisional applications or continuation applications claiming the priority of this application.
  • 1) A method for analyzing a material in a body, comprising:
      • emitting an excitation light beam with one or a plurality of specific excitation wavelengths through a first region of the surface of the body,
      • intensity modulating the excitation light beam with one or a plurality of frequencies, in particular consecutively, by means of a component which differs from a mechanical chopper, in particular by an electronic activation of the excitation light source, an adjustment device for a resonator of an excitation laser used as the excitation light source, or a movable mirror device, a controllable diffraction device, a shutter or mirror device which is coupled to a motor, such as a stepper motor, or to an MEMS, or a layer in the beam path that can be controlled in terms of its transmission,
      • by means of a detector positioned outside the body, detecting a response signal in a time-resolved manner, which response signal is attributable to the effect of the wavelength-dependent absorption of the excitation light beam in the body.
  • In one embodiment the modulation can be performed by interference or by influencing the phase or polarization of the radiation of the excitation transmission device, in particular if it comprises a laser light device.
  • 2) The method according to aspect 1, characterized in that the excitation light beam is generated by a plurality of emitters or multi-emitters, in particular in the form of a laser array, which emit light with different wavelengths either simultaneously or sequentially, or in arbitrary pulse patterns.
  • 3) The method according to aspect 1 or 2, characterized in that on the first region of the surface of the body an acoustic response signal is detected by an acoustic sensor.
  • 4) The method according to any of the aspects 1 to 3, characterized in that a response signal is detected on the first region of the surface of the body by means of an infrared radiation sensor, in particular a thermocouple, a bolometer or a semiconductor detector, for example a quantum cascade detector.
  • 5) The method according to any of the aspects 1 to 4, comprising the steps of:
      • producing the contact of an optical medium with a material surface, so that at least one region of the surface of the optical medium is in contact with the first region of the surface of the body;
      • emitting an excitation light beam with an excitation wavelength into a volume in the material located underneath the first region of the surface, in particular through the region of the surface of the optical medium which is in contact with the first region of the material surface,
      • measuring the temperature in the first region of the surface of the optical medium using an optical pyrometric method,
      • analyzing the material on the basis of the detected temperature increase as a function of the wavelength of the excitation light beam.
  • 6) The method according to aspect 5, characterized by emitting a measurement light beam through the optical medium (10) onto the region of the surface (12) of the optical medium (10) which is in direct contact with the material surface, in such a way that the measurement light beam and the excitation light beam overlap at the interface of the optical medium (10) and the material surface, at which the measurement light beam is reflected;
      • directly or indirectly detecting a deflection of the reflected measurement light beam as a function of the wavelength of the excitation light beam; and
      • analyzing the material on the basis of the detected deflection of the measurement light beam as a function of the wavelength of the excitation light beam.
  • 7) The method according to one of the aspects 5 or 6, characterized in that the measuring beam is generated by the same light source that generates the excitation light beam.
  • 8) The method according to any one of aspects 5, 6 or 7, characterized in that after the deflection and before the detection within the optical medium, the measuring beam is reflected one or more times outside of the optical medium or partially inside and partially outside of the optical medium.
  • 9) The method according to aspect 1 or any one of the other preceding or following aspects, characterized in that the measuring light beam is an intensity-modulated, in particular pulsed excitation light beam in particular in the infrared spectral range, wherein in particular the modulation rate is between 1 Hz and 10 kHz, preferably between 10 Hz and 3000 Hz.
  • 10) The method according to aspect 1 or any one of the other preceding or following aspects, characterized in that the light of the excitation light beam/beams is generated by an integrated arrangement with a plurality of individual lasers, in particular a laser array, simultaneously or successively or partially simultaneously and partially successively.
  • 11) The method according to aspect 1 or any one of the other preceding or following aspects, characterized in that from the response signals obtained at different modulation frequencies of the excitation light beam, an intensity distribution of the response signals is determined as a function of the depth below the surface in which the response signals are produced.
  • 12) The method according to aspect 1 or any one of the other preceding or following aspects, characterized in that from the phase position of the response signals in relation to a modulated excitation light beam at one or different modulation frequencies of the excitation light beam, an intensity distribution of the response signals is determined as a function of the depth below the surface in which the response signals are produced.
  • 13) The method according to aspect 11 or 12, characterized in that in order to determine the intensity distribution of the response signals as a function of the depth below the surface, the measurement results at different modulation frequencies are weighted and combined with each other.
  • 14) The method according to aspect 11, 12 or 13, characterized in that from the intensity distribution obtained over the depth below the surface of the body, a material density of a material is determined, which absorbs the excitation light beam in specific wavelength ranges in a specific depth or depth range.
  • 15) The method according to aspect 1 or any one of the other preceding or following aspects, characterized in that immediately before or after or during the detection of the response signal/signals at least one biometric measurement is carried out on the body in the first region of the surface or directly adjacent to this, in particular a measurement of a fingerprint, and the body, in particular a person, is identified and in that in particular, reference values (calibration values) can be assigned to the detection of the response signals.
  • 16) A device for analyzing a material,
      • having a device for emitting one or more excitation light beams, each with one excitation wavelength, into a volume which is located in the material below a first region of its surface, with a device for modulating an excitation light beam, which device is formed by a modulation device of the radiation source, in particular its controller, an interference device, a phase- or polarization-modulation device and/or at least one controlled mirror arranged in the beam path, and/or a layer arranged in the beam path which is controllable with respect to its transparency, and having a detection device for detecting a time-dependent response signal as a function of the wavelength of the excitation light and the intensity modulation of the excitation light, and with a device for analyzing the material on the basis of the detected response signals.
  • 17) The device according to aspect 16, with a device for determining response signals separately according to different intensity modulation frequencies and/or with a device for determining response signals as a function of the phase position of the respective response signal relative to the phase of the modulation of the excitation light beam, in particular as a function of the modulation frequency of the excitation light beam.
  • 18) The device for analyzing a material according to aspect 16 or 17, with an optical medium for establishing the contact of the surface of the optical medium with a first region of the material surface, and with
      • a device for emitting an excitation light beam with one or more excitation wavelengths into a volume located in the material underneath the first region of the surface, in particular through the region of the surface of the optical medium which is in contact with the material surface, and with a device for measuring the temperature in the region of the surface of the optical medium which is in contact with the material surface using an optical method, and with a device for analyzing the material on the basis of the detected temperature increase as a function of the wavelength of the excitation light beam and the intensity modulation of the excitation light beam.
  • 19) The device according to aspect 18, characterized in that the excitation light source is directly fixedly mechanically connected to the optical medium.
  • 20) The device according to aspect 18, characterized in that a device is provided for emitting a measurement light beam into the region of the optical medium which is in contact with the first region of the material surface, and that in order to detect the measurement light beam this device and/or the detection device is directly fixedly mechanically connected to the optical medium and/or coupled thereto by means of a fibre-optic cable.
  • 21) The device according to aspect 18, 19 or 20, characterized in that the optical medium directly supports an imaging optics and/or that an imaging optics is integrated into the optical medium.
  • 22) The device according to aspect 18 or any of the other preceding or following aspects, characterized in that the surface of the optical medium has a plurality of partial faces inclined towards each other, at which the measuring light beam is reflected multiple times.
  • 23) The device according to aspect 18 or any of the other preceding or following aspects, characterized in that one or more mirror surfaces are provided in or on the optical medium for reflection of the measuring light beam.
  • 24) The device according to aspect 16 or 17, characterized in that in order to detect a time-dependent response signal, the detection device has an acoustic detector for detecting acoustic waves on the material surface, in particular with a resonator, more particularly with a Helmholtz resonator. As the detector of the acoustic source a quartz fork is used, preferably with the same resonance frequency as the resonator. The resonator can be open or closed. The quartz fork is preferably in or on the neck of the resonator (off-beam) or inside or outside of the resonator (in-beam).
  • 25) The device according to aspect 16, 17 or 18, characterized in that in order to detect a time-dependent response signal, the detection device has a thermal radiation detector for detecting the heat radiation at the material surface, in particular an infrared detector, more particularly a thermocouple, a bolometer, or a semiconductor detector.
  • 26) The device according to any one of the aspects 16 to 25, characterized in that the excitation light source and the detection device are directly attached to each other or to a common support, which is formed in particular by a housing or housing part of the device.
  • 27) The device according to any one of the aspects 16 to 26, characterized in that the device has a wearable housing which can be fastened to the body of a person, wherein the device for emitting one or more excitation light beams and the detection device for detecting a time-dependent response signal are arranged and configured in such a way that the material to be analyzed is measured on the side of the housing facing away from the body.
  • 28) The device according to any one of the aspects 16 to 26, characterized in that the device has a wearable housing, which can be fastened to the body of a person, and that the housing of the device has a window which is transparent for the excitation light beam on its side facing away from the body in the intended wearing position.
  • 29. A device for analyzing a material with an excitation transmission device for generating at least one electromagnetic excitation beam, in particular an excitation light beam, with at least one excitation wavelength, a detection device for detecting a response signal and a device for analyzing the material on the basis of the detected response signal.
  • 30. The device according to any one of the preceding aspects 16 to 29, characterized in that the detection device is configured for measuring the deformation of a crystal.
  • The deformation can be measured more effectively by analogy with the photothermal ‘Bouncing method’ by the selection of steeper (larger) angles of incidence of the measuring beam to the sample surface and the influence of the mirage effect-related deflection of the measuring beam can be minimized.
  • Literature
  • M. Bertolotti, G. L. Liakhou, R. Li Voti, S. Paolino, and C. Sibilia. Analysis of the photothermal deflection technique win the surface refection theme: Theory and Experiment. Journal of Applied Physics 83, 966 (1998)
  • A cantilever can be placed either directly on the sample or on a sufficiently thin optical medium, on which the sample is placed on the one side and the cantilever on the opposite side. Due to the thermal expansion of the sample or the optical element, the cantilever is set into vibration by the thermal expansion caused by the absorption of the modulated pumped beam. The measuring beam is reflected onto the upper side of the tip of the cantilever and is deflected due to the vibration, by an amount depending on the irradiated wavelength and the thermal properties of the sample, and on the modulation frequency. This deflection is detected.
  • 31. The device according to any one of the preceding aspects 16 to 30, characterized in that the excitation transmission device contains an interrogation laser or an LED, for example an NIR (near-infrared) LED.
  • 32. The device according to any one of the preceding aspects 16 to 31, characterized in that the excitation transmission device comprises a probe laser, which has a smaller diameter than an additional pump laser.
  • 33. The device according to any one of the preceding aspects 16 to 32, characterized in that in order to achieve a more favorable signal-to-noise ratio, a special coating, in particular of the optical emitter, for example IRE is provided, so that heat is dissipated better (e.g. “thermal conducting paste”).
  • The optical element can be coated on the contact surface in such a way that an improved conduction of the thermal signal into the optical medium can be provided. In addition, the coating can also serve as protection against scratches, and by intelligent choice of material can also implement a reflective surface for the measuring beam. In this case, the transparency for the excitation light must be maintained.
  • 34. The device according to any one of the preceding aspects 16 to 33, characterized in that the device has a system for
      • i. pulse trains/double modulation
      • ii. oscillating mirror
      • iii. MEMS interferometer.
  • 35. The device according to any one of the preceding aspects 16 to 34, characterized in that the device is designed to be permanently wearable by a person on the body, in one embodiment by means of a retaining device connected to the housing, such as a belt, a band or a chain or a clasp, and/or in that the detection device has a detection surface, which can also be used as a display surface for information such as measurement values, clock times and/or textual information.
  • 36. The device according to the preceding aspect 35, characterized in that the device has a pull-off film in the area of the detection surface, preferably next to the detection surface, for the pre-treatment of the material surface and for ensuring a clean surface and/or which in one embodiment in the case of glucose measurement, is specifically provided for the purpose of skin cleansing.
  • 37. The device according to any one of the preceding aspects 16 to 36, characterized in that the detection device is configured to read and recognize fingerprints to retrieve certain values/calibrations of a person and/or to detect the location of a finger, preferably to detect and determine an unintended movement during the measurement.
  • 38. The device according to any one of the preceding aspects 16 to 37, characterized in that the detection device has a results display, which is implemented, preferably with color coding, as an analogue display, in one embodiment including an error indication (for example: “100 mg/dl plus/minus 5 mg/dl”), acoustically and/or with a result display of measurements in larger steps than the accuracy of the device allows. This means that, for example, small fluctuations which could unsettle a user are not communicated.
  • 39. The device according to any one of the preceding aspects 16 to 38, characterized in that the device comprises data interfaces for the transfer of measured data and the retrieval of calibration data or other data from other devices or cloud systems, wherein the device is preferably configured in such a way that the data can be transmitted in encrypted form, in particular can be encrypted by fingerprint or other biometric data of the operator.
  • 40. The device according to any one of the preceding aspects 16 to 39, characterized in that the device is configured in such a way that a proposed insulin dose to be given to a person can be determined by the device in conjunction with other data (e.g. insulin correction factor) and/or weight, body fat can be measured and/or manually specified at the same time or can be transmitted from other devices to the device.
  • 41. The device according to any one of the preceding aspects 16 to 40, characterized in that in order to increase the measurement accuracy, the device is configured to identify further parameters, in one embodiment using sensors for determining the skin temperature, diffusivity, conductivity/moisture level of the skin, for measuring the polarization of the light (secretion of water/sweat on the finger surface) or such like.
  • Water and sweat on the skin surface of a person, which can influence the glucose measurement, can be detected by a test stimulus with an excitation radiation using the excitation transmission device with the water-specific bands at 1640 cm−1 (6.1 μm) and 690 cm−1 (15 μm). If the absorption should exceed a certain value, the measurement site/material surface/skin surface is too wet for a reliable measurement. Alternatively, the conductivity of the substance in the vicinity or directly at the measurement site can be measured, in order to determine the moisture level. An error message and an instruction to dry the surface can then be output.
  • 42. The device according to any one of the preceding aspects 16 to 41, characterized in that the device has a cover in the beam path of the pumping and/or measuring beam laser. This ensures the compulsory eye safety for human beings is provided.
  • 43. The device according to any one of the preceding aspects 16 to 42, characterized in that the device has a replaceable detection surface.
  • 44. The device according to any one of the preceding aspects 16 to 43, characterized in that the device is provided in some areas with a grooved or roughened crystal as an optical medium, which allows a better adjustment of the sample (e.g. the finger). The measuring point, on which the surface of the material to be analyzed is placed, is preferably designed without grooves and smooth.
  • 45. The device according to any one of the preceding aspects 16 to 44, characterized in that for the measuring beam either a cylindrical TEMpl TEM00 mode can be used, or other modes can be used instead of the cylindrical TEMpl TEM00 mode, e.g. TEM01 (Doughnut), TEM02 or TEM03. Particularly the latter modes have the advantage that their intensity can be matched to the sensitivity profile of the quadrant diode, which forms the detector for the deflected measuring beam (see figures). In addition, rectangular modes TEMmn can be used, such as TEM30 or TEM03 or higher. This allows sampling/measuring beams to be used which are less prone to interference in the horizontal or vertical direction.
  • 46. The device according to any one of the preceding aspects 16 to 45, characterized in that the device measures not only at a point but in a grid. This can be done either by displacing the pumped or probe laser or the detection unit. Instead of a displacement, one or more arrays of pumping or probe lasers are possible.
  • Other detection methods for the detection of a response signal after emission of an excitation beam may comprise:
      • photo-acoustic detection—photo-acoustic detection using a tuning fork or other vibration element or: a slightly modified form of photo-acoustics with an open QePAS cell (Quartz-enhanced Photo-Acoustic Spectroscopy). These methods can be used to detect pressure fluctuations/vibrations on the surface and evaluate them in the manner described above for the measured beam deflection.
  • In principle, measured values of a phase shift of the response signal relative to a periodic modulation of the excitation beam can be used for depth profiling. (To this end, warming/cooling phases of the material surface should be more accurately evaluated with regard to their waveform or pattern.)
  • The device described can be associated with a supply of adhesive strips for removing dead skin layers, in order to allow a maximally undistorted measurement on a human body, as well as plasters with thermal conductive paste that can be applied to the optical medium on a regular basis. The optical medium can be replaceable, given suitable fastening and adjustment of the remaining parts.
  • To perform the measurement, the device can be provided and configured not only on a person's finger, but also on a lip or an earlobe.
  • In some embodiments the measurement can work even without direct contact and placement of the finger or other part of the body (at a distance), resulting in a contact-free measurement.
  • The measurement can be improved with regard to its accuracy and reliability by combination of a plurality of the measuring systems described and explained, with similar susceptibility to error.
  • DAQ and lock-in amplifiers in the evaluation can be combined in one device and overall the evaluation can be digitized.
  • The measuring device can also be performed on a moving surface, so that in the course of a grid measurement: excitation light source and and/or measuring light source move over the skin in a grid pattern during the measurement, which allows skin irregularities to be compensated for or even eliminated.
  • The sensitivity of the detection device/deflection unit can be optimized by adjustment/variation of the wavelength of the probe beam/measurement light source. For this purpose, the measurement light source can be varied with respect to wavelength or else contain a plurality of laser light sources at different wavelengths for selection or combination.
  • For the deflection of the pump/probe laser an ideal transverse mode (TEM) can be selected.
  • The excitation transmission device, measuring light source and detector can be configured as a common array and the beams can be suitably deflected in the optical medium to concentrate the emission and reception of all beams at one point.
  • A lens on or in the crystal of the optical medium can contribute to deflecting the measuring light beam more strongly depending on the response signal.
  • In addition, it is conceivable to use a gap-free photodiode for the detection, and a lens could then focus the measuring light beam after its exit, to thus enable a more accurate measurement.
  • An additional variant of the invention, in accordance with the patent claims is described in the following concept. This concept, whether taken alone, in combination with the above aspects or with the subject matter of the claims, also constitutes at least one independent invention. The applicant reserves the right to make this invention or these inventions the subject of claims at a later date. This can be done either in the context of this application or else in the context of subsequent divisional applications or continuation applications claiming the priority of this application:
  • A concept for non-invasive blood sugar measurement by a determination of the glucose in the skin by means of excitation using quantum-cascade lasers and measurement of the thermal wave by radiant heat. On the basis of FIGS. 12 and 13 a method is described with which the concentration of the glucose or another material in the interstitial fluid (ISF) in the skin can be determined. Glucose in the ISF is representative of blood glucose and follows it rapidly in the event of changes. The method consists of at least individual steps or groups of the following steps or of the entire sequence:
  • 1. The point on the skin 102 (in this case, the first region of the material surface), is irradiated with a beam of a quantum cascade laser, which is focused and possibly reflected at a mirror or parabolic mirror 140, and which is incrementally or continuously tuned over a specific infrared range, in which glucose is specifically absorbed. Instead of the quantum cascade laser 100, a laser array with a plurality of lasers radiating at single wavelengths can also be used. The spectral range (or the individual wavelengths, typically 5 or more wavelengths) can be in particular between approximately 900 and approximately 1300 cm−1, in which glucose has an absorption fingerprint, that is to say, typical and representative absorption lines.
    2. The excitation beam designated with SA is employed continuously (CW lasers) or in pulsed mode with a high pulse repetition rate or in a modulated manner. In addition, the excitation beam is low-frequency modulated, in particular in the frequency range between 10 and 1000 Hz. The low-frequency modulation can be performed with a variety of periodic functions, in various embodiments sine-wave, square wave or sawtooth wave, or the likes.
    3. Due to the irradiation of the skin the IR-radiation penetrates the skin to a depth of roughly 50-100 μm and—depending on the wavelength—excites specific vibrations in the glucose molecule. These excitations from the vibration level v0 to v1 return to the initial state within a very short time; in this step heat is released.
    4. As a result of the heat produced according to (3) a thermal wave is formed, which propagates isotropically from the place of absorption. Depending on the thermal diffusion length, defined by the low-frequency modulation described in (2) above, the thermal wave reaches the surface of the skin periodically at the modulation frequency.
    5. The periodic emergence of the thermal wave at the surface corresponds to a periodic modulation of the thermal radiation property of the skin (material surface of the sample). The skin can be described here approximately as a black body radiator, whose entire emission according to the Stefan-Boltzmann law is proportional to the fourth power of the surface temperature.
    6. With a detector 139 for heat radiation, i.e., an infrared detector, i.e. a thermocouple, bolometer, semiconductor detector or similar device, which is directed at the point of the skin under irradiation, the periodic temperature increase described under (5) is recorded. It depends on the irradiation of infrared light described under (1) and (2), and on the absorption described under (3), and therefore depends on the concentration of glucose. The thermal radiation SR (in this case, the response signal) is collected by means of an optical element, in one embodiment an infrared lens or a minor, in particular a concave parabolic mirror 141, and, in one embodiment is directed via a convex minor 141 a on to the detector 139. For this purpose a collection minor used in one embodiment can have an opening 142, through which the collected beam is directed. A filter 143 can also be provided in the beam path, which only allows infrared radiation of a certain wavelength range to pass.
    7. In processing the response signals, the modulation frequency can be specifically taken into account, for which the response signal can be processed in a lock-in amplifier 144. By analysis of the phase angle between the excitation signal and heat radiation signal (response signal) using a control and processing unit 147, the depth information relating to the depth below the surface can be obtained, from which the response signals are largely obtained.
    8. The depth information can also be obtained by the selection and analysis of various low-frequency modulation frequencies as described in (2) for the excitation beam and the combination of the results for different modulation frequencies (wherein the results can also be weighted differently for different modulation frequencies). Difference methods or other calculation methods can be used for this, to compensate for the absorption of the topmost skin layers.
    9. To maximize the sensitivity in the detection of the thermal radiation according to point (6), it is used over a broad spectral band for the entire available infrared range. As many regions of the Planck radiation curve as possible should be used. To make the detection insensitive to the intensive excitation radiation, the detection of the heat radiation is provided with blocking filter (notch filter) 143 for these excitation wavelengths. The wavelength range 148 transmitted through the blocking filter 143 is also apparent from the diagram of FIG. 13. Therein, the intensity of the response signal is shown both as a function of the wavelength, in a first (solid) curve 145 without an excitation beam or only with excitation radiation in non-specific wavelengths for the material to be identified (i.e. without the wavelengths where specific absorption bands of the material exist), and then in a second (dashed) curve 146 a similar curve is shown, wherein an excitation beam is irradiated which contains specific absorption wavelengths of the material to be identified.
    10. From the thermal signal measured according to (6-9), which is dependent on the excitation wavelength, if glucose is to be identified, in one embodiment the background is determined first with non-glucose-relevant wavelengths (or excluding them) of the excitation beam (curve 145), and then with (or including) the glucose-relevant wavelengths the difference from the background signal is determined. This results in the glucose concentration in the skin layer or skin layers, which are defined by the selected phase position according to (7) or the different modulation frequencies according to (8) or a combination of these.
  • Although the invention has been illustrated and described in greater detail by means of preferred exemplary embodiments, the invention is not limited by the examples disclosed and other variations can be derived therefrom by the person skilled in the art without departing from the scope of protection of the invention.
  • LIST OF REFERENCE NUMERALS
  • 10 device
  • 100 excitation transmission device/excitation light source
  • 100 a emitters/transmission elements
  • 101 material
  • 102 first region
  • 103 volume
  • 104 device
  • 105 device
  • 106 detection device
  • 107 processing device/evaluation device
  • 107 a memory
  • 108 optical medium
  • 108 a surface section
  • 108 b surface section
  • 109 adjustment device
  • 110 partial surface
  • 111 partial surface
  • 112 measuring beam/measuring light beam
  • 113 mirror surface
  • 114 minor surface
  • 116 opening
  • 117 opening
  • 118 opening
  • 119 connector body
  • 120 fibre-optic cable
  • 121 support
  • 122 housing
  • 123 body
  • 124 side
  • 125 belt
  • 126 fingertip
  • 127 adjustment device
  • 128 imaging optics
  • 129 imaging optics
  • 130 optical detector/camera
  • 131 data processing device
  • 132 controller
  • 133 micro-mirror
  • 134 micro-mirror
  • 135 micro-electro-mechanical system
  • 136 deflection device
  • 137 control device
  • 138 layer
  • 139 infrared detector
  • 140 mirror
  • 141 parabolic mirror
  • 142 opening in 141
  • 143 wavelength filter
  • 144 lock-in amplifier
  • 145 signal curve of the response signal (solid line)
  • 146 signal curve of the response signal (dashed line)
  • 147 control and processing device
  • 148 wavelength range
  • BZA blood sugar level indication
  • D detection result
  • GF interface
  • SA excitation beam
  • SR response signal

Claims (27)

1. An analysis device for analyzing a material having
an excitation transmission device for generating at least one excitation light beam with at least one excitation wavelength, and radiating the at least one electromagnetic excitation beam into a material volume, which is located underneath a first region of the surface of the material,
an optical medium, which in operation is in contact with said first region of the surface of the material,
a detection device for detecting a response signal, and
a device for analyzing the material on the basis of the detected response signal.
2. The analysis device according to claim 1, wherein
the device comprises a system for emitting a measurement beam, which is arranged so that the emitted measurement beam penetrates the optical medium and is reflected at an interface of the optical medium and the surface of the material, and
the detection device is a device for receiving the reflected measuring beam which forms the response signal and for directly or indirectly detecting a deflection of the reflected measuring beam.
3. The analysis device according to claim 1, wherein
in order to detect a response signal, the detection device is configured to detect a parameter change of the optical medium in a region adjacent to the first region, as a result of the response signal, wherein said parameter change is one or both of a deformation and a density change of the optical medium.
4. The analysis device according to claim 3, wherein
the detection device comprises one of a piezo-element, which is connected to the optical medium or integrated therein, as a detector for detecting said deformation or density change and temperature sensors as detectors for detecting the response signal.
5. The analysis device according to claim 1, wherein
the device comprises a device for the intensity modulation of the excitation light beam, and
the detection device is suitable for detecting a time-dependent response signal as a function of one or both of the wavelength of the excitation light and the intensity modulation of the excitation light.
6. The analysis device according to claim 1, wherein
the excitation transmission device comprises two or more transmission elements in the form of a one-, two- or multi-dimensional transmission element array, wherein
the two or more transmission elements each generate their own electromagnetic excitation beam and radiate the same into the volume below the first region and
the wavelengths of the electromagnetic excitation beams of the two or more transmission elements are different.
7. The analysis device according to claim 1, wherein
the excitation transmission device is directly, or indirectly by means of an adjustment device, mechanically fixedly connected to said optical medium.
8. The analysis device according to claim 5, wherein
the device for the intensity modulation comprises or is formed by an electrical modulation device, which is electrically connected to the excitation transmission device and electrically controls it.
9. The analysis device according claim 5, wherein
the device for intensity modulation comprises one of a controlled mirror arranged in the beam path and a layer which is arranged in the beam path and is controllable with respect to its transparency, or is formed by such a layer.
10. The analysis device according to claim 1, wherein
one or more of a device for emitting a measuring beam, the detection device and the excitation transmission device is/are directly mechanically fixedly connected to the optical medium or coupled to the same by means of a fiber-optic cable.
11. The analysis device according to claim 1, wherein
the optical medium directly supports an imaging optics, or an imaging optics is integrated into the optical medium.
12. The analysis device according to claim 1, wherein
the surface of the optical medium has a plurality of partial faces inclined towards each other, at which the measuring beam is reflected multiple times.
13. The analysis device according to claim 1, wherein
one or more reflective surfaces are provided in or on the optical medium for reflecting the measuring beam.
14. The analysis device according to claim 1, wherein
one or more of the excitation transmission device, a device for the emission of a measuring beam and the detection device are directly attached to each other or to a common support.
15. The analysis device according to claim 1, wherein
the excitation transmission device has an integrated semiconductor component, which comprises one or more laser elements and at least one micro-optical component and an additional modulation element.
16. The analysis device according to claim 1, wherein the analysis device has a wearable housing which can be fastened to the body of a person, wherein the excitation transmission device and the detection device are arranged and configured in such a way that the material to be analyzed is measured on the side of the housing facing away from the body.
17. The analysis device according to claim 16, wherein the housing of the device has a window which is transparent for the excitation light beam on its side facing away from the body in the intended wearing position.
18. The analysis device according to claim 16, wherein the excitation transmission device has an integrated semiconductor component, which comprises a plurality of laser elements and a modulation element for modulating the intensity of excitation light beams generated by corresponding ones of said plurality of laser elements, wherein said modulation element is one of a mirror, which is movable relative to the rest of the semiconductor device and is controllable with respect to its position, a layer with controllable radiation permeability, and an electronic control circuit for the modulation of the plurality of laser elements.
19. The analysis device according to claim 16, wherein the excitation transmission device is directly, or indirectly by means of an adjustment device, mechanically fixedly connected to said optical medium.
20. The analysis device according to claim 16, wherein
one or more of the excitation transmission device, the device for the emission of the measuring beam and the detection device are directly attached to each other or to a common support.
21. The analysis device according to claim 16, wherein one or more of a device for emitting a measuring beam, the detection device and the excitation transmission device is/are directly mechanically fixedly connected to the optical medium or coupled to the same by means of a fiber-optic cable.
22. A method for analyzing a material, wherein in the method
an optical medium is brought into contact with a surface of the material,
with an excitation transmission device, at least one electromagnetic excitation light beam with at least one excitation wavelength is generated by an at least partially simultaneous or consecutive operation of a plurality of laser emitters of a laser light source, and the at least one excitation light beam is radiated into a material volume, which is located underneath a first region of the surface of the material,
with a detection device a response signal is detected and
the material is analyzed on the basis of the detected response signal.
23. The method according to claim 22, wherein
using different modulation frequencies of the excitation transmission device, response signals, in particular temporal response signal waveforms or patterns, are successively determined and wherein a plurality of response signal waveforms or patterns at different modulation frequencies are combined with each other and that, in particular, specific information for a depth range under the surface is obtained from this.
24. The method according to claim 23, wherein
response signal waveforms or patterns at different modulation frequencies are determined for different wavelengths of the excitation beam and from this, in particular specific information is obtained for each depth range under the surface.
25. The method according to claim 24, wherein
when a plurality of modulation frequencies of the excitation light beam are used at the same time, the detected signal is resolved into its frequencies by means of an analytical procedure, and
only the partial signal that corresponds to the desired frequency is filtered out.
26. The method according to claim 22, wherein
the emitted excitation light beam is radiated in such a way that it penetrates the optical medium and exits the same at a predetermined point on the surface of the optical medium,
with a device for emitting a measuring beam, a measuring beam is generated in such a way that it penetrates the optical medium and is reflected at an interface of the optical medium and the surface of the material, and
a reflected measuring beam forming the response signal is measured with the detection device,
and the deflection of the reflected beam is directly or indirectly detected.
27. The method according to claim 22, wherein
said material is formed by a body part of a patient, and as a function of a material concentration identified in the material, a dosing device is activated for delivering a substance into the body of the patient, an acoustic or visual signal is output or a signal is delivered to a processing device via a wireless connection.
US17/131,032 2015-12-09 2020-12-22 Apparatus and Method for Analyzing a Material Abandoned US20210109019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/131,032 US20210109019A1 (en) 2015-12-09 2020-12-22 Apparatus and Method for Analyzing a Material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/DE2015/200532 WO2017097276A1 (en) 2015-12-09 2015-12-09 Apparatus and method for analyzing a material
US201815781176A 2018-06-04 2018-06-04
US17/131,032 US20210109019A1 (en) 2015-12-09 2020-12-22 Apparatus and Method for Analyzing a Material

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US15/781,176 Continuation US10876965B2 (en) 2015-12-09 2015-12-09 Apparatus and method for analyzing a material
PCT/DE2015/200532 Continuation WO2017097276A1 (en) 2015-12-09 2015-12-09 Apparatus and method for analyzing a material

Publications (1)

Publication Number Publication Date
US20210109019A1 true US20210109019A1 (en) 2021-04-15

Family

ID=55236098

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/781,176 Active 2036-01-05 US10876965B2 (en) 2015-12-09 2015-12-09 Apparatus and method for analyzing a material
US17/131,032 Abandoned US20210109019A1 (en) 2015-12-09 2020-12-22 Apparatus and Method for Analyzing a Material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/781,176 Active 2036-01-05 US10876965B2 (en) 2015-12-09 2015-12-09 Apparatus and method for analyzing a material

Country Status (6)

Country Link
US (2) US10876965B2 (en)
EP (2) EP3495800B1 (en)
JP (1) JP6880024B2 (en)
KR (1) KR102634764B1 (en)
CN (1) CN108369182B (en)
WO (1) WO2017097276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210059574A1 (en) * 2018-02-02 2021-03-04 Mitsubishi Electric Corporation Biological material measuring apparatus
EP4085820A1 (en) * 2021-05-04 2022-11-09 Eclypia Process for analyzing a tissue

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280728B2 (en) * 2015-12-09 2022-03-22 Diamontech Ag Device and method for analyzing a material
DE102016226212A1 (en) * 2016-12-23 2018-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. analyzer
US10908129B2 (en) 2016-12-13 2021-02-02 Pendar Technologies, Llc Devices and methods for quartz enhanced photoacoustic spectroscopy
KR101856909B1 (en) * 2017-10-26 2018-05-10 박창식 Apparatus for Measuring Skin Condition with Multiple Lights
DE102017127665A1 (en) * 2017-11-23 2019-05-23 Heiko Langer Water analysis arrangement and method for its operation
CN107997769A (en) * 2017-11-24 2018-05-08 天津大学 A kind of microwave time delay Woundless blood sugar Concentration Testing method based on Ear lobe blood liquid layer
KR102462880B1 (en) * 2018-08-30 2022-11-03 삼성전자 주식회사 Display apparatus, method for controlling thereof and recording media thereof
KR102223538B1 (en) 2019-12-04 2021-03-04 부경대학교 산학협력단 Device for analyzing sensitivity of object using frequency response and analyzing method using the same
WO2021233560A1 (en) * 2020-05-20 2021-11-25 Diamontech Ag Method and apparatus for analyte measurement including real-time quality assessment and improvement
WO2022071442A1 (en) * 2020-09-30 2022-04-07 ライトタッチテクノロジー株式会社 Substance-in-blood concentration measurement device and substance-in-blood concentration measurement method
KR102362577B1 (en) 2020-10-08 2022-03-17 부경대학교 산학협력단 Apparatus for analyzing dynamic characteristics of carbon fiber reinforced materials considering temperature, fiber direction and external loading pattern, and dynamic characteristics analyzing method using the same
WO2022201301A1 (en) * 2021-03-23 2022-09-29 三菱電機株式会社 Biological component measurement device and biological component measurement method
CN113758027B (en) * 2021-09-03 2023-06-06 中国科学院电工研究所 Straight-through solar vacuum heat collecting tube heat loss and vacuum performance integrated measuring device and measuring method
JP7205002B1 (en) * 2022-02-17 2023-01-16 三菱電機株式会社 Non-invasive material analyzer

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3146700A1 (en) 1981-11-25 1983-07-07 Fa. Carl Zeiss, 7920 Heidenheim METHOD AND DEVICE FOR DETECTING THERMOOPTIC SIGNALS
US4952027A (en) 1985-06-05 1990-08-28 Canon Kabushiki Kaisha Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device
US4790664A (en) 1985-08-16 1988-12-13 Canon Kabushiki Kaisha Device and method for measuring optical properties
JPS6363945A (en) 1986-09-04 1988-03-22 Canon Inc Stabilization of optical property measurement
US4968144A (en) 1989-03-09 1990-11-06 Wayne State University Single beam AC interferometer
JP2846079B2 (en) * 1989-08-16 1999-01-13 株式会社日立製作所 Photoacoustic signal detection method and apparatus
US5136172A (en) 1989-08-16 1992-08-04 Hitachi, Ltd. Method and apparatus for detecting photoacoustic signal
DE3937905C1 (en) 1989-11-15 1991-05-23 Dornier Gmbh, 7990 Friedrichshafen, De
US5574283A (en) 1990-06-27 1996-11-12 Futrex, Inc. Non-invasive near-infrared quantitative measurement instrument
US5370114A (en) 1992-03-12 1994-12-06 Wong; Jacob Y. Non-invasive blood chemistry measurement by stimulated infrared relaxation emission
DE4231214C2 (en) 1992-09-18 1994-12-08 Kernforschungsz Karlsruhe Photothermal sensor
DE4446390C1 (en) * 1994-12-23 1996-07-04 Siemens Ag Analyte concn. measuring method, e.g. for medical blood diagnosis
NO300346B1 (en) 1995-04-05 1997-05-12 Sinvent As Photo-acoustic measuring device
US6424851B1 (en) 1998-10-13 2002-07-23 Medoptix, Inc. Infrared ATR glucose measurement system (II)
IL142545A0 (en) 1998-10-13 2002-03-10 Medoptix Inc Infrared atr glucose measurement system
JP2000204904A (en) 1999-01-14 2000-07-25 Mitsubishi Heavy Ind Ltd Active damper seal
JP3423892B2 (en) 1999-02-12 2003-07-07 花王株式会社 Evaluation kit for skin properties
JP3594534B2 (en) * 1999-04-30 2004-12-02 ヘルマン ファウ、リリエンフェルトアル Equipment for detecting substances
JP2003042948A (en) 2001-08-03 2003-02-13 Univ Waseda Instrument for measuring glucose concentration
EP2400288A1 (en) 2002-02-11 2011-12-28 Bayer Corporation Non-invasive system for the determination of analytes in body fluids
WO2003071254A1 (en) 2002-02-21 2003-08-28 Matsushita Electric Industrial Co., Ltd. Apparatus for measuring biological information and method for measuring biological information
EP1499231A4 (en) 2002-03-08 2007-09-26 Sensys Medical Inc Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
HU225660B1 (en) 2002-05-24 2007-05-29 Mol Magyar Olaj & Gazipari Rt Method for photoacoustic measurement of concentration of non hydrocarbon component of gas mixture containing methane
CA2495941A1 (en) 2002-08-14 2004-02-26 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
US8971362B2 (en) * 2002-10-08 2015-03-03 Infinera Corporation Monitoring of a laser source with front and rear output photodetectors to determine frontal laser power and power changes over laser lifetime
DE602004003414T2 (en) 2003-04-03 2007-09-27 Matsushita Electric Industrial Co., Ltd., Kadoma Method and device for concentration measurement of a specific component
JP4052461B2 (en) 2003-04-17 2008-02-27 長崎県 Non-invasive measuring device for blood glucose level
EP2259050A3 (en) 2003-08-26 2010-12-22 Blueshift Biotechnologies, Inc. Time dependent fluorescence measurements
JP2005127748A (en) * 2003-10-21 2005-05-19 Kobe Steel Ltd Photothermal converting/measuring apparatus and method
JP4511977B2 (en) 2005-03-04 2010-07-28 三井造船株式会社 Photoacoustic microscope
US20060281982A1 (en) 2005-06-14 2006-12-14 Diasense, Inc. Method and apparatus for the non-invasive sensing of glucose in a human subject
CN101263388A (en) 2005-06-14 2008-09-10 道明资产公司 Method and apparatus for the non-invasive sensing of glucose in a human subject
DE102005048807B3 (en) * 2005-10-10 2006-11-16 Johann Wolfgang Goethe-Universität Apparatus for quantitative or qualitative determination of infrared active contents of liquid based or non-liquid fluids
JP2007242747A (en) 2006-03-07 2007-09-20 Fujifilm Corp Wavelength tunable laser device, and optical tomographic imaging device
JP4948117B2 (en) * 2006-10-23 2012-06-06 トヨタ自動車株式会社 Fuel property detection device
JP4901432B2 (en) 2006-11-16 2012-03-21 日本電信電話株式会社 Component concentration measuring device
CN100511623C (en) 2007-08-20 2009-07-08 中国科学院光电技术研究所 Method for measuring semiconductor doping concentration
JP5646337B2 (en) 2007-11-05 2014-12-24 バイオセンサー,インコーポレーテッド Optical sensor for determining the concentration of an analyte
JP4963482B2 (en) * 2008-03-18 2012-06-27 日本電信電話株式会社 Component concentration measuring apparatus and component concentration measuring method
JP2011516118A (en) 2008-03-25 2011-05-26 ザ・キュレイターズ・オブ・ザ・ユニバーシティ・オブ・ミズーリ Method and system for non-invasively detecting blood glucose using spectral data of one or more components other than glucose
JP2012070907A (en) 2010-09-28 2012-04-12 Hiroshima Univ Blood sugar level sensor
JP5628008B2 (en) * 2010-11-30 2014-11-19 日本電信電話株式会社 Semiconductor device, semiconductor optical device, and semiconductor integrated device
CN102033048B (en) 2010-12-31 2012-05-23 天津大学 Measuring method of absorption spectrum for eliminating ambient stray light interference
CN102226752A (en) 2011-04-08 2011-10-26 常熟舒茨电子科技发展有限公司 Method for detecting concentration of sulfur dioxide by using photoacoustic spectrometry
US9255841B2 (en) 2012-04-30 2016-02-09 Pendar Technologies, Llc Spectroscopy systems and methods using quantum cascade laser arrays with lenses
US20150192461A1 (en) 2012-07-05 2015-07-09 National University Of Singapore Light microscope and method of controlling the same
JP6201315B2 (en) 2012-12-27 2017-09-27 セイコーエプソン株式会社 Blood component measuring method, blood component measuring apparatus and medical device
RU135139U1 (en) 2013-07-16 2013-11-27 Открытое акционерное общество "Государственный оптический институт имени С.И. Вавилова" PHOTOTHERMAL RECORDER
JP6442826B2 (en) 2013-12-27 2018-12-26 セイコーエプソン株式会社 Blood component analysis method and blood component analyzer
JP6387610B2 (en) 2013-12-27 2018-09-12 ミツミ電機株式会社 Biological information measuring device
DE102014108424B3 (en) * 2014-06-16 2015-06-11 Johann Wolfgang Goethe-Universität Non-invasive substance analysis
JP2018205035A (en) 2017-05-31 2018-12-27 セイコーエプソン株式会社 Spectroscopic system, light receiving device, biological information measurement device, and spectroscopic method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210059574A1 (en) * 2018-02-02 2021-03-04 Mitsubishi Electric Corporation Biological material measuring apparatus
US11832942B2 (en) * 2018-02-02 2023-12-05 Mitsubishi Electric Corporation Biological material measuring apparatus
EP4085820A1 (en) * 2021-05-04 2022-11-09 Eclypia Process for analyzing a tissue
WO2022233685A1 (en) * 2021-05-04 2022-11-10 Eclypia Process and apparatus for analyzing a tissue

Also Published As

Publication number Publication date
JP6880024B2 (en) 2021-06-02
US10876965B2 (en) 2020-12-29
CN108369182A (en) 2018-08-03
CN108369182B (en) 2021-10-15
US20190302019A1 (en) 2019-10-03
KR20180091873A (en) 2018-08-16
EP3359948B1 (en) 2019-02-27
KR102634764B1 (en) 2024-02-06
EP3495800A1 (en) 2019-06-12
EP3495800B1 (en) 2023-09-20
EP3359948A1 (en) 2018-08-15
JP2019507320A (en) 2019-03-14
WO2017097276A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
US20210109019A1 (en) Apparatus and Method for Analyzing a Material
US10261011B2 (en) Device and method for analyzing a material
JP7423622B2 (en) Apparatus and method for analyzing substances
US11946887B2 (en) Device and method for analyzing a substance
US7299080B2 (en) Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US20100292581A1 (en) Dynamic Calibration of an Optical Spectrometer
US20090105564A1 (en) Living body component measuring apparatus capable of precisely and non-invasively measuring living body component
JP2021051078A (en) Device and method for analyzing substance
RU2813964C2 (en) Device and method of analyzing substance
WO2011095072A1 (en) Devices and methods for non-invasive measurement of blood glucose by infrared dispersive reflection

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIAMONTECH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAUER, ALEXANDER;HERTZBERG, OTTO;LUBINSKI, THORSTEN;SIGNING DATES FROM 20180523 TO 20180528;REEL/FRAME:054737/0559

Owner name: DIAMONTECH AG, GERMANY

Free format text: CHANGE OF CORPORATE ORGANIZATION;ASSIGNOR:DIAMONTECH GMBH;REEL/FRAME:055502/0549

Effective date: 20191016

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION