JPS6363945A - Stabilization of optical property measurement - Google Patents

Stabilization of optical property measurement

Info

Publication number
JPS6363945A
JPS6363945A JP20893486A JP20893486A JPS6363945A JP S6363945 A JPS6363945 A JP S6363945A JP 20893486 A JP20893486 A JP 20893486A JP 20893486 A JP20893486 A JP 20893486A JP S6363945 A JPS6363945 A JP S6363945A
Authority
JP
Japan
Prior art keywords
light
probe
excitation light
refractive index
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20893486A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Toshihiko Miyazaki
俊彦 宮崎
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Kunihiro Sakai
酒井 邦裕
Yoshinori Tomita
佳紀 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20893486A priority Critical patent/JPS6363945A/en
Publication of JPS6363945A publication Critical patent/JPS6363945A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection

Abstract

PURPOSE:To measure photoabsorptivity of a thin film on a liquid surface accurately and sensitively, by making an excitation beam irradiate a measuring part of a sample intermittently while several probe beams irradiate it to detect deflection of the probe beam. CONSTITUTION:An excitation beam 5 emitted from an excitation light source 6 is modulated 7 into a light intermittent or varying in the intensity to irradiate a measuring part of a thin film 1 developed on a liquid surface 2 of a liquid tank 4, which causes an intermittent change in the refractive index of the thin film 1 near the beam. On the other hand, probe beams 8a and 8b are made incident into the liquid tank 4 and totally reflected at the irradiation part of the excitation beam 5 on the liquid surface 2 to leave the liquid tank 4. With such an arrangement, the beams 8a and 8b pass through the measuring part at which the refractive index varies intermittently by the irradiation with the beam 5. The optical paths of the beams 8a and 8b are deflected according to the distribution of refractive index thus changed. When the beams 8a and 8b are both made to pass through an area with the refractive index distribution symmetrical with respect to the center of the excitation beam irradiation area, the vector sum of deflection of the probe beam due to variations in the liquid surface is down to zero, thereby enabling the detecting 10 of deflection according to the refractive index.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体、液体及び気体の物性を光学的に測定す
る方法に関し、特に液面上に展開された薄膜の特性を光
学的に測定する方法に関するもので、更に詳しくは、薄
膜の種々の特性分析の基礎となる光吸収特性の測定、例
えば単分子累積膜の形成に際して累積すべく液面上に展
開された単分子膜の特性分析等に利用されるものである
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for optically measuring the physical properties of solids, liquids, and gases, and in particular to optically measuring the properties of a thin film spread on a liquid surface. More specifically, it relates to the measurement of light absorption properties that are the basis of various characteristic analyzes of thin films, such as the characteristic analysis of monomolecular films spread on the liquid surface to be accumulated during the formation of monomolecular cumulative films. It is used for etc.

〔従来の技術〕[Conventional technology]

従来、被測定物の光吸収特性を測定する装置としては、
透過率又は反射率から光吸収特性を求める装置がある。
Conventionally, as a device for measuring the light absorption characteristics of a measured object,
There is a device that determines light absorption characteristics from transmittance or reflectance.

しかし、被測定物に光が照射された場合、透過光、反射
光の池に散乱光があり、更に高精度を期すためには光の
吸収成分を直接測定することが光吸収特性評価上重要と
なる。
However, when the object to be measured is irradiated with light, there is scattered light in the pool of transmitted light and reflected light, and in order to achieve even higher accuracy, it is important to directly measure the absorption component of light in evaluating light absorption characteristics. becomes.

光の吸収成分を直接測定する装置としては、光音響分光
装置(Photoacoustic  5pectro
scopy :PAS)や光熱輻射分光装置(Phot
othermalRadiometry:PTR)があ
る。
A photoacoustic spectrometer (Photoacoustic 5 spectrometer) is a device that directly measures absorption components of light.
scope: PAS) and photothermal radiation spectrometer (Photo
thermal radiometry (PTR).

また、やはり光の吸収成分を直接測定する装置として、
光熱偏向分光装置(P h o t o t e r 
m a IDeflection  5pectros
copy : PDS)と言われる装置がある。このP
DS装置は、被測定物の光吸収による発熱と共に被測定
物内及びその近傍に温度分布が生じて屈折率が変化し、
これによってそこに入射する光が偏向することを利用し
たものである。
In addition, as a device that directly measures the absorption components of light,
Photothermal deflection spectrometer
m a IDeflection 5pectros
There is a device called copy: PDS). This P
In a DS device, the refractive index changes due to heat generation due to light absorption of the object to be measured, and a temperature distribution in and around the object to be measured.
This makes use of the fact that the light incident thereon is deflected.

即ち、被測定物の測定部位に、光吸収されたときに発熱
による温度分布を生じさせて屈折率を変化させる励起光
と、これによる偏向量を測定するためのプローブ光とを
照射し、励起光の波長とプローブ光の偏向量とから被測
定物の光吸収特性を測定するものである。この装置は、
被測定物と検出系が独立に設定でき、現場での計測や遠
隔計測に適しており、本発明の基本原理もこのPDS装
置と同様である。
That is, the measurement site of the object to be measured is irradiated with excitation light that generates temperature distribution due to heat generation when the light is absorbed and changes the refractive index, and probe light that measures the amount of deflection caused by the excitation light. The light absorption characteristics of the object to be measured are measured from the wavelength of the light and the amount of deflection of the probe light. This device is
The object to be measured and the detection system can be set independently, making it suitable for on-site measurement and remote measurement, and the basic principle of the present invention is the same as that of this PDS device.

このPDS装置における理論的取扱いは、被測定物内の
熱伝導方程式を解けばよく、偏向角φとして測定される
偏向量は、励起光強度、屈折率の温度係数(δn/δT
)、プローブ光の通過する領域での温度勾配(δT/δ
X)等に比例することになる。被測定物の光吸収係数に
比例する項はくδT/δX)に含まれる。また(δn/
δT)は、被測定物によっては正負いずれかの値をとり
得、このことは偏向角も正負両方の場合があることを示
している。
Theoretical handling of this PDS device is to solve the heat conduction equation within the object to be measured, and the amount of deflection measured as the deflection angle φ is determined by the excitation light intensity, the temperature coefficient of the refractive index (δn/δT
), the temperature gradient in the region through which the probe light passes (δT/δ
X), etc. A term proportional to the light absorption coefficient of the object to be measured is included in δT/δX). Also (δn/
δT) can take either a positive or negative value depending on the object to be measured, which indicates that the deflection angle can also be positive or negative.

又、上記PDS装置のプローブ光の偏向量を測定する検
出器としては位置敏感検出器(PSD)を用いることが
多い。
Further, a position sensitive detector (PSD) is often used as a detector for measuring the amount of deflection of the probe light of the PDS device.

PDS (位置敏感検出器)の構造例を示す縦断面図を
第8図、その動作原理を第9図に示している。PDS(
位置敏感検出器)は光強度変化に無関係な位置信号が連
続で得られるもので1次元でも2次元の場合でも位置信
号が求められる。
FIG. 8 is a vertical sectional view showing an example of the structure of a PDS (position sensitive detector), and FIG. 9 shows its operating principle. PDS(
A position-sensitive detector) is a device that can continuously obtain a position signal that is unrelated to changes in light intensity, and can obtain position signals in both one-dimensional and two-dimensional cases.

ここで、PSDの動作原理から、2点以上の光入射があ
る場合は、各々の光強度に比例して重み付けされた位置
信号が得られる。また、光束が広がっている場合も、光
強度の重心的な位置信号が得られる。
Here, according to the operating principle of the PSD, when there are two or more points of light incidence, position signals weighted in proportion to the respective light intensities are obtained. Furthermore, even when the light beam is spread out, a position signal of the center of gravity of the light intensity can be obtained.

一方、従来、発明者にちなんでラングミュア・プロジェ
ット法(以下LB法という)と呼ばれる単分子膜累積法
によって、単分子膜を1枚ずつ重ねて基板へ移し取る単
分子累積膜形成装置が知られている(新実験化学講座1
8巻498頁〜507頁、丸善)。
On the other hand, conventionally, a monomolecular cumulative film forming apparatus is known in which monomolecular films are layered one by one and transferred to a substrate by a monomolecular film cumulative method called the Langmuir-Prodgett method (hereinafter referred to as LB method) named after the inventor. (New Experimental Chemistry Course 1)
Vol. 8, pp. 498-507, Maruzen).

上記装置により単分子膜を形成し基板へ移し取る。上記
装置は第6図、及び第7図に示す通りである。
A monomolecular film is formed using the above device and transferred to a substrate. The above apparatus is as shown in FIGS. 6 and 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

こうして、前記の方法により、単分子膜を形成しても、
液面上に展開された単分子膜等の薄膜という特異な環境
下にあるために、このごく薄い被測定物の光物性測定を
、PAS@ff、PTR装置又はPDS装Tをそのまま
用いて測定しようとするのでは無理が生じてしまう。測
定そのものが困難となったり精度や感度が低下しやすい
という問題が生じてくる。
In this way, even if a monomolecular film is formed by the above method,
Due to the unique environment of a thin film such as a monomolecular film spread on the liquid surface, the optical properties of this extremely thin object can be measured using PAS@ff, PTR equipment, or PDS instrument T as is. If you try, it will be impossible. Problems arise in that the measurement itself becomes difficult and accuracy and sensitivity tend to decrease.

PAS装置は、検出器の種類により、マイクロホン方式
と圧電素子方式とに分けられるが、マイクロホン方式で
は試料を密閉した試料室にいれる必要があり、圧電素子
方式では検出器と試料の配置が制限されるので、いずれ
も液面上に展開された薄膜をそのままの状態で測定する
には不向きである。
PAS devices can be divided into microphone type and piezoelectric element type depending on the type of detector, but the microphone type requires the sample to be placed in a sealed sample chamber, and the piezoelectric element type has restrictions on the arrangement of the detector and sample. Therefore, both methods are unsuitable for measuring thin films spread on the liquid surface as they are.

又、PDS装置の縦方向型においては、プローブ光が被
測定物たる薄膜を透過してしまい、薄膜の励起光吸収に
基づいて屈折率が変動する液相と気相の両者の影響を同
時に受けてしまうという問題がある。
In addition, in the vertical type of PDS device, the probe light passes through the thin film that is the object to be measured, and is simultaneously affected by both the liquid phase and the gas phase, whose refractive index changes based on the thin film's absorption of excitation light. There is a problem with this.

又、PDS装置の横方向型の場合、できるだけ大きな屈
折率変化を生じる領域を通過させることができるよう、
プローブ光を液面上の薄膜に接近させる必要がある。特
に、PDS装置の検出器は、受光強度の重心的な位置を
検出する性質を有するので、光強度の強いプローブ光束
中心部が薄膜に接近していることが好ましい。しかし、
プローブ光束の半径以上にその中心部を薄膜に接近させ
ることができず、光強度の強いプローブ光束中心部が、
屈折率変化の微弱な、薄膜から離れた領域を通過しがち
となって、高精度及び高感度の測定が困難となる問題が
ある。
In addition, in the case of a lateral type PDS device, in order to pass through a region where the refractive index change is as large as possible,
It is necessary to bring the probe light close to the thin film on the liquid surface. In particular, since the detector of the PDS device has the property of detecting the position of the center of gravity of the received light intensity, it is preferable that the center of the probe light beam, where the light intensity is strong, be close to the thin film. but,
The center of the probe beam cannot be brought closer to the thin film than the radius of the probe beam, and the center of the probe beam, where the light intensity is strong,
There is a problem that the refractive index tends to pass through a region far away from the thin film where the change in refractive index is weak, making it difficult to measure with high accuracy and sensitivity.

そこで本発明は液面に展開された薄膜としう極めて薄く
特異な環境下にある被測定物について、その光吸収特性
を精度及び感度よ(測定できるようにすることを目的と
するものである。
Therefore, it is an object of the present invention to make it possible to accurately and sensitively measure the light absorption characteristics of a thin film spread on a liquid surface, which is extremely thin and under a unique environment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明において上記問題点を解決するために講じられた
手段は、試料の測定部位に断続的に励起光を照射すると
共に、前記測定部位又はその近傍にプローブ光を照射し
、励起光の断続に対応するプローブ光の偏向量から試料
の光物性を測定するに際し、その測定を試料の変動から
独立させる安定化方法において、プローブ光を2本もし
くは2本以上用い、励起光照射領域の中心に関し、互い
に対称な位置に対となるプローブ光を照射し、その結果
得られる変動量のうち試料の変動により得られる変動量
であれば、該変動量は検出面上基準点に対してベクトル
総和が常にゼロ、且つ励起光による屈折率変化に供なう
プローブ光の変動量であれば、該変動量の偏向方向は、
全て検出面上基準点に対して同方向となるように光学系
を設定することに特徴を有する光物性測定の安定化方法
にある。
The means taken in the present invention to solve the above problems is to intermittently irradiate the measurement site of the sample with excitation light, and irradiate the measurement site or its vicinity with probe light, so that the intermittent excitation light is When measuring the optical physical properties of a sample from the amount of deflection of the corresponding probe light, in a stabilizing method that makes the measurement independent from fluctuations in the sample, two or more probe lights are used, and with respect to the center of the excitation light irradiation area, If a pair of probe lights is irradiated at positions symmetrical to each other, and the amount of variation obtained as a result is due to sample variation, the amount of variation will always be such that the vector sum is always equal to the reference point on the detection surface. If the amount of variation in the probe light due to the change in refractive index due to the excitation light is zero, the deflection direction of the amount of variation is
A method for stabilizing optical physical property measurement is characterized in that optical systems are set so that all the optical systems are oriented in the same direction with respect to a reference point on a detection surface.

〔作用〕[Effect]

励起光が試料たる薄膜に吸収されると、励起光の照射時
と非照射時とでは測定部位及びその近傍の屈折率が変化
するので、これをプローブ光の偏向量として検出するこ
とによって光吸収特性を測定することができる。このP
DS法の原理の特徴として、PDS出力は最終的に光強
度分布の重心的位置の信号を得るということがある。
When the excitation light is absorbed by the thin film that is the sample, the refractive index of the measurement site and its vicinity changes between when the excitation light is irradiated and when it is not irradiated. By detecting this as the amount of deflection of the probe light, the light absorption can be detected. Characteristics can be measured. This P
A feature of the principle of the DS method is that the PDS output ultimately obtains a signal at the center of gravity of the light intensity distribution.

第1図は本発明による安定化方法の基本原理を説明する
座標図である。第1図(a)は、試料面から反射される
光ビームの平均出射方向に垂直な平面上に、互いに直交
するX−Y座標軸を設定したもので、反射光の偏向量が
矢印112で示されている。
FIG. 1 is a coordinate diagram illustrating the basic principle of the stabilization method according to the present invention. In FIG. 1(a), mutually orthogonal X-Y coordinate axes are set on a plane perpendicular to the average emission direction of the light beam reflected from the sample surface, and the amount of deflection of the reflected light is indicated by arrow 112. has been done.

仮に、所要の光学系により、上記の座標系を反転させた
とすると、その投影図は第1図(b)のようにX’−Y
’となり、反射光の偏向量も矢印113で示される如く
になる。これらの互いに反転した光ビームが目標照射面
に照射されると、その座標は第1図(C)に示されるよ
うに原点Oに対して点対称(112a、113a)とな
り、両方の光ビーム強度が等しいとすれば、光ビーム・
エネルギーの重心位置は原点Oと常に一致する。従って
、上記の条件を満足する光学系を使用すれば、外的要因
による試料面変動が生じても、照射ビームの強度中心は
影響されずに補償されることになる。
If the above coordinate system is inverted using the required optical system, the projected diagram will be X'-Y as shown in Figure 1(b).
', and the amount of deflection of the reflected light also becomes as shown by arrow 113. When these mutually inverted light beams are irradiated onto the target irradiation surface, their coordinates become point symmetrical (112a, 113a) with respect to the origin O, as shown in FIG. 1(C), and the intensity of both light beams increases. are equal, the light beam and
The center of gravity of energy always coincides with the origin O. Therefore, if an optical system that satisfies the above conditions is used, even if sample surface fluctuations occur due to external factors, the center of intensity of the irradiation beam will be compensated for without being affected.

第2図は、上記の原理に基づく効果を一次元的に検証す
る基本的装置の概略構成図で、2つのレーザー光源9a
、9bからの光ビームを試料面1上の互いにご(近い領
域に照射し、分離された2対の光ビームをミラー26,
27.28などによりそれぞれ光位置検出器10へ照射
させ、試料面lの変動を記録するものである。第3図は
、上記構成による光ビームの位置ずれ量の測定結果を示
すグラフであり、縦軸は光ビームの検出位置Pを示し、
横軸は時間tを示す。
FIG. 2 is a schematic configuration diagram of a basic device for one-dimensionally verifying the effect based on the above principle, in which two laser light sources 9a
, 9b are irradiated onto areas close to each other on the sample surface 1, and the separated two pairs of light beams are sent to mirrors 26, 9b.
27, 28, etc., respectively, to the optical position detector 10 to record the fluctuation of the sample surface l. FIG. 3 is a graph showing the measurement results of the amount of positional deviation of the light beam with the above configuration, where the vertical axis indicates the detection position P of the light beam,
The horizontal axis indicates time t.

第3図において、一本の光ビームを直接光位置検出器1
0へ照射した場合は第3図(a)に示す如く試料面lの
変動が記録され、本発明により補償された場合は第3図
(b)の如(試料面の変動が除去され、安定しているの
がわかる。
In Fig. 3, one light beam is directly transmitted to the optical position detector 1.
When irradiating to 0, the fluctuation of the sample surface l is recorded as shown in Fig. 3(a), and when compensated by the present invention, the fluctuation of the sample surface is removed and stable as shown in Fig. 3(b). I can see that you are doing it.

一方、励起光照射領域とプローブ光照射位置との関係に
よりPDS信号は次のようになることが理論的、実験的
に確かめられている。
On the other hand, it has been theoretically and experimentally confirmed that the PDS signal is as follows depending on the relationship between the excitation light irradiation area and the probe light irradiation position.

励起光を断続し、プローブ光の偏向量の励起光変調と同
期成分をロックインアンプ等で同期検出すれば、第5図
に示すように励起光照射領域の中心で01かつ鎖点を中
心に対称で励起光照射領域の端でほぼ最大となり、以後
指数関数的に減少する振幅信号が得られる。尚、位相信
号は励起光照射領域の中心で反転(180°ずれる)す
る。
If the excitation light is intermittent and the excitation light modulation of the amount of deflection of the probe light and the synchronous component are synchronously detected using a lock-in amplifier, etc., as shown in Fig. An amplitude signal is obtained that is symmetrical and reaches a nearly maximum at the edge of the excitation light irradiation region, and then decreases exponentially thereafter. Note that the phase signal is inverted (shifted by 180°) at the center of the excitation light irradiation area.

そこで本発明においては、励起光照射領域の中心に関し
、対称な1組のプローブ光照射を行ない互いに通口きに
偏向させる。試料面の変動は両プローブ光に関し同方向
の偏向となるので、前述の試料面変動補償光学系を用い
れば、試料面変動のみが除かれることになる。
Therefore, in the present invention, a pair of probe light beams are irradiated symmetrically with respect to the center of the excitation light irradiation area and are deflected toward each other. Since variations in the sample surface cause both probe beams to be deflected in the same direction, if the above-mentioned sample surface variation compensating optical system is used, only the sample surface variations can be removed.

このように、本発明はプローブ光源から複数本の光ビー
ムを試料へ照射することにより、試料の変動に起因する
影響をベクトル和に吸収していまうもので、プローブ光
の本数は多いほど作用効果は確実になる。
In this way, the present invention absorbs the effects caused by fluctuations in the sample into the vector sum by irradiating the sample with multiple light beams from the probe light source, and the greater the number of probe lights, the greater the effect. becomes certain.

〔実施例〕〔Example〕

以下、本発明の実施例を、図面を参照して詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は、本発明を実施した単分子累積膜形成装置の一
例を示す構成図である。
FIG. 4 is a configuration diagram showing an example of a monomolecular cumulative film forming apparatus in which the present invention is implemented.

第4図において、4は液体3を収容した液槽で、その液
面2上には被測定物たる薄膜lが展開されている。図示
される薄膜lは、単分子膜を模式的に表わしたものであ
る。
In FIG. 4, reference numeral 4 denotes a liquid tank containing a liquid 3, and a thin film 1, which is an object to be measured, is spread on the liquid surface 2 of the tank. The illustrated thin film 1 is a schematic representation of a monomolecular film.

液槽4の側方のやや下方にはプローブ光源9a及び9b
が設けられている。このプローブ光源9a及び9bから
は、薄膜1が展開されている液面2で全反射される角度
で、プローブ光8a及び8bが、液体3側から薄膜lの
測定部位へ向けて照射される。
Probe light sources 9a and 9b are located slightly below the side of the liquid tank 4.
is provided. From the probe light sources 9a and 9b, probe lights 8a and 8b are emitted from the liquid 3 side toward the measurement site of the thin film 1 at an angle at which the probe lights 8a and 8b are totally reflected by the liquid surface 2 on which the thin film 1 is spread.

また、プローブ光源9a及び9bと液槽4を挟んで相対
向する位置には、送られて来るプローブ光8の位置を検
出する検出器10が設けられている。プローブ光8a及
び8bはミラー26,27.28により互いに液面2の
外部要因による変動を、前記検出器lOの受光面上で前
記原理に基づき、補償し合うように配置されている。こ
の検出器lOの信号は、ドライバー11を介してロック
インアンプ12へ送られるようになっている。
Further, a detector 10 is provided at a position facing the probe light sources 9a and 9b with the liquid tank 4 in between, for detecting the position of the probe light 8 sent thereto. The probe beams 8a and 8b are arranged by mirrors 26, 27, 28 so as to mutually compensate for fluctuations in the liquid level 2 caused by external factors on the light receiving surface of the detector 10 based on the aforementioned principle. The signal from this detector IO is sent to a lock-in amplifier 12 via a driver 11.

液槽4の上方には励起光源6が設けられている。An excitation light source 6 is provided above the liquid tank 4.

励起光源6は、励起光5を薄膜1の測定部位に向けて照
射するものである。励起光5の光路に沿った位置に、励
起光5を断続光としたり光強度に強弱を付けて照射する
ための、例えばチョッパーや可変フィルター等の光強度
変調器7が設けられている。また、励起光5は、更にレ
ンズ13によって集束されて、薄膜lの測定部位に照射
されるものである。第4図(B)第4図(A)中の励起
光とプローブ光の照射部を拡大した図である。膜面と垂
直方向から見た第4図(B)中の(b)図ではプローブ
光入射面方向に長いだ円形で示す。
The excitation light source 6 irradiates excitation light 5 toward the measurement site of the thin film 1 . A light intensity modulator 7, such as a chopper or a variable filter, is provided at a position along the optical path of the excitation light 5 to make the excitation light 5 into intermittent light or to irradiate the light with varying intensity. Further, the excitation light 5 is further focused by a lens 13 and irradiated onto the measurement site of the thin film 1. FIG. 4(B) is an enlarged view of the excitation light and probe light irradiation parts in FIG. 4(A). In the diagram (b) in FIG. 4 (B) viewed from the direction perpendicular to the film surface, it is shown as an oval shape elongated in the direction of the probe light incident surface.

光強度変調器7はロックインアンプ12に接続されてい
て、光強度変調器7から送られる励起光5の断続又は強
弱状唇を示す信号を参照信号として、検出器10からの
信号を同期検出できるようになっている。プローブ光源
9a及び9b、励起光源6、光強度変調器7及びロック
インアンプ12は、各々測定制御器14に接続されてい
る。測定制御器14は、プローブ光8a及び8b及び励
起光5の光路及び波長並びに光強度変調器7による励起
光5の断続又は強弱間隔を制御すると共に、ロックイン
アンプ12からの信号によって光吸収特性を算出するも
のである。
The light intensity modulator 7 is connected to a lock-in amplifier 12, and uses the signal from the light intensity modulator 7 indicating intermittent or strong/weak edges of the excitation light 5 as a reference signal to synchronously detect the signal from the detector 10. It is now possible to do so. Probe light sources 9a and 9b, excitation light source 6, optical intensity modulator 7, and lock-in amplifier 12 are each connected to measurement controller 14. The measurement controller 14 controls the optical path and wavelength of the probe lights 8a and 8b and the excitation light 5, as well as the intermittent or intensity interval of the excitation light 5 by the optical intensity modulator 7, and also controls the optical absorption characteristics by a signal from the lock-in amplifier 12. is calculated.

液槽4は、少な(ともプローブ光8a及び8b及び励起
光5の光路となる部分に透明な窓を設けておけば、こと
さら全体を透明とする必要はない。また、液体3は、励
起光5について吸収の小さいものであればプローブ光8
へ多少直接影響を与えるものであっても測定にさほど悪
影響はないが、透明であることが好ましい。
The liquid tank 4 does not need to be entirely transparent as long as a transparent window is provided in the optical path of the probe lights 8a and 8b and the excitation light 5. If the absorption is small for 5, the probe light 8
It is preferable that the material be transparent, although it will not have much of an adverse effect on the measurement even if it has a direct effect on the material.

まず、励起光源6より出射された励起光5は、光強度変
調器7により、断続した又は強弱の付いた光に変調され
、液槽4の液面2上に展開されている薄膜1の測定部位
を照射する。励起光5が照射される測定部位上の領域で
は、液面2上の薄膜lが光を吸収し、無放射輻射過程に
より、断続的又は強弱をもって熱を発生し、そのため、
近傍の屈折率変化が断続的に生じることになる。
First, the excitation light 5 emitted from the excitation light source 6 is modulated by the light intensity modulator 7 into intermittent or variable intensity light to measure the thin film 1 spread on the liquid surface 2 of the liquid tank 4. Irradiate the area. In the area on the measurement site where the excitation light 5 is irradiated, the thin film 1 on the liquid surface 2 absorbs the light and generates heat intermittently or with varying degrees of intensity due to a non-radiative radiation process.
Changes in the refractive index in the vicinity occur intermittently.

一方、プローブ光源9a及び9bから出射されるプロー
ブ光8a及び8bは、入射角が液体3の臨界角より大き
くなるよう入射されて、液面2の励起光5照射部位で全
反射され、液体3内を通過して液槽4外へと出る。従っ
て、プローブ光8a及び8bは、上記励起光5の照射に
よって断続的に屈折率が変化する測定部位を通過するこ
とになる。この屈折率の断続的変化を生じる領域を、プ
ローブ光源9a及び9bから出射されたプローブ光8a
及び8bが通過すると、変化した屈折率分布に応じて、
光路が偏向することになる。プローブ光8a及び8bを
ごく近接した、かつ互いに励起光照射領域の中心に関し
対称な屈折率分布の領域を通過させることとすれば、ミ
ラー26,27.28により、液面の変動によるプロー
ブ光の変動量のベクトル和はゼロになり、励起光照射に
よる屈折率分布のみに応じた偏向量となる。
On the other hand, the probe lights 8a and 8b emitted from the probe light sources 9a and 9b are incident on the liquid 3 with an incident angle larger than the critical angle of the liquid 3, are totally reflected at the excitation light 5 irradiation site on the liquid surface 2, and are totally reflected in the liquid 3. It passes through the inside and exits to the outside of the liquid tank 4. Therefore, the probe lights 8a and 8b pass through a measurement site whose refractive index changes intermittently due to the irradiation with the excitation light 5. The probe light 8a emitted from the probe light sources 9a and 9b defines the region where the refractive index changes intermittently.
and 8b pass, depending on the changed refractive index distribution,
The optical path will be deflected. If the probe beams 8a and 8b are passed through regions with refractive index distributions that are very close to each other and symmetrical about the center of the excitation light irradiation region, the mirrors 26, 27, and 28 will prevent the probe beams from changing due to changes in the liquid level. The vector sum of the amount of variation becomes zero, and the amount of deflection corresponds only to the refractive index distribution due to excitation light irradiation.

検出器10は、継続してプローブ光8a及び8bを受け
、プローブ光8a及び8bの受光位置をドライバー11
を介してロックインアンプ12へ送る。ロックインアン
プ12は、この検出器10からの信号を受けると同時に
光強度変調器7からの信号を受けており、両信号を同期
させることによって、励起光5照射時又は高強度時のプ
ローブ光8a及び8bの受光位置信号と、励起光5非照
射時又は低強度時のプローブ光8a及び8bの受光位置
信号との差をS / N比換(測定制御器14へ送る。
The detector 10 continuously receives the probe lights 8a and 8b, and adjusts the receiving position of the probe lights 8a and 8b to the driver 11.
The signal is sent to the lock-in amplifier 12 via. The lock-in amplifier 12 receives the signal from the detector 10 and the signal from the optical intensity modulator 7 at the same time, and by synchronizing both signals, the lock-in amplifier 12 receives the signal from the optical intensity modulator 7, and by synchronizing both signals, the lock-in amplifier 12 receives the signal from the optical intensity modulator 7. The difference between the light receiving position signals of 8a and 8b and the light receiving position signals of probe lights 8a and 8b when the excitation light 5 is not irradiated or when the intensity is low is converted into an S/N ratio (sent to the measurement controller 14).

測定制御器14は、この送られて来た信号に基づき、そ
の時の励起光5の波長についてのプローブ光8a及び8
bの偏向量を求め、これに基づいて光吸収特性を算出す
る。また、励起光5の波長を順次変えながら同様の測定
を行えば、薄膜1の分光吸収特性を得ることができる。
Based on this sent signal, the measurement controller 14 adjusts the probe lights 8a and 8 for the wavelength of the excitation light 5 at that time.
The amount of deflection of b is determined, and the light absorption characteristics are calculated based on this. Further, by performing similar measurements while sequentially changing the wavelength of the excitation light 5, the spectral absorption characteristics of the thin film 1 can be obtained.

この測定に際して、測定部位は、測定制御器14で励起
光5の光路を調節することで自由に選択でき、また液面
2の位置に応じてやはり測定制御器14でプローブ光8
a及び8bの光路を調節して正確を期すことができる。
In this measurement, the measurement site can be freely selected by adjusting the optical path of the excitation light 5 with the measurement controller 14, and the probe light 8 can be selected with the measurement controller 14 depending on the position of the liquid surface 2.
The optical paths of a and 8b can be adjusted for accuracy.

また、プローブ光源9a及び9b。Also, probe light sources 9a and 9b.

励起光源6及び光強度変調器7に必要な調節を全て測定
制御器14で自動的に行うようにし、操作を簡略化する
ことも可能である。
It is also possible to automatically make all necessary adjustments to the excitation light source 6 and the light intensity modulator 7 by the measurement controller 14, thereby simplifying the operation.

励起光5の測定部位における光量分布、液体3の熱によ
る屈折率変化の特性、プローブ光8a及び8bの入射ビ
ーム位置及びその時の偏向量から薄膜lによって吸収さ
れた光エネルギーが求まる。従って、励起光5の薄膜1
への照射エネルギーをフォトセンサー等でモニターして
おけば、両者から薄膜1の絶対的な光吸収特性が得られ
る。そして、励起光5の波長を変化させることにより、
絶対的分光吸収特性が得られる。また、励起光5の各波
長における相対強度を予め求め、波長に対応したプロー
ブ光8a及び8bの偏向量を求めるだけでも、相対的な
分光吸収特性を得ることができる。光吸収特性の相対値
、絶対値は、測定の目的に応じ適宜選択すればよい。
The light energy absorbed by the thin film 1 is determined from the light intensity distribution of the excitation light 5 at the measurement site, the characteristics of the refractive index change due to heat of the liquid 3, the incident beam positions of the probe lights 8a and 8b, and the amount of deflection at that time. Therefore, the thin film 1 of the excitation light 5
By monitoring the irradiation energy with a photosensor or the like, the absolute light absorption characteristics of the thin film 1 can be obtained from both. Then, by changing the wavelength of the excitation light 5,
Absolute spectral absorption characteristics are obtained. Moreover, the relative spectral absorption characteristics can be obtained by simply determining the relative intensity of the excitation light 5 at each wavelength in advance and determining the amount of deflection of the probe lights 8a and 8b corresponding to the wavelength. The relative value and absolute value of the light absorption characteristic may be appropriately selected depending on the purpose of measurement.

ところで、液槽4回りは、従来のLB法による単分子累
積膜形成装置と同様で、これを第6図及び第7図で説明
する。
Incidentally, the structure around the liquid tank 4 is similar to that of a conventional monomolecular cumulative film forming apparatus using the LB method, and this will be explained with reference to FIGS. 6 and 7.

液槽4は、広くて浅い角形を成し、その内側に、例えば
ポリプロピレン製等の内枠16が水平に釣ってあり、液
面2を仕切っている。液体3としては、通常、純水が用
いられる。内枠16の内側には、例えばやはりポリプロ
ピレン製等の成膜枠17が浮かべられている。成膜枠1
7は、幅が内枠16の内幅より僅かに短かい直方体で、
図中左右方向に二次元ピストン運動可能なものとなって
いる。成膜枠17には、成膜枠17を図中右方に引張る
ための重錘18が滑車19を介して結び付けられてい福
。また、成膜枠17上に固定された磁石20と、成膜枠
17の上方で図中左右に移動可能で磁石20に接近する
と互に反撥し合う対磁石21とが設けられていて、これ
によって成膜枠17は図中左右への移動並びに停止が可
能なものとなっている。このような重錘18や一組の磁
石20.21の代りに、回転モーターやプーリーを用い
て直接成膜枠17を移動させるものもある。
The liquid tank 4 has a wide and shallow rectangular shape, and an inner frame 16 made of polypropylene or the like is suspended horizontally inside the tank 4 to partition the liquid level 2. As the liquid 3, pure water is usually used. Inside the inner frame 16, a film forming frame 17 made of, for example, polypropylene is floated. Film forming frame 1
7 is a rectangular parallelepiped whose width is slightly shorter than the inner width of the inner frame 16;
The piston is capable of two-dimensional movement in the left and right directions in the figure. A weight 18 is connected to the film forming frame 17 via a pulley 19 for pulling the film forming frame 17 to the right in the figure. Further, there are provided a magnet 20 fixed on the film forming frame 17 and counter magnets 21 which are movable from side to side in the figure above the film forming frame 17 and repel each other when approaching the magnet 20. Accordingly, the film forming frame 17 can be moved from side to side in the figure and stopped. Instead of such a weight 18 or a set of magnets 20, 21, there is also a method in which a rotary motor or a pulley is used to directly move the film forming frame 17.

内枠16内の両側には、吸引パイプ22を介して吸引ポ
ンプ(図示されていない、)に接続された吸引ノズル2
3が並べられている。この吸引ノズル23は、単分子膜
や単分子累積膜内に不純物が混入してしまうのを防止す
るために、液面2上の不要になった前工程の単分子膜等
を迅速に除去するのに用いられるものである。尚、15
は基板ホルダ24に取付けられて垂直に上下される基板
である。
Suction nozzles 2 are connected to a suction pump (not shown) via a suction pipe 22 on both sides of the inner frame 16.
3 are lined up. This suction nozzle 23 quickly removes unnecessary monomolecular films from the previous process on the liquid surface 2 in order to prevent impurities from being mixed into the monomolecular film or monomolecular cumulative film. It is used for. In addition, 15
is a substrate attached to the substrate holder 24 and vertically moved up and down.

上述の単分子累積膜形成装置による単分子膜の形成並び
にその累積膜の取得原理は、基本的には従来のものと同
様である。
The principles of forming a monomolecular film and obtaining the cumulative film using the above-described monomolecular cumulative film forming apparatus are basically the same as those of the conventional method.

まず、成膜枠17を移動させて、液面2上の不要となっ
た単分子膜等を掃き寄せながら吸引ノズル23からすす
り出し、液面2を浄化する。次いで成膜枠17を液槽4
の一端に寄せて、液面2に膜構成物質をたらした後、成
膜枠17を移動させてその展開領域を狭め、固体膜とし
てから基板15を上下させて、形成された単分子膜を移
し取ればよい。
First, the film forming frame 17 is moved to sweep up unnecessary monomolecular films and the like on the liquid surface 2 while sucking them out from the suction nozzle 23 to purify the liquid surface 2. Next, the film forming frame 17 is placed in the liquid tank 4.
After dropping the film constituent material on the liquid surface 2, moving the film forming frame 17 to narrow the development area and forming a solid film, the substrate 15 is moved up and down to spread the formed monomolecular film. Just transfer it.

ところで、本実施例に係る装置では、第4図で説明した
ように、液面2上に展開された単分子膜である薄膜1の
物性を、光学的にその場で直接測定することができる。
By the way, in the apparatus according to this embodiment, as explained in FIG. 4, the physical properties of the thin film 1, which is a monomolecular film spread on the liquid surface 2, can be directly measured on the spot optically. .

したがって、単分子膜の形成からその移し取り完了まで
を通じて、この測定に基づいて対磁石21の移動、すな
わち成膜枠17の移動を測定制御器14で制御すれば、
所望の物性の単分子膜を確実に基板15上に累積させる
ことができる。
Therefore, if the movement of the counter magnet 21, that is, the movement of the film forming frame 17, is controlled by the measurement controller 14 based on this measurement from the formation of the monomolecular film to the completion of its transfer,
A monomolecular film having desired physical properties can be reliably accumulated on the substrate 15.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液面上に展開されている薄膜の物性を
、高精度かつ高感度の光吸収特性の測定によって正確に
知ることができ、単分子累積膜形成装置に用いれば、特
性精度の極めて高い単分子累積膜が得られるもので、試
料面へ照射されるプローブ光を複数本使用し、試料の変
動に起因する各プローブ光の変動量のベクトル和をゼロ
とするように、光学系もしくは光源を制御することによ
り、例えば試料たる単分子膜を展開させた液面の揺れ等
による試料変動の影響を受けない安定した測定結果が得
られる光物性測定の安定化方法を提供することができる
According to the present invention, the physical properties of a thin film developed on the liquid surface can be accurately known by measuring the light absorption characteristics with high precision and high sensitivity. It is possible to obtain a monomolecular cumulative film with extremely high To provide a method for stabilizing optical physical property measurement by controlling the system or light source to obtain stable measurement results that are not affected by sample fluctuations caused by, for example, fluctuations in the liquid surface in which a monomolecular film as a sample is developed. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、第2図はその原理に基づく基
本装置の構成図、第3図は測定結果のグラフ、第4図は
本発明の一実施例の構成図、第5図は照射光位置とPD
S信号の関係を示す図、第6図および第7図は単分子累
積膜形成装置の説明図、第8図、第9図はPSD素子の
説明図である。 l:被測定物、2:液面、3:液体、4・液槽、5;励
起光、6:励起光源、7:光強度変調器、8ニブローブ
光、9ニブローブ光源、10:検出器、lトドライバー
、12:ロックインアンプ、13:レンズ、14:測定
制御器、15:基板、17:成膜枠、2・l:基板ホル
ダ、25:光路調整器、26,27,28,29,30
 :ミ ラ − 。
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of a basic device based on the principle, Fig. 3 is a graph of measurement results, Fig. 4 is a block diagram of an embodiment of the present invention, and Fig. 5 is the irradiation light position and PD
FIGS. 6 and 7 are diagrams showing the relationship between S signals, FIGS. 6 and 7 are explanatory diagrams of a monomolecular cumulative film forming apparatus, and FIGS. 8 and 9 are diagrams explanatory of a PSD element. l: object to be measured, 2: liquid level, 3: liquid, 4. liquid tank, 5: excitation light, 6: excitation light source, 7: light intensity modulator, 8 niblob light, 9 niblob light source, 10: detector, lt driver, 12: lock-in amplifier, 13: lens, 14: measurement controller, 15: substrate, 17: film forming frame, 2・l: substrate holder, 25: optical path adjuster, 26, 27, 28, 29 ,30
:Mira.

Claims (2)

【特許請求の範囲】[Claims] (1)試料の測定部位に断続的に励起光を照射すると共
に前記測定部位にプローブ光を照射し、励起光の断続に
対応するプローブ光の偏向量から試料の光物性を測定す
るに際し、その測定を試料の変動から独立させる安定化
方法において、プローブ光を2本もしくは2本以上用い
、励起光照射領域の中心に関し、互いに対称な位置に対
となるプローブ光を照射し、その結果得られる変動量の
うち試料の変動により得られる変動量であれば該変動量
は検出面上基準点に対してベクトル総和が常にゼロとな
るように設定された光学系を有することに特徴をもつ光
物性測定の安定化方法。
(1) When excitation light is intermittently irradiated onto the measurement site of the sample and probe light is irradiated onto the measurement site, and the optical properties of the sample are measured from the amount of deflection of the probe light corresponding to the intermittent excitation light. A stabilization method that makes measurements independent of sample fluctuations uses two or more probe lights and irradiates pairs of probe lights at symmetrical positions with respect to the center of the excitation light irradiation area. Among the amount of variation, if the amount of variation is due to the variation of the sample, the amount of variation is an optical physical property characterized by having an optical system set so that the vector sum is always zero with respect to a reference point on the detection surface. Measurement stabilization method.
(2)該光物性測定の安定化方法がプローブ光を2本も
しくは2本以上用い励起光照射領域の中心に関し、互い
に対称な位置に対となるプローブ光を照射し、その結果
得られる変動量のうち励起光による屈折率変化に伴うプ
ローブ光の変動量であれば該変動量の偏向方向は、全て
検出面上基準点に対して同方向となるように光学系を設
定することに特徴を有する特許請求の範囲第1項記載の
光物性測定の安定化方法。
(2) The stabilization method for optical physical property measurement uses two or more probe lights to irradiate pairs of probe lights at symmetrical positions with respect to the center of the excitation light irradiation area, and the amount of fluctuation obtained as a result. Among them, if the amount of variation in the probe light due to a change in the refractive index due to the excitation light, the optical system is set so that the deflection direction of the amount of variation is all in the same direction with respect to the reference point on the detection surface. A method for stabilizing optical physical property measurement according to claim 1.
JP20893486A 1986-09-04 1986-09-04 Stabilization of optical property measurement Pending JPS6363945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20893486A JPS6363945A (en) 1986-09-04 1986-09-04 Stabilization of optical property measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20893486A JPS6363945A (en) 1986-09-04 1986-09-04 Stabilization of optical property measurement

Publications (1)

Publication Number Publication Date
JPS6363945A true JPS6363945A (en) 1988-03-22

Family

ID=16564551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20893486A Pending JPS6363945A (en) 1986-09-04 1986-09-04 Stabilization of optical property measurement

Country Status (1)

Country Link
JP (1) JPS6363945A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160359U (en) * 1988-04-26 1989-11-07
JPH06236392A (en) * 1993-02-10 1994-08-23 Nec Corp Hypermatrix operation system for parallel type computer
JP2005127748A (en) * 2003-10-21 2005-05-19 Kobe Steel Ltd Photothermal converting/measuring apparatus and method
WO2006002150A1 (en) * 2004-06-22 2006-01-05 Applied Materials Israel, Ltd. Wafer inspection system
JP2017519214A (en) * 2014-06-16 2017-07-13 ディアモンテク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングDiamontech Gmbh Non-invasive substance analysis
US10876965B2 (en) 2015-12-09 2020-12-29 Diamontech Ag Apparatus and method for analyzing a material
US11280728B2 (en) 2015-12-09 2022-03-22 Diamontech Ag Device and method for analyzing a material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160359U (en) * 1988-04-26 1989-11-07
JPH06236392A (en) * 1993-02-10 1994-08-23 Nec Corp Hypermatrix operation system for parallel type computer
JP2005127748A (en) * 2003-10-21 2005-05-19 Kobe Steel Ltd Photothermal converting/measuring apparatus and method
WO2006002150A1 (en) * 2004-06-22 2006-01-05 Applied Materials Israel, Ltd. Wafer inspection system
JP2017519214A (en) * 2014-06-16 2017-07-13 ディアモンテク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングDiamontech Gmbh Non-invasive substance analysis
US10883933B2 (en) 2014-06-16 2021-01-05 Diamontech Ag Non-invasive substance analysis
JP2021119343A (en) * 2014-06-16 2021-08-12 ディアモンテク、アクチェンゲゼルシャフトDiaMonTech AG Noninvasive material analysis
US11639894B2 (en) 2014-06-16 2023-05-02 Diamontech Ag Non-invasive substance analysis
US10876965B2 (en) 2015-12-09 2020-12-29 Diamontech Ag Apparatus and method for analyzing a material
US11280728B2 (en) 2015-12-09 2022-03-22 Diamontech Ag Device and method for analyzing a material

Similar Documents

Publication Publication Date Title
US4790664A (en) Device and method for measuring optical properties
JPS6363945A (en) Stabilization of optical property measurement
US4830502A (en) Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film
US4952027A (en) Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device
JP2002005860A (en) Measuring apparatus for minute region thermal physical property
JP4042068B2 (en) Coherent divergence interferometry
JPS61122548A (en) Measuring instrument for light absorption characteristic of thin film
JPS629234A (en) Measuring instrument for light absorption characteristics of thin film
JPS6239731A (en) Apparatus for measuring photo-physical properties of membrane
JPH0575059B2 (en)
JPS62140050A (en) Apparatus for measuring absorption characteristics of membrane
JPS61122547A (en) Measuring method of light absorption characteristic of thin film
JPS62140051A (en) Apparatus for measuring photo-physical properties of membrane
JPS6352004A (en) Measuring instrument
US4813763A (en) Light beam fluctuation compensating device and method
JPH0460698B2 (en)
JPS61122549A (en) Instrument for measuring light absorption characteristic of thin film
JPS6358242A (en) Method and instrument for measuring thermal diffusivity
JPS61281947A (en) Optical property measuring instrument
JPH0422457B2 (en)
JP2008241519A (en) Device and method for measuring thermophysical property, and recording medium
JPS61122546A (en) Measuring method of light absorption characteristic of thin film
JPS61122550A (en) Instrument for measuring light absorption characteristic of thin film
JPS61122551A (en) Instrument for measuring light absorption characteristic of thin film
JPS62140052A (en) Method for measuring photo-physical properties