JPS62140050A - Apparatus for measuring absorption characteristics of membrane - Google Patents

Apparatus for measuring absorption characteristics of membrane

Info

Publication number
JPS62140050A
JPS62140050A JP28110885A JP28110885A JPS62140050A JP S62140050 A JPS62140050 A JP S62140050A JP 28110885 A JP28110885 A JP 28110885A JP 28110885 A JP28110885 A JP 28110885A JP S62140050 A JPS62140050 A JP S62140050A
Authority
JP
Japan
Prior art keywords
light
liquid
probe
film
probe light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28110885A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takimoto
瀧本 清
Kenji Saito
謙治 斉藤
Yukio Nishimura
征生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28110885A priority Critical patent/JPS62140050A/en
Priority to US06/897,055 priority patent/US4790664A/en
Publication of JPS62140050A publication Critical patent/JPS62140050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the absorption characteristics of the membrane developed on the surface of a liquid with good accuracy and good sensitivity, by respectively irradiating a measuring area with exciting light and probe light modulated in intensity through the liquid at the incident angle entirely reflecting both lights on the surface of the liquid. CONSTITUTION:A liquid 3 developing a membrane 2 on the surface 1 thereof is received in a liquid tank 4 and exciting light 5 from an exciting light source 6 is allowed to irradiate the measuring area of the membrane 2 on the surface of the liquid 3 through the liquid 3 at an incident angle totally reflecting said light 5 on the surface of the liquid 3. Said exciting light is modulated in intensity by a luminous intensity modulator 7 before arrives the measuring surface to irradiate the same. Probe light 8 is emitted from a probe light source 9 to irradiate the measuring area through the liquid 3 at an incident angle totally reflected on the surface 1 of the liquid. The deflection quantity of the probe light 8 passing through the measuring area is detected by a detector 10 and scattering lights of the exciting light 5 and probe light 8 from the membrane 2 on the surface of the liquid 3 are detected by an infrared TV camera 14. As mentioned above, by monitoring the converging states of luminous fluxes of the exciting light and probe light or the relative positional relation thereof by the camera 14, the light path during measurement can be easily adjusted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に液面上に展開された薄膜の特性を光学的
に測定する方法に関するもので、更に詳しくは、薄膜の
種々の特性分析の基礎となる光吸収特性の測定装置に関
する。本発明は、例えば単分子累積膜の形成に際し、累
積すべく液面上に展開された単分子膜の特性分析等に利
用されるものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention particularly relates to a method for optically measuring the characteristics of a thin film developed on a liquid surface, and more specifically, to a method for optically measuring the characteristics of a thin film developed on a liquid surface. This invention relates to a device for measuring light absorption characteristics, which is the basis of. INDUSTRIAL APPLICATION This invention is utilized for the characteristic analysis etc. of the monomolecular film spread on the liquid surface to accumulate, for example when forming a monomolecular cumulative film.

[従来の技術] 従来、被測定物の光吸収特性を測定する装置としては、
透過率又は反射率から光吸収特性を求める装置がある。
[Prior Art] Conventionally, as a device for measuring the light absorption characteristics of an object to be measured,
There is a device that determines light absorption characteristics from transmittance or reflectance.

しかし、被測定物に光が照射された場合、透過光、反射
光の他に散乱光があり、更に高精度を期すためには光の
吸収成分を直接測定することが光吸収特性評価上重要と
なる。
However, when a measured object is irradiated with light, there is scattered light in addition to transmitted light and reflected light, and in order to achieve even higher accuracy, it is important to directly measure the absorption component of light in evaluating light absorption characteristics. becomes.

光の吸収成分を直接測定する装はとしては、断続的に光
を照射すると、被測定物に吸収された光エネルギーが無
輻射緩和過程により、断続的に熱に変換されることを利
用した測定装置である光音響分光装置(Photoac
oustic 5pectroscopy:PAS )
や光熱輻射分光装置(PhotothermalRad
iometry:  PTR)がある。
A method for directly measuring the absorbed components of light is a measurement method that utilizes the fact that when the object is irradiated with light intermittently, the light energy absorbed by the object to be measured is intermittently converted into heat through a non-radiative relaxation process. Photoacoustic spectrometer (Photoac)
oustic 5pectroscopy: PAS)
and photothermal radiation spectrometer (Photothermal Rad)
iometry: PTR).

また、やはり光の吸収成分を直接測定する装置トシテ、
光熱偏向分光装置(PhototermalDefle
ction 5pectroscopy:  PDS 
)と言われる装置がある。このPDS装置は、被測定物
の光吸収による発熱と共に被測定物内及びその近傍に温
度分布が生じて屈折率が変化し、これによってそこに入
射する光が偏向することを利用したものである。即ち、
被°測定物の測定部位に、光吸収されたときに発熱によ
る温度分布を生じさせて屈折率を変化させる励起光と、
これによる偏向量を測定するためのプローブ光とを照射
し、励起光の波長とプローブ光の偏向量とから被測定物
の光吸収特性を測定するものである。この装置は、被測
定物と検出系が独立に設定でき、現場での計測や遠隔計
測に適しており、本発明の基本原理もこのPDS装置と
同様である。
In addition, Toshite, a device that directly measures the absorption components of light,
Photothermal deflection spectrometer
ction 5pectroscopy: PDS
) There is a device called. This PDS device utilizes the fact that the refractive index changes as heat is generated due to light absorption of the object to be measured, and a temperature distribution occurs within and in the vicinity of the object to be measured, thereby deflecting the light that enters the object. . That is,
excitation light that causes a temperature distribution due to heat generation and changes the refractive index when the light is absorbed at the measurement site of the measured object;
A probe light for measuring the amount of deflection caused by this is irradiated, and the light absorption characteristics of the object to be measured are measured from the wavelength of the excitation light and the amount of deflection of the probe light. This device can set the object to be measured and the detection system independently, and is suitable for on-site measurement and remote measurement, and the basic principle of the present invention is also the same as this PDS device.

上記PDS装置は、励起光とプローブ光の配置によって
、横方向(transverse)型と縦方向(col
linear )型の二通りがあり、いずれも上述のよ
うに被測定物の励起光吸収量に応じたプローブ光の偏向
量を測定するもので、検出器としては位置緻感検出器(
PSD)を用いることが多い。
The above-mentioned PDS device can be of transverse type or vertical type depending on the arrangement of excitation light and probe light.
There are two types (linear) type, and both measure the amount of deflection of the probe light according to the amount of excitation light absorbed by the object to be measured, as described above, and the detector is a position-sensitive detector (
PSD) is often used.

第5図(a)は縦方向型の例で、励起光源6より出た励
起光5は、光強度変調器7で断続化又は強弱を付けられ
、レンズ13bで集束されて被測定物2′に照射される
。プローブ光a9より出たプローブ光8は、レンズ13
a及びミラー等の光路調整器25で励起光5が照射され
ている被測定物2′の測定部位を透過して検出器10へ
と至り、点線で示されるように偏向したときの偏向量が
測定される。第5図(b)は横方向型の例で、プローブ
光8が被測定物2′の表面に平行に照射される点が縦方
向型と相違するだけで他は同様である。
FIG. 5(a) shows an example of a vertical type, in which the excitation light 5 emitted from the excitation light source 6 is interrupted or adjusted in intensity by a light intensity modulator 7, and is focused by a lens 13b to the object to be measured. is irradiated. The probe light 8 emitted from the probe light a9 passes through the lens 13.
When the excitation light 5 is transmitted through the measurement part of the object 2' to be irradiated by the optical path adjuster 25 such as a and a mirror and reaches the detector 10, the amount of deflection is as shown by the dotted line. be measured. FIG. 5(b) shows an example of the horizontal type, which is the same as the vertical type except that the probe light 8 is irradiated parallel to the surface of the object to be measured 2'.

このPDS装置における理論的取扱いは、被測定物内の
熱伝導方程式を解けばよく、偏向角φとして測定される
偏向量は、励起光強度、屈折率の温度係数(an/ a
 T) 、プローブ光の通過する領域での温度勾配(a
T/aり等に比例することになる。
Theoretical handling of this PDS device is to solve the heat conduction equation within the object to be measured, and the amount of deflection measured as the deflection angle φ is determined by the excitation light intensity and the temperature coefficient of the refractive index (an/a
T), the temperature gradient (a
It will be proportional to T/a, etc.

被測定物の光吸収係数に比例する項は(aT/ a り
に含まれる。また(an/δT)は、被測定物によって
は正負いずれかの値をとり得、このことは偏向角も正負
両方の場合があることを示している。
The term proportional to the light absorption coefficient of the object to be measured is included in (aT/a). Also, (an/δT) can take either a positive or negative value depending on the object to be measured, which means that the deflection angle can also be positive or negative. This shows that both cases are possible.

一方、従来、発明者にちなんでラングミュア・プロジェ
ット法(以下LB法という)と呼ばれる単分子膜累積法
によって、単分子膜を1枚ずつ重ねて基板へ移し取る単
分子累積膜形成装置が知られている(新実験化学講座1
8巻488頁〜507頁、丸蓋)。
On the other hand, conventionally, a monomolecular cumulative film forming apparatus is known in which monomolecular films are layered one by one and transferred to a substrate by a monomolecular film cumulative method called the Langmuir-Prodgett method (hereinafter referred to as LB method) named after the inventor. (New Experimental Chemistry Course 1)
Volume 8, pp. 488-507, round lid).

上記装置は、液体を収容した液槽と、液面を二分するよ
うにして液槽内に浮かべられて、液槽内で二次元ピスト
ン運動可能な成膜枠と、この成膜枠を移動させる駆動装
置と、液面上に展開された単分子膜の表面圧を測定する
表面圧測定器と、保持した基板を液面に対して上下させ
る基板ホルダーとから概略構成されている。この装置に
よる単分子膜の形成からその基板への移し取りは、次の
ようにして行われている。
The above device consists of a liquid tank containing a liquid, a film forming frame that is floated in the liquid tank so as to divide the liquid surface into two, and is capable of two-dimensional piston movement within the liquid tank, and a film forming frame that moves the film forming frame. It is generally composed of a driving device, a surface pressure measuring device that measures the surface pressure of a monomolecular film spread on the liquid surface, and a substrate holder that moves the held substrate up and down with respect to the liquid surface. The formation of a monomolecular film using this apparatus and its transfer to a substrate are performed as follows.

まず、成膜枠を液槽の一方に片寄せた状態で、例えばz
 5 X 10−3moff/ρの濃度でベンゼンやク
ロロホルム等の揮発性溶媒に溶かした膜構成物質の溶液
を、スポイト等で数滴液面上にたらす。この溶液が液面
上に広がり、溶媒が揮発すると、単分子膜が液面上に残
されることになる。
First, with the film forming frame shifted to one side of the liquid tank,
A few drops of a solution of a membrane constituent material dissolved in a volatile solvent such as benzene or chloroform at a concentration of 5 x 10-3 moff/ρ are dropped onto the liquid surface using a dropper or the like. When this solution spreads on the liquid surface and the solvent evaporates, a monomolecular film will be left on the liquid surface.

上記単分子膜は、液面上で二次元系の挙動を示す。分子
の面密度が低いときには二次元気体の気体膜と呼ばれ、
一分子当りの占有面積と表面圧との間に二次元理想気体
の状態方程式が成立する。
The monomolecular film exhibits two-dimensional behavior on the liquid surface. When the areal density of molecules is low, it is called a gas film of secondary gas,
A two-dimensional ideal gas equation of state is established between the occupied area per molecule and the surface pressure.

次いで、この気体膜の状態から、徐々に成膜枠を移動さ
せて、単分子膜が展開している液面の領域をを縮めて分
子面密度を増やしてやると、分子間相互作用が強まり、
二次元液体の液体膜を経て二次元固体の固体膜へと変わ
る。この固体膜となると1分子の配列配向はきれいに揃
い、高度の秩序性及び均一な超薄膜性を持つに至る。そ
して、このときに基板ホルダーを動かして基板を上下さ
せると、基板の表面に固体膜となった単分子膜を付着さ
せて移し取ることができる。また、同一の基板に複数回
単分子膜を移し取ることによって、単分子累積膜を得る
ことができる。尚、基板としては、例えばガラス゛、合
成樹脂、セラミツり、金属等が使用される。
Next, from this gas film state, the film formation frame is gradually moved to reduce the area of the liquid surface where the monomolecular film is developed and increase the molecular surface density, which strengthens the intermolecular interactions. ,
It changes from a liquid film of two-dimensional liquid to a solid film of two-dimensional solid. In this solid film, the arrangement and orientation of each molecule is neatly aligned, resulting in a high degree of order and uniform ultra-thin film properties. At this time, by moving the substrate holder to move the substrate up and down, the monomolecular film, which has become a solid film, can be attached to the surface of the substrate and transferred. Moreover, a monomolecular cumulative film can be obtained by transferring a monomolecular film to the same substrate multiple times. Incidentally, as the substrate, for example, glass, synthetic resin, ceramic, metal, etc. are used.

上記基板へ移し取るのに好適な単分子膜の状yE下にお
いて移し取り操作を行うべく、単分子膜の表面圧を計測
することが行われる。一般に、移し取るのに好適な単分
子膜の表面圧は15〜30dyn/cmとされている。
In order to carry out the transfer operation under the condition of the monomolecular film suitable for transfer to the substrate, the surface pressure of the monomolecular film is measured. Generally, the surface pressure of a monomolecular film suitable for transfer is 15 to 30 dyn/cm.

この範囲外では、分子の配列配向が乱れたり膜の剥がれ
を生じやすくなる。もつとも、特別の場合、例えば、膜
構成物質の化学構造、温度条件等によっては、好適な表
面圧の値が上記範囲からはみ出ることもあるので、上記
範囲は一応の目安である。
Outside this range, the arrangement and orientation of molecules may be disturbed and the film may easily peel off. However, in special cases, for example, depending on the chemical structure of the membrane constituents, temperature conditions, etc., the suitable surface pressure value may exceed the above range, so the above range is only a rough guide.

上記単分子膜の表面圧は、表面圧測定器によって自動的
かつ継続的に計測されるものである。表面圧の測定器と
しては、単分子膜に覆われていない液面と、単分子膜に
覆われた液面との表面張力の差から求める方法を応用し
たものや、単分子膜に覆われていない液面と、単分子膜
に覆われた液面とを区切って浮ぶことになる成膜枠に加
わる二次元的圧力を直接測定するもの等があり、各々特
色がある。また、通常、表面圧と共に単分子膜の一分子
当りの占有面積及びその変化量も計測される。占有面積
及びその変化量は、成膜枠の左右の動きから求められる
The surface pressure of the monomolecular film is automatically and continuously measured by a surface pressure measuring device. Surface pressure measuring devices include those that apply the method of determining the surface tension from the difference in surface tension between the liquid surface that is not covered with a monomolecular film and the liquid surface that is covered with a monomolecular film; There are methods that directly measure the two-dimensional pressure applied to a floating film forming frame that separates the liquid surface that is not covered with a monomolecular film from the liquid surface that is covered with a monomolecular film, and each method has its own characteristics. In addition to the surface pressure, the occupied area per molecule of the monomolecular film and the amount of change thereof are also usually measured. The occupied area and the amount of change thereof are determined from the left and right movement of the film forming frame.

前述した成膜枠の動きは、上記測定器によって計測され
る単分子膜の表面圧に基づいて制御されるものである。
The movement of the film forming frame described above is controlled based on the surface pressure of the monomolecular film measured by the measuring device.

即ち、移し取り操作に好適な範囲内で選ばれた一定の表
面圧を単分子膜が常に維持するよう、成膜枠を移動させ
る駆動装置が表面圧測定器により計測された単分子膜の
表面圧に基づいて制御される。この成膜枠の移動制御は
、膜構成物質の溶液滴下後、単分子膜の移し取り操作開
始化だけでなく、移し取り操作中も継続して成されるも
のである。例えば、移し取り操作において、単分子膜が
基板に移し取られて行くに従って、液面上の単分子膜分
子の面密度は低下し、表面圧も低下することになる。従
って、成膜枠を移動させて単分子膜の展開面積を縮小し
、その表面圧低下分を補正して一定表面圧を維持してい
る。
In other words, the driving device that moves the film forming frame maintains a constant surface pressure of the monomolecular film selected within a range suitable for the transfer operation, so that the surface of the monomolecular film measured by a surface pressure measuring device is used to move the film forming frame. Controlled based on pressure. This movement control of the film forming frame is performed not only when the monomolecular film transfer operation is started after the solution of the film constituent material is dropped, but also continuously during the transfer operation. For example, in a transfer operation, as the monolayer is transferred to the substrate, the areal density of the monolayer molecules on the liquid surface decreases, and the surface pressure also decreases. Therefore, the film forming frame is moved to reduce the area in which the monomolecular film is developed, and the resulting drop in surface pressure is corrected to maintain a constant surface pressure.

[発明が解決しようとする問題点] しかしながら、液面上に展開された単分子膜等の薄膜と
いう、特異な環境下にあるごく薄い被測定物の測定に、
PAS装置、PTR装置又はPDS装置をそのまま用い
ようとすると、被測定物が液面上にあることや、ごく薄
いものであることから、測定そのものが困難となったり
精度や感度が低下しやすい問題がある。
[Problems to be solved by the invention] However, it is difficult to measure a very thin object under a unique environment, such as a thin film such as a monomolecular film spread on a liquid surface.
If you try to use a PAS device, PTR device, or PDS device as is, the problem is that the measurement itself becomes difficult and accuracy and sensitivity tend to decrease because the object to be measured is on the liquid surface or is very thin. There is.

PAS装置は、検出器の種類により、マイクロホン方式
と圧電素子方式とに分けられるが、マイクロホン方式で
は試料を密閉した試料室にいれる必要があり、圧電素子
方式では検出器と試料の配置が制限されるので、いずれ
も液面上に展開された薄膜をそのままの状態で測定する
には不向きである。
PAS devices can be divided into microphone type and piezoelectric element type depending on the type of detector, but the microphone type requires the sample to be placed in a sealed sample chamber, and the piezoelectric element type has restrictions on the arrangement of the detector and sample. Therefore, both methods are unsuitable for measuring thin films spread on the liquid surface as they are.

また、PDS測定においては、励起光、プローブ光の光
束の収束の状態が、感度に影響を与えるとともに、励起
光とプローブ光との相対的な位置関係も感度を大きく左
右する。そこで、励起光、プローブ光の照射位置及びこ
れらの相対的な位置をモニターする必要があり、従来、
顕微鏡を用いて目視によって励起光、プローブ光の散乱
光をモニターしてきたが、このような方法は液面の振動
など無用の外乱を与えてしまう。更には、光吸収特性の
測定にあたって、使用する波長は可視光とは限らず、例
えば赤外光を使用する場合には目視による照射位置の確
認ができないという欠点があった。
Furthermore, in PDS measurement, the state of convergence of the light beams of the excitation light and the probe light affects the sensitivity, and the relative positional relationship between the excitation light and the probe light also greatly influences the sensitivity. Therefore, it is necessary to monitor the irradiation positions of the excitation light and probe light and their relative positions.
The scattered light of the excitation light and probe light has been visually monitored using a microscope, but this method introduces unnecessary disturbances such as vibrations of the liquid surface. Furthermore, when measuring light absorption characteristics, the wavelength used is not limited to visible light; for example, when infrared light is used, there is a drawback that the irradiation position cannot be visually confirmed.

一方、前述のように、単分子累積膜を得るには種々の微
妙な調整が要求されるものである。しかし、これまでど
のような条件が最適条件となるかは種々の実験によらな
ければ分らず、また液面上の単分子膜が累積に適した状
態となっているか否かは、表面圧等で間接的に確認する
ことしかできず、正確さに欠けているのである。これは
、PAS 。
On the other hand, as mentioned above, various delicate adjustments are required to obtain a monomolecular cumulative film. However, until now it has not been possible to know what conditions are optimal without conducting various experiments, and whether or not the monomolecular film on the liquid surface is in a suitable state for accumulation depends on factors such as surface pressure. This can only be confirmed indirectly, and lacks accuracy. This is PAS.

PTR又はPDS装置等によって液面上の単分子膜の物
性を直接把握できるようにすればかなり改善されるが、
前述のような問題点があって、要望があっても応じられ
ないのが現状である。
If it were possible to directly grasp the physical properties of the monomolecular film on the liquid surface using a PTR or PDS device, it would be much improved, but
Due to the problems mentioned above, the current situation is that even if there is a request, it cannot be accommodated.

本発明は、液面に展開された薄膜という極めて薄く特異
な環境下にある被測定物について、その光吸収特性を精
度及び感度よく測定できるようにすることを目的とする
ものである。
An object of the present invention is to enable accurate and sensitive measurement of the light absorption characteristics of a thin film spread on a liquid surface, which is extremely thin and under a unique environment.

[問題点を解決するための手段] 本発明において上記問題点を解決するために講じられた
手段を、本発明の一実施例に対応する第1図を用いて説
明すると、液面l上に薄膜2を展開させる液体3を収容
した液槽4と、液面1上の薄膜2の測定部位へ液面下か
ら液面1で全反射される入射角で照射される励起光5を
出射する励起光源6と、励起光5を測定部位到達前に強
度変調する光強度変調器7と、液面l下から前記測定部
位へ液面1で全反射される入射角で照射されるプローブ
光8を出射するプローブ光源9と、この測定部位を通っ
たプローブ光8の偏向量を検出する検出器10と、液面
1上の薄膜2で、励起光5およびプローブ光8の散乱光
を検出する赤外テレビカメラ14とを有する薄膜の光吸
収特性測定装置とすることである。
[Means for solving the problems] The means taken to solve the above problems in the present invention will be explained with reference to FIG. 1, which corresponds to an embodiment of the present invention. A liquid bath 4 containing a liquid 3 for developing a thin film 2 and an excitation light 5 irradiated from below the liquid surface to a measurement site of the thin film 2 on the liquid surface 1 at an incident angle that is totally reflected by the liquid surface 1. An excitation light source 6, a light intensity modulator 7 that modulates the intensity of the excitation light 5 before it reaches the measurement site, and a probe light 8 that is irradiated from below the liquid surface 1 to the measurement site at an incident angle such that it is totally reflected by the liquid surface 1. A probe light source 9 that emits a probe light source 9, a detector 10 that detects the amount of deflection of the probe light 8 that has passed through this measurement site, and a thin film 2 on the liquid surface 1 that detects the excitation light 5 and the scattered light of the probe light 8. The purpose of the present invention is to provide a thin film light absorption characteristic measuring device having an infrared television camera 14.

[作 用] 本発明に係る測定装置においては、薄膜2での励起光5
、プローブ光8の散乱光を検出する赤外テレビカメラ1
4をそなえており、励起光5及びプローブ光8の薄膜2
上での光束の大きさ及び相対位置をモニターすることが
できる。したがって、異なる膜の場合にも常に同じ条件
で測定が行える。更に、プローブ光8.励起光5の波長
として、可視域以外の波長を用いる場合にも、この波長
に感度を有する赤外テレビカメラ14を用いることで、
容易に光路を調整することができ、高精度の測定が可能
になる。
[Function] In the measuring device according to the present invention, the excitation light 5 at the thin film 2
, an infrared television camera 1 that detects scattered light of the probe light 8
4, and a thin film 2 of excitation light 5 and probe light 8.
The magnitude and relative position of the luminous flux above can be monitored. Therefore, measurements can always be performed under the same conditions even when using different films. Furthermore, probe light 8. Even when using a wavelength other than the visible range as the wavelength of the excitation light 5, by using the infrared television camera 14 that is sensitive to this wavelength,
The optical path can be easily adjusted, allowing highly accurate measurements.

[実施例] 第1図〜第3図は、単分子累積膜形成装置に利用する場
合の本発明の一実施例示すものである。
[Example] Figures 1 to 3 show an example of the present invention when used in a monomolecular cumulative film forming apparatus.

第1図において、4は液体3を収容した液槽で、その液
面1上には被測定物たる薄膜2が展開されている。図示
される薄膜2は、単分子膜を模式的に表わしたものであ
る。
In FIG. 1, reference numeral 4 denotes a liquid tank containing a liquid 3, and a thin film 2, which is an object to be measured, is spread on the liquid surface 1 of the tank. The illustrated thin film 2 is a schematic representation of a monomolecular film.

液4114の側方のやや下方にはプローブ光源9が設け
られている。このプローブ光源9からは、薄膜2が展開
されている液面1で全反射される角度で、プローブ光8
が、液体3側から薄膜2の測定部位へ向けて照射される
。また、プローブ光源9と液槽4を挟んで相対向する位
置には、送られて来るプローブ光8の位置を検出する検
出器lOが設けられている。この検出器10の信号は、
ドライ/<−11を介してロックインアンプ12へ送ら
れるようになっている。
A probe light source 9 is provided on the side of the liquid 4114 and slightly below. The probe light 8 is emitted from this probe light source 9 at an angle at which it is totally reflected by the liquid surface 1 on which the thin film 2 is developed.
is irradiated from the liquid 3 side toward the measurement site of the thin film 2. Further, a detector 1O for detecting the position of the probe light 8 sent is provided at a position facing the probe light source 9 and the liquid tank 4 therebetween. The signal of this detector 10 is
The signal is sent to the lock-in amplifier 12 via the dry/<-11.

また、液槽4の側方のやや下方には励起光源6が設けら
れている。励起光源6は、励起光5を薄膜2の測定部位
に向けて薄膜2が展開されている液面lで全反射される
角度で照射するものである。励起光5の光路に沿った位
置に、励起光5を断続光としたり、光強度に強弱を付け
て照射するための、例えばチョッパーや可変フィルター
等の光強度変調器7が設けられている。また、励起光5
は、更にレンズ13によって集束されて、薄膜2の測定
部位に照射されるものである。
Further, an excitation light source 6 is provided on the side of the liquid tank 4 and slightly below. The excitation light source 6 irradiates the excitation light 5 toward the measurement site of the thin film 2 at an angle such that it is totally reflected by the liquid surface l on which the thin film 2 is spread. A light intensity modulator 7 such as a chopper or a variable filter is provided at a position along the optical path of the excitation light 5 to make the excitation light 5 into intermittent light or to irradiate the light with varying intensity. In addition, the excitation light 5
is further focused by a lens 13 and irradiated onto the measurement site of the thin film 2.

液面1上の薄膜2での、励起光5及びプローブ光8の散
乱光は、レンズ26によって集光され、赤外テレビカメ
ラ14に導かれ、液面l上の励起光5、プローブ光8の
スポットが、テレビ画面に出力される。
Scattered light of the excitation light 5 and the probe light 8 on the thin film 2 on the liquid surface 1 is collected by a lens 26 and guided to the infrared television camera 14, where the excitation light 5 and the probe light 8 on the liquid surface 1 are collected. spot will be output on the TV screen.

光強度変調器7はロックインアンプ12に接続されてい
て、光強度変調器7から送られる励起光5の断続又は強
弱状態を示す信号を参照信号として、検出器10からの
信号を同期検出できるようになっている。
The light intensity modulator 7 is connected to a lock-in amplifier 12, and can synchronously detect the signal from the detector 10 using a signal indicating the intermittent or strong/weak state of the excitation light 5 sent from the light intensity modulator 7 as a reference signal. It looks like this.

液槽4は、少なくともプローブ光8及び励起光5の光路
となる部分に透明な窓を設けておけば、ことさら全体を
透明とする必要はない。また、液体3は、励起光5につ
いて吸収の小さいものであればプローブ光8へ多少直接
影響を与えるものであっても測定にさほど悪影響はない
が、透明であることが好ましい。
The liquid tank 4 does not need to be entirely transparent as long as a transparent window is provided at least in the portion that becomes the optical path of the probe light 8 and the excitation light 5. In addition, if the liquid 3 has a small absorption of the excitation light 5, even if it has a direct influence on the probe light 8, it will not have much of an adverse effect on the measurement, but it is preferable that the liquid 3 be transparent.

上記構成において、まず、励起光源6より出射された励
起光5は、光強度変調器7により、断続した又は強弱の
付いた光に変調され、入射角が液体3の臨界角より大き
くなるよう入射されて、液槽4の液面1上に展開されて
いる薄膜2の測定部位を照射する。すなわち、励起光5
は液面上で全反射される。励起光11が照射される測定
部位上の領域では、液面1上の薄膜2が光を吸収し、無
放射輻射過程により、断続的又は強弱をもって熱を発生
し、そのため、近傍の屈折率変化が断続的に生じること
になる。
In the above configuration, first, the excitation light 5 emitted from the excitation light source 6 is modulated by the light intensity modulator 7 into intermittent or variable intensity light, and is incident such that the incident angle is larger than the critical angle of the liquid 3. Then, the measurement area of the thin film 2 spread on the liquid surface 1 of the liquid tank 4 is irradiated. That is, the excitation light 5
is totally reflected on the liquid surface. In the area on the measurement site that is irradiated with the excitation light 11, the thin film 2 on the liquid surface 1 absorbs the light and generates heat intermittently or with varying degrees of intensity due to a non-radiative radiation process, which causes a change in the refractive index in the vicinity. will occur intermittently.

一方、プローブ光源9から出射されるプローブ光8は、
入射角が液体3の臨界角より大きくなるよう入射されて
、液面1の励起光5照射部位で全反射され、液体3内を
通過して液槽4外部に設けられた吸収体27に吸収され
る。従って、プローブ光8は、上記励起光5の照射によ
って断続的に屈折率が変化する測定部位を通過すること
になる。
On the other hand, the probe light 8 emitted from the probe light source 9 is
The light is incident so that the angle of incidence is larger than the critical angle of the liquid 3, is totally reflected at the irradiated part of the excitation light 5 on the liquid surface 1, passes through the liquid 3, and is absorbed by the absorber 27 provided outside the liquid tank 4. be done. Therefore, the probe light 8 passes through a measurement site whose refractive index changes intermittently by irradiation with the excitation light 5.

この屈折率の断続的変化を生じる領域を、プローブ光源
9から出射されたプローブ光8が通過すると、変化した
屈折率分布に応じて、点線で示されるように光路が偏向
することになる。
When the probe light 8 emitted from the probe light source 9 passes through a region where the refractive index changes intermittently, the optical path is deflected as shown by the dotted line in accordance with the changed refractive index distribution.

液面上1の薄膜2による励起光5.プローブ光8の散乱
光は、赤外テレビカメラ14でとらえられ、液面上の励
起光5.プローブ光8のスポットが画面に出力される。
Excitation light from thin film 2 on liquid surface 5. Scattered light of the probe light 8 is captured by an infrared television camera 14, and excitation light 5. A spot of probe light 8 is output on the screen.

このスポットを監視しながら、励起光、プローブ光の光
束の大きさの調整ならびに励起光、プローブ光のスポー
2トの相対位置を調整を行なうことができる。
While monitoring this spot, it is possible to adjust the magnitude of the luminous flux of the excitation light and the probe light as well as the relative positions of the two spots of the excitation light and the probe light.

検出器lOは、継続してプローブ光8を受け、プローブ
光8の受光位置をドライバー11を介してロックインア
ンプ12へ送る。ロックインアンプ12は、この検出器
10からの信号を受けると同時に光強度変調器7からの
信号を受けており、両信号を同期させることによって、
励起光5照射時又は高強度時のプローブ光8の受光位置
信号と、励起光5非照射時又は低強度時のプローブ光8
の受光位置信号との差をS/N比良く検出する。検出さ
れた差はプローブ光8の偏向量に対応し、これに基づい
て励起光5の波長における光吸収特性が算出できる。従
って、励起光5の波長を順次変えることにより、薄膜2
の分光吸収特性を得ることができる。
The detector IO continuously receives the probe light 8 and sends the receiving position of the probe light 8 to the lock-in amplifier 12 via the driver 11. The lock-in amplifier 12 receives the signal from the optical intensity modulator 7 at the same time as receiving the signal from the detector 10, and by synchronizing both signals,
The light receiving position signal of the probe light 8 when the excitation light 5 is irradiated or at high intensity, and the probe light 8 when the excitation light 5 is not irradiated or at low intensity
The difference between the light receiving position signal and the light receiving position signal is detected with a good S/N ratio. The detected difference corresponds to the amount of deflection of the probe light 8, and based on this, the light absorption characteristic at the wavelength of the excitation light 5 can be calculated. Therefore, by sequentially changing the wavelength of the excitation light 5, the thin film 2
It is possible to obtain the spectral absorption characteristics of

励起光5の測定部位における光量分布、液体3の熱によ
る屈折率変化の特性、プローブ光8の入射ビーム位置及
びその時の偏向量から薄膜2によって吸収された光エネ
ルギーが求まる。
The light energy absorbed by the thin film 2 is determined from the light intensity distribution of the excitation light 5 at the measurement site, the characteristics of the refractive index change due to heat of the liquid 3, the incident beam position of the probe light 8, and the amount of deflection at that time.

従って、励起光5の薄M2への照射エネルギーをフォト
センサー等でモニターしておけば、両者から薄膜2の絶
対的な光吸収特性が得られる。そして、励起光5の波長
を変化させることにより、絶対的分光吸収特性が得られ
る。また、励起光5の各波長における相対強度を予め求
め、波長に対応したプローブ光8の偏向量を求めるだけ
でも、相対的な分光吸収特性を得ることができる。光吸
収特性の相対値、絶対値は、測定の目的に応じ適宜選択
すればよい。
Therefore, by monitoring the irradiation energy of the excitation light 5 onto the thin film M2 using a photosensor or the like, the absolute light absorption characteristics of the thin film 2 can be obtained from both. Then, by changing the wavelength of the excitation light 5, absolute spectral absorption characteristics can be obtained. Further, the relative spectral absorption characteristics can be obtained by simply determining the relative intensity of the excitation light 5 at each wavelength in advance and determining the amount of deflection of the probe light 8 corresponding to the wavelength. The relative value and absolute value of the light absorption characteristic may be appropriately selected depending on the purpose of measurement.

ところで、液槽4回りは、従来のLB法による単分子累
積膜形成装置と同様で、これを第2図及び第3図で説明
する。
Incidentally, the structure around the liquid tank 4 is similar to that of a conventional monomolecular cumulative film forming apparatus using the LB method, and this will be explained with reference to FIGS. 2 and 3.

液槽4は、広くて浅い角形を成し、その内側に、例えば
ポリプロピレン類等の内枠16が水平に釣ってあり、液
面1を仕切っている。液体3としては、通常純水が用い
られる。内枠1Bの内側には、例えばやはりポリプロピ
レン類等の成膜枠17が浮かべられている。成膜枠17
は、帳が内枠16の内幅より僅かに短かい直方体で、図
中左右方向に二次元ピストン運動可能なものとなってい
る。成膜枠17には、成膜枠17を図中右方に引張るた
めの重3118が滑車19を介して結び付けられている
。また、成膜枠17上に固定された磁石20と、成膜枠
17の上方で図中左右に移動可能で磁石20に接近する
と互に反撥し合う対磁石21とが設けられていて、これ
によって成膜枠17は図中左右への移動並びに停止が可
能なものとなっている。このような重錘18や一組の磁
石20.21の代りに、回転モーターやプーリーを用い
て直接酸fllN7を移動させるものもある。
The liquid tank 4 has a wide and shallow rectangular shape, and an inner frame 16 made of polypropylene or the like is suspended horizontally inside the tank 4 to partition the liquid level 1. As the liquid 3, pure water is usually used. A film forming frame 17 made of, for example, polypropylene is floated inside the inner frame 1B. Film forming frame 17
The book is a rectangular parallelepiped whose book is slightly shorter than the inner width of the inner frame 16, and is capable of two-dimensional piston movement in the left and right directions in the figure. A weight 3118 for pulling the film forming frame 17 to the right in the figure is tied to the film forming frame 17 via a pulley 19. Further, there are provided a magnet 20 fixed on the film forming frame 17 and counter magnets 21 which are movable from side to side in the figure above the film forming frame 17 and repel each other when approaching the magnet 20. Accordingly, the film forming frame 17 can be moved from side to side in the figure and stopped. Instead of such a weight 18 or a set of magnets 20, 21, there is also a system that uses a rotary motor or a pulley to directly move the acid fl1N7.

内枠16内の両側には、吸引バイブ22を介して吸引ポ
ンプ(図示されていない)に接続された吸引ノズル23
が並べられている。この吸引ノズル23は、単分子膜や
単分子累積膜内に不純物が混入してしまうのを防止する
ために、液面l上の不要になった前工程の単分子膜等を
迅速に除去するのに用いられるものである。尚、15は
基板ホルダ24に取付けられて垂直に上下される基板で
ある。
Suction nozzles 23 connected to a suction pump (not shown) via a suction vibrator 22 are provided on both sides of the inner frame 16.
are lined up. This suction nozzle 23 quickly removes unnecessary monomolecular films from the previous process on the liquid surface l in order to prevent impurities from being mixed into the monomolecular film or monomolecular cumulative film. It is used for. Note that 15 is a board that is attached to the board holder 24 and is vertically moved up and down.

上述の単分子累積膜形成装置による単分子膜の形成並び
にその累積膜の取得原理は、基本的には従来のものと同
様である。
The principles of forming a monomolecular film and obtaining the cumulative film using the above-described monomolecular cumulative film forming apparatus are basically the same as those of the conventional method.

膜の形成法としては、まず、成膜枠17を移動させて、
液面l上の不要となった単分子膜等を掃き寄せながら吸
引ノズル23からすすり出し、液面1を浄化する。次い
で成膜枠17を液槽4の一端に寄せて、液面lに膜構成
物質をたらした後、成膜枠17を移動させてその展開領
域を狭め、固体膜としてから基板15を上下させて、形
成された単分子膜を移し取ればよい。
As a method of forming a film, first, the film forming frame 17 is moved,
The liquid surface 1 is purified by sweeping up any unnecessary monomolecular film or the like on the liquid surface 1 and sucking it out from the suction nozzle 23. Next, the film forming frame 17 is moved to one end of the liquid tank 4, and after dropping the film constituent material onto the liquid surface l, the film forming frame 17 is moved to narrow the development area, and after forming a solid film, the substrate 15 is moved up and down. Then, the formed monomolecular film can be transferred.

ところで、本実施例に係る装置では、第1図で説明した
ように、液面1上に展開された単分子膜である薄膜2の
物性を、光学的にその場で直接測定することができる。
By the way, in the apparatus according to this embodiment, as explained in FIG. 1, the physical properties of the thin film 2, which is a monomolecular film spread on the liquid surface 1, can be directly measured on the spot optically. .

従って、単分子膜の形成からその移し取り完了までを通
じて、この測定に基づいて対磁石21の移動、即ち成膜
枠17の移動を測定制御器14で制御すれば、所望の物
性の単分子膜を確実に基板15上に累積させることがで
きる。
Therefore, if the movement of the counter magnet 21, that is, the movement of the film forming frame 17, is controlled by the measurement controller 14 based on this measurement from the formation of the monomolecular film to the completion of its transfer, a monomolecular film with desired physical properties can be obtained. can be reliably accumulated on the substrate 15.

第4図は、励起光5を照射する場合の他の実施例を示す
もので、励起光5は、プローブ光8とは入射角を違えで
あるものの、プローブ光8と共に、薄I模2の測定部位
の液面lで全反射されるものとなっている。このように
すると、励起光5が、空気中の粉塵やゆらぎの影響で乱
れてしまうのを最小限に抑えることができ、一層精度を
向上できる。
FIG. 4 shows another embodiment in which the excitation light 5 is irradiated. Although the excitation light 5 has a different incident angle from the probe light 8, the excitation light 5 and the probe light 8 illuminate the thin I pattern 2. The light is totally reflected at the liquid level l at the measurement site. In this way, it is possible to minimize disturbance of the excitation light 5 due to dust in the air or fluctuations, and further improve accuracy.

[発明の効果] 以上説明したように、本発明によれば、励起光及びプロ
ーブ光の光束の収束状態や、これらの相対的な位置関係
を赤外番テレビカメラによってモニターすることにより
、測定中の光路の変動を容易に調整することができ、液
面上に展開されている薄膜の物性を、高精度かつ高感度
の光吸収特性の測定によって正確に知ることができ、測
定作業もより簡易なものとすることができる。したがっ
て、単分子累積膜形成装置に用いれば、特性精度の極め
て高い単分子累積膜が得られるものである。
[Effects of the Invention] As explained above, according to the present invention, by monitoring the convergence state of the luminous flux of the excitation light and the probe light and their relative positional relationship with an infrared television camera, It is possible to easily adjust the fluctuations in the optical path of the liquid, and the physical properties of the thin film developed on the liquid surface can be accurately determined by measuring the light absorption characteristics with high precision and sensitivity, making the measurement work easier. It can be made into something. Therefore, when used in a monomolecular cumulative film forming apparatus, a monomolecular cumulative film with extremely high characteristic accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単分子累積膜形成装置に利用する場合の本発明
の一実施例を示す説明図、第2図及び第3図はその液槽
回りの説明図、第4図は励起光を照射する場合の他の実
施例を示す説明図、第5図(a)、 (b)は従来技術
の説明図である。 1:液面、2:薄膜、3:液体、4:液槽、5:励起光
、6:励起光源、 7:光強度変調器、8ニブローブ光、 9ニブローブ光源、10:検出器。 11: ドライバー、12:ロックインアンプ、13:
レンズ、14:赤外テレビカメラ、15:基板、16:
内枠、17:成膜枠、18:重錘、19:滑車、20:
磁石、21:対磁石、22:吸引パイプ、23:吸引ノ
ズル、24:基板ホルダ、25:光路調整器、26:レ
ンズ、27:吸収体。
Fig. 1 is an explanatory diagram showing an embodiment of the present invention when used in a monomolecular cumulative film forming apparatus, Figs. 2 and 3 are explanatory diagrams of the liquid tank and its surroundings, and Fig. 4 is an excitation light irradiation diagram. FIGS. 5(a) and 5(b) are explanatory diagrams showing other embodiments of the prior art. 1: liquid surface, 2: thin film, 3: liquid, 4: liquid bath, 5: excitation light, 6: excitation light source, 7: light intensity modulator, 8 niblob light, 9 niblob light source, 10: detector. 11: Driver, 12: Lock-in amplifier, 13:
Lens, 14: Infrared television camera, 15: Board, 16:
Inner frame, 17: Film forming frame, 18: Weight, 19: Pulley, 20:
Magnet, 21: Pair magnet, 22: Suction pipe, 23: Suction nozzle, 24: Substrate holder, 25: Optical path adjuster, 26: Lens, 27: Absorber.

Claims (1)

【特許請求の範囲】[Claims] 1)液面上に薄膜を展開させる液体を収容した液槽と、
液面上の薄膜の測定部位へ照射される励起光を出射する
励起光源と、励起光を測定部位到達前に強度変調する光
強度変調器と、液面下から前記測定部位へ照射されるプ
ローブ光を出射するプローブ光源と、この測定部位を通
ったプローブ光の偏向量を検出する検出器と、測定部位
における励起光及びプローブ光の散乱光を映し出し、光
路を調整する為のテレビジョン顕微鏡及びテレビ受像機
とを有することを特徴とする薄膜の光吸収特性測定装置
1) A liquid tank containing a liquid that spreads a thin film on the liquid surface;
An excitation light source that emits excitation light that is irradiated onto a measurement site on a thin film above the liquid surface, a light intensity modulator that modulates the intensity of the excitation light before it reaches the measurement site, and a probe that irradiates the measurement site from below the liquid surface. A probe light source that emits light, a detector that detects the amount of deflection of the probe light that has passed through the measurement site, a television microscope that displays the excitation light and scattered light of the probe light at the measurement site, and adjusts the optical path. 1. An apparatus for measuring light absorption characteristics of a thin film, comprising a television receiver.
JP28110885A 1985-08-16 1985-12-16 Apparatus for measuring absorption characteristics of membrane Pending JPS62140050A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28110885A JPS62140050A (en) 1985-12-16 1985-12-16 Apparatus for measuring absorption characteristics of membrane
US06/897,055 US4790664A (en) 1985-08-16 1986-08-15 Device and method for measuring optical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28110885A JPS62140050A (en) 1985-12-16 1985-12-16 Apparatus for measuring absorption characteristics of membrane

Publications (1)

Publication Number Publication Date
JPS62140050A true JPS62140050A (en) 1987-06-23

Family

ID=17634462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28110885A Pending JPS62140050A (en) 1985-08-16 1985-12-16 Apparatus for measuring absorption characteristics of membrane

Country Status (1)

Country Link
JP (1) JPS62140050A (en)

Similar Documents

Publication Publication Date Title
US7679039B2 (en) Compositions and methods for drop boundary detection and radiation beam alignment
JPH07260808A (en) Scanning near field interatomic force microscope
JP2008520971A (en) Apparatus and method for treating biological fluids
US4790664A (en) Device and method for measuring optical properties
RU2331870C2 (en) Method of surface finish control for dielectric substrates
US4830502A (en) Apparatus and method for measuring light absorption characteristic of a thin film, and equipment provided with said apparatus for forming a monomolecular built-up film
JPS6363945A (en) Stabilization of optical property measurement
US20080049213A1 (en) Particle diameters measuring method and device
JPS62140050A (en) Apparatus for measuring absorption characteristics of membrane
RU2448341C1 (en) Device to control roughness of dielectric substrate surfaces
US5211829A (en) Analytical method and apparatus using capillary tube
JPS629234A (en) Measuring instrument for light absorption characteristics of thin film
US4952027A (en) Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device
JPS61122548A (en) Measuring instrument for light absorption characteristic of thin film
JP4048879B2 (en) Viscosity measuring method and measuring apparatus
JPS62140051A (en) Apparatus for measuring photo-physical properties of membrane
JPS6239731A (en) Apparatus for measuring photo-physical properties of membrane
JPS61122547A (en) Measuring method of light absorption characteristic of thin film
JPS61122549A (en) Instrument for measuring light absorption characteristic of thin film
JPS61125434A (en) Forming apparatus of monomolecular cumulative film
JPS61122545A (en) Measuring method of light absorption characteristic of thin film
JPS62140049A (en) Method for stably measuring photo-physical properties
JPH0575059B2 (en)
JP2001050792A (en) Method and device for measuring quantity of sample inside transparent container
JPS61122551A (en) Instrument for measuring light absorption characteristic of thin film