US20210032713A1 - Method of production of steel parts by quenching with temperature equalization at ms - Google Patents
Method of production of steel parts by quenching with temperature equalization at ms Download PDFInfo
- Publication number
- US20210032713A1 US20210032713A1 US16/800,839 US202016800839A US2021032713A1 US 20210032713 A1 US20210032713 A1 US 20210032713A1 US 202016800839 A US202016800839 A US 202016800839A US 2021032713 A1 US2021032713 A1 US 2021032713A1
- Authority
- US
- United States
- Prior art keywords
- temperature
- steel part
- steel
- quenching
- martensite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 52
- 239000010959 steel Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 20
- 238000010791 quenching Methods 0.000 title claims description 20
- 230000000171 quenching effect Effects 0.000 title claims description 20
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 22
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 21
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 230000000717 retained effect Effects 0.000 claims abstract description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 230000001681 protective effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000007654 immersion Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/58—Oils
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention generally relates to a method for producing steel parts, which leads to a microstructure containing low-stress martensite with improved ductility and stabilized retained austenite.
- the method involves heat treatment and/or thermomechanical treatment characterized by the steel parts being cooled from a temperature in the austenite region to a temperature around the martensite start temperature (“Ms”) and then held at the temperature around the Ms in a furnace and then finally cooled in air.
- Ms martensite start temperature
- Steel parts are typically made from stock whose condition makes it easy to process.
- the structures of the steel parts usually require subsequent modification to attain the appropriate mechanical properties for the particular engineering application.
- the process which is often used to achieve this is a combination of quenching and tempering and is performed in multiple variants and with different parameters, depending on the material and the desired properties of the final structure.
- the typical structure after quenching is martensite, which exhibits high strength and hardness but very poor ductility owing to internal stress. This causes problems in parts under load, as they may suddenly fracture in service. Therefore, materials with martensitic structure are usually tempered after quenching. This produces a specific bainitic microstructure referred to as sorbite. Sorbite typically consists of fine carbides and bainitic ferrite.
- One or more embodiments of the present invention generally concern a method for producing steel parts.
- the method comprises creating a multiphase structure, which comprises or consists of low-stress martensite with increased ductility and stabilized retained austenite, by partial quenching the steel part in a quenching bath. Consequently, the steel part is cooled from a temperature in the austenite region in the quenching bath so that the surface temperature of the steel part decreases to below the Ms by 5-50% to a value between the Ms and Mf. Meanwhile, the temperature of the interior of the steel part is above the Ms. Afterwards, the temperature throughout the steel part is equalized at the Ms temperature in equipment that maintains the Ms temperature. Subsequently, the steel part is removed from the furnace and cooled to ambient temperature.
- FIG. 1 is a schematic representation of the treatment procedure and microstructural evolution in steel blanks with martensitic-austenitic microstructures.
- This invention can find broad use in heat treatments and thermomechanical treatments of blanks from high-strength steels, namely in production of steel parts, typically for the machinery and transport industry.
- the present method is characterized by cooling a steel blank from a temperature in the austenite region by repeated cooling in boiling water.
- the method of the present invention is carried out by gradually immersing the steel blank in a water bath and removing it from the bath to ensure that its surface temperature does not decrease considerably below the required cooling temperature, which is equal to the Ms temperature. Once the surface temperature of the blank is just below the Ms, the steel blank is removed from the bath and the surface temperature rises gradually due to to the heat flux from the interior of the steel blank to the surface of the steel blank.
- cooling can be carried out in, for instance, a preheated oil bath instead of a water bath.
- the steel blank After removal from the bath and once the surface temperature increases, the steel blank can be repeatedly immersed in boiling water until heat is removed from the interior of the steel blank. As a result, the steel blank reaches a temperature just below the Ms, whereas the temperature in the core of the blank is above the Ms. Consequently, transformation of austenite initiates in the surface layers of the steel blank, and thereby partial transformation to martensite occurs. Since temperature does not decrease any closer to the Mf, only isolated martensite needles or plates form within supercooled austenite and divide austenite grains into segments. The amount of austenite may be between 5 to 25% by weight, depending on the cooling conditions in the sub-surface layer. However, in certain embodiments, martensitic transformation may be arrested because temperature does not decrease any more. Furthermore, carbon migrates from the super-saturated austenite into the surrounding austenite, which becomes stable due to super-saturation.
- the steel blank may be interchangeably referred to as “part” may be immersed in a bath (either water or oil) until the blank reaches a temperature 20° C. below the Ms.
- the bath may comprise a protective atmosphere to prevent oxidation and ignition.
- the temperature of the quenching bath is maintained at a temperature that is below the Ms of the steel part by 5-50% of a value between the Ms and Mf. Upon reaching this temperature, the immersion process ends and the blank may be placed in a furnace kept at approximately 210° C., where it may be held for 20 to 180 minutes, depending on its size and shape. Afterwards, the blank may be removed from the furnace and cooled to ambient temperature.
- the steel is alloyed with Mn, Cr, and possibly other elements, but mainly with Si which may be present at 1.5 to 2.5% by weight. Therefore, the migrating carbon does not form carbides and remains free to migrate by diffusion.
- the interior of the blank where the temperature has not decreased to the Ms, metastable austenite remains, which cannot transform into martensite or bainite. Therefore, the interior of the blank continues to cool and the temperature of the interior eventually becomes closer to the surface temperature, which is kept around the Ms. In order to equalize temperature completely, the blank is placed in a heating box or in a furnace, which is at a temperature around the Ms.
- Alternative methods may include, without limitation, immersion into a cooling medium whose temperature corresponds to a temperature that is required for temperature equalization and holding the part at this temperature. After holding, during which the temperatures in the part equalize, the part is removed and cooled in air.
- a cooling medium whose temperature corresponds to a temperature that is required for temperature equalization and holding the part at this temperature. After holding, during which the temperatures in the part equalize, the part is removed and cooled in air.
- favourable conditions are present for diffusion of carbon, which migrates into austenite and therefore stabilizes austenite in the vicinity of newly-formed martensite needles.
- the growth of adjacent martensite needles is therefore hindered by stabilized austenite and layers of retained austenite remain between the needles. Due to super-saturation, these layers are stable enough to survive the complete cooling to ambient temperature.
- the super-saturated austenite in the regions between martensite cannot transform into ferrite and carbides, the resulting martensitic-austenitic structure retains
- a steel comprising the composition of TABLE 1 was used to produce a forged part. After forging, trimming, and sizing, a forged part from the steel was gripped in robot grippers. Based on a defined cooling sequence, the robot was programmed to immerse and remove the part from a cooling bath. In forged parts with irregular distribution of mass, the cooling intensity can be enhanced by partial immersion of the locations in which heat accumulation occurs. Once the part reached a temperature 20° C. below the Ms, the Ms temperature for this steel material being 190° C., the immersion sequence ended and the blank at this temperature was placed in a furnace kept at approximately 210° C., where it was held for 20 to 180 minutes, depending on its size and shape. It was then removed from the furnace and cooled to ambient temperature.
- Another example embodiment involves a procedure where a drawn part of thick-walled sheet of approximately 10 mm thickness, which was made of the steel composition of TABLE 1, whose temperature was approximately 930° C., was suspended from a holder of a cooling manipulator.
- the manipulator was programmed according to a pre-defined cooling sequence and was controlled to immerse the blank in and remove it from a cooling bath repeatedly. Once the blank surface reached a temperature 20° C. below the Ms, the Ms temperature for this material being 190° C., the immersion sequence ended and the blank at this temperature was placed into a furnace kept at approximately 210° C., where it is held for 20 to 90 minutes, depending on its size and shape. The blank was removed from the furnace and cooled to ambient temperature.
- the third example embodiment involves a sequence in which an M28 screw at 930° C., which was made from the steel composition of TABLE 1, was immersed in a quenching oil bath at 200° C., which was under a protective atmosphere to prevent oxidation and ignition. The screw was removed from the cooling bath after 30 minutes and cooled to ambient temperature in still air.
- the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination, B and C in combination; or A, B, and C in combination.
- the terms “comprising,” “comprises,” and “comprise” are open-ended transition terms used to transition from a subject recited before the term to one or more elements recited after the term, where the element or elements listed after the transition term are not necessarily the only elements that make up the subject.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Articles (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2019-495A CZ2019495A3 (cs) | 2019-07-30 | 2019-07-30 | Způsob výroby součástí z ocelí kalením s vyrovnáním teplot na teplotu Ms |
CZPV2019-495 | 2019-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210032713A1 true US20210032713A1 (en) | 2021-02-04 |
Family
ID=72241347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/800,839 Abandoned US20210032713A1 (en) | 2019-07-30 | 2020-02-25 | Method of production of steel parts by quenching with temperature equalization at ms |
Country Status (2)
Country | Link |
---|---|
US (1) | US20210032713A1 (cs) |
CZ (1) | CZ2019495A3 (cs) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113564474A (zh) * | 2021-07-26 | 2021-10-29 | 莱芜钢铁集团银山型钢有限公司 | 一种屈服强度≥550MPa低屈强比大型石油储罐用钢板及其生产方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1936719A (en) * | 1929-10-15 | 1933-11-28 | Horace C Knerr | Apparatus for and method of heat treating metal |
US6443214B1 (en) * | 1999-12-07 | 2002-09-03 | Honda Giken Kogyo Kabushiki Kaisha | Method for heat treating mold cast product |
US20090291013A1 (en) * | 2008-05-20 | 2009-11-26 | Fedchun Vladimir A | Method of designing a low cost, high strength, high toughness, martensitic steel and an article made thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1160913B (it) * | 1978-04-25 | 1987-03-11 | Centre Rech Metallurgique | Perfezionamento ai procedimenti di profilati tubolari di acciaio |
FI20115702A7 (fi) * | 2011-07-01 | 2013-01-02 | Rautaruukki Oyj | Menetelmä suurlujuus- rakenneteräksen valmistamiseksi ja suurlujuusrakenneterästuote |
JP6150746B2 (ja) * | 2014-02-26 | 2017-06-21 | 株式会社ハーモニック・ドライブ・システムズ | 波動歯車装置の可撓性外歯歯車および製造方法 |
WO2016001699A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for manufacturing a high strength steel sheet having improved formability and sheet obtained |
CA3046108A1 (en) * | 2016-12-14 | 2018-06-21 | Thyssenkrupp Steel Europe Ag | Hot-rolled flat steel product and method for the production thereof |
CZ307645B6 (cs) * | 2017-02-15 | 2019-01-30 | Západočeská Univerzita V Plzni | Způsob výroby součástí z ocelí |
CN108707819B (zh) * | 2018-05-16 | 2020-01-24 | 中北大学 | 一种含δ铁素体高性能钢及其制备方法 |
-
2019
- 2019-07-30 CZ CZ2019-495A patent/CZ2019495A3/cs not_active IP Right Cessation
-
2020
- 2020-02-25 US US16/800,839 patent/US20210032713A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1936719A (en) * | 1929-10-15 | 1933-11-28 | Horace C Knerr | Apparatus for and method of heat treating metal |
US6443214B1 (en) * | 1999-12-07 | 2002-09-03 | Honda Giken Kogyo Kabushiki Kaisha | Method for heat treating mold cast product |
US20090291013A1 (en) * | 2008-05-20 | 2009-11-26 | Fedchun Vladimir A | Method of designing a low cost, high strength, high toughness, martensitic steel and an article made thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113564474A (zh) * | 2021-07-26 | 2021-10-29 | 莱芜钢铁集团银山型钢有限公司 | 一种屈服强度≥550MPa低屈强比大型石油储罐用钢板及其生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CZ308468B6 (cs) | 2020-09-02 |
CZ2019495A3 (cs) | 2020-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9476112B2 (en) | Steel wire rod or steel bar having excellent cold forgeability | |
MX2013002305A (es) | Alambron de acero para resorte de alta resistencia de excelente aptitud para el estirado de alambre, metodo de fabricacion para el mismo, y resorte de alta resistencia. | |
JP3966493B2 (ja) | 冷間鍛造用線材及びその製造方法 | |
US20190127829A1 (en) | A Method For Manufacturing A Martensitic Stainless Steel Part From A Sheet | |
JP5535922B2 (ja) | 鋼のための熱処理プロセス | |
JPWO2012005373A1 (ja) | 高強度ばね用伸線熱処理鋼線および高強度ばね用伸線前鋼線 | |
JP2009024218A (ja) | 軸受粗成形品の製造方法 | |
KR102415764B1 (ko) | 오스템퍼링 열처리 특성이 우수한 열연강판, 열연소둔강판, 부재 및 이들의 제조방법 | |
US4088511A (en) | Steels combining toughness and machinability | |
KR20150144296A (ko) | 고 특성을 갖는 표면 처리된 기계 부품용 스틸, 및 이 스틸의 기계 부품 및 이의 제조방법 | |
JP5105235B2 (ja) | 金型の焼入れ方法 | |
JP5443843B2 (ja) | 冷間圧延用鍛鋼ロールの製造方法 | |
JP6460883B2 (ja) | 加工性に優れた熱処理鋼線の製造方法 | |
US7037383B2 (en) | Process for producing a component from metal | |
US20210032713A1 (en) | Method of production of steel parts by quenching with temperature equalization at ms | |
CN110042217B (zh) | 纳米贝氏体轴承热处理方法及其制得的轴承 | |
JP2017179524A (ja) | 鋼線材ならびに鋼線材および鋼線の製造方法 | |
KR101789944B1 (ko) | 코일 스프링 및 그 제조 방법 | |
JP2017106048A (ja) | 機械構造部品用鋼線 | |
KR102326245B1 (ko) | 냉간압조용 선재 및 이의 제조방법 | |
JP5075293B2 (ja) | 金型の焼入れ方法 | |
JP5380001B2 (ja) | 軸受鋼鋼材の製造方法 | |
US20170306432A1 (en) | Method for manufacturing steel for high-strength hollow spring | |
WO2015188796A1 (en) | Method of heat treatment of bearing steel | |
JP7229827B2 (ja) | 高炭素鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ZAPADOCESKA UNIVERZITA V PLZNI, CZECH REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MASEK, BOHUSLAV;STADLER, CTIBOR;GEORGIEV, VJACESLAV;AND OTHERS;REEL/FRAME:052019/0310 Effective date: 20200214 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |