US20210015109A1 - Insecticidal protein discovery platform and insecticidal proteins discovered therefrom - Google Patents
Insecticidal protein discovery platform and insecticidal proteins discovered therefrom Download PDFInfo
- Publication number
- US20210015109A1 US20210015109A1 US16/977,778 US201916977778A US2021015109A1 US 20210015109 A1 US20210015109 A1 US 20210015109A1 US 201916977778 A US201916977778 A US 201916977778A US 2021015109 A1 US2021015109 A1 US 2021015109A1
- Authority
- US
- United States
- Prior art keywords
- seq
- accession
- protein
- amino acid
- acid sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 641
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 452
- 230000000749 insecticidal effect Effects 0.000 title claims abstract description 226
- 238000000034 method Methods 0.000 claims abstract description 152
- 239000003053 toxin Substances 0.000 claims abstract description 43
- 231100000765 toxin Toxicity 0.000 claims abstract description 42
- 241000196324 Embryophyta Species 0.000 claims description 332
- 150000007523 nucleic acids Chemical class 0.000 claims description 199
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 130
- 102000039446 nucleic acids Human genes 0.000 claims description 128
- 108020004707 nucleic acids Proteins 0.000 claims description 128
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 105
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 103
- 229920001184 polypeptide Polymers 0.000 claims description 100
- 230000014509 gene expression Effects 0.000 claims description 93
- 125000003729 nucleotide group Chemical group 0.000 claims description 84
- 102000040430 polynucleotide Human genes 0.000 claims description 83
- 108091033319 polynucleotide Proteins 0.000 claims description 83
- 239000002157 polynucleotide Substances 0.000 claims description 83
- 239000002773 nucleotide Substances 0.000 claims description 82
- 230000000361 pesticidal effect Effects 0.000 claims description 60
- 230000009261 transgenic effect Effects 0.000 claims description 54
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 53
- 241000238631 Hexapoda Species 0.000 claims description 53
- 240000008042 Zea mays Species 0.000 claims description 53
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 51
- 241000607479 Yersinia pestis Species 0.000 claims description 45
- 230000001105 regulatory effect Effects 0.000 claims description 35
- 244000068988 Glycine max Species 0.000 claims description 34
- 235000010469 Glycine max Nutrition 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 30
- 108020004705 Codon Proteins 0.000 claims description 28
- 230000002363 herbicidal effect Effects 0.000 claims description 28
- 239000000126 substance Substances 0.000 claims description 25
- 101000624394 Pseudomonas entomophila (strain L48) Monalysin Proteins 0.000 claims description 23
- 241000589516 Pseudomonas Species 0.000 claims description 19
- 230000000670 limiting effect Effects 0.000 claims description 17
- -1 tackifiers Substances 0.000 claims description 17
- 240000007594 Oryza sativa Species 0.000 claims description 16
- 235000007164 Oryza sativa Nutrition 0.000 claims description 15
- 235000009566 rice Nutrition 0.000 claims description 14
- 241000894007 species Species 0.000 claims description 14
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 12
- 235000005822 corn Nutrition 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000013592 cell lysate Substances 0.000 claims description 10
- 239000013612 plasmid Substances 0.000 claims description 10
- 238000010367 cloning Methods 0.000 claims description 9
- 244000005700 microbiome Species 0.000 claims description 9
- 241001233957 eudicotyledons Species 0.000 claims description 8
- 241000209510 Liliopsida Species 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 229920000742 Cotton Polymers 0.000 claims description 6
- 241000219146 Gossypium Species 0.000 claims description 6
- 241000209140 Triticum Species 0.000 claims description 6
- 235000021307 Triticum Nutrition 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 241000258937 Hemiptera Species 0.000 claims description 5
- 238000011282 treatment Methods 0.000 claims description 5
- 235000007319 Avena orientalis Nutrition 0.000 claims description 4
- 241000254173 Coleoptera Species 0.000 claims description 4
- 241000255777 Lepidoptera Species 0.000 claims description 4
- 230000012010 growth Effects 0.000 claims description 3
- 235000015097 nutrients Nutrition 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 241000589774 Pseudomonas sp. Species 0.000 claims description 2
- 239000013604 expression vector Substances 0.000 claims description 2
- 239000002689 soil Substances 0.000 claims description 2
- 241001124144 Dermaptera Species 0.000 claims 3
- 241000255925 Diptera Species 0.000 claims 3
- 241000257303 Hymenoptera Species 0.000 claims 3
- 241001414989 Thysanoptera Species 0.000 claims 3
- 244000176051 Apios tuberosa Species 0.000 claims 2
- 235000003276 Apios tuberosa Nutrition 0.000 claims 2
- 241000209763 Avena sativa Species 0.000 claims 2
- 235000007558 Avena sp Nutrition 0.000 claims 2
- 239000002671 adjuvant Substances 0.000 claims 1
- 239000011230 binding agent Substances 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 239000000306 component Substances 0.000 claims 1
- 239000002270 dispersing agent Substances 0.000 claims 1
- 239000003337 fertilizer Substances 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000011707 mineral Substances 0.000 claims 1
- 239000004094 surface-active agent Substances 0.000 claims 1
- 239000000080 wetting agent Substances 0.000 claims 1
- 108700012359 toxins Proteins 0.000 abstract description 40
- 230000002068 genetic effect Effects 0.000 abstract description 18
- 230000007613 environmental effect Effects 0.000 abstract description 10
- 230000003321 amplification Effects 0.000 abstract description 8
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 8
- 230000000813 microbial effect Effects 0.000 abstract description 7
- 108010026552 Proteome Proteins 0.000 abstract description 3
- 238000010801 machine learning Methods 0.000 abstract description 3
- 235000018102 proteins Nutrition 0.000 description 376
- 210000004027 cell Anatomy 0.000 description 151
- 108020004414 DNA Proteins 0.000 description 84
- 235000001014 amino acid Nutrition 0.000 description 84
- 108091028043 Nucleic acid sequence Proteins 0.000 description 80
- 229940024606 amino acid Drugs 0.000 description 71
- 150000001413 amino acids Chemical group 0.000 description 67
- 239000012634 fragment Substances 0.000 description 43
- 239000004009 herbicide Substances 0.000 description 40
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 39
- 235000009973 maize Nutrition 0.000 description 39
- 241000894006 Bacteria Species 0.000 description 37
- 108010000700 Acetolactate synthase Proteins 0.000 description 35
- 230000017730 intein-mediated protein splicing Effects 0.000 description 34
- 230000001965 increasing effect Effects 0.000 description 33
- 239000000047 product Substances 0.000 description 31
- 239000013615 primer Substances 0.000 description 30
- 230000000694 effects Effects 0.000 description 29
- 238000009396 hybridization Methods 0.000 description 29
- 125000005647 linker group Chemical group 0.000 description 29
- 238000003752 polymerase chain reaction Methods 0.000 description 29
- 230000009466 transformation Effects 0.000 description 29
- 239000013598 vector Substances 0.000 description 28
- 238000003780 insertion Methods 0.000 description 26
- 230000037431 insertion Effects 0.000 description 26
- 238000012217 deletion Methods 0.000 description 23
- 230000037430 deletion Effects 0.000 description 23
- 239000000523 sample Substances 0.000 description 23
- 238000006467 substitution reaction Methods 0.000 description 22
- 102000004190 Enzymes Human genes 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 102000037865 fusion proteins Human genes 0.000 description 18
- 108020001507 fusion proteins Proteins 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 108010076504 Protein Sorting Signals Proteins 0.000 description 17
- 108700019146 Transgenes Proteins 0.000 description 17
- 238000002703 mutagenesis Methods 0.000 description 17
- 231100000350 mutagenesis Toxicity 0.000 description 17
- 241000193388 Bacillus thuringiensis Species 0.000 description 16
- 230000001939 inductive effect Effects 0.000 description 16
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 15
- 108091026890 Coding region Proteins 0.000 description 15
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 14
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 14
- 238000004422 calculation algorithm Methods 0.000 description 14
- 235000013339 cereals Nutrition 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 229930182817 methionine Natural products 0.000 description 14
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 13
- 125000000539 amino acid group Chemical group 0.000 description 13
- 229940097012 bacillus thuringiensis Drugs 0.000 description 13
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 13
- 239000003623 enhancer Substances 0.000 description 13
- 239000003550 marker Substances 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 108010082527 phosphinothricin N-acetyltransferase Proteins 0.000 description 13
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 13
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 12
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 12
- 239000005562 Glyphosate Substances 0.000 description 12
- 230000004075 alteration Effects 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 12
- 108010031100 chloroplast transit peptides Proteins 0.000 description 12
- 229940097068 glyphosate Drugs 0.000 description 12
- XDDAORKBJWWYJS-UHFFFAOYSA-M glyphosate(1-) Chemical compound OP(O)(=O)CNCC([O-])=O XDDAORKBJWWYJS-UHFFFAOYSA-M 0.000 description 12
- 230000001976 improved effect Effects 0.000 description 12
- 210000002706 plastid Anatomy 0.000 description 12
- 230000008685 targeting Effects 0.000 description 12
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 11
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 11
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 11
- 238000003776 cleavage reaction Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 210000004379 membrane Anatomy 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- 102000005962 receptors Human genes 0.000 description 11
- 230000007017 scission Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 230000014616 translation Effects 0.000 description 11
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 10
- 239000004472 Lysine Substances 0.000 description 10
- 238000007792 addition Methods 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 10
- 210000004899 c-terminal region Anatomy 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical class O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 9
- 241000203069 Archaea Species 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 9
- 241001253546 Pseudomonas entomophila Species 0.000 description 9
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 9
- 239000004473 Threonine Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 210000003763 chloroplast Anatomy 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 240000004658 Medicago sativa Species 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000004071 biological effect Effects 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 8
- 244000000000 soil microbiome Species 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 7
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 7
- 101000836826 Homo sapiens Protein shortage in chiasmata 1 ortholog Proteins 0.000 description 7
- 101000693444 Homo sapiens Zinc transporter ZIP2 Proteins 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 241000209094 Oryza Species 0.000 description 7
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 7
- 240000006394 Sorghum bicolor Species 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 7
- 108091081024 Start codon Proteins 0.000 description 7
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 7
- 102100025451 Zinc transporter ZIP2 Human genes 0.000 description 7
- 235000009582 asparagine Nutrition 0.000 description 7
- 229960001230 asparagine Drugs 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 244000052769 pathogen Species 0.000 description 7
- 238000002741 site-directed mutagenesis Methods 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- 230000002103 transcriptional effect Effects 0.000 description 7
- WTLNOANVTIKPEE-UHFFFAOYSA-N 2-acetyloxypropanoic acid Chemical compound OC(=O)C(C)OC(C)=O WTLNOANVTIKPEE-UHFFFAOYSA-N 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 6
- 241000984553 Banana streak virus Species 0.000 description 6
- 241000206602 Eukaryota Species 0.000 description 6
- 101000693447 Homo sapiens Zinc transporter ZIP1 Proteins 0.000 description 6
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 6
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 241001147398 Ostrinia nubilalis Species 0.000 description 6
- 241000256251 Spodoptera frugiperda Species 0.000 description 6
- 241000187191 Streptomyces viridochromogenes Species 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 229920002494 Zein Polymers 0.000 description 6
- 102100025452 Zinc transporter ZIP1 Human genes 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 235000018417 cysteine Nutrition 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 6
- 239000003797 essential amino acid Substances 0.000 description 6
- 235000020776 essential amino acid Nutrition 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 6
- 238000012239 gene modification Methods 0.000 description 6
- 229960000310 isoleucine Drugs 0.000 description 6
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 210000003463 organelle Anatomy 0.000 description 6
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000013600 plasmid vector Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000011426 transformation method Methods 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 239000005019 zein Substances 0.000 description 6
- 229940093612 zein Drugs 0.000 description 6
- 229930192334 Auxin Natural products 0.000 description 5
- 241001367803 Chrysodeixis includens Species 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 5
- 235000003222 Helianthus annuus Nutrition 0.000 description 5
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 5
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 5
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 5
- 244000046052 Phaseolus vulgaris Species 0.000 description 5
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 5
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 5
- 108091028664 Ribonucleotide Proteins 0.000 description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 5
- 241000187391 Streptomyces hygroscopicus Species 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 230000036579 abiotic stress Effects 0.000 description 5
- 235000004279 alanine Nutrition 0.000 description 5
- 239000002363 auxin Substances 0.000 description 5
- 230000027455 binding Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 244000038559 crop plants Species 0.000 description 5
- 210000003527 eukaryotic cell Anatomy 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 5
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 108091088140 miR162 stem-loop Proteins 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000001717 pathogenic effect Effects 0.000 description 5
- 230000016434 protein splicing Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000002336 ribonucleotide Substances 0.000 description 5
- 125000002652 ribonucleotide group Chemical group 0.000 description 5
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 239000004474 valine Substances 0.000 description 5
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 4
- 102100027824 3'(2'),5'-bisphosphate nucleotidase 1 Human genes 0.000 description 4
- 240000007241 Agrostis stolonifera Species 0.000 description 4
- 241000625764 Anticarsia gemmatalis Species 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 4
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 4
- 244000020518 Carthamus tinctorius Species 0.000 description 4
- 108700010070 Codon Usage Proteins 0.000 description 4
- 101150102464 Cry1 gene Proteins 0.000 description 4
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 4
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 241000208818 Helianthus Species 0.000 description 4
- 101000889890 Homo sapiens Testis-expressed protein 11 Proteins 0.000 description 4
- 101000685830 Homo sapiens Zinc transporter ZIP4 Proteins 0.000 description 4
- 235000007340 Hordeum vulgare Nutrition 0.000 description 4
- 240000005979 Hordeum vulgare Species 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 4
- 108020001991 Protoporphyrinogen Oxidase Proteins 0.000 description 4
- 102000005135 Protoporphyrinogen oxidase Human genes 0.000 description 4
- 241000620655 Pseudomonas brenneri Species 0.000 description 4
- 241000589776 Pseudomonas putida Species 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- 235000002595 Solanum tuberosum Nutrition 0.000 description 4
- 244000061456 Solanum tuberosum Species 0.000 description 4
- 102100023140 Zinc transporter ZIP4 Human genes 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 4
- 230000008827 biological function Effects 0.000 description 4
- 238000006664 bond formation reaction Methods 0.000 description 4
- 238000009395 breeding Methods 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000005547 deoxyribonucleotide Substances 0.000 description 4
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 4
- 235000019621 digestibility Nutrition 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 230000000967 entomopathogenic effect Effects 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 230000005017 genetic modification Effects 0.000 description 4
- 235000013617 genetically modified food Nutrition 0.000 description 4
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 4
- 108020002326 glutamine synthetase Proteins 0.000 description 4
- 230000013595 glycosylation Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000002917 insecticide Substances 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 229960004488 linolenic acid Drugs 0.000 description 4
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 210000004940 nucleus Anatomy 0.000 description 4
- 230000002018 overexpression Effects 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 230000001323 posttranslational effect Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 210000001236 prokaryotic cell Anatomy 0.000 description 4
- 230000017854 proteolysis Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 229960004889 salicylic acid Drugs 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- UPMXNNIRAGDFEH-UHFFFAOYSA-N 3,5-dibromo-4-hydroxybenzonitrile Chemical compound OC1=C(Br)C=C(C#N)C=C1Br UPMXNNIRAGDFEH-UHFFFAOYSA-N 0.000 description 3
- 108010020183 3-phosphoshikimate 1-carboxyvinyltransferase Proteins 0.000 description 3
- QUTYKIXIUDQOLK-PRJMDXOYSA-N 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid Chemical class O[C@H]1[C@H](OC(=C)C(O)=O)CC(C(O)=O)=C[C@H]1OP(O)(O)=O QUTYKIXIUDQOLK-PRJMDXOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- 244000283070 Abies balsamea Species 0.000 description 3
- 235000007173 Abies balsamea Nutrition 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 241000566547 Agrotis ipsilon Species 0.000 description 3
- 241000219194 Arabidopsis Species 0.000 description 3
- 101100489389 Arabidopsis thaliana ZIP11 gene Proteins 0.000 description 3
- 101100489390 Arabidopsis thaliana ZIP12 gene Proteins 0.000 description 3
- 244000105624 Arachis hypogaea Species 0.000 description 3
- 108700003918 Bacillus Thuringiensis insecticidal crystal Proteins 0.000 description 3
- 241001147758 Bacillus thuringiensis serovar kurstaki Species 0.000 description 3
- 235000011331 Brassica Nutrition 0.000 description 3
- 241000219198 Brassica Species 0.000 description 3
- 239000005489 Bromoxynil Substances 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- 244000241257 Cucumis melo Species 0.000 description 3
- 239000003155 DNA primer Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 241000508723 Festuca rubra Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 108010025815 Kanamycin Kinase Proteins 0.000 description 3
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 3
- 102100023137 Metal cation symporter ZIP8 Human genes 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 241000208125 Nicotiana Species 0.000 description 3
- 108091005461 Nucleic proteins Chemical group 0.000 description 3
- 240000007817 Olea europaea Species 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 101150014068 PPIP5K1 gene Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 235000010617 Phaseolus lunatus Nutrition 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 240000004713 Pisum sativum Species 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 241001646398 Pseudomonas chlororaphis Species 0.000 description 3
- 101150047991 SLC39A11 gene Proteins 0.000 description 3
- 101150108342 SLC39A12 gene Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000007238 Secale cereale Nutrition 0.000 description 3
- 244000082988 Secale cereale Species 0.000 description 3
- 108010016634 Seed Storage Proteins Proteins 0.000 description 3
- 101150031731 Slc39a6 gene Proteins 0.000 description 3
- 101150052504 Slc39a8 gene Proteins 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 244000062793 Sorghum vulgare Species 0.000 description 3
- 241000044578 Stenotaphrum secundatum Species 0.000 description 3
- 102100036407 Thioredoxin Human genes 0.000 description 3
- 108091036066 Three prime untranslated region Proteins 0.000 description 3
- 108090000848 Ubiquitin Proteins 0.000 description 3
- 102000044159 Ubiquitin Human genes 0.000 description 3
- 108700010756 Viral Polyproteins Proteins 0.000 description 3
- 101150023714 ZIP10 gene Proteins 0.000 description 3
- 101150035873 ZIP6 gene Proteins 0.000 description 3
- 101150029176 ZIP9 gene Proteins 0.000 description 3
- 102100035243 Zinc transporter ZIP10 Human genes 0.000 description 3
- 102100035247 Zinc transporter ZIP11 Human genes 0.000 description 3
- 102100035257 Zinc transporter ZIP12 Human genes 0.000 description 3
- 102100023144 Zinc transporter ZIP6 Human genes 0.000 description 3
- 102100035239 Zinc transporter ZIP9 Human genes 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000009418 agronomic effect Effects 0.000 description 3
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 3
- 101150037081 aroA gene Proteins 0.000 description 3
- 235000003704 aspartic acid Nutrition 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 3
- 238000004166 bioassay Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000024346 drought recovery Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 108010083942 mannopine synthase Proteins 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 235000019713 millet Nutrition 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 3
- 229940012843 omega-3 fatty acid Drugs 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000001322 periplasm Anatomy 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 235000002949 phytic acid Nutrition 0.000 description 3
- 230000008635 plant growth Effects 0.000 description 3
- 238000012509 protein identification method Methods 0.000 description 3
- 238000001742 protein purification Methods 0.000 description 3
- 230000002797 proteolythic effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 101150117250 slc39a10 gene Proteins 0.000 description 3
- 101150109138 slc39a9 gene Proteins 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 101150030145 zip-8 gene Proteins 0.000 description 3
- PAJPWUMXBYXFCZ-UHFFFAOYSA-N 1-aminocyclopropanecarboxylic acid Chemical compound OC(=O)C1(N)CC1 PAJPWUMXBYXFCZ-UHFFFAOYSA-N 0.000 description 2
- YVLPJIGOMTXXLP-UHFFFAOYSA-N 15-cis-phytoene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CC=CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C YVLPJIGOMTXXLP-UHFFFAOYSA-N 0.000 description 2
- HXKWSTRRCHTUEC-UHFFFAOYSA-N 2,4-Dichlorophenoxyaceticacid Chemical compound OC(=O)C(Cl)OC1=CC=C(Cl)C=C1 HXKWSTRRCHTUEC-UHFFFAOYSA-N 0.000 description 2
- 108010011619 6-Phytase Proteins 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 108090000104 Actin-related protein 3 Proteins 0.000 description 2
- 241000209136 Agropyron Species 0.000 description 2
- 241000491617 Agropyron desertorum Species 0.000 description 2
- 241001626535 Agrostis canina Species 0.000 description 2
- 241001184547 Agrostis capillaris Species 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 244000226021 Anacardium occidentale Species 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 244000075850 Avena orientalis Species 0.000 description 2
- 241000047982 Axonopus Species 0.000 description 2
- 101710117545 C protein Proteins 0.000 description 2
- 101150078024 CRY2 gene Proteins 0.000 description 2
- 101100442689 Caenorhabditis elegans hdl-1 gene Proteins 0.000 description 2
- 241001674345 Callitropsis nootkatensis Species 0.000 description 2
- 244000045232 Canavalia ensiformis Species 0.000 description 2
- 235000009467 Carica papaya Nutrition 0.000 description 2
- 240000006432 Carica papaya Species 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 241000723377 Coffea Species 0.000 description 2
- 241000218631 Coniferophyta Species 0.000 description 2
- 241001137853 Crenarchaeota Species 0.000 description 2
- 235000009847 Cucumis melo var cantalupensis Nutrition 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 240000004585 Dactylis glomerata Species 0.000 description 2
- 241000489976 Diabrotica undecimpunctata howardi Species 0.000 description 2
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 2
- 240000006497 Dianthus caryophyllus Species 0.000 description 2
- 102000016680 Dioxygenases Human genes 0.000 description 2
- 108010028143 Dioxygenases Proteins 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 244000078127 Eleusine coracana Species 0.000 description 2
- 101100491986 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) aromA gene Proteins 0.000 description 2
- 102100031780 Endonuclease Human genes 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 108010059378 Endopeptidases Proteins 0.000 description 2
- 102000005593 Endopeptidases Human genes 0.000 description 2
- 241000025852 Eremochloa ophiuroides Species 0.000 description 2
- 240000002395 Euphorbia pulcherrima Species 0.000 description 2
- 241001137858 Euryarchaeota Species 0.000 description 2
- 108010087894 Fatty acid desaturases Proteins 0.000 description 2
- 241000234643 Festuca arundinacea Species 0.000 description 2
- 241000192306 Festuca longifolia Species 0.000 description 2
- 241000410074 Festuca ovina Species 0.000 description 2
- 229930191978 Gibberellin Natural products 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000005561 Glufosinate Substances 0.000 description 2
- 241000448472 Gramma Species 0.000 description 2
- 241000578422 Graphosoma lineatum Species 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 241000825557 Halyomorpha Species 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 241000255967 Helicoverpa zea Species 0.000 description 2
- 235000005206 Hibiscus Nutrition 0.000 description 2
- 235000007185 Hibiscus lunariifolius Nutrition 0.000 description 2
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 2
- 244000267823 Hydrangea macrophylla Species 0.000 description 2
- 235000014486 Hydrangea macrophylla Nutrition 0.000 description 2
- XVOKUMIPKHGGTN-UHFFFAOYSA-N Imazethapyr Chemical compound OC(=O)C1=CC(CC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 XVOKUMIPKHGGTN-UHFFFAOYSA-N 0.000 description 2
- 206010021929 Infertility male Diseases 0.000 description 2
- 101710088879 Kunitz trypsin inhibitor 3 Proteins 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 244000100545 Lolium multiflorum Species 0.000 description 2
- 240000004296 Lolium perenne Species 0.000 description 2
- 241000710118 Maize chlorotic mottle virus Species 0.000 description 2
- 241000723994 Maize dwarf mosaic virus Species 0.000 description 2
- 208000007466 Male Infertility Diseases 0.000 description 2
- 235000014826 Mangifera indica Nutrition 0.000 description 2
- 240000007228 Mangifera indica Species 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000010624 Medicago sativa Nutrition 0.000 description 2
- 241000234295 Musa Species 0.000 description 2
- 241000234479 Narcissus Species 0.000 description 2
- 241000244206 Nematoda Species 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 108010033272 Nitrilase Proteins 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 241000179039 Paenibacillus Species 0.000 description 2
- 235000007199 Panicum miliaceum Nutrition 0.000 description 2
- 241001330451 Paspalum notatum Species 0.000 description 2
- 241000044541 Paspalum vaginatum Species 0.000 description 2
- 235000007195 Pennisetum typhoides Nutrition 0.000 description 2
- 244000025272 Persea americana Species 0.000 description 2
- 235000008673 Persea americana Nutrition 0.000 description 2
- 240000007377 Petunia x hybrida Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 241001148062 Photorhabdus Species 0.000 description 2
- 241000218606 Pinus contorta Species 0.000 description 2
- 235000011334 Pinus elliottii Nutrition 0.000 description 2
- 241000142776 Pinus elliottii Species 0.000 description 2
- 235000013267 Pinus ponderosa Nutrition 0.000 description 2
- 235000008577 Pinus radiata Nutrition 0.000 description 2
- 241000218621 Pinus radiata Species 0.000 description 2
- 235000008566 Pinus taeda Nutrition 0.000 description 2
- 241000218679 Pinus taeda Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 244000292693 Poa annua Species 0.000 description 2
- 241000136254 Poa compressa Species 0.000 description 2
- 241000209049 Poa pratensis Species 0.000 description 2
- 102000012338 Poly(ADP-ribose) Polymerases Human genes 0.000 description 2
- 108010061844 Poly(ADP-ribose) Polymerases Proteins 0.000 description 2
- 229920000776 Poly(Adenosine diphosphate-ribose) polymerase Polymers 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 101000606032 Pomacea maculata Perivitellin-2 31 kDa subunit Proteins 0.000 description 2
- 101000606027 Pomacea maculata Perivitellin-2 67 kDa subunit Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 101100457857 Pseudomonas entomophila (strain L48) mnl gene Proteins 0.000 description 2
- 240000001416 Pseudotsuga menziesii Species 0.000 description 2
- 241000736230 Puccinellia distans Species 0.000 description 2
- 241000208422 Rhododendron Species 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 240000005498 Setaria italica Species 0.000 description 2
- 101000915835 Solanum lycopersicum 1-aminocyclopropane-1-carboxylate synthase 3 Proteins 0.000 description 2
- 101000611441 Solanum lycopersicum Pathogenesis-related leaf protein 6 Proteins 0.000 description 2
- 235000007230 Sorghum bicolor Nutrition 0.000 description 2
- 108010023197 Streptokinase Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- 241000218638 Thuja plicata Species 0.000 description 2
- 241000723792 Tobacco etch virus Species 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- 101710197404 Trehalose-phosphate phosphatase Proteins 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 2
- 108020005202 Viral DNA Proteins 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 241000607757 Xenorhabdus Species 0.000 description 2
- 241000209149 Zea Species 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 240000001102 Zoysia matrella Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 108010013829 alpha subunit DNA polymerase III Proteins 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 238000002306 biochemical method Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 244000022203 blackseeded proso millet Species 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 241000902900 cellular organisms Species 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000009402 cross-breeding Methods 0.000 description 2
- 239000004062 cytokinin Substances 0.000 description 2
- UQHKFADEQIVWID-UHFFFAOYSA-N cytokinin Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1CC(O)C(CO)O1 UQHKFADEQIVWID-UHFFFAOYSA-N 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 108010005155 delta-12 fatty acid desaturase Proteins 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 244000013123 dwarf bean Species 0.000 description 2
- 235000005489 dwarf bean Nutrition 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 2
- 239000003448 gibberellin Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 102000005396 glutamine synthetase Human genes 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 210000002288 golgi apparatus Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 241001148029 halophilic archaeon Species 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 108010002685 hygromycin-B kinase Proteins 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 229940049920 malate Drugs 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 108091040857 miR-604 stem-loop Proteins 0.000 description 2
- 210000000110 microvilli Anatomy 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 231100000219 mutagenic Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000014075 nitrogen utilization Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000006014 omega-3 oil Substances 0.000 description 2
- 230000007918 pathogenicity Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 230000007030 peptide scission Effects 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- 229960002429 proline Drugs 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 230000004952 protein activity Effects 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 101150075980 psbA gene Proteins 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000008117 seed development Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000002708 spider venom Substances 0.000 description 2
- 229960005202 streptokinase Drugs 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 108060008226 thioredoxin Proteins 0.000 description 2
- 229940094937 thioredoxin Drugs 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 230000001018 virulence Effects 0.000 description 2
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- YVLPJIGOMTXXLP-UUKUAVTLSA-N 15,15'-cis-Phytoene Natural products C(=C\C=C/C=C(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C)(\CC/C=C(\CC/C=C(\CC/C=C(\C)/C)/C)/C)/C YVLPJIGOMTXXLP-UUKUAVTLSA-N 0.000 description 1
- YVLPJIGOMTXXLP-BAHRDPFUSA-N 15Z-phytoene Natural products CC(=CCCC(=CCCC(=CCCC(=CC=C/C=C(C)/CCC=C(/C)CCC=C(/C)CCC=C(C)C)C)C)C)C YVLPJIGOMTXXLP-BAHRDPFUSA-N 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- 229940087195 2,4-dichlorophenoxyacetate Drugs 0.000 description 1
- GOCUAJYOYBLQRH-UHFFFAOYSA-N 2-(4-{[3-chloro-5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoic acid Chemical compound C1=CC(OC(C)C(O)=O)=CC=C1OC1=NC=C(C(F)(F)F)C=C1Cl GOCUAJYOYBLQRH-UHFFFAOYSA-N 0.000 description 1
- SXERGJJQSKIUIC-UHFFFAOYSA-N 2-Phenoxypropionic acid Chemical class OC(=O)C(C)OC1=CC=CC=C1 SXERGJJQSKIUIC-UHFFFAOYSA-N 0.000 description 1
- MSFSPUZXLOGKHJ-PGYHGBPZSA-N 2-amino-3-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucopyranose Chemical compound OC(=O)[C@@H](C)O[C@@H]1[C@@H](N)C(O)O[C@H](CO)[C@H]1O MSFSPUZXLOGKHJ-PGYHGBPZSA-N 0.000 description 1
- ABOOPXYCKNFDNJ-UHFFFAOYSA-N 2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}propanoic acid Chemical compound C1=CC(OC(C)C(O)=O)=CC=C1OC1=CN=C(C=C(Cl)C=C2)C2=N1 ABOOPXYCKNFDNJ-UHFFFAOYSA-N 0.000 description 1
- ZHVOBYWXERUHMN-KVJKMEBSSA-N 3-[(3s,5r,8r,9s,10s,13s,14s,17s)-10,13-dimethyl-3-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2h-furan-5-one Chemical compound O([C@@H]1C[C@H]2CC[C@@H]3[C@@H]([C@]2(CC1)C)CC[C@]1([C@H]3CC[C@@H]1C=1COC(=O)C=1)C)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O ZHVOBYWXERUHMN-KVJKMEBSSA-N 0.000 description 1
- 102000009062 ADP Ribose Transferases Human genes 0.000 description 1
- 108010049290 ADP Ribose Transferases Proteins 0.000 description 1
- 235000004507 Abies alba Nutrition 0.000 description 1
- 235000014081 Abies amabilis Nutrition 0.000 description 1
- 244000101408 Abies amabilis Species 0.000 description 1
- 244000178606 Abies grandis Species 0.000 description 1
- 235000017894 Abies grandis Nutrition 0.000 description 1
- 235000004710 Abies lasiocarpa Nutrition 0.000 description 1
- 240000005020 Acaciella glauca Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101100295756 Acinetobacter baumannii (strain ATCC 19606 / DSM 30007 / JCM 6841 / CCUG 19606 / CIP 70.34 / NBRC 109757 / NCIMB 12457 / NCTC 12156 / 81) omp38 gene Proteins 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 1
- 241000209137 Agropyron cristatum Species 0.000 description 1
- NBTGEURICRTMGL-WHFBIAKZSA-N Ala-Gly-Ser Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O NBTGEURICRTMGL-WHFBIAKZSA-N 0.000 description 1
- 241000724328 Alfalfa mosaic virus Species 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 101710092462 Alpha-hemolysin Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 235000001274 Anacardium occidentale Nutrition 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 108700032225 Antioxidant Response Elements Proteins 0.000 description 1
- 102100040214 Apolipoprotein(a) Human genes 0.000 description 1
- 101100172705 Arabidopsis thaliana ESD4 gene Proteins 0.000 description 1
- 101100210165 Arabidopsis thaliana VRN2 gene Proteins 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 241001167018 Aroa Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 101100136076 Aspergillus oryzae (strain ATCC 42149 / RIB 40) pel1 gene Proteins 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 108010029675 Bacillus licheniformis alpha-amylase Proteins 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 101900040182 Bacillus subtilis Levansucrase Proteins 0.000 description 1
- 108700003860 Bacterial Genes Proteins 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 241000606125 Bacteroides Species 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- 235000021533 Beta vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 101710142141 Bifunctional UDP-glucose 4-epimerase and UDP-xylose 4-epimerase 1 Proteins 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 241000145727 Bouteloua curtipendula Species 0.000 description 1
- 241000232315 Bouteloua gracilis Species 0.000 description 1
- 241000339490 Brachyachne Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 244000178993 Brassica juncea Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 241000220243 Brassica sp. Species 0.000 description 1
- 108010000755 Bromoxynil nitrilase Proteins 0.000 description 1
- 241000743756 Bromus inermis Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 241000544756 Bromus racemosus Species 0.000 description 1
- 241000320719 Buchloe Species 0.000 description 1
- 101100394003 Butyrivibrio fibrisolvens end1 gene Proteins 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 102000012286 Chitinases Human genes 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241000195585 Chlamydomonas Species 0.000 description 1
- 241000191368 Chlorobi Species 0.000 description 1
- 241001142109 Chloroflexi Species 0.000 description 1
- 108010089254 Cholesterol oxidase Proteins 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 244000189548 Chrysanthemum x morifolium Species 0.000 description 1
- 108090000746 Chymosin Proteins 0.000 description 1
- 235000010523 Cicer arietinum Nutrition 0.000 description 1
- 244000045195 Cicer arietinum Species 0.000 description 1
- 241001112696 Clostridia Species 0.000 description 1
- 108010065693 Clostridium perfringens theta-toxin Proteins 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108010073254 Colicins Proteins 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108090000056 Complement factor B Proteins 0.000 description 1
- 102000003712 Complement factor B Human genes 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 101710190853 Cruciferin Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000010071 Cucumis prophetarum Nutrition 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 244000052363 Cynodon dactylon Species 0.000 description 1
- 102100031655 Cytochrome b5 Human genes 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 108010007167 Cytochromes b5 Proteins 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 101710159129 DNA adenine methylase Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241000271032 Daboia russelii Species 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000246067 Deinococcales Species 0.000 description 1
- 241001600125 Delftia acidovorans Species 0.000 description 1
- 241000489975 Diabrotica Species 0.000 description 1
- 241000489973 Diabrotica undecimpunctata Species 0.000 description 1
- 239000005504 Dicamba Substances 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- 101000761020 Dinoponera quadriceps Poneritoxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- 101001066695 Drosophila melanogaster Protein painting of fourth Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 235000007349 Eleusine coracana Nutrition 0.000 description 1
- 235000013499 Eleusine coracana subsp coracana Nutrition 0.000 description 1
- 241000710188 Encephalomyocarditis virus Species 0.000 description 1
- 108010013369 Enteropeptidase Proteins 0.000 description 1
- 102100029727 Enteropeptidase Human genes 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 101150013030 FAN1 gene Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 102100034543 Fatty acid desaturase 3 Human genes 0.000 description 1
- 102000009114 Fatty acid desaturases Human genes 0.000 description 1
- 241000100633 Festuca nigrescens Species 0.000 description 1
- 241000218218 Ficus <angiosperm> Species 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 241000230562 Flavobacteriia Species 0.000 description 1
- 239000005558 Fluroxypyr Substances 0.000 description 1
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 1
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000233732 Fusarium verticillioides Species 0.000 description 1
- 108030002558 GDP-L-galactose phosphorylases Proteins 0.000 description 1
- 101710186901 Globulin 1 Proteins 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010063907 Glutathione Reductase Proteins 0.000 description 1
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 102000005720 Glutathione transferase Human genes 0.000 description 1
- 101100446349 Glycine max FAD2-1 gene Proteins 0.000 description 1
- 108700037728 Glycine max beta-conglycinin Proteins 0.000 description 1
- 108030006517 Glyphosate oxidoreductases Proteins 0.000 description 1
- 244000060234 Gmelina philippensis Species 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 240000000047 Gossypium barbadense Species 0.000 description 1
- 235000009429 Gossypium barbadense Nutrition 0.000 description 1
- 244000299507 Gossypium hirsutum Species 0.000 description 1
- 235000009432 Gossypium hirsutum Nutrition 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 102000038642 HINT family Human genes 0.000 description 1
- 108091072755 HINT family Proteins 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- 241000825556 Halyomorpha halys Species 0.000 description 1
- 241001147381 Helicoverpa armigera Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 101000958205 Hogna carolinensis M-lycotoxin-Hc1a Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000899240 Homo sapiens Endoplasmic reticulum chaperone BiP Proteins 0.000 description 1
- 101100364835 Homo sapiens SALL1 gene Proteins 0.000 description 1
- 108030006699 Homogentisate geranylgeranyltransferases Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 108010042653 IgA receptor Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010042889 Inulosucrase Proteins 0.000 description 1
- 235000021506 Ipomoea Nutrition 0.000 description 1
- 241000207783 Ipomoea Species 0.000 description 1
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 241000219729 Lathyrus Species 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 241000215452 Lotus corniculatus Species 0.000 description 1
- 239000005574 MCPA Substances 0.000 description 1
- 101150050813 MPI gene Proteins 0.000 description 1
- 241000208467 Macadamia Species 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000007575 Macadamia integrifolia Species 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 235000004456 Manihot esculenta Nutrition 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 101000763602 Manilkara zapota Thaumatin-like protein 1 Proteins 0.000 description 1
- 101000763586 Manilkara zapota Thaumatin-like protein 1a Proteins 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- 108010040897 Microfilament Proteins Proteins 0.000 description 1
- 102000002151 Microfilament Proteins Human genes 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 101000755935 Mus musculus Fructose-bisphosphate aldolase B Proteins 0.000 description 1
- 101000966653 Musa acuminata Glucan endo-1,3-beta-glucosidase Proteins 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 102000018463 Myo-Inositol-1-Phosphate Synthase Human genes 0.000 description 1
- 108091000020 Myo-Inositol-1-Phosphate Synthase Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 108010045510 NADPH-Ferrihemoprotein Reductase Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 101100168995 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cyt-1 gene Proteins 0.000 description 1
- 101100438748 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cyt-2 gene Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 241000424623 Nostoc punctiforme Species 0.000 description 1
- 102000007999 Nuclear Proteins Human genes 0.000 description 1
- 108010089610 Nuclear Proteins Proteins 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 102100036518 Nucleoside diphosphate phosphatase ENTPD5 Human genes 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 102000017279 Oligopeptide transporters Human genes 0.000 description 1
- 108050005204 Oligopeptide transporters Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241000218222 Parasponia andersonii Species 0.000 description 1
- 241001668543 Pascopyrum smithii Species 0.000 description 1
- 101710096342 Pathogenesis-related protein Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000209046 Pennisetum Species 0.000 description 1
- 244000026791 Pennisetum clandestinum Species 0.000 description 1
- 244000038248 Pennisetum spicatum Species 0.000 description 1
- 244000115721 Pennisetum typhoides Species 0.000 description 1
- 241000320508 Pentatomidae Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 101710132602 Peroxidase 5 Proteins 0.000 description 1
- 244000052810 Phanera fulva Species 0.000 description 1
- 244000100170 Phaseolus lunatus Species 0.000 description 1
- 101000870887 Phaseolus vulgaris Glycine-rich cell wall structural protein 1.8 Proteins 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 241000746983 Phleum pratense Species 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 240000000020 Picea glauca Species 0.000 description 1
- 235000008127 Picea glauca Nutrition 0.000 description 1
- 241000218595 Picea sitchensis Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000008593 Pinus contorta Nutrition 0.000 description 1
- 244000019397 Pinus jeffreyi Species 0.000 description 1
- 241000555277 Pinus ponderosa Species 0.000 description 1
- 235000013269 Pinus ponderosa var ponderosa Nutrition 0.000 description 1
- 235000013268 Pinus ponderosa var scopulorum Nutrition 0.000 description 1
- 235000016816 Pisum sativum subsp sativum Nutrition 0.000 description 1
- 241000589952 Planctomyces Species 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 240000006597 Poa trivialis Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 241000710078 Potyvirus Species 0.000 description 1
- 235000000497 Primula Nutrition 0.000 description 1
- 241000245063 Primula Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 102100034014 Prolyl 3-hydroxylase 3 Human genes 0.000 description 1
- 101710194807 Protective antigen Proteins 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000192142 Proteobacteria Species 0.000 description 1
- 241001641548 Pseudomonas antarctica Species 0.000 description 1
- 101001009086 Pseudomonas fluorescens Hydroxycinnamoyl-CoA hydratase-lyase Proteins 0.000 description 1
- 241001041887 Pseudomonas putida F1 Species 0.000 description 1
- 241001291486 Pseudomonas rhodesiae Species 0.000 description 1
- 235000008572 Pseudotsuga menziesii Nutrition 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- 241000508269 Psidium Species 0.000 description 1
- 240000001679 Psidium guajava Species 0.000 description 1
- 235000013929 Psidium pyriferum Nutrition 0.000 description 1
- 108010009413 Pyrophosphatases Proteins 0.000 description 1
- 102000009609 Pyrophosphatases Human genes 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 101150075111 ROLB gene Proteins 0.000 description 1
- 101150013395 ROLC gene Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 235000011449 Rosa Nutrition 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 101150049532 SAL1 gene Proteins 0.000 description 1
- 241000209051 Saccharum Species 0.000 description 1
- 102100037204 Sal-like protein 1 Human genes 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 102400000827 Saposin-D Human genes 0.000 description 1
- 241001138418 Sequoia sempervirens Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 235000008515 Setaria glauca Nutrition 0.000 description 1
- 235000007226 Setaria italica Nutrition 0.000 description 1
- CSPPKDPQLUUTND-NBVRZTHBSA-N Sethoxydim Chemical compound CCO\N=C(/CCC)C1=C(O)CC(CC(C)SCC)CC1=O CSPPKDPQLUUTND-NBVRZTHBSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241001292337 Sphingobium herbicidovorans Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 241000589970 Spirochaetales Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 101800001978 Ssp dnaB intein Proteins 0.000 description 1
- 241000295644 Staphylococcaceae Species 0.000 description 1
- 108010039811 Starch synthase Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101000951943 Stenotrophomonas maltophilia Dicamba O-demethylase, oxygenase component Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000098292 Striacosta albicosta Species 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- 229940100389 Sulfonylurea Drugs 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 241000192581 Synechocystis sp. Species 0.000 description 1
- 235000006468 Thea sinensis Nutrition 0.000 description 1
- 241000204315 Thermosipho <sea snail> Species 0.000 description 1
- 241000204652 Thermotoga Species 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- WHKUVVPPKQRRBV-UHFFFAOYSA-N Trasan Chemical compound CC1=CC(Cl)=CC=C1OCC(O)=O WHKUVVPPKQRRBV-UHFFFAOYSA-N 0.000 description 1
- 241000218234 Trema tomentosa Species 0.000 description 1
- 239000005627 Triclopyr Substances 0.000 description 1
- 235000001484 Trigonella foenum graecum Nutrition 0.000 description 1
- 244000250129 Trigonella foenum graecum Species 0.000 description 1
- 235000007218 Tripsacum dactyloides Nutrition 0.000 description 1
- 108010075344 Tryptophan synthase Proteins 0.000 description 1
- 240000003021 Tsuga heterophylla Species 0.000 description 1
- 235000008554 Tsuga heterophylla Nutrition 0.000 description 1
- 241000722923 Tulipa Species 0.000 description 1
- 241000722921 Tulipa gesneriana Species 0.000 description 1
- 108010046179 Type VI Secretion Systems Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 101710181748 Venom protease Proteins 0.000 description 1
- 101710099833 Venom protein Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 241000219977 Vigna Species 0.000 description 1
- 240000004922 Vigna radiata Species 0.000 description 1
- 235000010721 Vigna radiata var radiata Nutrition 0.000 description 1
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 108700040099 Xylose isomerases Proteins 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 101001040871 Zea mays Glutelin-2 Proteins 0.000 description 1
- 101000662549 Zea mays Sucrose synthase 1 Proteins 0.000 description 1
- 101710185494 Zinc finger protein Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 108010014387 aerolysin Proteins 0.000 description 1
- 108010024078 alanyl-glycyl-serine Proteins 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 229940059720 apra Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 101150042295 arfA gene Proteins 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 238000007845 assembly PCR Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 235000020226 cashew nut Nutrition 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940080701 chymosin Drugs 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 108090001092 clostripain Proteins 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000001934 cyclohexanes Chemical class 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 108010022240 delta-8 fatty acid desaturase Proteins 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 230000012361 double-strand break repair Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000004577 ear development Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 239000005712 elicitor Substances 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 231100000290 environmental risk assessment Toxicity 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 210000004955 epithelial membrane Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 108010093305 exopolygalacturonase Proteins 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- MEFQWPUMEMWTJP-UHFFFAOYSA-N fluroxypyr Chemical compound NC1=C(Cl)C(F)=NC(OCC(O)=O)=C1Cl MEFQWPUMEMWTJP-UHFFFAOYSA-N 0.000 description 1
- 239000004459 forage Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 244000037671 genetically modified crops Species 0.000 description 1
- 101150091511 glb-1 gene Proteins 0.000 description 1
- 108010050792 glutenin Proteins 0.000 description 1
- 108010083391 glycinin Proteins 0.000 description 1
- 108010039239 glyphosate N-acetyltransferase Proteins 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- SPSXSWRZQFPVTJ-ZQQKUFEYSA-N hepatitis b vaccine Chemical compound C([C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CCSC)C(=O)N[C@@H](CC1N=CN=C1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)OC(=O)CNC(=O)CNC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@@H](N)CCCNC(N)=N)C1=CC=CC=C1 SPSXSWRZQFPVTJ-ZQQKUFEYSA-N 0.000 description 1
- 229940124736 hepatitis-B vaccine Drugs 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 230000000974 larvacidal effect Effects 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229940040461 lipase Drugs 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 235000014684 lodgepole pine Nutrition 0.000 description 1
- 235000020978 long-chain polyunsaturated fatty acids Nutrition 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 210000005060 membrane bound organelle Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 101150023613 mev-1 gene Proteins 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- GNOLWGAJQVLBSM-UHFFFAOYSA-N n,n,5,7-tetramethyl-1,2,3,4-tetrahydronaphthalen-1-amine Chemical compound C1=C(C)C=C2C(N(C)C)CCCC2=C1C GNOLWGAJQVLBSM-UHFFFAOYSA-N 0.000 description 1
- 230000001069 nematicidal effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- NVGOPFQZYCNLDU-UHFFFAOYSA-N norflurazon Chemical compound O=C1C(Cl)=C(NC)C=NN1C1=CC=CC(C(F)(F)F)=C1 NVGOPFQZYCNLDU-UHFFFAOYSA-N 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 108010028546 nucleoside-diphosphatase Proteins 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 101150087557 omcB gene Proteins 0.000 description 1
- 101150115693 ompA gene Proteins 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000002252 panizo Nutrition 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 101150040383 pel2 gene Proteins 0.000 description 1
- 101150050446 pelB gene Proteins 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000003016 pheromone Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229940085127 phytase Drugs 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000011765 phytoene Nutrition 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000023603 positive regulation of transcription initiation, DNA-dependent Effects 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229930010796 primary metabolite Natural products 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 108060006613 prolamin Proteins 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 238000002331 protein detection Methods 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 231100000654 protein toxin Toxicity 0.000 description 1
- 125000005554 pyridyloxy group Chemical group 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 235000003499 redwood Nutrition 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000021003 saturated fats Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 239000002795 scorpion venom Substances 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 235000000673 shore pine Nutrition 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000003998 snake venom Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 235000021127 solid diet Nutrition 0.000 description 1
- 108010048090 soybean lectin Proteins 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- 230000028070 sporulation Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 108010031092 starch-branching enzyme II Proteins 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- YROXIXLRRCOBKF-UHFFFAOYSA-N sulfonylurea Chemical class OC(=N)N=S(=O)=O YROXIXLRRCOBKF-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 108010050014 systemin Proteins 0.000 description 1
- HOWHQWFXSLOJEF-MGZLOUMQSA-N systemin Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)OC(=O)[C@@H]1CCCN1C(=O)[C@H]1N(C(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]2N(CCC2)C(=O)[C@H]2N(CCC2)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)C(C)C)CCC1 HOWHQWFXSLOJEF-MGZLOUMQSA-N 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 210000002377 thylakoid Anatomy 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 108010057392 tocopherol cyclase Proteins 0.000 description 1
- 229930003802 tocotrienol Natural products 0.000 description 1
- 239000011731 tocotrienol Substances 0.000 description 1
- 229940068778 tocotrienols Drugs 0.000 description 1
- 235000019148 tocotrienols Nutrition 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- REEQLXCGVXDJSQ-UHFFFAOYSA-N trichlopyr Chemical compound OC(=O)COC1=NC(Cl)=C(Cl)C=C1Cl REEQLXCGVXDJSQ-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 235000001019 trigonella foenum-graecum Nutrition 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000002821 viper venom Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- DTOSIQBPPRVQHS-UHFFFAOYSA-N α-Linolenic acid Chemical compound CCC=CCC=CCC=CCCCCCCCC(O)=O DTOSIQBPPRVQHS-UHFFFAOYSA-N 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8286—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/06—Processes for producing mutations, e.g. treatment with chemicals or with radiation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/50—Isolated enzymes; Isolated proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/21—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
- C07K14/325—Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1093—General methods of preparing gene libraries, not provided for in other subgroups
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the present disclosure is directed to an approach for discovering novel insecticidal proteins from highly heterogeneous environmental sources.
- the methodology utilizes metagenomic enrichment procedures and unique genetic amplification techniques, which enables access to a broad class of unknown microbial diversity and their resultant proteome.
- the disclosed insecticidal protein discovery platform can be computationally driven and is able to integrate molecular biology, automation, and advanced machine learning protocols.
- the platform will enable researchers to rapidly and accurately access the vast repertoire of untapped insecticidal proteins produced by uncharacterized and complex microbial environmental samples.
- PFT pore-forming toxins
- Bt Bacillus thuringiensis
- Cry genes Bacillus thuringiensis
- the present disclosure provides novel insecticidal proteins, which can be utilized in modern row crop agriculture. These insecticidal proteins can be developed into standalone products for application directly to a plant species, or can be incorporated into the genome of a host plant for expression.
- the taught insecticidal proteins do not pose environmental concerns. Further, the insecticidal proteins belong to a newly discovered class, which have several advantages over the current industry standard Cry protein products derived from Bacillus thuringiensis (Bt) encoded sequences.
- the disclosure provides a platform for discovering additional insecticidal proteins, by accessing the vast repertoire of untapped insecticidal proteins produced by uncharacterized and complex microbial environmental samples.
- IPDP insecticidal protein discovery platform
- IPDP utilizes metagenomic enrichment procedures and unique genetic amplification techniques, enabling access to a broad class of unknown microbial diversity and their resultant proteome. Because the platform can be computationally driven and is able to integrate molecular biology, automation, and advanced machine learning protocols, researchers will now be able to rapidly and systematically develop models and search queries, to identify additional novel insecticidal proteins.
- the disclosure provide a method for constructing a genomic library, enriched for DNA from Pseudomonas encoding insecticidal proteins, comprising: a) providing an initial sample comprising one or more microorganisms; b) exposing the initial sample to a solid nutrient limiting media that enriches for growth of species from the genus Pseudomonas , which results in a subsequent sample enriched for Pseudomonas sp.; c) isolating DNA from the subsequent enriched sample; d) extracting DNA from the isolated DNA and performing degenerate PCR with primers selected to amplify target insecticidal protein genes; e) cloning the PCR-amplified DNA into a plasmid; and f) sequencing the cloned DNA from said plasmid.
- the method comprises assembling the sequenced DNA into a genomic library.
- the method comprises identifying insecticidal protein genes within the sequenced DNA.
- the identified insecticidal proteins are unknown.
- a Hidden Markov model is used to identify insecticidal protein genes.
- any gene i.e. a nucleotide sequence in Table 3 (e.g. SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71) can be found.
- any gene encoding a protein found in Table 3 (e.g. SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72) can be found.
- the primers are selected to amplify target insecticidal protein genes that encode a protein with at least 50% sequence identity to SEQ ID NO: 87.
- the disclosure provides for an isolated nucleic acid molecule encoding an insecticidal protein having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity to a protein selected from the group consisting of: SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72.
- the isolated nucleic acid molecule is codon optimized for expression in a host cell of interest. In certain embodiments, the isolated nucleic acid molecule is codon optimized for expression in a plant cell. In certain embodiments, the isolated nucleic acid molecule has at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity to a nucleic acid sequence selected from the group consisting of: SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, and 71.
- the disclosure provides for a nucleotide construct, comprising: a nucleic acid molecule encoding an insecticidal protein having at least about 80% sequence identity to a protein selected from the group consisting of: SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72, said nucleic acid molecule operably linked to a heterologous regulatory element.
- the heterologous regulatory element is a promoter.
- the heterologous regulatory element is a plant promoter.
- the disclosure provides for transgenic plant cells that comprise said nucleotide constructs. In some embodiments, the disclosure provides for stably transformed plants that express said proteins from the nucleotide construct. In some embodiments, insects feed upon the transgenic plants and are killed.
- the disclosure provides for an isolated insecticidal protein, comprising: an amino acid sequence with at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity to an amino acid sequence selected from the group consisting of: SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and 72.
- the isolated insecticidal protein is recombinant.
- the disclosure provides for transgenic plant cells that express said proteins.
- insects feed upon the transgenic plants and are killed.
- the aforementioned insecticidal proteins are contained in agricultural compositions.
- said agricultural compositions are used to spray upon plants and/or insects, in order to provide effective insect control.
- the insecticidal proteins are found in cell lysate and the cell lysate can be utilized to control insect pest populations.
- the natural Pseudomonas host organism can be formulated into a composition and utilized to combat insect pests.
- the disclosure provides novel insecticidal proteins, wherein the proteins having an amino acid sequence which score at or above a bit score of 521.5 and/or sequences which match at an E-value of less than or equal to 7.9e ⁇ 161 when scored using the HMIM in Table 6.
- proteins can be provided in any form (e.g., as isolated or recombinant proteins) or as part of any of the compositions (e.g., plants or agricultural compositions) disclosed herein.
- FIG. 1 outlines a workflow of the taught insecticidal protein discovery platform (IPDP).
- FIG. 2 outlines a workflow of the taught insecticidal protein discovery platform (IPDP) and illustrates two steps utilized by methods of the prior art, which are not required by the current IPDP.
- IPDP taught insecticidal protein discovery platform
- FIG. 3 illustrates a multiple sequence alignment of eight novel insecticidal proteins (ZIP1, ZIP2, ZIP6, ZIP8, ZIP9, ZIP10, ZIP11, ZIP12) found in Table 3, which were discovered utilizing the IPDP.
- FIG. 4 illustrates a multiple sequence alignment of eight novel insecticidal proteins (ZIP1, ZIP2, ZIP6, ZIP8, ZIP9, ZIP10, ZIP11, ZIP12) found in Table 3, which were discovered utilizing the IPDP, as compared to monalysin.
- FIG. 5 illustrates a phylogenetic tree of eight novel insecticidal proteins found in Table 3 and FIG. 3 , which were discovered utilizing the IPDP.
- FIG. 6 illustrates a phylogenetic tree of eight novel insecticidal proteins found in Table 3 and FIG. 4 , which were discovered utilizing the IPDP, as compared to monalysin.
- FIG. 7 illustrates the results of insect bioassay experiments with ten purified insecticidal proteins found in Table 3.
- Insects Halyomorpha halys —Brown Marmorated Stink Bug
- ZIP1, ZIP2, ZIP4, ZIP6, ZIP8, ZIP9, ZIP10, ZIP11, and ZIP12, and ZIP16 purified insecticidal proteins discovered via the IPDP exhibited mortality rates of varying degrees.
- the concentration of purified insecticidal protein used for this experiment is also presented in FIG. 7 .
- FIG. 8 illustrates the results of insect bioassay experiments with three purified insecticidal proteins (ZIP1, ZIP2, and ZIP4) found in Table 3 against Brown Marmorated Stinkbugs.
- FIGS. 9A-B illustrates the results of insect bioassay experiments with three purified insecticidal proteins (ZIP1, ZIP2, and ZIP4) found in Table 3 against members of two major Orders of insects; Fall Armyworm and Southern Corn Rootworm. The percent reduction in the mean weight of insects that ingested the listed concentration of purified protein mixed with solid diet as compared to buffer only control is reported.
- FIG. 9A presents experiments performed on Fall Armyworm ( Spodoptera frugiperda ), while FIG. 9B illustrates experiments performed on Southern Corn Rootworm ( Diabrotica undecimpunctata )
- FIG. 10 illustrates the results from an insect lysate experiment. Insects ( Halyomorpha halys —Brown Marmorated Stink Bug) that ingested bacterial lysate containing an insecticidal protein discovered via the IPDP exhibited a 100% mortality rate.
- Insects Halyomorpha halys —Brown Marmorated Stink Bug
- FIG. 11 illustrates the western blot results from Example 6, which shows expression of ZIP proteins from soybean and corn leaves.
- Lanes 1 and 11 Negative Control (untransformed soybean leaves); Lanes 2 and 3: ZIP1 Transformed soybean leaves; Lanes 4-10: ZIP2 Transformed soybean leaves; Lanes 12 and 13: ZIP4 Transformed soybean leaves; Lane 14: Negative Control (untransformed maize leaves); Lanes 15 and 16: ZIP2 Transformed maize leaves.
- cellular organism “microorganism” or “microbe” should be taken broadly. These terms are used interchangeably and include, but are not limited to, the two prokaryotic domains, Bacteria and Archaea, as well as certain eukaryotic fungi and protists.
- the disclosure refers to the “microorganisms” or “cellular organisms” or “microbes” of lists/tables and figures present in the disclosure. This characterization can refer to not only the identified taxonomic genera of the tables and figures, but also the identified taxonomic species, as well as the various novel and newly identified or designed strains of any organism in said tables or figures. The same characterization holds true for the recitation of these terms in other parts of the Specification, such as in the Examples.
- prokaryotes is art recognized and refers to cells which contain no nucleus or other cell organelles.
- the prokaryotes are generally classified in one of two domains, the Bacteria and the Archaea.
- the definitive difference between organisms of the Archaea and Bacteria domains is based on fundamental differences in the nucleotide base sequence in the 16S ribosomal RNA.
- the term “Archaea” refers to a categorization of organisms of the division Mendosicutes, typically found in unusual environments and distinguished from the rest of the prokaryotes by several criteria, including the number of ribosomal proteins and the lack of muramic acid in cell walls.
- the Archaea consist of two phylogenetically-distinct groups: Crenarchaeota and Euryarchaeota.
- the Archaea can be organized into three types: methanogens (prokaryotes that produce methane); extreme halophiles (prokaryotes that live at very high concentrations of salt (NaC); and extreme (hyper) thermophilus (prokaryotes that live at very high temperatures).
- methanogens prokaryotes that produce methane
- extreme halophiles prokaryotes that live at very high concentrations of salt (NaC)
- extreme (hyper) thermophilus prokaryotes that live at very high temperatures.
- the Crenarchaeota consists mainly of hyperthermophilic sulfur-dependent prokaryotes and the Euryarchaeota contains the methanogens and extreme halophiles.
- Bacteria refers to a domain of prokaryotic organisms. Bacteria include at least 11 distinct groups as follows: (1) Gram-positive (gram+) bacteria, of which there are two major subdivisions: (1) high G+C group (Actinomycetes, Mycobacteria, Micrococcus , others) (2) low G+C group ( Bacillus, Clostridia, Lactobacillus , Staphylococci, Streptococci, Mycoplasmas); (2) Proteobacteria, e.g., Purple photosynthetic+non-photosynthetic Gram-negative bacteria (includes most “common” Gram-negative bacteria); (3) Cyanobacteria, e.g., oxygenic phototrophs; (4) Spirochetes and related species; (5) Planctomyces; (6) Bacteroides , Flavobacteria; (7) Chlamydia ; (8) Green sulfur bacteria; (9) Green non-sulfur bacteria (
- a “eukaryote” is any organism whose cells contain a nucleus and other organelles enclosed within membranes. Eukaryotes belong to the taxon Eukarya or Eukaryota.
- the defining feature that sets eukaryotic cells apart from prokaryotic cells is that they have membrane-bound organelles, especially the nucleus, which contains the genetic material, and is enclosed by the nuclear envelope.
- the terms “genetically modified host cell,” “recombinant host cell,” and “recombinant strain” are used interchangeably herein and refer to host cells that have been genetically modified by the cloning and transformation methods of the present disclosure.
- the terms include a host cell (e.g., bacteria, yeast cell, fungal cell, CHO, human cell, etc.) that has been genetically altered, modified, or engineered, such that it exhibits an altered, modified, or different genotype and/or phenotype (e.g., when the genetic modification affects coding nucleic acid sequences of the microorganism), as compared to the naturally-occurring organism from which it was derived. It is understood that in some embodiments, the terms refer not only to the particular recombinant host cell in question, but also to the progeny or potential progeny of such a host cell.
- genetically engineered may refer to any manipulation of a host cell's genome (e.g. by insertion, deletion, mutation, or replacement of nucleic acids).
- control refers to an appropriate comparator host cell for determining the effect of a genetic modification or experimental treatment.
- the control host cell is a wild type cell.
- a control host cell is genetically identical to the genetically modified host cell, save for the genetic modification(s) differentiating the treatment host cell.
- allele(s) means any of one or more alternative forms of a gene, all of which alleles relate to at least one trait or characteristic.
- alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.
- locus means a specific place or places or a site on a chromosome where for example a gene or genetic marker is found.
- genetically linked refers to two or more traits that are co-inherited at a high rate during breeding such that they are difficult to separate through crossing.
- a “recombination” or “recombination event” as used herein refers to a chromosomal crossing over or independent assortment.
- phenotype refers to the observable characteristics of an individual cell, cell culture, organism, or group of organisms which results from the interaction between that individual's genetic makeup (i.e., genotype) and the environment.
- chimeric or “recombinant” when describing a nucleic acid sequence or a protein sequence refers to a nucleic acid, or a protein sequence, that links at least two heterologous polynucleotides, or two heterologous polypeptides, into a single macromolecule, or that rearranges one or more elements of at least one natural nucleic acid or protein sequence.
- the term “recombinant” can refer to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques.
- a “synthetic nucleotide sequence” or “synthetic polynucleotide sequence” is a nucleotide sequence that is not known to occur in nature or that is not naturally occurring. Generally, such a synthetic nucleotide sequence will comprise at least one nucleotide difference when compared to any other naturally occurring nucleotide sequence.
- a “synthetic amino acid sequence” or “synthetic peptide” or “synthetic protein” is an amino acid sequence that is not known to occur in nature or that is not naturally occurring. Generally, such a synthetic protein sequence will comprise at least one amino acid difference when compared to any other naturally occurring protein sequence.
- nucleic acid refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides, or analogs thereof. This term refers to the primary structure of the molecule, and thus includes double- and single-stranded DNA, as well as double- and single-stranded RNA. It also includes modified nucleic acids such as methylated and/or capped nucleic acids, nucleic acids containing modified bases, backbone modifications, and the like. The terms “nucleic acid” and “nucleotide sequence” are used interchangeably.
- genes refers to any segment of DNA associated with a biological function.
- genes include, but are not limited to, coding sequences and/or the regulatory sequences required for their expression.
- Genes can also include non-expressed DNA segments that, for example, form recognition sequences for other proteins.
- Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.
- homologous or “homologue” or “ortholog” is known in the art and refers to related sequences that share a common ancestor or family member and can be inferred based on the degree of sequence identity.
- the terms “homology,” “homologous,” “substantially similar” and “corresponding substantially” are used interchangeably herein. They refer to nucleic acid fragments wherein changes in one or more nucleotide bases do not affect the ability of the nucleic acid fragment to mediate gene expression or produce a certain phenotype.
- a functional relationship may be indicated in any one of a number of ways, including, but not limited to: (a) degree of sequence identity and/or (b) the same or similar biological function. Preferably, both (a) and (b) are indicated.
- Homology can be determined using software programs readily available in the art, such as those discussed in Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987) Supplement 30, section 7.718, Table 7.71. Some alignment programs are MacVector (Oxford Molecular Ltd, Oxford, U.K.), ALIGN Plus (Scientific and Educational Software, Pennsylvania) and AlignX (Vector NTI, Invitrogen, Carlsbad, Calif.). Another alignment program is Sequencher (Gene Codes, Ann Arbor, Mich.), using default parameters.
- endogenous refers to the naturally occurring gene, in the location in which it is naturally found within the host cell genome.
- operably linking a heterologous promoter to an endogenous gene means genetically inserting a heterologous promoter sequence in front of an existing gene, in the location where that gene is naturally present.
- An endogenous gene as described herein can include alleles of naturally occurring genes that have been mutated according to any of the methods of the present disclosure.
- exogenous is used interchangeably with the term “heterologous,” and refers to a substance coming from some source other than its native source.
- exogenous protein or “exogenous gene” refer to a protein or gene from a non-native source or location, and that have been artificially supplied to a biological system.
- nucleotide change refers to, e.g., nucleotide substitution, deletion, and/or insertion, as is well understood in the art. For example, mutations contain alterations that produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded protein or how the proteins are made.
- protein modification refers to, e.g., amino acid substitution, amino acid modification, deletion, and/or insertion, as is well understood in the art.
- the term “at least a portion” or “fragment” of a nucleic acid or polypeptide means a portion having the minimal size characteristics of such sequences, or any larger fragment of the full length molecule, up to and including the full length molecule.
- a fragment of a polynucleotide of the disclosure may encode a biologically active portion of a genetic regulatory element.
- a biologically active portion of a genetic regulatory element can be prepared by isolating a portion of one of the polynucleotides of the disclosure that comprises the genetic regulatory element and assessing activity as described herein.
- a portion of a polypeptide may be 4 amino acids, 5 amino acids, 6 amino acids, 7 amino acids, and so on, going up to the full length polypeptide.
- a portion of a nucleic acid useful as a hybridization probe may be as short as 12 nucleotides; in some embodiments, it is 20 nucleotides.
- a portion of a polypeptide useful as an epitope may be as short as 4 amino acids.
- a portion of a polypeptide that performs the function of the full-length polypeptide would generally be longer than 4 amino acids.
- Variant polynucleotides also encompass sequences derived from a mutagenic and recombinogenic procedure such as DNA shuffling.
- Strategies for such DNA shuffling are known in the art. See, for example, Stemmer (1994) PNAS 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech. 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) PNAS 94:4504-4509; Crameri et al. (1998) Nature 391:288-291; and U.S. Pat. Nos. 5,605,793 and 5,837,458.
- oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest.
- Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (2001) Molecular Cloning: A Laboratory Manual (3d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds.
- PCR PCR Strategies
- nested primers single specific primers
- degenerate primers gene-specific primers
- vector-specific primers partially-mismatched primers
- primer refers to an oligonucleotide which is capable of annealing to the amplification target allowing a DNA polymerase to attach, thereby serving as a point of initiation of DNA synthesis when placed under conditions in which synthesis of primer extension product is induced, i.e., in the presence of nucleotides and an agent for polymerization such as DNA polymerase and at a suitable temperature and pH.
- the (amplification) primer is preferably single stranded for maximum efficiency in amplification.
- the primer is an oligodeoxyribonucleotide.
- the primer must be sufficiently long to prime the synthesis of extension products in the presence of the agent for polymerization.
- a pair of bi-directional primers consists of one forward and one reverse primer as commonly used in the art of DNA amplification such as in PCR amplification.
- promoter refers to a DNA sequence capable of controlling the expression of a coding sequence or functional RNA.
- the promoter sequence consists of proximal and more distal upstream elements, the latter elements often referred to as enhancers.
- an “enhancer” is a DNA sequence that can stimulate promoter activity, and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue specificity of a promoter. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments.
- promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, DNA fragments of some variation may have identical promoter activity.
- a recombinant construct comprises an artificial combination of nucleic acid fragments, e.g., regulatory and coding sequences that are not found together in nature.
- a chimeric construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different from that found in nature.
- Such construct may be used by itself or may be used in conjunction with a vector. If a vector is used then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art.
- a plasmid vector can be used.
- the skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments of the disclosure.
- the skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al., (1985) EMBO J. 4:2411-2418; De Almeida et al., (1989) Mol. Gen. Genetics 218:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern.
- Vectors can be plasmids, viruses, bacteriophages, pro-viruses, phagemids, transposons, artificial chromosomes, and the like, that replicate autonomously or can integrate into a chromosome of a host cell.
- a vector can also be a naked RNA polynucleotide, a naked DNA polynucleotide, a polynucleotide composed of both DNA and RNA within the same strand, a poly-lysine-conjugated DNA or RNA, a peptide-conjugated DNA or RNA, a liposome-conjugated DNA, or the like, that is not autonomously replicating.
- expression refers to the production of a functional end-product e.g., an mRNA or a protein (precursor or mature).
- “Operably linked” means in this context the sequential arrangement of the promoter polynucleotide according to the disclosure with a further oligo- or polynucleotide, resulting in transcription of said further polynucleotide.
- product of interest or “biomolecule” as used herein refers to any product produced by microbes from feedstock.
- the product of interest may be a small molecule, enzyme, peptide, amino acid, organic acid, synthetic compound, fuel, alcohol, etc.
- the product of interest or biomolecule may be any primary or secondary extracellular metabolite.
- the primary metabolite may be, inter alia, ethanol, citric acid, lactic acid, glutamic acid, glutamate, lysine, threonine, tryptophan and other amino acids, vitamins, polysaccharides, etc.
- the secondary metabolite may be, inter alia, an antibiotic compound like penicillin, or an immunosuppressant like cyclosporin A, a plant hormone like gibberellin, a statin drug like lovastatin, a fungicide like griseofulvin, etc.
- the product of interest or biomolecule may also be any intracellular component produced by a microbe, such as: a microbial enzyme, including: catalase, amylase, protease, pectinase, glucose isomerase, cellulase, hemicellulase, lipase, lactase, streptokinase, and many others.
- the intracellular component may also include recombinant proteins, such as: insulin, hepatitis B vaccine, interferon, granulocyte colony-stimulating factor, streptokinase and others.
- carbon source generally refers to a substance suitable to be used as a source of carbon for cell growth.
- Carbon sources include, but are not limited to, biomass hydrolysates, starch, sucrose, cellulose, hemicellulose, xylose, and lignin, as well as monomeric components of these substrates.
- Carbon sources can comprise various organic compounds in various forms, including, but not limited to polymers, carbohydrates, acids, alcohols, aldehydes, ketones, amino acids, peptides, etc.
- photosynthetic organisms can additionally produce a carbon source as a product of photosynthesis.
- carbon sources may be selected from biomass hydrolysates and glucose.
- feedstock is defined as a raw material or mixture of raw materials supplied to a microorganism or fermentation process from which other products can be made.
- a carbon source such as biomass or the carbon compounds derived from biomass are a feedstock for a microorganism that produces a product of interest (e.g. small molecule, peptide, synthetic compound, fuel, alcohol, etc.) in a fermentation process.
- a feedstock may contain nutrients other than a carbon source.
- volumetric productivity or “production rate” is defined as the amount of product formed per volume of medium per unit of time. Volumetric productivity can be reported in gram per liter per hour (g/L/h).
- specific productivity is defined as the rate of formation of the product. Specific productivity is herein further defined as the specific productivity in gram product per gram of cell dry weight (CDW) per hour (g/g CDW/h). Using the relation of CDW to OD 600 for the given microorganism specific productivity can also be expressed as gram product per liter culture medium per optical density of the culture broth at 600 nm (OD) per hour (g/L/h/OD).
- yield is defined as the amount of product obtained per unit weight of raw material and may be expressed as g product per g substrate (g/g). Yield may be expressed as a percentage of the theoretical yield. “Theoretical yield” is defined as the maximum amount of product that can be generated per a given amount of substrate as dictated by the stoichiometry of the metabolic pathway used to make the product.
- titre or “titer” is defined as the strength of a solution or the concentration of a substance in solution.
- a product of interest e.g. small molecule, peptide, synthetic compound, fuel, alcohol, etc.
- g/L g of product of interest in solution per liter of fermentation broth
- total titer is defined as the sum of all product of interest produced in a process, including but not limited to the product of interest in solution, the product of interest in gas phase if applicable, and any product of interest removed from the process and recovered relative to the initial volume in the process or the operating volume in the process.
- insecticidal protein or “pesticidal protein” or “insecticidal toxin” or “pesticidal toxin” is used to refer to a protein that has toxic activity against one or more pests.
- pests include various orders of insects, including: Lepidopterans, Dipterans, Hemipterans, and Coleopterans, to name a few. Pests also include non-insect organisms that are a pest to agriculture, including for example, members of the Nematoda phylum.
- insecticidal is not limited to merely insects, but rather covers a broader taxonomic grouping of organisms that are commonly referred to as “pests.” Consequently, the phrase “insecticidal protein” can be taken to be synonymous with “pesticidal protein” and the phrase “insecticidal protein discovery platform” can be taken to be synonymous with “pesticidal protein discovery platform.” Furthermore, in some aspects, the disclosure provides for insecticidal toxins and a platform for discovering insecticidal toxins, which may not be limited to protein embodiments.
- Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila.
- P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair.
- Opota and colleagues reported the identification of a novel pore-forming toxin (PFT), which they termed “Monalysin,” contributes to the virulence of P. entomophila against Drosophila .
- PFT novel pore-forming toxin
- Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity.
- AprA a metallo-protease secreted by P. entomophila
- P. entomophila can induce the rapid cleavage of pro-Monalysin into its active form.
- Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT.
- Opota utilized the HHpred software (Homology detection & structure prediction by HMM-HMM comparison) to reveal the presence of an internal region with alternating polar and hydrophobic residues flanked by a stretch of serine and threonine residues, a hallmark of the membrane-spanning region of ⁇ -barrel pore-forming toxins. Id.
- Pseudomonas Insecticidal Proteins Pseudomonas Insecticidal Proteins (PIPs)
- PIP-1 Pseudomonas insecticidal proteins
- Table 1 PIP-1, 45, 47, 64, 72, 74, 75, and 77.
- PIP proteins along with identifying characteristics, are provided in the below Table 1. Further information can be found in: (1) U. Schellenberger et al., “A selective insecticidal protein from Pseudomonas for controlling corn rootworms,” Science, 2016 Nov. 4; 354(6312):634-637 (providing IPD072Aa, an 86 AA protein, GenBank Accession No.
- TSNLSGRFDQYPTKKGDFAIDGYLLDYSSPK also derived from QGCWVDGITVYGDIYIGKQNWGTYTRPVFAY a Pseudomonas LQYVETISIPQNVTTTLSYQLTKGHTRSFET SVNAKYSVGANIDIVNVGSEISTGFTRSESW STTQSFTDTTEMKGPGTEVIYQVVLVYAHNA TSAGRQNANAFAYSKTQAVGSRVDLYYLSAI TQRKRVIVPSSNAVTPLDWDTVQRNVLMENY NPGSNSGHFSFDWSAYNDPHRRY (SEQ ID NO: 87) 1 All of the application publications in Table 1 are incorporated herein by reference. 2 SEQ ID NO from original source application/publication displayed before sequence, SEQ ID NO according to current application displayed after sequence and underlined.
- Bacillus thuringiensis are gram-positive spore-forming bacteria with entomopathogenic properties. Bt produce insecticidal proteins during the sporulation phase as parasporal crystals. These crystals are predominantly comprised of one or more proteins (Cry and Cyt toxins), also called S-endotoxins.
- Cry proteins are parasporal inclusion (Crystal) proteins from Bacillus thuringiensis that exhibit experimentally verifiable toxic effect to a target organism or have significant sequence similarity to a known Cry protein.
- Cyt proteins are parasporal inclusion proteins from Bacillus thuringiensis that exhibit hemolytic (Cytolitic) activity or has obvious sequence similarity to a known Cyt protein.
- Bt Cry and Cyt toxins belong to a class of bacterial toxins known as pore-forming toxins (PFT) that are secreted as water-soluble proteins undergoing conformational changes in order to insert into, or to translocate across, cell membranes of their host.
- PFT pore-forming toxins
- the first class of PFT includes toxins such as the colicins, exotoxin A, diphtheria toxin and also the Cry three-domain toxins.
- aerolysin, ⁇ -hemolysin, anthrax protective antigen, cholesterol-dependent toxins as the perfringolysin O and the Cyt toxins belong to the 3-barrel toxins.
- PFT-producing bacteria secrete their toxins and these toxins interact with specific receptors located on the host cell surface.
- PFT are activated by host proteases after receptor binding inducing the formation of an oligomeric structure that is insertion competent.
- membrane insertion is triggered, in most cases, by a decrease in pH that induces a molten globule state of the protein. Id.
- transgenic crops that produce Bt Cry proteins have allowed the substitution of chemical insecticides by environmentally friendly alternatives.
- Cry toxin is produced continuously, protecting the toxin from degradation and making it reachable to chewing and boring insects.
- Cry protein production in plants has been improved by engineering cry genes with a plant biased codon usage, by removal of putative splicing signal sequences and deletion of the carboxy-terminal region of the protoxin. See, Schuler T H, et al., “Insect-resistant transgenic plants,” Trends Biotechnol. 1998; 16:168-175.
- the use of insect resistant crops has diminished considerably the use of chemical pesticides in areas where these transgenic crops are planted. See, Qaim M, Zilberman D, “Yield effects of genetically modified crops in developing countries,” Science. 2003 Feb. 7; 299(5608):900-902.
- Cry proteins include: S-endotoxins including but not limited to: the Cry1, Cry2, Cry3, Cry4, Cry5, Cry6, Cry7, Cry8, Cry9, Cry10, Cry11, Cry12, Cry13, Cry14, Cry15, Cry16, Cry17, Cry18, Cry19, Cry20, Cry21, Cry22, Cry23, Cry24, Cry25, Cry26, Cry27, Cry 28, Cry 29, Cry 30, Cry31, Cry32, Cry33, Cry34, Cry35, Cry36, Cry37, Cry38, Cry39, Cry40, Cry41, Cry42, Cry43, Cry44, Cry45, Cry 46, Cry47, Cry49, Cry 51, Cry52, Cry 53, Cry 54, Cry55, Cry56, Cry57, Cry58, Cry59.
- S-endotoxins including but not limited to: the Cry1, Cry
- B. thuringiensis insecticidal proteins include, but are not limited to: Cry1Aa1 (Accession #AAA22353); Cry1Aa2 (Accession #AAA22552); Cry1Aa3 (Accession #BAA00257); Cry1Aa4 (Accession #CAA31886); Cry1Aa5 (Accession #STOPBAA04468); Cry1Aa6 (Accession #AAA86265); Cry1Aa7 (Accession #AAD46139); Cry1Aa8 (Accession #126149); Cry1Aa9 (Accession #BAA77213); Cry1Aa10 (Accession #AAD55382); Cry1Aa11 (Accession #CAA70856); Cry1Aa12 (Accession #AAP80146); Cry1Aa13 (Accession #AAM44305); Cry1Aa14 (Accession #AAP40
- Examples of ⁇ -endotoxins also include but are not limited to Cry1A proteins of U.S. Pat. Nos. 5,880,275, 7,858,849 8,530,411, 8,575,433, and 8,686,233; a DIG-3 or DIG-11 toxin (N-terminal deletion of ⁇ -helix 1 and/or ⁇ -helix 2 variants of cry proteins such as Cry1A, Cry3A) of U.S. Pat. Nos. 8,304,604, 8,304,605 and 8,476,226; Cry1B of U.S. patent application Ser. No. 10/525,318; Cry1C of U.S. Pat. No. 6,033,874; Cry1F of U.S. Pat. Nos.
- eHIP engineered hybrid insecticidal protein
- a Cry9 protein such as such as members of the Cry9A, Cry9B, Cry9C, Cry9D, Cry9E and Cry9F families, including but not limited to the Cry9D protein of U.S. Pat. No. 8,802,933 and the Cry9B protein of U.S. Pat. No. 8,802,934; a Cry15 protein of Naimov, et al., (2008), “Applied and Environmental Microbiology,” 74:7145-7151; a Cry22, a Cry34Abl protein of U.S. Pat. Nos.
- Cry proteins as transgenic plant traits is well known to one skilled in the art and Cry-transgenic plants including but not limited to plants expressing Cry1Ac, Cry1Ac+Cry2Ab, Cry1Ab, Cry1A.105, Cry1F, Cry1Fa2, Cry1F+Cry1Ac, Cry2Ab, Cry3A, mCry3A, Cry3Bbl, Cry34Abl, Cry35Abl, Vip3A, mCry3A, Cry9c and CBI-Bt have received regulatory approval. See, Sanahuja et al., “ Bacillus thuringiensis : a century of research, development and commercial applications,” (2011) Plant Biotech.
- More than one pesticidal proteins well known to one skilled in the art can also be expressed in plants such as Vip3Ab & CrylFa (US2012/0317682); CrylBE & CrylF (US2012/0311746); CrylCA & CrylAB (US2012/0311745); CrylF & CrylCa (US2012/0317681); CrylDa & CrylBe (US2012/0331590); CrylDA & CrylFa (US2012/0331589); CrylAb & CrylBe (US2012/0324606); CrylFa & Cry2Aa and Cry1I & CrylE (US2012/0324605); Cry34Ab/35Ab and Cry6Aa (US20130167269); Cry34Ab/Cry35Ab & Cry3Aa (US20130167268); Cry1Ab & Cry1F (US20140182018); and Cry3A and Cry1Ab or Vip3Aa (US
- Pesticidal proteins also include insecticidal lipases including lipid acyl hydrolases of U.S. Pat. No. 7,491,869, and cholesterol oxidases such as from Streptomyces (Purcell et al. (1993) Biochem. Biophys. Res. Commun. 15:1406-1413).
- Pesticidal proteins also include Vip (vegetative insecticidal proteins) toxins.
- Entomopathogenic bacteria produce insecticidal proteins that accumulate in inclusion bodies or parasporal crystals (such as the aforementioned Cry and Cyt proteins), as well as insecticidal proteins that are secreted into the culture medium.
- the Vip proteins which are divided into four families according to their amino acid identity.
- the Vip1 and Vip2 proteins act as binary toxins and are toxic to some members of the Coleoptera and Hemiptera.
- the Vip1 component is thought to bind to receptors in the membrane of the insect midgut, and the Vip2 component enters the cell, where it displays its ADP-ribosyltransferase activity against actin, preventing microfilament formation.
- Vip3 has no sequence similarity to Vip1 or Vip2 and is toxic to a wide variety of members of the Lepidoptera. Its mode of action has been shown to resemble that of the Cry proteins in terms of proteolytic activation, binding to the midgut epithelial membrane, and pore formation, although Vip3A proteins do not share binding sites with Cry proteins. The latter property makes them good candidates to be combined with Cry proteins in transgenic plants ( Bacillus thuringiensis -treated crops [Bt crops]) to prevent or delay insect resistance and to broaden the insecticidal spectrum. There are commercially grown varieties of Bt cotton and Bt maize that express the Vip3Aa protein in combination with Cry proteins.
- VIP proteins are well known to one skilled in the art (see, lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html, which can be accessed on the worldwide web using the “www” prefix).
- T Toxin complex
- Pesticidal proteins also include toxin complex (TC) proteins, obtainable from organisms such as Xenorhabdus, Photorhabdus and Paenibacillus (see, U.S. Pat. Nos. 7,491,698 and 8,084,418).
- Some TC proteins have “stand alone” insecticidal activity and other TC proteins enhance the activity of the stand-alone toxins produced by the same given organism.
- the toxicity of a “stand-alone” TC proteins can be enhanced by one or more TC protein “potentiators” derived from a source organism of a different genus.
- TC protein “potentiators” derived from a source organism of a different genus. There are three main types of TC proteins.
- Class A proteins are stand-alone toxins.
- Class B proteins (“Protein B”) and Class C proteins (“Protein C”) enhance the toxicity of Class A proteins.
- Examples of Class A proteins are TcbA, TcdA, XptA1 and XptA2.
- Class B proteins are TcaC, TcdB, XptBlXb and XptCWi.
- Examples of Class C proteins are TccC, XptClXb and XptBl Wi.
- Pesticidal proteins also include spider, snake and scorpion venom proteins. Examples of spider venom peptides include, but are not limited to lycotoxin-1 peptides and mutants thereof (U.S. Pat. No. 8,334,366).
- the disclosure contemplates utilizing a combination of one or more insecticidal proteins.
- Cry proteins have limited utility against all common agricultural pests, as the proteins only target specific receptors found in susceptible insect species. Consequently, by expressing a Cry along with a novel insecticidal protein as taught herein, it is contemplated that a plant species would have expanded protection against a broader class of insects.
- the disclosure therefore contemplates engineered plant species that produce a novel insecticidal protein as taught herein, in combination with said plant species also expressing one or more other insecticidal proteins, e.g. Monalysin, PIP, Cry, Cyt, VIP, TC, and any combination thereof.
- insecticidal proteins e.g. Monalysin, PIP, Cry, Cyt, VIP, TC, and any combination thereof.
- nucleic acid molecules comprising nucleic acid sequences encoding insecticidal polypeptides, proteins, or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding proteins with regions of sequence homology.
- nucleic acid molecule refers to DNA molecules (e.g., recombinant DNA, cDNA, genomic DNA, plastid DNA, mitochondrial DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
- the nucleic acid molecule can be single-stranded or double-stranded.
- nucleic acid molecule or DNA
- isolated nucleic acid molecule or DNA
- a “recombinant” nucleic acid molecule (or DNA) is used herein to refer to a nucleic acid sequence (or DNA) that is in a recombinant bacterial or plant host cell.
- an “isolated” or “recombinant” nucleic acid is free of sequences that naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
- isolated or “recombinant” when used to refer to nucleic acid molecules excludes isolated chromosomes.
- the recombinant nucleic acid molecule encoding an insecticidal protein of the disclosure can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleic acid sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
- an isolated nucleic acid molecule encoding an insecticidal protein has one or more changes in the nucleic acid sequence compared to the native or genomic nucleic acid sequence.
- the change in the native or genomic nucleic acid sequence includes, but is not limited to: changes in the nucleic acid sequence due to the degeneracy of the genetic code; changes in the nucleic acid sequence due to the amino acid substitution, insertion, deletion, and/or addition compared to the native or genomic sequence; removal of one or more intron; deletion of one or more upstream or downstream regulatory regions; and deletion of the 5′ and/or 3′ untranslated region associated with the genomic nucleic acid sequence.
- the nucleic acid molecule encoding an insecticidal protein is a non-genomic sequence.
- polynucleotides that encode an insecticidal protein of the disclosure are contemplated. Such polynucleotides are useful for production of the insecticidal proteins in host cells when operably linked to suitable promoter, transcription termination and/or polyadenylation sequences. Such polynucleotides are also useful as probes for isolating homologous or substantially homologous polynucleotides that encode further insecticidal proteins.
- Polynucleotides that encode an insecticidal protein of the disclosure can be synthesized de novo from a sequence disclosed herein.
- the sequence of the polynucleotide gene can be deduced from a disclosed protein sequence through use of the genetic code.
- Computer programs such as “BackTranslate” (GCGTM Package, Acclerys, Inc. San Diego, Calif.) can be used to convert a peptide sequence to the corresponding nucleotide sequence encoding the peptide.
- U.S. Pat. No. 5,500,365 describes a method for synthesizing plant genes to improve the expression level of the protein encoded by the synthesized gene. This method relates to the modification of the structural gene sequences of the exogenous transgene, to cause them to be more efficiently transcribed, processed, translated and expressed by the plant.
- genes that are expressed well in plants include elimination of sequences that can cause undesired intron splicing or polyadenylation in the coding region of a gene transcript while retaining substantially the amino acid sequence of the toxic portion of the insecticidal protein.
- “Complement” is used herein to refer to a nucleic acid sequence that is sufficiently complementary to a given nucleic acid sequence such that it can hybridize to the given nucleic acid sequence to thereby form a stable duplex.
- “Polynucleotide sequence variants” is used herein to refer to a nucleic acid sequence that except for the degeneracy of the genetic code encodes the same polypeptide.
- a nucleic acid molecule encoding an insecticidal protein of the disclosure is a non-genomic nucleic acid sequence.
- a “non-genomic nucleic acid sequence” or “non-genomic nucleic acid molecule” refers to a nucleic acid molecule that has one or more changes in the nucleic acid sequence compared to a native or genomic nucleic acid sequence.
- the change to a native or genomic nucleic acid molecule includes but is not limited to: changes in the nucleic acid sequence due to the degeneracy of the genetic code; codon optimization of the nucleic acid sequence for expression in plants; changes in the nucleic acid sequence to introduce at least one amino acid substitution, insertion, deletion and/or addition compared to the native or genomic sequence; removal of one or more intron associated with the genomic nucleic acid sequence; insertion of one or more heterologous intrans ; deletion of one or more upstream or downstream regulatory regions associated with the genomic nucleic acid sequence; insertion of one or more heterologous upstream or downstream regulatory regions; deletion of the 5′ and/or 3′ untranslated region associated with the genomic nucleic acid sequence; insertion of a heterologous 5′ and/or 3′ untranslated region; and modification of a polyadenylation site.
- the non-genomic nucleic acid molecule is a cDNA.
- the disclosure teaches nucleic acid molecules that encode insecticidal proteins taught herein, as well as nucleic acid molecules that encode proteins taught herein that have had an amino acid substitution, deletion, insertion, and fragments thereof and combinations thereof.
- nucleic acid molecules that encode transcription and/or translation products that are subsequently spliced to ultimately produce functional insecticidal proteins.
- Splicing can be accomplished in vitro or in vivo, and can involve cis- or trans-splicing.
- the substrate for splicing can be polynucleotides (e.g., RNA transcripts) or polypeptides.
- RNA transcripts polynucleotides
- An example of cis-splicing of a polynucleotide is where an intron inserted into a coding sequence is removed and the two flanking exon regions are spliced to generate an insecticidal protein encoding sequence.
- trans-splicing would be where a polynucleotide is encrypted by separating the coding sequence into two or more fragments that can be separately transcribed and then spliced to form the full-length pesticidal protein encoding sequence.
- the use of a splicing enhancer sequence which can be introduced into a construct, can facilitate splicing either in cis or trans-splicing of polypeptides (U.S. Pat. Nos. 6,365,377 and 6,531,316).
- the polynucleotides do not directly encode a full-length insecticidal protein, but rather encode a fragment or fragments of same.
- Nucleic acid molecules that are fragments of the aforementioned sequences encoding insecticidal proteins are also encompassed by the embodiments. “Fragment” as used herein refers to a portion of the nucleic acid sequence encoding an insecticidal protein. A fragment of a nucleic acid sequence may encode a biologically active portion of a protein or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed herein.
- Nucleic acid molecules that are fragments of a nucleic acid sequence comprise at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, or more contiguous nucleotides, or up to the number of nucleotides present in a full-length nucleic acid sequence encoding an insecticidal protein taught herein. “Contiguous nucleotides” is used herein to refer to nucleotide residues that are immediately adjacent to one another.
- Fragments of the nucleic acid sequences of the embodiments will encode protein fragments that retain the biological activity of the insecticidal protein.
- a fragment of a nucleic acid sequence will encode at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, or more contiguous amino acids, or up to the total number of amino acids present in a full-length insecticidal protein taught herein.
- the fragment is an N-terminal and/or a C-terminal truncation of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more amino acids from the N-terminus and/or C-terminus relative to an insecticidal protein taught herein, e.g., by proteolysis, insertion of a start codon, deletion of the codons encoding the deleted amino acids with the concomitant insertion of a stop codon or by insertion of a stop codon in the coding sequence.
- an insecticidal protein is encoded by a nucleic acid sequence sufficiently similar to the nucleic acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO
- “Sufficiently similar” is used herein to refer to an amino acid or nucleic acid sequence that has at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence similarity compared to a reference sequence using one of the alignment programs described herein, or known to one of skill in the art, using standard parameters.
- an insecticidal protein is encoded by a nucleic acid sequence that has sufficient sequence identity to the nucleic acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, S
- “Sufficient sequence identity” is used herein to refer to an amino acid or nucleic acid sequence that has at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity compared to a reference sequence using one of the alignment programs described herein, or known to one of skill in the art, using standard parameters.
- sequence homology is against the full length sequence of the polynucleotide encoding a protein.
- sequence identity is calculated using ClustalW algorithm in the ALIGNX® module of the Vector NTI® Program Suite (Invitrogen Corporation, Carlsbad, Calif.) with all default parameters.
- sequence identity is across the entire length of polypeptide calculated using ClustalW algorithm in the ALIGNX module of the Vector NTI Program Suite (Invitrogen Corporation, Carlsbad, Calif.) with all default parameters.
- the sequences are aligned for optimal comparison purposes.
- the two sequences are the same length.
- the comparison is across the entirety of the reference sequence.
- the percent identity between two sequences can be determined using techniques similar to those described below, with or without allowing gaps. In calculating percent identity, typically exact matches are counted.
- the determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- a non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul, (1990) Proc. Natl. Acad. Sci. USA 87:2264, modified as in Karlin and Altschul, (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the BLASTN and BLASTX programs of Altschul, et al., (1990) J. Mol. Biol. 215:403.
- Gapped BLAST in BLAST 2.0
- PSI-Blast can be used to perform an iterated search that detects distant relationships between molecules. See, Altschul, et al., (1997) supra.
- the default parameters of the respective programs e.g., BLASTX and BLASTN
- Alignment may also be performed manually by inspection.
- ClustalW compares sequences and aligns the entirety of the amino acid or DNA sequence, and thus can provide data about the sequence conservation of the entire amino acid sequence.
- the ClustalW algorithm is used in several commercially available DNA/amino acid analysis software packages, such as the ALIGNX® module of the Vector NTI® Program Suite (Invitrogen Corporation, Carlsbad, Calif.). After alignment of amino acid sequences with ClustalW, the percent amino acid identity can be assessed.
- GENEDOCTM A non-limiting example of a software program useful for analysis of ClustalW alignments.
- GENE-DOCTM (Karl Nicholas) allows assessment of amino acid (or DNA) similarity and identity between multiple proteins.
- Another non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) CABIOS 4:11-17. Such an algorithm is incorporated into the ALIGN program (version 2.0), which is part of the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys, Inc., 9685 Scranton Rd., San Diego, Calif., USA).
- ALIGN program version 2.0
- a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.
- nucleic acid molecules encoding insecticidal protein variants.
- “Variants” of encoding nucleic acid sequences may include those sequences that encode insecticidal proteins disclosed herein, but that differ conservatively, because of the degeneracy of the genetic code as well as those that are sufficiently identical as discussed above.
- Naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below.
- variant nucleic acid sequences also include synthetically derived nucleic acid sequences that have been generated, for example, by using site-directed mutagenesis, but which still encode the disclosed insecticidal proteins.
- the present disclosure provides isolated or recombinant polynucleotides that encode any of the insecticidal proteins disclosed herein.
- Table A is a codon table that provides the synonymous codons for each amino acid.
- the codons AGA, AGG, CGA, CGC, CGG, and CGU all encode the amino acid arginine.
- the codon can be altered to any of the corresponding codons described above without altering the encoded polypeptide. It is understood that U in an RNA sequence corresponds to T in a DNA sequence.
- variant nucleic acid molecules can be created by introducing one or more nucleotide substitutions, additions, and/or deletions into the corresponding nucleic acid sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleic acid sequences are also encompassed by the present disclosure.
- variant nucleic acid sequences can be made by introducing mutations randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for ability to confer pesticidal activity to identify mutants that retain activity.
- the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.
- polynucleotides of the disclosure and fragments thereof are optionally used as substrates for a variety of recombination and recursive recombination reactions, in addition to standard cloning methods as set forth in, e.g., Ausubel, Berger and Sambrook, i.e., to produce additional pesticidal protein homologues and fragments thereof with desired properties.
- standard cloning methods as set forth in, e.g., Ausubel, Berger and Sambrook, i.e., to produce additional pesticidal protein homologues and fragments thereof with desired properties.
- a variety of such reactions are known.
- Methods for producing a variant of any nucleic acid listed herein comprising recursively recombining such polynucleotide with a second (or more) polynucleotide, thus forming a library of variant polynucleotides are also embodiments of the disclosure, as are the libraries produced, the cells comprising the libraries, and any recombinant polynucleotide produced by such methods.
- a variety of diversity generating protocols including nucleic acid recursive recombination protocols are available and fully described in the art.
- the procedures can be used separately, and/or in combination to produce one or more variants of a nucleic acid or set of nucleic acids, as well as variants of encoded proteins. Individually and collectively, these procedures provide robust, widely applicable ways of generating diversified nucleic acids and sets of nucleic acids (including, e.g., nucleic acid libraries) useful, e.g., for the engineering or rapid evolution of nucleic acids, proteins, pathways, cells and/or organisms with new and/or improved characteristics.
- any of the diversity generating procedures described herein can be the generation of one or more nucleic acids, which can be selected or screened for nucleic acids with or which confer desirable properties or that encode proteins with or which confer desirable properties.
- any nucleic acids that are produced can be selected for a desired activity or property, e.g. pesticidal activity. This can include identifying any activity that can be detected, for example, in an automated or automatable format, by any of the assays in the art, see, e.g., discussion of screening of insecticidal activity, infra.
- a variety of related (or even unrelated) properties can be evaluated, in serial or in parallel, at the discretion of the practitioner.
- Mutational methods of generating diversity include, for example, site-directed mutagenesis (Ling, et al., (1997) Anal Biochem 254(2): 157-178; Dale, et al., (1996) Methods Mol. Biol. 57:369-374; Smith, (1985) Ann. Rev. Genet. 19:423-462; Botstein and Shortle, (1985) Science 229:1193-1201; Carter, (1986) Biochem. J.
- Additional suitable methods include point mismatch repair (Kramer, et al., (1984) Cell 38:879-887), mutagenesis using repair-deficient host strains (Carter, et al., (1985) Nucleic Acids Res. 13:4431-4443 and Carter, (1987) Methods in Enzymol. 154:382-403), deletion mutagenesis (Eghtedarzadeh and Henikoff, (1986) Nucleic Acids Res. 14: 5115), restriction-selection and restriction-purification (Wells, et al., (1986) Phil. Trans. R. Soc. Lond.
- nucleotide sequences of the embodiments can also be used to isolate corresponding sequences from other organisms, particularly other bacteria, particularly a Pseudomonas species. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein.
- sequences that are selected based on their sequence identity to the entire sequences set forth herein or to fragments thereof are encompassed by the embodiments. Such sequences include sequences that are orthologs of the disclosed sequences.
- the term “orthologs” refers to genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share substantial identity as defined elsewhere herein. Functions of orthologs are often highly conserved among species.
- oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest.
- Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook, et al., (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.), hereinafter “Sambrook”. See also, Innis, et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds.
- PCR PCR Strategies
- nested primers single specific primers
- degenerate primers gene-specific primers
- vector specific primers partially-mismatched primers
- the bacterial cell lysates can be screened with antibodies generated against a taught protein using Western blotting and/or ELISA methods. This type of assay can be performed in a high throughput fashion. Positive samples can be further analyzed by various techniques such as antibody based protein purification and identification. Methods of generating antibodies are well known in the art as discussed infra.
- mass spectrometry based protein identification methods can be used to identify homologs of the taught proteins using protocols in the literature (Scott Patterson, (1998), 10.22, 1-24, Current Protocol in Molecular Biology published by John Wiley & Son Inc).
- LC-MS/MS based protein identification methods can be used to associate the MS data of given cell lysate or desired molecular weight enriched samples (excised from SDS-PAGE gel of relevant molecular weight bands to proteins taught herein) with sequence information of the taught proteins and homologs. Any match in peptide sequences indicates the potential of having the homologs in the samples. Additional techniques (protein purification and molecular biology) can be used to isolate the protein and identify the sequences of the homologs.
- hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments or other oligonucleotides and may be labeled with a detectable group such as 32P or any other detectable marker, such as other radioisotopes, a fluorescent compound, an enzyme or an enzyme cofactor.
- Probes for hybridization can be made by labeling synthetic oligonucleotides based on the known peptide-encoding nucleic acid sequence disclosed herein.
- the probe typically comprises a region of nucleic acid sequence that hybridizes under stringent conditions to at least about 12, at least about 25, at least about 50, 75, 100, 125, 150, 175 or 200 consecutive nucleotides of nucleic acid sequence encoding a protein of the disclosure or a fragment or variant thereof.
- Methods for the preparation of probes for hybridization are generally known in the art and are disclosed in Sambrook and Russell, (2001), supra, herein incorporated by reference.
- an entire nucleic acid sequence, encoding an insecticidal protein taught herein, or one or more portions thereof may be used as a probe capable of specifically hybridizing to corresponding nucleic acid sequences encoding like sequences and messenger RNAs.
- probes include sequences that are unique and are preferably at least about 10 nucleotides in length or at least about 20 nucleotides in length.
- Such probes may be used to amplify corresponding pesticidal sequences from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism.
- Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook, et al., (1989) Molecular Cloning: A Laboratory Manual (2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
- Hybridization of such sequences may be carried out under stringent conditions.
- “Stringent conditions” or “stringent hybridization conditions” is used herein to refer to conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are sequence dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, preferably less than 500 nucleotides in length.
- stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C. for long probes (e.g., greater than 50 nucleotides).
- Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.
- Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37° C., and a wash in 0.5 ⁇ to 1 ⁇ SSC at 55 to 60°.
- Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1 ⁇ SSC at 60 to 65° C.
- wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours.
- the Tm is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. Tm is reduced by about 1C for each 1% of mismatching; thus, Tm, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with 90% identity are sought, the Tm can be decreased 10° C. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3 or 4° C.
- Tm thermal melting point
- moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9 or 10° C. lower than the thermal melting point (Tm); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15 or 20° C. lower than the thermal melting point (Tm).
- Tm thermal melting point
- Novel insecticidal proteins are disclosed herein, along with variants of said proteins, and fragments thereof.
- the terms “proteins” and “polypeptides” are in some instances used interchangeably, as it is understood in the art that the separation between the two terms can merely depend upon the number of amino acid sequences.
- the insecticidal proteins of the disclosure demonstrate insecticidal or pesticidal activity against one or more insects or pests.
- an insecticidal protein is sufficiently homologous to the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70
- “Sufficiently homologous” is used herein to refer to an amino acid or nucleic acid sequence that has at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence homology compared to a reference sequence using one of the alignment programs described herein, or known to one of skill in the art, using standard parameters.
- an insecticidal protein has sufficient sequence identity to the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70,
- “Sufficient sequence identity” is used herein to refer to an amino acid or nucleic acid sequence that has at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity compared to a reference sequence using one of the alignment programs described herein, or known to one of skill in the art, using standard parameters.
- the disclosure provides for an amino acid sequence of: SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, or SEQ ID NO:
- protein As used herein, the terms “protein,” “peptide” or “polypeptide” includes any molecule that comprises five or more amino acids. It is well known in the art that protein, peptide, or polypeptide molecules may undergo modification, including post-translational modifications, such as, but not limited to, disulfide bond formation, glycosylation, phosphorylation or oligomerization. Thus, as used herein, the terms “protein,” “peptide molecule” or “polypeptide” includes any protein that is modified by any biological or non-biological process.
- a “recombinant protein” is used herein to refer to a protein that is no longer in its natural environment, for example in vitro or in a recombinant bacterial or plant host cell.
- An insecticidal protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10% or 5% (by dry weight) of non-pesticidal protein (also referred to herein as a “contaminating protein”).
- “Fragments” or “biologically active portions” include protein fragments comprising amino acid sequences sufficiently identical to a protein taught herein and that exhibit insecticidal activity.
- the disclosure contemplates fragments of the amino acid sequences set forth in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, or SEQ
- the protein fragment is an N-terminal and/or a C-terminal truncation of at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more amino acids from the N-terminus and/or C-terminus relative to SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO:
- “Variants” as used herein refers to proteins or polypeptides having an amino acid sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the parental amino acid sequence.
- sequence identity means up to and including 1.0% in 0.1% increments.
- sequence identity includes 89.0%, 89.1%, 89.2%, 89.3%, 89.4%, 89.5%, 89.6%, 89.7%, 89.8%, 89.9%, 90%, 90.1%, 90.2%, 90.3%, 90.4%, 90.5%, 90.6%, 90.7%, 90.8%, 90.9%, and 91%. If not used in the context of % sequence identity, then “about” means ⁇ 10%.
- an insecticidal protein has at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity across the entire length of the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO:
- the insecticidal proteins have a modified physical property.
- physical property refers to any parameter suitable for describing the physical-chemical characteristics of a protein.
- physical property of interest and “property of interest” are used interchangeably to refer to physical properties of proteins that are being investigated and/or modified. Examples of physical properties include, but are not limited to: net surface charge and charge distribution on the protein surface, net hydrophobicity and hydrophobic residue distribution on the protein surface, surface charge density, surface hydrophobicity density, total count of surface ionizable groups, surface tension, protein size and its distribution in solution, melting temperature, heat capacity, and second virial coefficient.
- Examples of physical properties also include, but are not limited to: solubility, folding, stability, and digestibility.
- the taught insecticidal protein has increased digestibility of proteolytic fragments in an insect gut.
- Models for digestion by simulated gastric fluids are known to one skilled in the art (Fuchs, R. L. and J. D. Astwood. Food Technology 50: 83-88, 1996; Astwood, J. D., et al Nature Biotechnology 14: 1269-1273, 1996; Fu T J et al J. Agric. Food Chem. 50: 7154-7160, 2002).
- variants include polypeptides that differ in amino acid sequence due to mutagenesis.
- Variant proteins encompassed by the disclosure are biologically active, that is they continue to possess the desired biological activity (i.e. pesticidal activity) of the native protein.
- the variant will have at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more of insecticidal activity of the native protein.
- the variants may have improved activity over the native protein.
- Bacterial genes quite often possess multiple methionine initiation codons in proximity to the start of the open reading frame. Often, translation initiation at one or more of these start codons will lead to generation of a functional protein. These start codons can include ATG codons. However, bacteria such as Bacillus sp. also recognize the codon GTG as a start codon, and proteins that initiate translation at GTG codons contain a methionine at the first amino acid. On rare occasions, translation in bacterial systems can initiate at a TTG codon, though in this event the TTG encodes a methionine. Furthermore, it is not often determined a priori which of these codons are used naturally in the bacterium.
- insecticidal protein may be expressed as a precursor protein with an intervening sequence that catalyzes multistep, post translational protein splicing.
- Protein splicing involves the excision of an intervening sequence from a polypeptide with the concomitant joining of the flanking sequences to yield a new polypeptide (Chong, et al., (1996) J. Biol. Chem., 271:22159-22168).
- inteins This intervening sequence or protein splicing element, referred to as inteins, which catalyze their own excision through three coordinated reactions at the N-terminal and C-terminal splice junctions: an acyl rearrangement of the N-terminal cysteine or serine; a transesterification reaction between the two termini to form a branched ester or thioester intermediate and peptide bond cleavage coupled to cyclization of the intein C-terminal asparagine to free the intein (Evans, et al., (2000) J. Biol. Chem., 275:9091-9094.
- the insecticidal protein may be encoded by two separate genes where the intein of the precursor protein comes from the two genes, referred to as a split intein, and the two portions of the precursor are joined by a peptide bond formation.
- This peptide bond formation is accomplished by intein-mediated trans-splicing.
- a first and a second expression cassette comprising the two separate genes further code for inteins capable of mediating protein trans-splicing.
- trans-splicing the proteins and polypeptides encoded by the first and second fragments may be linked by peptide bond formation.
- Trans-splicing inteins may be selected from the nucleolar and organelle genomes of different organisms including eukaryotes, archaebacteria and eubacteria. Inteins that may be used are listed at neb.com/neb/inteins.html, which can be accessed on the worldwide web using the “www” prefix.
- the nucleotide sequence coding for an intein may be split into a 5′ and a 3′ part that code for the 5′ and the 3′ part of the intein, respectively. Sequence portions not necessary for intein splicing (e.g. homing endonuclease domain) may be deleted.
- the intein coding sequence is split such that the 5′ and the 3′ parts are capable of trans-splicing.
- a suitable splitting site of the intein coding sequence the considerations published by Southworth, et al., (1998) EMBO J. 17:918-926 may be followed.
- the 5′ intein coding sequence is linked to the 3′ end of the first fragment coding for the N-terminal part of polypeptide and the 3′ intein coding sequence is linked to the 5′ end of the second fragment coding for the C-terminal part of the polypeptide.
- the trans-splicing partners can be designed using any split intein, including any naturally occurring or artificially split intein.
- split inteins are known, for example: the split intein of the DnaE gene of Synechocystis sp. PCC6803 (see, Wu, et al., (1998) Proc. Natl. Acad. Sci. USA. 95(16):9226-31 and Evans, et al., (2000) J. Biol. Chem. 275(13):9091-4 and of the DnaE gene from Nostoc punctiforme (see, Iwai, et al., (2006) FEBS Lett. 580(7): 1853-8).
- Non-split inteins have been artificially split in the laboratory to create new split inteins, for example: the artificially split Ssp DnaB intein (see, Wu, et al., (1998) Biochim. Biophys. Acta. 1387:422-32) and split See VMA intein (see, Brenzel, et al., (2006) Biochemistry 45(6):1571-8) and an artificially split fungal mini-intein (see, Elleuche, et al., (2007) Biochem. Biophys. Res. Commun. 355(3):830-4).
- Naturally occurring non-split inteins may have endonuclease or other enzymatic activities that can typically be removed when designing an artificially-split split intein.
- Such mini-inteins or minimized split inteins are well known in the art and are typically less than 200 amino acid residues long (see, Wu, et al., (1998) Biochim. Biophys. Acta. 1387: 422-32).
- Suitable split inteins may have other purification enabling polypeptide elements added to their structure, provided that such elements do not inhibit the splicing of the split intein or are added in a manner that allows them to be removed prior to splicing.
- Protein splicing has been reported using proteins that comprise bacterial intein-like (BIL) domains (see, Amitai, et al., (2003) Mol. Microbiol. 47:61-73) and hedgehog (Hog) auto-processing domains (the latter is combined with inteins when referred to as the Hog/intein superfamily or HINT family (see, Dassa, et al., (2004) J. Biol. Chem. 279:32001-7) and domains such as these may also be used to prepare artificially-split inteins.
- non-splicing members of such families may be modified by molecular biology methodologies to introduce or restore splicing activity in such related species.
- the new sequence is joined, either directly or through an additional portion of sequence (linker), to an amino acid that is at or near the original N-terminus and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid that was N-terminal to the breakpoint site of the original sequence, this residue forming the new C-terminus of the chain.
- the length of the amino acid sequence of the linker can be selected empirically or with guidance from structural information or by using a combination of the two approaches.
- a small series of linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 ⁇ and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp and Woods, (1983) Mol. Immunol. 20:483-489; Kyte and Doolittle, (1982) J. Mol. Biol. 157: 105-132; solvent exposed surface area, Lee and Richards, (1971) J. Mol. Biol. 55:379-400) and the ability to adopt the necessary conformation without deranging the configuration of the pesticidal polypeptide (conformationally flexible; Karplus and Schulz, (1985) Naturwissenschaften 72:212-213).
- linkers may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series of linkers, one example being the Gly-Gly-Gly-Ser cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the appropriate total length may be used.
- Sequences of pesticidal polypeptides capable of folding to biologically active states can be prepared by appropriate selection of the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original polypeptide chain while using the linker sequence as described above.
- Amino and carboxyl termini are selected from within a common stretch of sequence, referred to as a breakpoint region, using the guidelines described below.
- a novel amino acid sequence is thus generated by selecting amino and carboxyl termini from within the same breakpoint region.
- the selection of the new termini will be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus.
- selections of termini anywhere within the region may function, and that these will effectively lead to either deletions or additions to the amino or carboxyl portions of the new sequence.
- Examples of structural information that are relevant to the identification of breakpoint regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops; Kabsch and Sander, (1983) Biopolymers 22:2577-2637; the degree of solvent exposure of amino acid residues, the extent and type of interactions of residues with one another (Chothia, (1984) Ann. Rev. Biochem. 53:537-572) and the static and dynamic distribution of conformations along the polypeptide chain (Alber and Mathews, (1987) Methods Enzymol. 154:511-533).
- solvent exposure of residues is a site of posttranslational attachment of carbohydrate that is necessarily on the surface of the protein.
- methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility and the occurrence of turns and loops.
- Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile and Salvatore, (1993) Eur. J. Biochem. 218:603-621).
- the parental amino acid sequence is inspected to classify regions according to whether or not they are integral to the maintenance of secondary and tertiary structure.
- the occurrence of sequences within regions that are known to be involved in periodic secondary structure are regions that should be avoided.
- regions of amino acid sequence that are observed or predicted to have a low degree of solvent exposure are more likely to be part of the so-called hydrophobic core of the protein and should also be avoided for selection of amino and carboxyl termini.
- PCR polymerase chain reaction
- fusion proteins include within its amino acid sequence a sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ
- polynucleotides encoding an insecticidal protein may be fused to signal sequences which will direct the localization of the polypeptide to particular compartments of a prokaryotic or eukaryotic cell and/or direct the secretion of the polypeptide from a prokaryotic or eukaryotic cell.
- signal sequences which will direct the localization of the polypeptide to particular compartments of a prokaryotic or eukaryotic cell and/or direct the secretion of the polypeptide from a prokaryotic or eukaryotic cell.
- E. coli one may wish to direct the expression of the protein to the periplasmic space.
- signal sequences or proteins (or fragments thereof) to which the insecticidal polypeptide may be fused in order to direct the expression of the polypeptide to the periplasmic space of bacteria include, but are not limited to: the pelB signal sequence, the maltose binding protein (MBP) signal sequence, MBP, the ompA signal sequence, the signal sequence of the periplasmic E. coli heat labile enterotoxin B-subunit, and the signal sequence of alkaline phosphatase.
- MBP maltose binding protein
- pMAL-p series the polypeptide may be fused to the pelB pectate lyase signal sequence to increase the efficiency of expression and purification of such polypeptides in Gram-negative bacteria (see, U.S. Pat. Nos. 5,576,195 and 5,846,818).
- Plant plastid transit peptide/polypeptide fusions are well known in the art (see, U.S. Pat. No. 7,193,133).
- Apoplast transit peptides such as rice or barley alpha-amylase secretion signal are also well known in the art.
- the plastid transit peptide is generally fused N-terminal to the polypeptide to be targeted (e.g., the fusion partner). However, additional amino acid residues may be N-terminal to the plastid transit peptide providing that the fusion protein is at least partially targeted to a plastid.
- the plastid transit peptide is in the N-terminal half, N-terminal third, or N-terminal quarter of the fusion protein. Most or all of the plastid transit peptide is generally cleaved from the fusion protein upon insertion into the plastid.
- the position of cleavage may vary slightly between plant species, at different plant developmental stages, as a result of specific intercellular conditions or the particular combination of transit peptide/fusion partner used.
- the plastid transit peptide cleavage is homogenous such that the cleavage site is identical in a population of fusion proteins.
- the plastid transit peptide is not homogenous, such that the cleavage site varies by 1-10 amino acids in a population of fusion proteins.
- the plastid transit peptide can be recombinantly fused to a second protein in one of several ways.
- a restriction endonuclease recognition site can be introduced into the nucleotide sequence of the transit peptide at a position corresponding to its C-terminal end and the same or a compatible site can be engineered into the nucleotide sequence of the protein to be targeted at its N-terminal end. Care must be taken in designing these sites to ensure that the coding sequences of the transit peptide and the second protein are kept “in frame” to allow the synthesis of the desired fusion protein. In some cases, it may be preferable to remove the initiator methionine codon of the second protein when the new restriction site is introduced.
- restriction endonuclease recognition sites on both parent molecules and their subsequent joining through recombinant DNA techniques may result in the addition of one or more extra amino acids between the transit peptide and the second protein. This generally does not affect targeting activity as long as the transit peptide cleavage site remains accessible and the function of the second protein is not altered by the addition of these extra amino acids at its N-terminus.
- one skilled in the art can create a precise cleavage site between the transit peptide and the second protein (with or without its initiator methionine) using gene synthesis (Stemmer, et al., (1995) Gene 164:49-53) or similar methods.
- the transit peptide fusion can intentionally include amino acids downstream of the cleavage site.
- the amino acids at the N-terminus of the mature protein can affect the ability of the transit peptide to target proteins to plastids and/or the efficiency of cleavage following protein import. This may be dependent on the protein to be targeted. See, e.g., Comai, et al., (1988) J. Biol. Chem. 263(29):15104-9.
- fusion proteins comprising an insecticidal polypeptide as taught herein, and another insecticidal polypeptide joined by an amino acid linker.
- fusion proteins are provided represented by a formula selected from the group consisting of: R 1 -L-R 2 , R 2 -L-R, R 1 -R 2 or R 2 -R 1 , wherein R 1 is a polypeptide selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, S
- the R 1 polypeptide is fused either directly or through a linker (L) segment to the R 2 polypeptide.
- L represents a chemical bound or polypeptide segment to which both R 1 and R 2 are fused in frame, most commonly L is a linear peptide to which R 1 and R 2 are bound by amide bonds linking the carboxy terminus of R 1 to the amino terminus of L and carboxy terminus of L to the amino terminus of R 2 .
- fused in frame is meant that there is no translation termination or disruption between the reading frames of R 1 and R 2 .
- the linking group (L) is generally a polypeptide of between 1 and 500 amino acids in length.
- the linkers joining the two molecules are preferably designed to: (1) allow the two molecules to fold and act independently of each other, (2) not have a propensity for developing an ordered secondary structure which could interfere with the functional domains of the two proteins, (3) have minimal hydrophobic or charged characteristic which could interact with the functional protein domains, and (4) provide steric separation of R 1 and R 2 such that R 1 and R 2 could interact simultaneously with their corresponding receptors on a single cell.
- surface amino acids in flexible protein regions include Gly, Asn and Ser. Virtually any permutation of amino acid sequences containing Gly, Asn and Ser would be expected to satisfy the above criteria for a linker sequence.
- Other neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Additional amino acids may also be included in the linkers due to the addition of unique restriction sites in the linker sequence to facilitate construction of the fusions.
- the linkers comprise sequences selected from the group of formulas: (Gly 3 Ser) n , (Gly 4 Ser) n , (Gly 5 Ser) n , (Gly n Ser) n or (AlaGlySer) n where n is an integer.
- a highly-flexible linker is the (GySer)-rich spacer region present within the pill protein of the filamentous bacteriophages, e.g. bacteriophages M13 or fd (Schaller, et al., 1975). This region provides a long, flexible spacer region between two domains of the pill surface protein.
- linkers in which an endopeptidase recognition sequence is included.
- Such a cleavage site may be valuable to separate the individual components of the fusion to determine if they are properly folded and active in vitro.
- various endopeptidases include, but are not limited to: Plasmin, Enterokinase, Kallikerin, Urokinase, Tissue Plasminogen activator, clostripain, Chymosin, Collagenase, Russell's Viper Venom Protease, Postproline cleavage enzyme, VS protease, Thrombin and factor Xa.
- peptide linker segments from the hinge region of heavy chain immunoglobulins IgG, IgA, IgM, IgD or IgE provide an angular relationship between the attached polypeptides.
- the fusion proteins are not limited by the form, size or number of linker sequences employed and the only requirement of the linker is that functionally it does not interfere adversely with the folding and function of the individual molecules of the fusion.
- chimeric proteins are provided that are created through joining two or more portions of the taught insecticidal protein genes, which originally encoded separate insecticidal proteins to create a chimeric gene.
- the translation of the chimeric gene results in a single chimeric protein with regions, motifs, or domains derived from each of the original proteins.
- the chimeric protein comprises portions, motifs, or domains of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, or
- DNA sequences may be altered by various methods, and that these alterations may result in DNA sequences encoding proteins with amino acid sequences different than that encoded by the wild-type (or native) pesticidal protein.
- an insecticidal protein taught herein may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions of one or more amino acids, including up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid substitutions, deletions and/or insertions or combinations thereof compared to SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ
- amino acid sequence variants of a polypeptide can be prepared by mutations in the DNA. This may also be accomplished by one of several forms of mutagenesis and/or in directed evolution. In some aspects, the changes encoded in the amino acid sequence will not substantially affect the function of the protein. Such variants will possess the desired pesticidal activity. However, it is understood that the ability of a taught polypeptide to confer pesticidal activity may be improved by the use of such techniques upon the compositions of this disclosure.
- conservative amino acid substitutions may be made at one or more, predicted, nonessential amino acid residues.
- a “nonessential” amino acid residue is a residue that can be altered from the wild-type sequence of a taught polypeptide without altering the biological activity.
- a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- polar, negatively charged residues and their amides e.g., aspartic acid, asparagine, glutamic, acid, glutamine
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
- small aliphatic, nonpolar or slightly polar residues e.g., Alanine, serine, threonine, praline, glycine
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, pro line, phenylalanine, methionine, tryptophan
- large aliphatic, nonpolar residues e.g., methionine, leucine, isoleucine,
- amino acid substitutions may be made in non-conserved regions that retain function. In general, such substitutions would not be made for conserved amino acid residues or for amino acid residues residing within a conserved motif, where such residues are essential for protein activity. Examples of residues that are conserved and that may be essential for protein activity include, for example, residues that are identical between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments (e.g., residues that are identical in an alignment of homologs).
- residues that are conserved but that may allow conservative amino acid substitutions and still retain activity include, for example, residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments (e.g., residues that have only conservative substitutions between all proteins contained in the alignment of the homologs).
- residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments e.g., residues that have only conservative substitutions between all proteins contained in the alignment of the homologs.
- functional variants may have minor conserved or non-conserved alterations in the conserved residues.
- Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff, et al., (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference.
- the hydropathic index of amino acids may be considered.
- the importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, (1982) J Mol Biol. 157(1):105-132). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.
- amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, i.e., still obtain a biological functionally equivalent protein.
- Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, ibid).
- the substitution of amino acids whose hydropathic indices are within +2 is preferred, those which are within +1 are particularly preferred, and those within +0.5 are even more particularly preferred.
- hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0.+0.1); glutamate (+3.0.+0.1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine ( ⁇ 0.4); praline ( ⁇ 0.5.+0.1); alanine ( ⁇ 0.5); histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine ( ⁇ 1.8); isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5); and tryptophan ( ⁇ 3.4).
- alterations may be made to the protein sequence of many proteins at the amino or carboxy terminus without substantially affecting activity.
- This can include insertions, deletions or alterations introduced by modern molecular methods, such as PCR, including PCR amplifications that alter or extend the protein coding sequence by virtue of inclusion of amino acid encoding sequences in the oligonucleotides utilized in the PCR amplification.
- the protein sequences added can include entire protein coding sequences, such as those used commonly in the art to generate protein fusions.
- Such fusion proteins are often used to (1) increase expression of a protein of interest (2) introduce a binding domain, enzymatic activity or epitope to facilitate either protein purification, protein detection or other experimental uses known in the art (3) target secretion or translation of a protein to a subcellular organelle, such as the periplasmic space of Gram-negative bacteria, mitochondria or chloroplasts of plants or the endoplasmic reticulum of eukaryotic cells, the latter of which often results in glycosylation of the protein.
- a subcellular organelle such as the periplasmic space of Gram-negative bacteria, mitochondria or chloroplasts of plants or the endoplasmic reticulum of eukaryotic cells, the latter of which often results in glycosylation of the protein.
- Variant nucleotide and amino acid sequences of the disclosure also encompass sequences derived from mutagenic and recombinogenic procedures such as DNA shuffling. With such a procedure, one or more different insecticidal polypeptide coding regions can be used to create a new polypeptide possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo.
- sequence motifs encoding a domain of interest may be shuffled between a pesticidal gene and other known pesticidal genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased insecticidal activity.
- Strategies for such DNA shuffling are known in the art. See, for example, Stemmer, (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer, (1994) Nature 370:389-391; Crameri, et al., (1997) Nature Biotech. 15:436-438; Moore, et al., (1997) J. Mol. Biol. 272:336-347; Zhang, et al., (1997) Proc.
- Domain swapping or shuffling is another mechanism for generating altered polypeptides. Domains may be swapped between polypeptides, resulting in hybrid or chimeric toxins with improved insecticidal activity or target spectrum. Methods for generating recombinant proteins and testing them for pesticidal activity are well known in the art (see, for example, Naimov, et al., (2001) Appl. Environ. Microbiol. 67:5328-5330; de Maagd, et al., (1996) Appl. Environ. Microbiol. 62:1537-1543; Ge, et al., (1991) J. Biol. Chem.
- DNA shuffling and site-directed mutagenesis can be used to define polypeptide sequences that possess pesticidal activity.
- the person skilled in the art will be able to use comparisons to other proteins or functional assays to further define motifs.
- High throughput screening can be used to test variations of those motifs to determine the role of specific residues.
- Receptors to the taught insecticidal proteins, or to variants or fragments thereof, are also encompassed.
- Methods for identifying receptors are well known in the art (see, Hofmann, et. al., (1988) Eur. J. Biochem. 173:85-91; Gill, et al., (1995) J. Biol. Chem. 27277-27282) and can be employed to identify and isolate the receptor that recognizes the taught insecticidal proteins using the brush-border membrane vesicles from susceptible insects.
- taught proteins can be labeled with fluorescent dye and other common labels such as streptavidin.
- BBMV Brush-border membrane vesicles
- susceptible insects such as soybean looper and stink bugs
- Labeled proteins can be incubated with blotted membrane of BBMV and identified with the labeled reporters.
- Identification of protein band(s) that interact with the proteins can be detected by N-terminal amino acid gas phase sequencing or mass spectrometry based protein identification method (Patterson, (1998) 10.22, 1-24, Current Protocol in Molecular Biology published by John Wiley & Son Inc). Once the protein is identified, the corresponding gene can be cloned from genomic DNA or cDNA library of the susceptible insects and binding affinity can be measured directly with the proteins. Receptor function for insecticidal activity by the taught proteins can be verified by an RNAi type of gene knock out method (Rajagopal, et al., (2002) J. Biol. Chem. 277:46849-46851).
- nucleotide constructs are not intended to limit the embodiments to nucleotide constructs comprising DNA.
- nucleotide constructs particularly polynucleotides and oligonucleotides composed of ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides may also be employed in the methods disclosed herein.
- the nucleotide constructs, nucleic acids, and nucleotide sequences of the embodiments additionally encompass all complementary forms of such constructs, molecules, and sequences.
- nucleotide constructs, nucleotide molecules, and nucleotide sequences of the embodiments encompass all nucleotide constructs, molecules, and sequences which can be employed in the methods of the embodiments for transforming plants including, but not limited to, those comprised of deoxyribonucleotides, ribonucleotides, and combinations thereof.
- deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues.
- nucleotide constructs, nucleic acids, and nucleotide sequences of the embodiments also encompass all forms of nucleotide constructs including, but not limited to, single-stranded forms, double-stranded forms, hairpins, stem-and-loop structures and the like.
- a further embodiment relates to a transformed organism such as an organism selected from plant and insect cells, bacteria, yeast, baculovirus, protozoa, nematodes and algae.
- the transformed organism comprises a DNA molecule of the embodiments, an expression cassette comprising the DNA molecule or a vector comprising the expression cassette, which may be stably incorporated into the genome of the transformed organism.
- the sequences of the embodiments are provided in DNA constructs for expression in the organism of interest.
- the construct will include 5′ and 3′ regulatory sequences operably linked to a sequence of the embodiments.
- operably linked refers to a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence.
- operably linked means that the nucleic acid sequences being linked are contiguous and were necessary to join two protein-coding regions in the same reading frame.
- the construct may additionally contain at least one additional gene to be co-transformed into the organism. Alternatively, the additional gene(s) can be provided on multiple DNA constructs.
- the DNA construct comprises a polynucleotide encoding an insecticidal protein taught herein, which is operably linked to a heterologous regulatory sequence.
- the DNA construct comprises a polynucleotide encoding an insecticidal protein taught herein, which is operably linked to a heterologous regulatory sequence, said polynucleotide selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55, SEQ ID NO: 57, SEQ ID NO: 59
- the DNA construct comprises a polynucleotide encoding an insecticidal protein taught herein, which is operably linked to a heterologous regulatory sequence, said protein selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO:
- Such a DNA construct is provided with a plurality of restriction sites for insertion of the polypeptide gene sequence to be under the transcriptional regulation of the regulatory regions.
- the DNA construct may additionally contain selectable marker genes.
- the DNA construct will generally include in the 5′ to 3′ direction of transcription: a transcriptional and translational initiation region (i.e., a promoter), a DNA sequence of the embodiments, and a transcriptional and translational termination region (i.e., termination region) functional in the organism serving as a host, e.g. a bacterial cell or plant cell.
- a transcriptional and translational initiation region i.e., a promoter
- a DNA sequence of the embodiments e.e., a DNA sequence of the embodiments
- a transcriptional and translational termination region i.e., termination region
- the transcriptional initiation region may be native, analogous, foreign, or heterologous to the host organism and/or to the sequence of the embodiments. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence.
- the term “foreign” as used herein indicates that the promoter is not found in the native organism into which the promoter is introduced. Where the promoter is “heterologous” to the sequence of the embodiments, it is intended that the promoter is not the native or naturally occurring promoter for the operably linked sequence of the embodiments (i.e., not the native location).
- a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence. Where the promoter is a native or natural sequence, the expression of the operably linked sequence is altered from the wild-type expression, which results in an alteration in phenotype.
- the DNA construct may also include a transcriptional enhancer sequence.
- an “enhancer” refers to a DNA sequence which can stimulate promoter activity, and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter.
- Various enhancers are known in the art including for example, intrans with gene expression enhancing properties in plants (US Patent Application Publication Number 2009/0144863, the ubiquitin intron (i.e., the maize ubiquitin intron 1 (see, for example, NCBI sequence S94464; Christensen and Quail (1996) Transgenic Res. 5:213-218; Christensen et al.
- the termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous to the promoter, the sequence of interest, the plant host or any combination thereof).
- Convenient termination regions are available from the Ti-plasmid of A. tumefaciens , such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau, et al., (1991) Mol. Gen. Genet. 262:141-144; Proudfoot, (1991) Cell 64:671-674; Sanfacon, et al., (1991) Genes Dev. 5:141-149; Magen, et al., (1990) Plant Cell 2:1261-1272; Munroe, et al., (1990) Gene 91:151-158; Ballas, et al., (1989) Nucleic Acids Res. 17:7891-7903 and Joshi, et al., (1987) Nucleic Acid Res. 15:9627-9639.
- a nucleic acid may be optimized for increased expression in the host organism.
- the synthetic nucleic acids can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri, (1990) Plant Physiol. 92:1-11 for a discussion of host preferred codon usage.
- nucleic acid sequences of the embodiments may be expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific codon preferences and GC content preferences of monocotyledons or dicotyledons, as these preferences have been shown to differ (Murray et al. (1989) Nucleic Acids Res. 17:477-498).
- Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon like repeats, and other well characterized sequences that may be deleterious to gene expression.
- the GC content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell.
- host cell refers to a cell which contains a vector and supports the replication and/or expression of the expression vector. Host cells may be prokaryotic cells such as E.
- coli or eukaryotic cells such as yeast, insect, amphibian or mammalian cells or monocotyledonous or dicotyledonous plant cells.
- An example of a monocotyledonous host cell is a maize host cell.
- the sequence is modified to avoid predicted hairpin secondary mRNA structures.
- the expression cassettes may additionally contain 5′ leader sequences.
- leader sequences can act to enhance translation.
- Translation leaders are known in the art and include: picomavirus leaders, for example, EMCV leader (Encephalomyocarditis 5′ noncoding region) (Elroy-Stein, et al., (1989) Proc. Natl. Acad. Sci.
- TEV leader tobacco Etch Virus
- MDMV leader Maize Dwarf Mosaic Virus
- human immunoglobulin heavy-chain binding protein BiP
- AMY RNA 4 untranslated leader from the coat protein mRNA of alfalfa mosaic virus
- TMV tobacco mosaic virus leader
- Cech (Liss, New York), pp. 237-256) and maize chlorotic mottle virus leader (MCMV) (Lommel, et al., (1991) Virology 81:382-385). See also, Della-Cioppa, et al., (1987) Plant Physiol. 84:965-968.
- Such constructs may also contain a “signal sequence” or “leader sequence” to facilitate co-translational or post-translational transport of the peptide to certain intracellular structures such as the chloroplast (or other plastid), endoplasmic reticulum or Golgi apparatus.
- “Signal sequence” as used herein refers to a sequence that is known or suspected to result in cotranslational or post-translational peptide transport across the cell membrane. In eukaryotes, this typically involves secretion into the Golgi apparatus, with some resulting glycosylation. Insecticidal toxins of bacteria are often synthesized as protoxins, which are protolytically activated in the gut of the target pest (Chang, (1987) Methods Enzymol.
- the signal sequence is located in the native sequence or may be derived from a sequence of the embodiments.
- “Leader sequence” as used herein refers to any sequence that when translated, results in an amino acid sequence sufficient to trigger co-translational transport of the peptide chain to a subcellular organelle. Thus, this includes leader sequences targeting transport and/or glycosylation by passage into the endoplasmic reticulum, passage to vacuoles, plastids including chloroplasts, mitochondria, and the like.
- Nuclear encoded proteins targeted to the chloroplast thylakoid lumen compartment have a characteristic bipartite transit peptide, composed of a stromal targeting signal peptide and a lumen targeting signal peptide.
- the stromal targeting information is in the amino-proximal portion of the transit peptide.
- the lumen targeting signal peptide is in the carboxyl-proximal portion of the transit peptide, and contains all the information for targeting to the lumen.
- CTP chloroplast transit peptides
- chimeric CTPs comprising but not limited to, an N-terminal domain, a central domain or a C-terminal domain from a CTP from Oryza sativa -1-deoxy-D xyulose-5-Phosphate Synthase, Oryza sativa -Superoxide dismutase, Oryza sativa -soluble starch synthase, Oryza sativa -NADP-dependent Malic acid enzyme, Oryza sativa -Phospho-2-dehydro-3-deoxyheptonate Aldolase 2, Oryza sativa -L-Ascorbate peroxidase 5, Oryza sativa -Phosphoglucan water dikinase, Zea Mays ssRUBISCO, Zea Mays -beta-glucosidase, Zea Mays -M
- Chloroplast transit peptides of US Patent Publications US20130205440A, US20130205441A1 and US20130210114A may be optimized for expression in the chloroplast to account for differences in codon usage between the plant nucleus and this organelle.
- the various DNA fragments may be manipulated so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame.
- adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites or the like.
- in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions may be involved.
- promoters can be used in the practice of the embodiments.
- the promoters can be selected based on the desired outcome.
- the nucleic acids can be combined with constitutive, tissue-preferred, inducible, or other promoters for expression in the host organism.
- Promoters of the present invention include homologues of cis elements known to effect gene regulation that show homology with the promoter sequences of the present invention. These cis elements include, but are not limited to, oxygen responsive cis elements (Cowen et al., J. Biol. Chem. 268(36):26904-26910 (1993)), light regulatory elements (Bruce and Quaill, Plant Cell 2 (11):1081-1089 (1990); Bruce et al., EMBO J.
- promoters examples include those described in: U.S. Pat. No. 6,437,217 (maize RS81 promoter), U.S. Pat. No. 5,641,876 (rice actin promoter), U.S. Pat. No. 6,426,446 (maize RS324 promoter), U.S. Pat. No. 6,429,362 (maize PR-1 promoter), U.S. Pat. No. 6,232,526 (maize A3 promoter), U.S. Pat. No. 6,177,611 (constitutive maize promoters), U.S. Pat. Nos. 5,322,938, 5,352,605, 5,359,142 and 5,530,196 (35S promoter), U.S. Pat. No.
- Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 1999/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell, et al., (1985) Nature 313:810-812); rice actin (McElroy, et al., (1990) Plant Cell 2:163-171); ubiquitin (Christensen, et al., (1989) Plant Mol. Biol. 12:619-632 and Christensen, et al., (1992) Plant Mol. Biol.
- constitutive promoters include, for example, those discussed in: U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604, 121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142 and 6,177,611.
- Suitable constitutive promoters also include promoters that have strong expression in nearly all tissues but have low expression in pollen, including but not limited to: Banana Streak Virus (Acuminata Yunnan) promoters (BSV(AY)) disclosed in US patent U.S. Pat. No. 8,338,662; Banana Streak Virus (Acuminata Vietnam) promoters (BSV (AV)) disclosed in US patent U.S. Pat. No. 8,350,121; and Banana Streak Virus (Mysore) promoters (BSV(M YS)) disclosed in US patent U.S. Pat. No. 8,395,022.
- wound inducible promoters are wound inducible promoters.
- Such wound inducible promoters may respond to damage caused by insect feeding, and include potato proteinase inhibitor (pin II) gene (Ryan, (1990) Ann. Rev. Phytopath. 28:425-449; Duan, et al., (1996) Nature Biotechnology 14:494-498); wun1 and wun2, U.S. Pat. No. 5,428,148; win1 and win2 (Stanford, et al., (1989) Mol. Gen. Genet.
- pin II potato proteinase inhibitor
- pathogen inducible promoters may be employed in the methods and nucleotide constructs of the embodiments.
- pathogen inducible promoters include those from pathogenesis related proteins (PR proteins), which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi, et al., (1983) Neth. J. Plant Pathol. 89:245-254; Uknes, et al., (1992) Plant Cell 4: 645-656 and Van Loon, (1985) Plant Mol. Biol. 4:111-116. See also, WO 1999/43819, herein incorporated by reference.
- PR proteins pathogenesis related proteins
- promoters that are expressed locally at or near the site of pathogen infection. See, for example, Marineau, et al., (1987) Plant Mol. Biol. 9:335-342; Matton, et al., (1989) Molecular Plant-Microbe Interactions 2:325-331; Somsisch, et al., (1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch, et al., (1988) Mol. Gen. Genet. 2:93-98 and Yang, (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen, et al., (1996) Plant J.
- Chemical regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator.
- the promoter may be a chemical inducible promoter, where application of the chemical induces gene expression or a chemical repressible promoter, where application of the chemical represses gene expression.
- Chemical inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-la promoter, which is activated by salicylic acid.
- steroid responsive promoters see, for example, the glucocorticoid-inducible promoter in Schena, et al., (1991) Proc. Natl. Acad. Sci. USA 88:10421-10425 and McNellis, et al., (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz, et al., (1991) Mol. Gen. Genet. 227:229-237 and U.S. Pat. Nos. 5,814,618 and 5,789,156), herein incorporated by reference.
- Tissue preferred promoters can be utilized to target enhanced polypeptide expression within a particular plant tissue.
- Tissue preferred promoters include those discussed in Yamamoto, et al., (1997) Plant J. 12(2)255-265; Kawamata, et al., (1997) Plant Cell Physiol. 38(7):792-803; Hansen, et al., (1997) Mol. Gen Genet. 254(3):337-343; Russell, et al., (1997) Transgenic Res. 6(2):157-168; Rinehart, et al., (1996) Plant Physiol. 112(3):1331-1341; Van Camp, et al., (1996) Plant Physiol.
- Leaf preferred promoters are known in the art. See, for example, Yamamoto, et al., (1997) Plant J. 12(2):255-265; Kwon, et al., (1994) Plant Physiol. 105:357-67; Yamamoto, et al., (1994) Plant Cell Physiol. 35(5):773-778; Gator, et al., (1993) Plant J. 3:509-18; Orozco, et al., (1993) Plant Mol. Biol. 23(6):1129-1138 and Matsuoka, et al., (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590.
- Root preferred or root specific promoters are known and can be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire, et al., (1992) Plant Mol. Biol. 20(2):207-218 (soybean root specific glutamine synthetase gene); Keller and Baumgartner, (1991) Plant Cell 3(10):1051-1061 (root specific control element in the GRP 1.8 gene of French bean); Sanger, et al., (1990) Plant Mol. Biol.
- the promoters of these genes were linked to a ⁇ -glucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus corniculatus , and in both instances root specific promoter activity was preserved.
- Leach and Aoyagi, (1991) describe their analysis of the promoters of the highly expressed rolC and rolD root inducing genes of Agrobacterium rhizogenes (see, Plant Science (Limerick) 79(1):69-76). They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters.
- Teeri, et al., (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2′ gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see, EMBO J. 8(2): 343-350).
- the TRI′ gene fused to nptll (neomycin phosphotransferase II) showed similar characteristics.
- Additional root preferred promoters include the VfENOD-GRP3 gene promoter (Kuster, et al., (1995) Plant Mol. Biol.
- Root preferred sorghum Sorghum bicolor
- RCc3 promoters are disclosed in US Patent Application US2012/0210463.
- seed-specific promoters include both “seed-specific” promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as “seed-germinating” promoters (those promoters active during seed germination). See, Thompson, et al., (1989) BioEssays 10:108, herein incorporated by reference.
- seed preferred promoters include, but are not limited to, Ciml (cytokinin-induced message); cZ19Bl (maize 19 kDa zein); and milps (myo-inositol-1-phosphate synthase) (see, U.S. Pat. No. 6,225,529, herein incorporated by reference).
- Gamma-zein and Glb-1 are endosperm-specific promoters.
- seed specific promoters include, but are not limited to, Kunitz trypsin inhibitor 3 (KTi3) (Jofuku and Goldberg, (1989) Plant Cell 1:1079-1093), bean ⁇ -phaseolin, napin, ⁇ -conglycinin, glycinin 1, soybean lectin, cruciferin, and the like.
- seed specific promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, g-zein, waxy, shrunken 1, shrunken 2, globulin 1, etc.
- seed specific promoters include, but are not limited to, seed coat promoter from Arabidopsis , pBAN; and the early seed promoters from Arabidopsis, p 26, p63, and p63tr (U.S. Pat. Nos. 7,294,760 and 7,847,153).
- a promoter that has “preferred” expression in a particular tissue is expressed in that tissue to a greater degree than in at least one other plant tissue. Some tissue preferred promoters show expression almost exclusively in the particular tissue.
- weak promoters will be used.
- the term “weak promoter” as used herein refers to a promoter that drives expression of a coding sequence at a low level. By low level expression at levels of about 1/1000 transcripts to about 1/100,000 transcripts to about 1/500,000 transcripts is intended. Alternatively, it is recognized that the term “weak promoters” also encompasses promoters that drive expression in only a few cells and not in others to give a total low level of expression. Where a promoter drives expression at unacceptably high levels, portions of the promoter sequence can be deleted or modified to decrease expression levels.
- Such weak constitutive promoters include, for example the core promoter of the Rsyn7 promoter (WO 1999/43838 and U.S. Pat. No. 6,072,050), the core 35S CaMV promoter, and the like.
- Other constitutive promoters include, for example, those disclosed in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142 and 6,177,611, herein incorporated by reference.
- the expression cassette will comprise a selectable marker gene for the selection of transformed cells.
- Selectable marker genes are utilized for the selection of transformed cells or tissues.
- Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones and 2,4-dichlorophenoxyacetate (2,4-D).
- selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol (Herrera Estrella, et al., (1983) EMBO J. 2:987-992); methotrexate (Herrera Estrella, et al., (1983) Nature 303:209-213 and Meijer, et al., (1991) Plant Mol. Biol. 16:807-820); streptomycin (Jones, et al., (1987) Mol. Gen. Genet. 210:86-91); spectinomycin (Bretagne-Sagnard, et al., (1996) Transgenic Res.
- selectable marker genes are not meant to be limiting. Any selectable marker gene can be used in the embodiments.
- the methods of the embodiments involve introducing a polypeptide or polynucleotide into a plant.
- “Introducing” is as used herein means presenting to the plant the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the plant.
- the methods of the embodiments do not depend on a particular method for introducing a polynucleotide or polypeptide into a plant, only that the polynucleotide or polypeptides gains access to the interior of at least one cell of the plant.
- Methods for introducing polynucleotide or polypeptides into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.
- “Stable transformation” is as used herein means that the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof “Transient transformation” as used herein means that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant. “Plant” as used herein refers to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, propagules, embryos and progeny of the same. Plant cells can be differentiated or undifferentiated (e.g. callus, suspension culture cells, protoplasts, leaf cells, root cells, phloem cells, and pollen).
- Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway, et al., (1986) Biotechniques 4:320-334), electroporation (Riggs, et al., (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium -mediated transformation (U.S. Pat. Nos.
- the sequences of the embodiments can be provided to a plant using a variety of transient transformation methods.
- transient transformation methods include, but are not limited to, the introduction of the polypeptide or variants and fragments thereof directly into the plant or the introduction of the polypeptide transcript into the plant.
- Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway, et al., (1986) Mol Gen. Genet. 202:179-185; Nomura, et al., (1986) Plant Sci. 44:53-58; Hepler, et al., (1994) Proc. Natl. Acad. Sci. USA 91:2176-2180 and Hush, et al., (1994) The Journal of Cell Science 107:775-784, all of which are herein incorporated by reference.
- the polypeptide polynucleotide can be transiently transformed into the plant using techniques known in the art. Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, transcription from the particle bound DNA can occur, but the frequency with which it is released to become integrated into the genome is greatly reduced. Such methods include the use of particles coated with polyethylenimine (PEI; Sigma #P3143).
- Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome.
- the insertion of the polynucleotide at a desired genomic location is achieved using a site specific recombination system. See, for example, WO 1999/25821, WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853, all of which are herein incorporated by reference.
- the polynucleotide of the embodiments can be contained in transfer cassette flanked by two non-identical recombination sites.
- the transfer cassette is introduced into a plant have stably incorporated into its genome a target site which is flanked by two non-identical recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a specific chromosomal position in the plant genome.
- Plant transformation vectors may be comprised of one or more DNA vectors needed for achieving plant transformation.
- DNA vectors needed for achieving plant transformation.
- Binary vectors as well as vectors with helper plasmids are most often used for Agrobacterium -mediated transformation, where the size and complexity of DNA segments needed to achieve efficient transformation is quite large, and it is advantageous to separate functions onto separate DNA molecules.
- Binary vectors typically contain a plasmid vector that contains the cis-acting sequences required for T-DNA transfer (such as left border and right border), a selectable marker that is engineered to be capable of expression in a plant cell, and a “gene of interest” (a gene engineered to be capable of expression in a plant cell for which generation of transgenic plants is desired). Also present on this plasmid vector are sequences required for bacterial replication. The cis-acting sequences are arranged in a fashion to allow efficient transfer into plant cells and expression therein. For example, the selectable marker gene and the pesticidal gene are located between the left and right borders.
- a second plasmid vector contains the trans-acting factors that mediate T-DNA transfer from Agrobacterium to plant cells.
- This plasmid often contains the virulence functions (Vir genes) that allow infection of plant cells by Agrobacterium , and transfer of DNA by cleavage at border sequences and vir-mediated DNA transfer, as is understood in the art (Hellens and Mullineaux, (2000) Trends in Plant Science 5:446-451).
- Several types of Agrobacterium strains e.g. LBA4404, GV3101, EHA101, EHA105, etc.
- the second plasmid vector is not necessary for transforming the plants by other methods such as microprojection, microinjection, electroporation, polyethylene glycol, etc.
- plant transformation methods involve transferring heterologous DNA into target plant cells (e.g., immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.), followed by applying a maximum threshold level of appropriate selection (depending on the selectable marker gene) to recover the transformed plant cells from a group of untransformed cell mass.
- target plant cells e.g., immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.
- a maximum threshold level of appropriate selection depending on the selectable marker gene
- Explants are typically transferred to a fresh supply of the same medium and cultured routinely. Subsequently, the transformed cells are differentiated into shoots after placing on regeneration medium supplemented with a maximum threshold level of selecting agent. The shoots are then transferred to a selective rooting medium for recovering rooted shoot or plantlet. The transgenic plantlet then grows into a mature plant and produces fertile seeds (e.g., Hiei, et al., (1994) The Plant Journal 6:271-282; Ishida, et al., (1996) Nature Biotechnology 14:745-750). Explants are typically transferred to a fresh supply of the same medium and cultured routinely.
- fertile seeds e.g., Hiei, et al., (1994) The Plant Journal 6:271-282; Ishida, et al., (1996) Nature Biotechnology 14:745-750.
- the cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick, et al., (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive or inducible expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure that expression of the desired phenotypic characteristic has been achieved.
- the nucleotide sequences of the embodiments may be provided to the plant by contacting the plant with a virus or viral nucleic acids.
- a virus or viral nucleic acids Generally, such methods involve incorporating the nucleotide construct of interest within a viral DNA or RNA molecule.
- the recombinant proteins of the embodiments may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired polypeptide.
- a viral polyprotein comprising at least a portion of the amino acid sequence of a polypeptide of the embodiments, may have the desired pesticidal activity.
- Such viral polyproteins and the nucleotide sequences that encode for them are encompassed by the embodiments.
- plastid transformation can be accomplished by transactivation of a silent plastid-borne transgene by tissue-preferred expression of a nuclear encoded and plastid directed RNA polymerase.
- tissue-preferred expression of a nuclear encoded and plastid directed RNA polymerase Such a system has been reported in McBride, et al., (1994) Proc. Natl. Acad. Sci. USA 91:7301-7305.
- the embodiments further relate to plant propagating material of a transformed plant of the embodiments including, but not limited to, seeds, tubers, corms, bulbs, leaves and cuttings of roots and shoots.
- the embodiments may be used for transformation of any plant species, including, but not limited to, monocots and dicots.
- plants of interest include, but are not limited to, corn ( Zea mays ), Brassica sp. (e.g., B. napus, B. rapa, B.
- juncea particularly those Brassica species useful as sources of seed oil, alfalfa ( Medicago sativa ), rice ( Oryza sativa ), rye ( Secale cereale ), sorghum ( Sorghum bicolor, Sorghum vulgare ), millet (e.g., pearl millet ( Pennisetum glaucum ), proso millet ( Panicum miliaceum ), foxtail millet ( Setaria italica ), finger millet ( Eleusine coracana )), sunflower ( Helianthus annuus ), safflower ( Carthamus tinctorius ), wheat ( Triticum aestivum ), soybean ( Glycine max ), tobacco ( Nicotiana tabacum ), potato ( Solanum tuberosum ), peanuts ( Arachis hypogaea ), cotton ( Gossypium barbadense, Gossypium hirsutum ), sweet potato ( Ipomoea batat
- Vegetables include tomatoes ( Lycopersicon esculentum ), lettuce (e.g., Lactuca sativa ), green beans ( Phaseolus vulgaris ), lima beans ( Phaseolus limensis ), peas ( Lathyrus spp.), and members of the genus Cucumis such as cucumber ( C. sativus ), cantaloupe ( C. cantalupensis ), and musk melon ( C. melo ).
- tomatoes Lycopersicon esculentum
- lettuce e.g., Lactuca sativa
- green beans Phaseolus vulgaris
- lima beans Phaseolus limensis
- peas Lathyrus spp.
- members of the genus Cucumis such as cucumber ( C. sativus ), cantaloupe ( C. cantalupensis ), and musk melon ( C. melo ).
- Ornamentals include azalea ( Rhododendron spp.), hydrangea ( Macrophylla hydrangea ), hibiscus ( Hibiscus rosasanensis ), roses ( Rosa spp.), tulips ( Tulipa spp.), daffodils ( Narcissus spp.), petunias ( Petunia hybrida ), carnation ( Dianthus caryophyllus), poinsettia ( Euphorbia pulcherrima ), and chrysanthemum .
- Conifers that may be employed in practicing the embodiments include, for example, pines such as loblolly pine ( Pinus taeda ), slash pine ( Pinus elliottii ), ponderosa pine ( Pinus ponderosa ), lodgepole pine ( Pinus contorta ), and Monterey pine ( Pinus radiata ); Douglas fir ( Pseudotsuga menziesii ); Western hemlock ( Tsuga canadensis ); Sitka spruce ( Picea glauca ); redwood ( Sequoia sempervirens ); true firs such as silver fir ( Abies amabilis ) and balsam fir ( Abies balsamea ); and cedars such as Western red cedar ( Thuja plicata ) and Alaska yellow cedar ( Chamaecyparis nootkatensis ). Plants of the embodiments include crop plants (for example, corn, alfalfa, sunflower, Brassica
- Turf grasses include, but are not limited to: annual bluegrass ( Poa annua ); annual ryegrass ( Lolium multiflorum ); Canada bluegrass ( Poa compressa ); Chewing's fescue ( Festuca rubra ); colonial bentgrass ( Agrostis tenuis ); creeping bentgrass ( Agrostis palustris ); crested wheatgrass ( Agropyron desertorum ); fairway wheatgrass ( Agropyron cristadtum ); hard fescue ( Festuca longifolia ); Kentucky bluegrass ( Poa pratensis ); orchardgrass ( Dactylis glomerata ); perennial ryegrass ( Lolium perenne ); red fescue ( Festuca rubra ); redtop ( Agrostis alba ); rough bluegrass ( Paa trivialis ); sheep fescue ( Festuca ovina ); smooth bromegrass ( Bromus inermis ); tall fescue ( Festuca arundinace
- Augustine grass Stenotaphrum secundatum ); zoysia grass ( Zoysia spp.); Bahia grass ( Paspalum notatum ); carpet grass ( Axonopus aifinis ); centipede grass ( Eremochloa ophiuroides ); kikuyu grass ( Pennisetum clandesinum ); seashore paspalum ( Paspalum vaginatum ); blue gramma ( Bouteloua gracilis ); buffalo grass ( Buchloe dactyloids ); sideoats gramma ( Bouteloua curtipendula ).
- Plants of interest include cereals, grain plants that provide seeds of interest, oil-seed plants, and leguminous plants.
- Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, millet, etc.
- Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica , maize, alfalfa, palm, coconut, flax, castor, olive, etc.
- Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mung bean, lima bean, fava bean, lentils, chickpea, etc.
- heterologous foreign DNA Following introduction of heterologous foreign DNA into plant cells, the transformation or integration of a heterologous gene into the plant genome is confirmed by various methods such as analysis of nucleic acids, proteins and metabolites associated with the integrated gene.
- PCR analysis is a rapid method to screen transformed cells, tissue or shoots for the presence of an incorporated gene at the earlier stage before transplanting into the soil (Sambrook and Russell, (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). PCR is carried out using oligonucleotide primers specific to the gene of interest or Agrobacterium vector background, etc.
- Plant transformation may be confirmed by Southern blot analysis of genomic DNA (Sambrook and Russell, (2001) supra).
- total DNA is extracted from the transformant, digested with appropriate restriction enzymes, fractionated in an agarose gel and transferred to a nitrocellulose or nylon membrane.
- the membrane or “blot” is then probed with, for example, radiolabeled 32P target DNA fragment to confirm the integration of an introduced gene into the plant genome according to standard techniques (Sambrook and Russell, (2001) supra).
- RNA is isolated from specific tissues of transformant, fractionated in a formaldehyde agarose gel, and blotted onto a nylon filter according to standard procedures that are routinely used in the art (Sambrook and Russell, (2001) supra). Expression of RNA encoded by the pesticidal gene is then tested by hybridizing the filter to a radioactive probe derived from a pesticidal gene, by methods known in the art (Sambrook and Russell, (2001) supra).
- Western blot, biochemical assays and the like may be carried out on the transgenic plants to confirm the presence of protein encoded by the pesticidal gene by standard procedures (Sambrook and Russell, 2001, supra) using antibodies that bind to one or more epitopes present on the taught insecticidal proteins.
- Transgenic plants may comprise a stack of one or more insecticidal polynucleotides disclosed herein with one or more additional polynucleotides resulting in the production or suppression of multiple polypeptide sequences.
- Transgenic plants comprising stacks of polynucleotide sequences can be obtained by either or both of traditional breeding methods or through genetic engineering methods. These methods include, but are not limited to, breeding individual lines each comprising a polynucleotide of interest, transforming a transgenic plant comprising a gene disclosed herein with a subsequent gene and co-transformation of genes into a single plant cell.
- stacked includes having the multiple traits present in the same plant (i.e., both traits are incorporated into the nuclear genome, one trait is incorporated into the nuclear genome and one trait is incorporated into the genome of a plastid, or both traits are incorporated into the genome of a plastid).
- stacked traits comprise a molecular stack where the sequences are physically adjacent to each other.
- a trait refers to the phenotype derived from a particular sequence or groups of sequences. Co-transformation of genes can be carried out using single transformation vectors comprising multiple genes or genes carried separately on multiple vectors.
- the polynucleotide sequences of interest can be combined at any time and in any order.
- the traits can be introduced simultaneously in a co-transformation protocol with the polynucleotides of interest provided by any combination of transformation cassettes.
- the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis).
- Expression of the sequences can be driven by the same promoter or by different promoters.
- polynucleotide sequences can be stacked at a desired genomic location using a site-specific recombination system. See, for example, WO 1999/25821, WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853, all of which are herein incorporated by reference.
- the polynucleotides encoding the pesticidal proteins disclosed herein, alone or stacked with one or more additional insect resistance traits can be stacked with one or more additional input traits (e.g., herbicide resistance, fungal resistance, virus resistance, stress tolerance, disease resistance, male sterility, stalk strength, and the like) or output traits (e.g., increased yield, modified starches, improved oil profile, balanced amino acids, high lysine or methionine, increased digestibility, improved fiber quality, drought resistance, and the like).
- additional input traits e.g., herbicide resistance, fungal resistance, virus resistance, stress tolerance, disease resistance, male sterility, stalk strength, and the like
- output traits e.g., increased yield, modified starches, improved oil profile, balanced amino acids, high lysine or methionine, increased digestibility, improved fiber quality, drought resistance, and the like.
- Transgenes useful for stacking include other pesticidal proteins, such as: Monalysin, PIP, Cry, Cyt, Vip, TC, and any combination thereof. These pesticidal proteins have been set forth in great detail in earlier sections of the specification.
- transgenes useful for stacking with the taught pesticidal proteins include genes encoding for: plant disease resistance, insect specific hormones or pheromones, antifungal activity, and nematicidal activity.
- Transgenes that confer resistance to an herbicide can also be stacked with the taught pesticidal proteins, including (non-limiting class of 9 herbicidal classes below):
- herbicide that inhibits the growing point or meristem
- Exemplary genes in this category code for mutant ALS and AHAS enzyme as described, for example, by Lee, et al., (1988) EMBO J. 7:1241 and Miki, et al., (1990) Theor. Appl. Genet. 80:449, respectively. See also, U.S. Pat. Nos.
- a polynucleotide encoding a protein for resistance to Glyphosate resistance imparted by mutant 5-enolpyruvl-3-phosphikimate synthase (EPSPS) and aroA genes, respectively
- EPSPS 5-enolpyruvl-3-phosphikimate synthase
- aroA aroA genes
- other phosphono compounds such as glufosinate (phosphinothricin acetyl transferase (PAT) and Streptomyces hygroscopicus phosphinothricin acetyl transferase (bar) genes), and pyridinoxy or phenoxy proprionic acids and cyclohexones (ACCase inhibitor-encoding genes).
- PAT phosphinothricin acetyl transferase
- bar Streptomyces hygroscopicus phosphinothricin acetyl transferase
- glyphosate resistance can be imparted to plants by the over expression of genes encoding glyphosate N-acetyltransferase. See, for example, U.S. Pat. Nos. 7,462,481; 7,405,074 and US Patent Application Publication Number US 2008/0234130.
- a DNA molecule encoding a mutant aroA gene can be obtained under ATCC® Accession Number 39256, and the nucleotide sequence of the mutant gene is disclosed in U.S. Pat. No. 4,769,061 to Comai.
- nucleotide sequences of glutamine synthetase genes which confer resistance to herbicides such as L-phosphinothricin disclose nucleotide sequences of glutamine synthetase genes which confer resistance to herbicides such as L-phosphinothricin.
- the nucleotide sequence of a phosphinothricin-acetyl-transferase gene is provided in EP Application Numbers 0 242 246 and 0 242 236 to Leemans, et al., De Greef, et al., (1989) Biol Technology 7:61, describe the production of transgenic plants that express chimeric bar genes coding for phosphinothricin acetyl transferase activity. See also, U.S. Pat. Nos.
- a polynucleotide encoding a protein for resistance to herbicide that inhibits photosynthesis such as a triazine (psbA and gs+ genes) and a benzonitrile (nitrilase gene).
- Przibilla et al., (1991) Plant Cell 3:169, describe the transformation of Chlamydomonas with plasmids encoding mutant psbA genes.
- Nucleotide sequences for nitrilase genes are disclosed in U.S. Pat. No. 4,810,648 to Stalker and DNA molecules containing these genes are available under ATCC® Accession Numbers 53435, 67441 and 67442. Cloning and expression of DNA coding for a glutathione S-transferase is described by Hayes, et al., (1992) Biochem. J. 285:173.
- a polynucleotide encoding a protein for resistance to Acetohydroxy acid synthase which has been found to make plants that express this enzyme resistant to multiple types of herbicides, has been introduced into a variety of plants (see, e.g., Hattori, et al., (1995) Mol. Gen. Genet. 246:419).
- Other genes that confer resistance to herbicides include: a gene encoding a chimeric protein of rat cytochrome P4507A1 and yeast NADPH-cytochrome P450 oxidoreductase (Shiota, et al., (1994) Plant Physiol.
- the protox enzyme serves as the target for a variety of herbicidal compounds. These herbicides also inhibit growth of all the different species of plants present, causing their total destruction.
- the development of plants containing altered protox activity which are resistant to these herbicides are described in U.S. Pat. Nos. 6,288,306 B1; 6,282,837 B1 and 5,767,373 and International Publication WO 2001/12825.
- the aad-1 gene (originally from Sphingobium herbicidovorans ) encodes the aryloxyalkanoate dioxygenase (AAD-1) protein.
- AAD-1 aryloxyalkanoate dioxygenase
- the trait confers tolerance to 2,4-dichlorophenoxyacetic acid and aryloxyphenoxypropionate (commonly referred to as “fop” herbicides such as quizalofop) herbicides.
- the aad-1 gene, itself, for herbicide-tolerance in plants was first disclosed in WO 2005/107437 (see also, US 2009/0093366).
- the aad-12 gene derived from Delftia acidovorans , which encodes the aryloxyalkanoate dioxygenase (AAD-12) protein that confers tolerance to 2,4-dichlorophenoxyacetic acid and pyridyloxyacetate herbicides by deactivating several herbicides with an aryloxyalkanoate moiety, including phenoxy auxin (e.g., 2,4-D, MCPA), as well as pyridyloxy auxins (e.g., fluroxypyr, triclopyr).
- phenoxy auxin e.g., 2,4-D, MCPA
- pyridyloxy auxins e.g., fluroxypyr, triclopyr
- Transgenes that confer or contribute to an altered grain characteristic can also be stacked with the taught pesticidal proteins, including (non-limiting class below relating to altered fatty acids in grain): (1) Down-regulation of stearoyl-ACP to increase stearic acid content of the plant. See, Knultzon, et al., (1992) Proc. Natl. Acad. Sci. USA 89:2624 and WO 1999/64579 (Genes to Alter Lipid Profiles in Corn). (2) Elevating oleic acid via FAD-2 gene modification and/or decreasing linolenic acid via FAD-3 gene modification (see, U.S. Pat. Nos.
- Isolated nucleic acids and proteins associated with lipid and sugar metabolism regulation in particular, lipid metabolism protein (LMP) used in methods of producing transgenic plants and modulating levels of seed storage compounds including lipids, fatty acids, starches or seed storage proteins and use in methods of modulating the seed size, seed number, seed weights, root length and leaf size of plants (EP 2404499).
- LMP lipid metabolism protein
- HSI2 High-Level Expression of Sugar-Inducible 2
- cytochrome b5 (Cb5) alone or with FAD2 to modulate oil content in plant seed, particularly to increase the levels of omega-3 fatty acids and improve the ratio of omega-6 to omega-3 fatty acids (US Patent Application Publication Number 2011/0191904).
- Nucleic acid molecules encoding wrinkled1-like polypeptides for modulating sugar metabolism (U.S. Pat. No. 8,217,223).
- Transgenes that confer or contribute to an altered grain characteristic can also be stacked with the taught pesticidal proteins, including (non-limiting class below relating to altered phosphorus content in grain):
- Introduction of a phytase encoding gene would enhance breakdown of phytate, adding more free phosphate to the transformed plant.
- Gene 127:87 for a disclosure of the nucleotide sequence of an Aspergillus niger phytase gene.
- this could be accomplished, by cloning and then reintroducing DNA associated with one or more of the alleles, such as the LPA alleles, identified in maize mutants characterized by low levels of phytic acid, such as in WO 2005/113778 and/or by altering inositol kinase activity as in WO 2002/059324, US Patent Application Publication Number 2003/0009011, WO 2003/027243, US Patent Application Publication Number 2003/0079247, WO 1999/05298, U.S. Pat. Nos. 6,197,561, 6,291,224, 6,391,348, WO 2002/059324, US Patent Application Publication Number 2003/0079247, WO 1998/45448, WO 1999/55882, WO 2001/04147.
- the alleles such as the LPA alleles
- Transgenes that confer or contribute to an altered grain characteristic can also be stacked with the taught pesticidal proteins, including (non-limiting class below relating to altered carbohydrate content in grain): (1) altering a gene for an enzyme that affects the branching pattern of starch or, a gene altering thioredoxin such as NTR and/or TRX (see, U.S. Pat. No. 6,531,648. which is incorporated by reference for this purpose) and/or a gamma zein knock out or mutant such as cs27 or TUSC27 or en27 (see, U.S. Pat. No.
- fatty acid modification genes mentioned herein may also be used to affect starch content and/or composition through the interrelationship of the starch and oil pathways.
- Transgenes that confer or contribute to an altered grain characteristic can also be stacked with the taught pesticidal proteins, including (non-limiting class below relating to altered antioxidant content in grain): (1) alteration of tocopherol or tocotrienols.
- alteration of tocopherol or tocotrienols For example, see, U.S. Pat. No. 6,787,683, US Patent Application Publication Number 2004/0034886 and WO 2000/68393 involving the manipulation of antioxidant levels and WO 2003/082899 through alteration of a homogentisate geranylgeranyl transferase (hggt).
- Transgenes that confer or contribute to an altered grain characteristic can also be stacked with the taught pesticidal proteins, including (non-limiting class below relating to altered essential amino acid content in grain): (1) For example, see, U.S. Pat. No. 6,127,600 (method of increasing accumulation of essential amino acids in seeds), U.S. Pat. No. 6,080,913 (binary methods of increasing accumulation of essential amino acids in seeds), U.S. Pat. No. 5,990,389 (high lysine), WO 1999/40209 (alteration of amino acid compositions in seeds), WO 1999/29882 (methods for altering amino acid content of proteins), U.S. Pat. No.
- Transgenes that confer or contribute to male sterility can also be stacked with the taught pesticidal proteins.
- Transgenes that create a site for site specific DNA integration can also be stacked with the taught pesticidal proteins.
- Transgenes that affect abiotic stress resistance of a crop plant can also be stacked with the taught pesticidal proteins, including, but not limited to: flowering, ear and seed development, enhancement of nitrogen utilization efficiency, altered nitrogen responsiveness, drought resistance or tolerance, cold resistance or tolerance and salt resistance or tolerance and increased yield under stress.
- abiotic stress resistance genes that can be stacked with the taught pesticidal proteins, include: (1) WO 2000/73475 where water use efficiency is altered through alteration of malate; U.S. Pat. Nos.
- vacuolar pyrophosphatase such as AVPl (U.S. Pat. No. 8,058,515) for increased yield; nucleic acid encoding a HSF A4 or a HSFA5 (Heat Shock Factor of the class A4 or A5) polypeptides, an oligopeptide transporter protein (OPT4-like) polypeptide; a plastochron2-like (PLA2-like) polypeptide or a Wuschel related homeobox I-like (WOX-like) polypeptide (U. Patent Application Publication Number US 2011/0283420).
- Tocopherol cyclase (TC) genes for conferring drought and salt tolerance (US Patent Application Publication Number 2012/0272352).
- CAAX amino terminal family proteins for stress tolerance (U.S. Pat. No. 8,338,661).
- Mutations in the SAL1 encoding gene have increased stress tolerance, including increased drought resistant (US Patent Application Publication Number 2010/0257633).
- Expression of a nucleic acid sequence encoding a polypeptide selected from the group consisting of: GRF polypeptide, RAAl-like polypeptide, SYR polypeptide, ARKL polypeptide, and YTP polypeptide increasing yield-related traits (US Patent Application Publication Number 2011/0061133).
- TPP Trehalose Phosphate Phosphatase
- genes and transcription factors that affect plant growth and agronomic traits such as yield, flowering, plant growth and/or plant structure, can be introduced or introgressed into plants, see e.g., WO 1997/49811 (LHY), WO 1998/56918 (ESD4), WO 1997/10339 and U.S. Pat. No. 6,573,430 (TFL), U.S. Pat. No. 6,713,663 (FT), WO 1996/14414 (CON), WO 1996/38560, WO 2001/21822 (VRNl), WO 2000/44918 (VRN2), WO 1999/49064 (GI), WO 2000/46358 (FRI), WO 1997/29123, U.S. Pat. Nos. 6,794,560, 6,307,126 (GAI), WO 1999/09174 (D8 and Rht) and WO 2004/076638 and WO 2004/031349 (transcription factors).
- LHY WO 1997/49811
- ESD4 WO 1998/56918
- Transgenes that confer increased yield to a crop plant can also be stacked with the taught pesticidal proteins, for example: (1) a transgenic crop plant transformed by a 1-AminoCyclopropane-1-Carboxylate Deaminase-like Polypeptide (ACCDP) coding nucleic acid, wherein expression of the nucleic acid sequence in the crop plant results in the plant's increased root growth, and/or increased yield, and/or increased tolerance to environmental stress as compared to a wild type variety of the plant (U.S. Pat. No. 8,097,769).
- ACCDP 1-AminoCyclopropane-1-Carboxylate Deaminase-like Polypeptide
- Zm-ZFPl maize zinc finger protein gene
- Zm-LOBDPl constitutive overexpression of maize lateral organ boundaries domain protein
- VIMI Variant in Methylation 1
- Modulating expression in a plant of a nucleic acid encoding a Ste20-like polypeptide or a homologue thereof gives plants having increased yield relative to control plants (EP 2431472).
- NDK nucleoside diphosphatase kinase
- the pesticidal proteins can be stacked with any genetic trait that has received regulatory approval.
- a non-exhaustive list of such traits can be found in Table 4A-4F of US 2016/0366891 A1, which is incorporated herein by reference.
- the taught novel insecticidal proteins taught herein can be stacked or combined with any genetic trait from the following Tables B-G listed below.
- LLRICE06 Aventis Glufosinate ammonium herbicide LLRICE62 CropScience tolerant rice produced by inserting a modified phosphinothricin acetyltransferase (PAT) encoding gene from the soil bacterium Streptomyces hygroscopicus ).
- LLRICE601 Bayer Glufosinate ammonium herbicide CropScience tolerant rice produced by inserting (Aventis a modified phosphinothricin CropScience acetyltransferase (PAT) encoding (AgrEvo)) gene from the soil bacterium Streptomyces hygroscopicus ).
- ALS acetolactate synth
- acetohydroxyacid synthase also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase.
- BW7 BASF Inc. Tolerance to imidazolinone herbicides induced by chemical mutagenesis of the acetohydroxyacid synthase (AHAS) gene using sodium azide.
- MON71800 Monsanto Glyphosate tolerant wheat variety Company produced by inserting a modified 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from the soil bacterium Agrobacterium tumefaciens , strain CP4.
- EPSPS modified 5- enolpyruvylshikimate-3-phosphate synthase
- SWP965001 Cyanamid Selection for a mutagenized version Crop of the enzyme acetohydroxyacid Protection synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase. Teal 11A BASF Inc. Selection for a mutagenized version of the enzyme acetohydroxyacid synthase (AHAS), also known as acetolactate synthase (ALS) or acetolactate pyruvate-lyase.
- AHAS acetohydroxyacid Protection synthase
- ALS acetolactate synthase
- ALS acetolactate synthase
- CropScience tolerant soybean produced by (Aventis inserting a modified CropScience phosphinothricin acetyltransferase (AgrEvo)) (PAT) encoding gene from the soil bacterium Streptomyces viridochromogenes . BPS-CV127-9 BASF Inc.
- the introduced csr1-2 gene from Arabidopsis thaliana encodes an acetohydroxyacid synthase protein that confers tolerance to imidazolinone herbicides due to a point mutation that results in a single amino acid substitution in which the serine residue at position 653 is replaced by asparagine (S653N).
- DP-305423 Pioneer High oleic acid soybean produced Hi-Bred by inserting additional copies of a International portion of the omega 6 desaturase Inc. encoding gene, gm-fad2-1 resulting in silencing of the endogenous omega-6 desaturase gene (FAD2-1).
- glyphosate N- International acetlytransferase which detoxifies Inc. glyphosate
- ALS modified acetolactate synthase
- G94-1, G94-19, DuPont Canada High oleic acid soybean produced G168 Agricultural by inserting a second copy of the Products fatty acid desaturase (Gm Fad2-1) encoding gene from soybean, which resulted in “silencing” of the endogenous host gene.
- GTS 40-3-2 Monsanto Glyphosate tolerant soybean variety Company produced by inserting a modified 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from the soil bacterium Agrobacterium tumefaciens .
- EPSPS modified 5- enolpyruvylshikimate-3-phosphate synthase
- GU262 Bayer Glufosinate ammonium herbicide CropScience tolerant soybean produced by (Aventis inserting a modified CropScience phosphinothricin acetyltransferase (AgrEvo)) (PAT) encoding gene from the soil bacterium Streptomyces viridochromogenes .
- tumefaciens strain CP4 and resistance to Lepidopteran pests of soybean including velvetbean caterpillar ( Anticarsia gemmatalis ) and soybean looper ( Pseudoplusia includens ) via expression of the Cry1Ac encoding gene from B. thuringiensis .
- MON89788 Monsanto Glyphosate-tolerant soybean Company produced by inserting a modified 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding aroA (epsps) gene from Agrobacterium tumefaciens CP4.
- EPSPS modified 5- enolpyruvylshikimate-3-phosphate synthase
- OT96-15 Agriculture & Low linolenic acid soybean Agri-Food produced through traditional cross- Canada breeding to incorporate the novel trait from a naturally occurring fan1 gene mutant that was selected for low linolenic acid.
- W62, W98 Bayer Glufosinate ammonium herbicide CropScience tolerant soybean produced by (Aventis inserting a modified CropScience phosphinothricin acetyltransferase (AgrEvo)) (PAT) encoding gene from the soil bacterium Streptomyces hygroscopicus .
- phosphinothricin acetyltransferase from Escherichia coli and Streptomyces viridochromogenes , respectively.
- B16 (DLL25) Dekalb Glufosinate ammonium herbicide Genetics tolerant maize produced by inserting Corporation the gene encoding phosphinothricin acetyltransferase (PAT) from Streptomyces hygroscopicus .
- BT11 Syngenta Insect-resistant and herbicide (X4334CBR, Seeds, Inc. tolerant maize produced by inserting X4734CBR) the Cry1Ab gene from Bacillus thuringiensis subsp.
- BT11 GA21 Syngenta Stacked insect resistant and Seeds, Inc. herbicide tolerant maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BT011-1) and GA21 (OECD unique identifier: MON-OOO21-9).
- BT11 Syngenta Resistance to Coleopteran pests, MIR162 ⁇ Seeds, Inc.
- corn rootworm pests MIR604 ⁇ GA21 Diabrotica spp.
- corn rootworm pests MIR604 ⁇ GA21 Diabrotica spp.
- Lepidopteran pests of corn including European corn borer (ECB, Ostrinia nubilalis ), corn earworm (CEW, Helicoverpa zea ), fall army worm (FAW, Spodoptera frugiperda ), and black cutworm (BCW, Agrotis ipsilon ); tolerance to glyphosate and glufosinate- ammonium containing herbicides.
- BT11 ⁇ MIR162 Syngenta Stacked insect resistant and Seeds, Inc.
- herbicide tolerant maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BTO11-1) and MIR162 (OECD unique identifier: SYN-1R162-4).
- BT11 OECD unique identifier: SYN-BTO11-1
- MIR162 OECD unique identifier: SYN-1R162-4.
- Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the Cry1Ab gene from Bacillus thuringiensis subsp. kurstaki , and the phosphinothricin N- acetyltransferase (PAT) encoding gene from S. viridochromogenes .
- PAT phosphinothricin N- acetyltransferase
- MIR162 which contains the vip3Aa gene from Bacillus thuringiensis strain AB88. BT11 ⁇ Syngenta Bacillus thuringiensis Cry1Ab delta- MIR162 ⁇ Seeds, Inc.
- CBH-351 Aventis Insect-resistant and glufosinate CropScience ammonium herbicide tolerant maize developed by inserting genes encoding Cry9C protein from Bacillus thuringiensis subsp tolworthi and phosphinothricin acetyltransferase (PAT) from Streptomyces hygroscopicus .
- PAT phosphinothricin acetyltransferase
- DAS-06275-8 DOW Lepidopteran insect resistant and AgroSciences glufosinate ammonium herbicide- LLC tolerant maize variety produced by inserting the Cry1F gene from Bacillus thuringiensis var aizawai and the phosphinothricin acetyltransferase (PAT) from Streptomyces hygroscopicus .
- BT11 ⁇ MIR604 Syngenta Stacked insect resistant and Seeds, Inc. herbicide tolerant maize produced by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BTO11-1) and MIR604 (OECD unique identifier: SYN-1R6O5-5).
- BT11 which contains the Cry1Ab gene from Bacillus thuringiensis subsp. kurstaki , and the phosphinothricin N- acetyltransferase (PAT) encoding gene from S. viridochromogenes .
- PAT phosphinothricin N- acetyltransferase
- Corn rootworm -resistance is derived from MIR604 which contains the mCry3A gene from Bacillus thuringiensis .
- herbicide tolerant maize produced GA21 by conventional cross breeding of parental lines BT11 (OECD unique identifier: SYN-BTO11-1), MIR604 (OECD unique identifier: SYN- 1R6O5-5) and GA21 (OECD unique identifier: MON-OOO21-9).
- Resistance to the European Corn Borer and tolerance to the herbicide glufosinate ammonium (Liberty) is derived from BT11, which contains the Cry1Ab gene from Bacillus thuringiensis subsp. kurstaki , and the phosphinothricin N- acetyltransferase (PAT) encoding gene from S. viridochromogenes .
- PAT phosphinothricin N- acetyltransferase
- Corn rootworm-resistance is derived from MIR604 which contains the mCry3A gene from Bacillus thuringiensis .
- Tolerance to glyphosate herbicide is derived from GA21 which contains a a modified EPSPS gene from maize.
- DAS-59122-7 DOW Corn rootworm-resistant maize AgroSciences produced by inserting the Cry34Ab1 LLC and and Cry35Ab1 genes from Bacillus Pioneer thuringiensis strain PS149B1.
- the Hi-Bred PAT encoding gene from International Streptomyces viridochromogenes Inc. was introduced as a selectable marker.
- Corn rootworm- resistance is derived from DAS- 59122- 7 which contains the Cry34Abl and Cry35Abl genes from Bacillus thuringiensis strain P5149B1. Lepidopteran resistance and tolerance to glufosinate ammonium herbicide is derived from TC1507.
- Tolerance to glyphosate herbicide is derived from NK603.
- DBT418 Dekalb Insect-resistant and glufosinate Genetics ammonium herbicide tolerant maize Corporation developed by inserting genes encoding Cry1AC protein from Bacillus thuringiensis subsp kurstaki and phosphinothricin acetyltransferase (PAT) from Streptomyces hygroscopicus .
- PAT phosphinothricin acetyltransferase
- MIR604 ⁇ GA21 Syngenta Stacked insect resistant and Seeds, Inc. herbicide tolerant maize produced by conventional cross breeding of parental lines MIR604 (OECD unique identifier: SYN-1R605-5) and GA21 (OECD unique identifier: MON-00021-9).
- Com rootworm- resistance is derived from MIR604 which contains the mCry3A gene from Bacillus thuringiensis .
- Tolerance to glyphosate herbicide is derived from GA21.
- the genetic modification affords resistance to attack by the European corn borer (ECB).
- MON802 Monsanto Insect-resistant and glyphosate Company herbicide tolerant maize produced by inserting the genes encoding the Cry1Ab protein from Bacillus thuringiensis and the 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) from A. tumefaciens strain CP4.
- EPSPS 5- enolpyruvylshikimate-3-phosphate synthase
- MON809 Pioneer Resistance to European corn borer Hi-Bred ( Ostrinia nubilalis ) by introduction International of a synthetic Cry1Ab gene. Inc. Glyphosate resistance via introduction of the bacterial version of a plant enzyme, 5-enolpynivyl shikimate-3-phosphate synthase (EPSPS).
- EPSPS 5-enolpynivyl shikimate-3-phosphate synthase
- MON810 Monsanto Insect-resistant maize produced by Company inserting a truncated form of the Cry1Ab gene from Bacillus thuringiensis subsp. kurstaki HD-1. The genetic modification affords resistance to attack by the European corn borer (ECB).
- MON810 ⁇ Monsanto Stacked insect resistant and LY038 Company enhanced lysine content maize derived from conventional crossbreeding of the parental lines MON810 (OECD identifier: MON- OO81O-6) and LY038 (OECD identifier: REN-OOO38-3).
- European corn borer (ECB) resistance is derived from a truncated form of the Cry1Ab gene from Bacillus thuringiensis subsp. kurstaki HD-1 present in MON810.
- Corn rootworm resistance is derived from the Cry3Bbl gene from Bacillus thuringiensis subspecies kumamotoensis strain EG4691 present in MON88017.
- Glyphosate tolerance is derived from a 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens strain CP4 present in MON88017.
- EPSPS 5- enolpyruvylshikimate-3-phosphate synthase
- MON832 Monsanto Introduction, by particle Company bombardment, of glyphosate oxidase (GOX) and a modified 5- enolpyruvyl shikimate-3-phosphate synthase (EPSPS), an enzyme involved in the shikimate biochemical pathway for the production of the aromatic amino acids.
- MON863 Monsanto Corn rootworm resistant maize Company produced by inserting the Cry3Bbl gene from Bacillus thuringiensis subsp.
- MON863 Monsanto Stacked insect resistant corn hybrid MON810 Company derived from conventional cross- breeding of the parental lines MON863 (OECD identifier: MON- 00863-5) and MON810 (OECD identifier: MON-00810-6)
- MON863 Monsanto Stacked insect resistant and MON810 ⁇ Company herbicide tolerant corn hybrid Monsanto NK603 derived from conventional crossbreeding of the stacked hybrid MON-00863-5 ⁇ MON-00810-6 and NK603 (OECD identifier: MON- 00603-6).
- CspB Bacillus subtilis cold shock protein B
- MON88017 Monsanto Corn rootworm-resistant maize Company produced by inserting the Cry3Bbl gene from Bacillus thuringiensis subspecies kumamotoensis strain EG4691. Glyphosate tolerance derived by inserting a 5- enolpyruvylshikimate-3-phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens strain CP4.
- EPSPS 5- enolpyruvylshikimate-3-phosphate synthase
- MON89034 Monsanto Stacked insect resistant and MON88017 Company glyphosate tolerant maize derived from conventional cross-breeding of the parental lines MON89034 (OECD identifier: MON-89034-3) and MON88017 (OECD identifier: MON-88O17-3). Resistance to Lepidopteran insects is derived from two Cry genes present in MON89043. Corn rootworm resistance is derived from a single Cry genes and glyphosate tolerance is derived from the 5-enolpyruvylshikimate-3- phosphate synthase (EPSPS) encoding gene from Agrobacterium tumefaciens present in MON88017.
- EPSPS 5-enolpyruvylshikimate-3- phosphate synthase
- MON89034 Monsanto Stacked insect resistant and NK603 Company herbicide tolerant maize produced by conventional cross breeding of parental lines MON89034 (OECD identifier: MON-89034-3) with NK603 (OECD unique identifier: MON-00603-6). Resistance to Lepidopteran insects is derived from two Cry genes present in MON89043. Tolerance to glyphosate herbicide is derived from NK603.
- NK603 Monsanto Stacked insect resistant and MON810 Company herbicide tolerant corn hybrid derived from conventional crossbreeding of the parental lines NK603 (OECD identifier: MON- 00603-6) and MON810 (OECD identifier: MON-00810-6).
- MON89034 Monsanto Stacked insect resistant and TC1507 ⁇ Company and herbicide tolerant maize produced MON88017 ⁇ Mycogen by conventional cross breeding of DAS-59122-7 Seeds c/o parental lines: MON89034, TC1507, Dow MON88017, and DAS-59 122.
- AgroSciences Resistance to the above-ground and LLC below-ground insect pests and tolerance to glyphosate and glufosinate-ammonium containing herbicides M53 Bayer Male sterility caused by expression CropScience of the barnase ribonuclease gene (Aventis from Bacillus amyloliquefaciens ; CropScience PPT resistance was via PPT- (AgrEvo)) acetyltransferase (PAT).
- TC1507 Mycogen Insect-resistant and glufosinate (c/o Dow ammonium herbicide tolerant maize AgroSciences); produced by inserting the Cry1F Pioneer gene from Bacillus thuringiensis (c/o DuPont) var. aizawai and the phosphinothricin N-acetyltransferase encoding gene from Streptomyces viridochromogenes .
- Resistance to Lepidopteran insects is derived from TC1507 due the presence of the Cry1F gene from Bacillus thuringiensis var. aizawai .
- Corn rootworm-resistance is derived from DAS-59122-7 which contains the Cry34Ab1 and Cry35Ab1 genes from Bacillus thuringiensis strain P5149B1.
- Tolerance to glufosinate ammonium herbicide is derived from TC1507 from the phosphinothricin N-acetyltransferase encoding gene from Streptomyces viridochromogenes .
- Microorganism hosts that are known to occupy the “phytosphere” (phylloplane, phyllosphere, rhizosphere, and/or rhizoplana) of one or more crops of interest may be selected. These microorganisms are selected soas to becapable of successfully competing in the particular environment with the wild-type microorganisms, provide for stable maintenance, and expression of the gene expressing the pesticidal proteins taught herein, and provide for improved protection of the pesticide from environmental degradation and inactivation.
- phytosphere phytosphere
- rhizosphere rhizosphere
- rhizoplana rhizoplana
- microorganisms include bacteria, algae, and fungi.
- microorganisms such as bacteria, e.g., Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobiurn, Rhodopseudomonas, Methylius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc , and Alcaligenes , fungi, particularly yeast, e.g., Saccharomnyces, Cryptococcus, Kluyveromnyces, Sporobolomnyces, Rhodotorula , and Aureobasidium .
- phytosphere bacterial species as Pseudomnonas syringae, Pseudomnonas jluorescens, Pseudomnonas chlororaphis, Serratia marcescens, Acetobacter xylinum, Agrobacteria, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, Clavibacter xyli and Azotobacter vinelandii and phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R.
- Host organisms of particular interest include yeast, such as Rhodotorula spp., Aureobasidium spp., Saccharomyces spp. (such as S.
- Pseudomonas spp. such as P. aeruginosa, P. jluorescens, P. chlororaphis
- Erwinia spp. and Flavobacterium spp., and other such organisms, including Agrobacterium tumefaciens, E. coli, Bacillus subtilis, Bacillus cereus and the like.
- Genes encoding the taught pesticidal proteins can be introduced into microorganisms that multiply on plants (epiphytes). Epiphytes can be gram positive or gram negative bacteria. Root colonizing bacteria can be isolated from the plant of interest by methods known in the art. Genes encoding the taught pesticidal proteins can be introduced, for example, into the root colonizing or epiphytic bacteria by means of electro transformation. Genes can be cloned into a shuttle vector, for example, pHT3101 (Lerecius, et al., (1989) FEMS Microbiol. Lett. 60:211-218.
- the shuttle vector pHT3101 containing the coding sequence for the particular polypeptide gene can, for example, be transformed into the bacteria by means of electroporation (Lerecius, et al., (1989) FEMS Microbiol. Lett. 60:211-218). Expression systems can be designed so that the taught pesticidal proteins are secreted outside the cytoplasm of gram negative bacteria, such as E. coli , for example.
- Pesticidal proteins taught herein may be fermented in a bacterial host and the resulting bacteria processed and used as a microbial spray in the same manner that Bt strains have been used as insecticidal sprays.
- the secretion signal is removed or mutated using procedures known in the art. Such mutations and/or deletions prevent secretion of the protein into the growth medium during the fermentation process.
- the pesticidal proteins are retained within the cell and the cells are then processed to yield the encapsulated proteins. Any suitable microorganism can be used for this purpose.
- Pseudomonas has been used to express Bt toxins as encapsulated proteins and the resulting cells processed and sprayed as an insecticide (Gaertner, et al., (1993), in: Advanced Engineered Pesticides, ed. Kim).
- the taught pesticidal proteins are produced by introducing a heterologous gene into a cellular host. Expression of the heterologous gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. These cells are then treated under conditions that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of target pest(s). The resulting product retains the toxicity of the toxin.
- These naturally encapsulated proteins may then be formulated in accordance with conventional techniques for application to the environment hosting a target pest, e.g., soil, water, and foliage of plants. See, for example EPA 0192319, and the references cited therein.
- the active ingredients can be applied in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with other compounds.
- These compounds can be fertilizers, weed killers, Cryoprotectants, surfactants, detergents, pesticidal soaps, dormant oils, polymers, and/or time release or biodegradable carrier formulations that permit long term dosing of a target area following a single application of the formulation.
- Suitable carriers i.e. agriculturally acceptable carriers
- adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, sticking agents, tackifiers, binders or fertilizers.
- formulations may be prepared into edible baits or fashioned into pest traps to permit feeding or ingestion by a target pest of the pesticidal formulation.
- Methods of applying an active ingredient or an agrochemical composition that contains at least one of the taught insecticidal proteins produced by the bacterial strains include leaf application, seed coating, and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest.
- the composition may be formulated as a powder, dust, pellet, granule, spray, emulsion, colloid, solution or such like, and may be prepared by such conventional means as desiccation, lyophilization, homogenization, extraction, filtration, centrifugation, sedimentation or concentration of a culture of cells comprising the polypeptide.
- the polypeptide may be present in a concentration of from about 1% to about 99% by weight.
- Lepidopterans, Dipterans, Hemipterans, Heteropterans, Nematodes, or Coleopterans may be killed or reduced in numbers in a given area by the methods of the disclosure or may be prophylactically applied to an environmental area to prevent infestation by a susceptible pest.
- the pest ingests or is contacted with, a pesticidally effective amount of the disclosed insecticidal protein.
- a “Pesticidally effective amount” refers to an amount of the pesticide that is able to bring about death to at least one pest or to noticeably reduce pest growth, feeding, or normal physiological development.
- This amount will vary depending on such factors as, for example: the specific target pests to be controlled, the specific environment, location, plant, crop or agricultural site to be treated, the environmental conditions and the method, rate, concentration, stability, and quantity of application of the pesticidally effective protein composition.
- the formulations may also vary with respect to climatic conditions, environmental considerations, and/or frequency of application and/or severity of pest infestation.
- the pesticide compositions described may be made by formulating either the bacterial cell, Crystal and/or spore suspension, or isolated protein component with the desired agriculturally acceptable carrier.
- compositions may be formulated prior to administration in an appropriate means such as lyophilized, freeze dried, desiccated or in an aqueous carrier, medium or suitable diluent, such as saline or other buffer.
- aqueous carrier such as saline or other buffer.
- the formulated compositions may be in the form of a dust or granular material or a suspension in oil (vegetable or mineral) or water or oil/water emulsions or as a wettable powder or in combination with any other carrier material suitable for agricultural application.
- Suitable agricultural carriers can be solid or liquid and are well known in the art.
- the term “agriculturally acceptable carrier” covers all adjuvants, inert components, dispersants, surfactants, stickers, tackifiers, binders, etc.
- the formulations may be mixed with one or more solid or liquid adjuvants and prepared by various means, e.g., by homogeneously mixing, blending and/or grinding the pesticidal composition with suitable adjuvants using conventional formulation techniques. Suitable formulations and application methods are described in U.S. Pat. No. 6,468,523, herein incorporated by reference.
- the plants can also be treated with one or more chemical compositions, including one or more herbicide, insecticides or fungicides.
- Exemplary chemical compositions include: Fruits/Vegetables Herbicides: Atrazine, Bromacil, Diuron, Glyphosate, Linuron, Metribuzin, Simazine, Trifluralin, Fluazifop, Glufosinate, Halo sulfuron Gowan, Paraquat, Propyzamide, Sethoxydim, Butafenacil, Halosulfuron, Indaziflam; Fruits/Vegetables Insecticides: Aldicarb, Bacillus thuringiensis , Carbaryl, Carbofuran, Chlorpyrifos, Cypermethrin, Deltamethrin, Diazinon, Malathion, Abamectin, Cyfluthrin/betacyfluthrin, Esfenvalerate, Lambda-cyhalothrin, Acequinocyl, Bifenazate, Methoxyfenozide, Novaluron, Chromafenozide, Thi
- Pests includes but is not limited to, insects, fungi, bacteria, nematodes, mites, ticks and the like.
- Insect pests include insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera Orthroptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc., particularly Lepidoptera and Coleoptera.
- Larvae of the order Lepidoptera include, but are not limited to, armyworms, cutworms, loopers and heliothines in the family Noctuidae Spodopterafrugiperda J E Smith (fall armyworm); S. exigua Hubner (beet armyworm); S. litura Fabricius (tobacco cutworm, cluster caterpillar); Mamestra configurata Walker (bertha armyworm); M. brassicae Linnaeus (cabbage moth); Agrotis ipsilon Hufnagel (black cutworm); A. orthogonia Morrison (western cutworm); A.
- subterranea Fabricius granulate cutworm; Alabama argillacea Hubner (cotton leaf worm); Trichoplusia ni Hubner (cabbage looper); Pseudoplusia includens Walker (soybean looper); Anticarsia gemmatalis Hubner (velvet bean caterpillar); Hypena scabra Fabricius (green clover worm); Heliothis virescens Fabricius (tobacco budworm); Pseudaletia unipuncta Haworth (armyworm); Athetis mindara Barnes and Mcdunnough (rough skinned cutworm); Euxoa messoria Harris (darksided cutworm); Earias insulana Boisduval (spiny bollworm); E.
- vittella Fabricius (spotted bollworm); Helicoverpa armigera Hubner (American bollworm); H. zea Boddie (corn earworm or cotton bollworm); Melanchra picta Harris (zebra caterpillar); Egira ( Xylomyges ) curialis Grote (citrus cutworm); borers, case bearers, webworms, coneworms, and skeletonizers from the family Pyralidae Ostrinia nubilalis Hubner (European corn borer); Amyelois transitella Walker (naval orangeworm); Anagasta kuehniella Zeller (Mediterranean flour moth); Cadra cautella Walker (almond moth); Chilo suppressalis Walker (rice stem borer); C.
- saccharalis Fabricius (surgarcane borer); Eoreuma loftini Dyar (Mexican rice borer); Ephestia elutella Hubner (tobacco (cacao) moth); Galleria mellonella Linnaeus (greater wax moth); Herpetogramma licarsisalis Walker (sod webworm); Homoeosoma electellum Hulst (sunflower moth); Elasmopalpus lignosellus Zeller (lesser cornstalk borer); Achroia grisella Fabricius (lesser wax moth); Loxostege sticticalis Linnaeus (beet webworm); Orthaga thyrisalis Walker (tea tree web moth); Maruca testulalis Geyer (bean pod borer); Plodia interpunctella Hubner (Indian meal moth); Scirpophaga incertulas Walker (yellow stem borer); Udea rubigal
- stultana Walsingham omnivorous leafroller
- Lobesia botrana Denis & Schiffermuller European grape vine moth
- Spilonota ocellana Denis & Schiffermuller eyespotted bud moth
- Endopiza viteana Clemens grape berry moth
- Eupoecilia ambiguella Hubner vine moth
- Bonagota salubricola Meyrick Brainzilian apple leafroller
- Grapholita molesta Busck oriental fruit moth
- Suleima helianthana Riley unsunflower bud moth
- Argyrotaenia spp. Choristoneura spp.
- Selected other agronomic pests in the order Lepidoptera include, but are not limited to, Alsophila pometaria Harris (fall cankerworm); Anarsia lineatella Zeller (peach twig borer); Anisota senatoria J. E.
- fiscellaria lugubrosa Hulst (Western hemlock looper); Leucoma salicis Linnaeus (satin moth); Lymantria dispar Linnaeus (gypsy moth); Manduca quinquemaculata Haworth (five spotted hawk moth, tomato hornworm); M.
- larvae and adults of the order Coleoptera including weevils from the families Anthribidae, Bruchidae and Curculionidae (including, but not limited to: Anthonomus grandis Boheman (boll weevil); Lissorhoptrus oryzophilus Kuschel (rice water weevil); Sitophilus granarius Linnaeus (granary weevil); S. oryzae Linnaeus (rice weevil); Hypera punctata Fabricius (clover leaf weevil); Cylindrocopturus adspersus LeConte (sunflower stem weevil); Smicronyx fulvus LeConte (red sunflower seed weevil); S.
- Anthonomus grandis Boheman boll weevil
- Lissorhoptrus oryzophilus Kuschel rice water weevil
- Sitophilus granarius Linnaeus granary weevil
- sordidus LeConte (gray sunflower seed weevil); Sphenophorus maidis Chittenden (maize billbug)); flea beetles, cucumber beetles, rootworms, leaf beetles, potato beetles and leafminers in the family Chrysomelidae (including, but not limited to: Leptinotarsa decemlineata Say (Colorado potato beetle); Diabrotica virgifera virgifera LeConte (western corn rootworm); D. barberi Smith and Lawrence (northern corn rootworm); D.
- Leafminers Agromyza parvicornis Loew corn blotch leafminer
- midges including, but not limited to: Contarinia sorghicola Coquillett (sorghum midge); Mayetiola destructor Say (Hessian fly); Sitodiplosis mosellana Gehin (wheat midge); Neolasioptera murtfeldtiana Felt, (sunflower seed midge)); fruit flies (Tephritidae), Oscinella frit Linnaeus (fruit flies); maggots (including, but not limited to: Delia platura Meigen (seedcorn maggot); D.
- insects of interest are adults and nymphs of the orders Hemiptera and Homoptera such as, but not limited to, adelgids from the family Adelgidae, plant bugs from the family Miridae, cicadas from the family Cicadidae, leafhoppers, Empoasca spp.; from the family Cicadellidae, planthoppers from the families Cixiidae, Flatidae, Fulgoroidea, Issidae and Delphacidae, treehoppers from the family Membracidae, psyllids from the family Psyllidae, whiteflies from the family Aleyrodidae, aphids from the family Aphididae, phylloxera from the family Phylloxeridae, mealybugs from the family Pseudococcidae, scales from the families Asterolecanidae, Coccidae, Dactylopii
- Agronomically important members from the order Homoptera further include, but are not limited to: Acyrthisiphon pisum Harris (pea aphid); Aphis craccivora Koch (cowpea aphid); A. fabae Scopoli (black bean aphid); A. gossypii Glover (cotton aphid, melon aphid); A. maidiradicis Forbes (corn root aphid); A. pomi De Geer (apple aphid); A.
- citricida Kirkaldy (brown citrus aphid); Melanaphis sacchari (sugarcane aphid); Adelges spp. (adelgids); Phylloxera devastatrix Pergande (pecan phylloxera ); Bemisia tabaci Gennadius (tobacco whitefly, sweetpotato whitefly); B. argentifoii Bellows & Perring (silverleaf whitefly); Dialeurodes citri Ashmead (citrus whitefly); Trialeurodes abutiloneus (bandedwinged whitefly) and T.
- vaporariorum Westwood greenhouse whitefly
- Empoasca fabae Harris potato leafhopper
- Laodelphax striatellus Fallen small brown planthopper
- Macrolestes quadrilineatus Forbes aster leafhopper
- Nephotettix cinticeps Uhler green leafhopper
- nigropictus Stal (rice leafhopper); Nilaparvata lugens Stal (brown planthopper); Peregrinus maidis Ashmead (corn planthopper); Sogatella furcifera Horvath (white backed planthopper); Sogatodes orizicola Muir (rice delphacid); Typhlocyba pomaria McAtee (white apple leafhopper); Erythroneoura spp.
- Agronomically important species of interest from the order Hemiptera include, but are not limited to: Acrosternum hilare Say (green stink bug); Anasa tristis De Geer (squash bug); Blissus leucopterus leucopterus Say (chinch bug); Corythuca gossypii Fabricius (cotton lace bug); Cyrtopeltis modesta Distant (tomato bug); Dysdercus suturellus Herrich-Schaffer (cotton stainer); Euschistus servus Say (brown stink bug); E. variolarius Palisot de Beauvais (one spotted stink bug); Graptostethus spp.
- rugulipennis Poppius European tarnished plant bug
- Lygocoris pabulinus Linnaeus common green capsid
- Nezara viridula Linnaeus (southern green stink bug); Oebalus pugnax Fabricius (rice stink bug); Oncopeltus fasciatus Dallas (large milkweed bug); Pseudatomoscelis seriatus Reuter (cotton flea hopper).
- embodiments may be effective against Hemiptera such, Calocoris norvegicus Gmelin (strawberry bug); Orthops campestris Linnaeus; Plesiocoris rugicollis Fallen (apple capsid); Cyrtopeltis modestus Distant (tomato bug); Cyrtopeltis notatus Distant (suckfly); Spanagonicus albofasciatus Reuter (whitemarked fleahopper); Diaphnocoris chlorionis Say (honeylocust plant bug); Labopidicola allii Knight (onion plant bug); Pseudatomoscelis seriatus Reuter (cotton fleahopper); Adelphocoris rapidus Say (rapid plant bug); Poecilocapsus lineatus Fabricius (four lined plant bug); Nysius ericae Schilling (false chinch bug); Nysius raphanus Howard (false chinch bug); Nezara virid
- Insect pests of the order Thysanura are of interest, such as Lepisma saccharina Linnaeus (silverfish); Thermobia domestica Packard (firebrat).
- Additional arthropod pests covered include: spiders in the order Araneae such as Loxosceles reclusa Gertsch and Mulaik (brown recluse spider) and the Latrodectus mactans Fabricius (black widow spider) and centipedes in the order Scutigeromorpha such as Scutigera coleoptrata Linnaeus (house centipede).
- Insect pests of interest include the superfamily of stink bugs and other related insects including but not limited to species belonging to the family Pentatomidae ( Nezara viridula, Halyomorpha halys, Piezodorus guildini, Euschistus servus, Acrosternum hilare, Euschistus heros, Euschistus tristigmus, Acrosternum hilare, Dichelops furcatus, Dichelops melacanthus , and Bagrada hilaris (Bagrada Bug)), the family Plataspidae ( Megacopta cribraria —Bean plataspid) and the family Cydnidae ( Scaptocoris castanea —Root stink bug) and Lepidoptera species including but not limited to: diamondback moth, e.g., Helicoverpa zea Boddie; soybean looper, e.g., Pseudoplusia includens Walker and velvet bean caterpillar e
- Nematodes include parasitic nematodes such as root-knot, cyst and lesion nematodes, including Heterodera spp., Meloidogyne spp. and Globodera spp.; particularly members of the cyst nematodes, including, but not limited to, Heterodera glycines (soybean cyst nematode); Heterodera schachtii (beet cyst nematode); Heterodera avenae (cereal cyst nematode) and Globodera rostochiensis and Globodera pailida (potato cyst nematodes).
- Lesion nematodes include Pratylenchus spp.
- the taught insecticidal proteins are active against an insect that is resistant to a Cry protein.
- the taught insecticidal proteins may be active against an insect that is resistant to mCry3A, Cry3Bbl, eCry3.1Ab, and the binary protein complex Cry34Abl/Cry35Abl.
- the taught insecticidal proteins are active against a western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) that is resistant to a Cry protein (e.g. Cry3Bb1 protein expressed by MON88017).
- the taught insecticidal proteins are active against a western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) that is resistant to a Cry protein (e.g. mCry3A).
- WCR western corn rootworm
- the taught insecticidal proteins can be toxic to the corn rootworms of Diabrotica barberi and Diabrotica undecimpunctata howardi and other beetle species such as Diabrotica speciosa and Phyllotreta cruciferae.
- the taught insecticidal proteins are not toxic to spotted lady beetle ( Coleomegilla maculata ) or certain Lepidopterans or certain Hemipterans. See, U.
- seed treatment options can provide additional crop plan flexibility and cost effective control against insects, weeds and diseases.
- Seed material can be treated, typically surface treated, with a composition comprising combinations of chemical or biological herbicides, herbicide safeners, insecticides, fungicides, germination inhibitors and enhancers, nutrients, plant growth regulators and activators, bactericides, nematocides, and/or molluscicides.
- These compounds are typically formulated together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
- the coatings may be applied by impregnating propagation material with a liquid formulation or by coating with a combined wet or dry formulation. Examples of the various types of compounds that may be used as seed treatments are provided in The Pesticide Manual: A World Compendium, C.D.S. Tomlin Ed., Published by the British Crop Production Council, which is hereby incorporated by reference.
- Some seed treatments that may be used on crop seed include, but are not limited to, one or more of abscisic acid, acibenzolar-S-methyl, avermectin, amitrol, azaconazole, azospirillum, azadirachtin, azoxystrobin, Bacillus spp. (including one or more of cereus, firmus, megaterium, pumilis, sphaericus, subtilis and/or thuringiensis species), bradyrhizobium spp.
- captan including one or more of betae, canariense, elkanii, iriomotense, japonicum, liaonigense, pachyrhizi and/or yuanmingense
- captan including one or more of betae, canariense, elkanii, iriomotense, japonicum, liaonigense, pachyrhizi and/or yuanmingense
- captan including one or more of betae, canariense, elkanii, iriomotense, japonicum, liaonigense, pachyrhizi and/or yuanmingense
- captan including one or more of betae, canariense, elkanii, iriomotense, japonicum, liaonigense, pachyrhizi and/or yuanmingense
- captan including one or more of betae, canariense
- Seed varieties and seeds with specific transgenic traits may be tested to determine which seed treatment options and application rates may complement such varieties and transgenic traits in order to enhance yield.
- a variety with good yield potential but head smut susceptibility may benefit from the use of a seed treatment that provides protection against head smut
- a variety with good yield potential but cyst nematode susceptibility may benefit from the use of a seed treatment that provides protection against cyst nematode, and so on.
- a variety encompassing a transgenic trait conferring insect resistance may benefit from the second mode of action conferred by the seed treatment
- a variety encompassing a transgenic trait conferring herbicide resistance may benefit from a seed treatment with a safener that enhances the plants resistance to that herbicide, etc.
- methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally effective amount of a recombinant protein as taught herein. In some embodiments, methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally effective amount of a pesticidal protein of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54,
- methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally effective amount of a recombinant protein as taught herein.
- methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally effective amount of a pesticidal protein of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO:
- controlling a pest population or “controls a pest” refers to any effect on a pest that results in limiting the damage that the pest causes. Controlling a pest includes, but is not limited to, killing the pest, inhibiting development of the pest, altering fertility or growth of the pest in such a manner that the pest provides less damage to the plant, decreasing the number of offspring produced, producing less fit pests, producing pests more susceptible to predator attack or deterring the pests from eating the plant.
- methods are provided for controlling an insect pest population resistant to a pesticidal protein, comprising contacting the insect pest population with an insecticidally effective amount of a recombinant protein as taught herein.
- methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof a recombinant polynucleotide encoding a pesticidal protein as taught herein.
- methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof a recombinant polynucleotide encoding a pesticidal protein of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46
- the methods comprise providing a plant or plant cell expressing a polynucleotide encoding the pesticidal polypeptide sequence disclosed herein and growing the plant or a seed thereof in a field infested with a pest against which the polypeptide has pesticidal activity.
- the polypeptide has pesticidal activity against a Lepidopteran, Coleopteran, Dipteran, Hemipteran or nematode pest, and the field is infested with a Lepidopteran, Hemipteran, Coleopteran, Dipteran or nematode pest.
- the “yield” of the plant refers to the quality and/or quantity of biomass produced by the plant.
- Biomass as used herein refers to any measured plant product.
- An increase in biomass production is any improvement in the yield of the measured plant product.
- Increasing plant yield has several commercial applications. For example, increasing plant leaf biomass may increase the yield of leafy vegetables for human or animal consumption. Additionally, increasing leaf biomass can be used to increase production of plant derived pharmaceutical or industrial products.
- An increase in yield can comprise any statistically significant increase including, but not limited to, at least a 1% increase, at least a 3% increase, at least a 5% increase, at least a 10% increase, at least a 20% increase, at least a 30%, at least a 50%, at least a 70%, at least a 100% or a greater increase in yield compared to a plant not expressing the pesticidal sequence.
- plant yield is increased as a result of improved pest resistance of a plant expressing an insecticidal protein disclosed herein.
- a hidden Markov model is a statistical model that can be used to describe the evolution of observable events that depend on internal factors, which are not directly observable.
- the observed event is called a “symbol” and the invisible factor underlying the observation a “state”.
- An HMM consists of two stochastic processes, namely, an invisible process of hidden states and a visible process of observable symbols.
- the hidden states form a Markov chain, and the probability distribution of the observed symbol depends on the underlying state. For this reason, an HMM is also called a doubly-embedded stochastic process.
- Modeling observations in these two layers is very useful, since many real world problems deal with classifying raw observations into a number of categories, or class labels, which are more meaningful.
- This approach is useful in modeling biological sequences, such as proteins and DNA sequences.
- a biological sequence consists of smaller substructures with different functions, and different functional regions often display distinct statistical properties.
- proteins generally consist of multiple domains.
- HMMs can be used to predict the constituting domains (corresponding to one or more states in an HMM) and their locations in the amino acid sequence (observations).
- HMMs have been shown to be very effective in representing biological sequences.
- HMMs have become increasingly popular in computational molecular biology, bioinformatics, and many state-of-the-art sequence analysis algorithms have been built on HMMs. See, Byung-Jun Yoon, “Hidden Markov Models and Their Applications in Biological Sequence Analysis,” Current Genomics, 2009, Vol. 10, pgs. 402-415, for a comprehensive review, said article is incorporated herein by reference.
- a Markov model is a system that produces a Markov chain
- a hidden Markov model is one where the rules for producing the chain are unknown or “hidden.”
- the rules include two probabilities: (i) that there will be a certain observation and (ii) that there will be a certain state transition, given the state of the model at a certain time.
- the Hidden Markov Model (HMM) method is a mathematical approach to solving certain types of problems: (i) given the model, find the probability of the observations; (ii) given the model and the observations, find the most likely state transition trajectory; and (iii) maximize either i or ii by adjusting the model's parameters.
- algorithms have been developed, for example: (i) Forward-Backward, (ii) Viterbi, and (iii) Baum-Welch (and the Segmental K-means alternative), among others
- HMMER is a HMM software package that is used to search sequence databases for homologs of protein or DNA sequences, and to make sequence alignments.
- HMIER can be used to search sequence databases with single query sequences, but it becomes particularly powerful when the query is an alignment of multiple instances of a sequence family.
- HMMER makes a profile of the query that assigns a position-specific scoring system for substitutions, insertions, and deletions.
- HMIER profiles are probabilistic models called “profile hidden Markov models” (profile HMMs) (Krogh et al., 1994; Eddy, 1998; Durbin et al., 1998).
- profile HMMs profile hidden Markov models
- HMMER Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs, because of the strength of its underlying probability models.
- Profile HMMs are statistical models of multiple sequence alignments, or even of single sequences. They capture position-specific information about how conserved each column of the alignment is, and which residues are likely. Anders Krogh, David Haussler, and co-workers at UC Santa Cruz introduced profile HMMs to computational biology (Krogh et al., 1994), adopting HMM techniques which have been used for years in speech recognition. HMMs had been used in biology before the Krogh/Haussler work, notably by Gary Churchill (Churchill, 1989), but the Krogh paper had a dramatic impact because HMM technology was so well-suited to the popular “profile” methods for searching databases using multiple sequence alignments instead of single query sequences.
- Profiles had been introduced by Gribskov and colleagues (Gribskov et al., 1987, 1990), and several other groups introduced similar approaches at about the same time, such as “flexible patterns” (Barton, 1990), and “templates” (Bashford et al., 1987; Taylor, 1986).
- the term “profile” has stuck. All profile methods (including PSI-BLAST (Altschul et al., 1997)) are more or less statistical descriptions of the consensus of a multiple sequence alignment. They use position-specific scores for amino acids or nucleotides (residues) and position specific penalties for opening and extending an insertion or deletion.
- HMMs have a formal probabilistic basis. They use probability theory to guide how all the scoring parameters should be set. For example, HMMs have a consistent theory for setting position-specific gap and insertion scores. The methods are consistent and therefore highly automatable, allowing one to make libraries of hundreds of profile HMMs and apply them on a very large scale to whole genome analysis.
- Pfam Nonnhammer et al., 1997; Finn et al., 2010
- the construction and use of Pfam is tightly tied to the HMMIER software package.
- IPDP Insecticidal Protein Discovery Platform
- the disclosure presents a platform for discovering novel insecticidal proteins from highly heterogeneous environmental sources.
- the methodology utilizes metagenomic enrichment procedures and genetic amplification techniques, which enables access to a broad class of unknown microbial diversity and their resultant proteome.
- FIG. 1 provides an overall workflow illustrating the TPDP, which will be discussed in detail below.
- a series of dilutions of the supernatant is plated on nutrient limiting agar containing cyclohexamide to reduce fungal growth.
- the current IPDP utilizes a proprietary media, and media growth procedure, in order to enrich for microbes of a particular Genus (e.g. Pseudomonas in certain embodiments).
- Genus e.g. Pseudomonas in certain embodiments.
- Genomic DNA was isolated from the pelleted metagenomics sample using standard bacterial genomic DNA isolation techniques.
- Proprietary degenerate primers were utilized to amplify genes encoding proteins from the monalysin class from the metagenomic DNA sample.
- a “monalysin class” of protein can be a protein that has a degree of similarity to, e.g. SEQ ID NO: 87, from Table 1.
- the present IPDP has a substantial library of proprietary degenerate primers, which can be utilized to search for proteins in this class.
- Amplified DNA of ⁇ 800 bp in size were separated by gel electrophoresis and recovered utilizing standard techniques.
- the degenerate primers include tails compatible for cloning into a DNA plasmid.
- the PCR-amplified DNA were cloned and sequenced to identify full-length genes encoding proteins with similarity to the published monalysin sequence from Opota et al.
- “Monalysin-like” proteins can be defined as proteins that have some degree of similarity to the monalysin protein described in Opota, et al., See Opota, et al., “Monalysin, a Novel ⁇ -Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila , Contributes to Host Intestinal Damage and Lethality,” PLoS Pathogens, September 2011, Vol. 7, Issue 9 (incorporated herein by reference).
- the terms “monalysin-like” and “monalysin class” of protein are used interchangeably.
- the current application provides the sequence for the monalysin described in Opota in Table 1, and SEQ ID NO: 87.
- Genomic DNA collected from bacteria isolated on rich media from the original environmental sample did not yield any amplified product using degenerate PCR.
- the nutrient limited agar (developed to enrich for microbes of a particular Genus) step was successful in allowing the IPDP to access microbial organisms that are often not available to current methods in the art.
- sequencing of the enriched genomic DNA did not yield the number of sequences that were eventually obtained utilizing the above described combined approach (i.e. enrichment and degenerate PCR amplification), suggesting the discovered insecticidal protein sequences are quite rare, even in the enriched populations, and the amplification step following enrichment is preferred in some aspects.
- the IPDP can optionally involve the use of an HMM to identify insecticidal proteins.
- An HMM profile built based on known insecticidal proteins e.g., an HMM built based on known monalysins
- new insecticidal proteins can be identified by comparing sequences in the enriched DNA library to sequences encoding known insecticidal proteins in genomic databases, e.g., using sequence analysis tools like BLAST and searching for mutual best hit sequences against sequences in GENBANK.
- Example 5 An example of the HMM process is described in Example 5 and an example HMM built using insecticidal proteins identified using methods described herein is provided in Table 6.
- the HM/M was built using eight insecticidal proteins discovered via the IPDP and found in Table 3. These proteins have the amino acid sequences shown in: a) SEQ ID NO: 2 that is ZIP1, b) SEQ ID NO: 4 that is ZIP2, c) SEQ ID NO: 12 that is ZIP6, d) SEQ ID NO: 14 that is ZIP8, e) SEQ ID NO: 16 that is ZIP9, f) SEQ ID NO: 18 that is ZIP10, g) SEQ ID NO: 20 that is ZIP11, and h) SEQ ID NO: 22 that is ZIP12.
- an enriched genomic DNA library built using the methods disclosed herein can be searched using the HMNM provided in Table 6.
- sequences which receive a high score based on that comparison can be identified as new insecticidal proteins.
- sequences receiving a high score are those sequences which score at or above a bit score of 521.5 and/or sequences which match with an E-value of less than or equal to 7.9e ⁇ 161 when scored using the HMM in Table 6.
- the disclosure provides novel insecticidal proteins, the proteins having an amino acid sequence which score at or above a bit score of 521.5 and/or sequences which match at an E-value of less than or equal to 7.9e ⁇ 161 when scored using the HMIM in Table 6.
- proteins can be provided in any form (e.g., as isolated or recombinant proteins) or as part of any of the compositions (e.g., plants or agricultural compositions) disclosed herein.
- IPDP novel Insecticidal Protein discovery platform.
- Novel Insecticidal Describes a select set of novel Proteins Discovered insecticidal proteins identified via the with the IPDP IPDP.
- 3 Insecticidal Proteins - Describes a lysate feeding assay that Lysate Insect contains an insecticidal protein Feeding Assays discovered via the IPDP, which shows 100% mortality against an insect pest from the Pentatomidae family (i.e. Halyomorpha halys St ⁇ l, 1855).
- IPDP - HMM Describes implementation of the IPDP's Construction Hidden Markov Model feature to predict undiscovered insecticidal proteins.
- Transformed Plants Describes experiments conducted demonstrating plants transformed to express the insecticidal proteins.
- IPDP Insecticidal Protein Discovery Platform
- This material was resuspended in 50 mL of PBS and stirred continuously for 15 minutes. After 15 minutes, large particulates were allowed to settle and serial dilutions of the supernatant were plated on a proprietary nutrient limiting agar media containing cyclohexamide to reduce fungal growth. Plates were grown at 18° C. for 10-14 days.
- Genomic DNA was isolated from cell pellets using the Wizard Genomic DNA Purification Kit from Promega.
- Proprietary degenerate primers were used to amplify DNA via PCR. Amplicons of ⁇ 800 bp were gel purified and cloned into a DNA plasmid vector.
- IPDP from Example 1 was able to identify at least 36 novel insecticidal proteins, which are represented in the below Table 3.
- insecticidal proteins that have at least a 20% sequence identity difference from any known protein in this class were selected for further analysis and include: (1) ZIP1, (2) ZIP2, (3) ZIP6, (4) ZIP8, (5) ZIP9, (6) ZIP10, (7) ZIP11, and (8) ZIP12. These proteins share significant homology amongst one another and therefore point to conserved insecticidal domains that could be shared among this novel group of insecticidal proteins.
- the multiple sequence alignment for these eight proteins can be found in FIG. 3 with a corresponding phylogenetic tree found in FIG. 5 .
- FIG. 4 illustrates a multiple sequence alignment comparing eight of the discovered insecticidal proteins (i.e., ZIP1, ZIP2, ZIP6, ZIP8, ZIP9, ZIP10, ZIP11, and ZIP12) to that of Monalysin, with a corresponding phylogenetic tree found in FIG. 6 .
- Table 4 is an identity matrix, which illustrates the percent identity amongst the 32 aforementioned proteins having at least 20% sequence identity difference from any known protein in this class.
- Table 5 compares the identity from these newly discovered 32 proteins to that of Monalysin, which was the first protein discovered in this class. As can be seen from Table 5, the taught insecticidal proteins are sufficiently different from Monalysin at the amino acid level.
- a multiple sequence alignment for the eight novel insecticidal proteins from Table 3 (i.e., ZIP1, ZIP2, ZIP6, ZIP8, ZIP9, ZIP10, ZIP11, and ZIP12) can be found in FIG. 3 , with a corresponding phylogenetic tree found in FIG. 5 .
- a multiple sequence alignment of the eight novel insecticidal proteins from Table 3 i.e., ZIP1, ZIP2, ZIP6, ZIP8, ZIP9, ZIP10, ZIP11, and ZIP12
- monalysin can be found in FIG. 4 , with a corresponding phylogenetic tree found in FIG. 6 .
- Example 3 Insecticidal Proteins—Lysate Insect Feeding Assays
- an insecticidal protein as taught herein demonstrates significant insecticidal activity against a member of the Order Hemiptera and family Pentatomidae.
- Example 4 Insecticidal Proteins—Purified Protein Insect Feeding Assays
- Lysate from bacteria expressing these 10 tagged proteins were incubated with Ni-NTA beads (Qiagen) to specifically bind the proteins. These proteins were eluted from the beads, dialyzed and used for insect feeding assay utilizing Brown Marmorated Stinkbugs ( Halyomorpha halys ).
- insect bioassays against members of the two other major Orders of insects—Fall Armyworm ( Spodoptera frugiperda ) from the order Lepidoptera and Southern Corn Rootworm ( Diabrotica undecimpunctata ) from the order Coleoptera. Briefly, for Fall armyworm, warm multispecies insect diet is dispensed into standard 128-well bioassay trays at a rate of 1.0 ml/well which provides a surface area of 1.5 cm 2 within each well. Each test well was treated by applying 40 ⁇ l of purified protein onto the diet surface. Once the application has dried, one neonate fall armyworm larva is placed into each well. The assay consists of 16 individual wells per treatment. Buffer-only treated wells serve as the negative control. Growth by weight was measured after 7 days.
- Southern Corn Rootworm The methods used for Southern Corn Rootworm were similar to those used for Fall Armyworm except a Southern Corn Rootworm specific diet was used.
- insecticidal proteins as taught herein demonstrates significant growth inhibitory activity against a members of the Order Lepidoptera and family Noctuidae, and the Order Coleoptera and family Chrysomelidae.
- the IPDP can optionally involve the utilization of a HMNM algorithm and modeling procedure. This procedure allows for the development of a HMM profile from the discovered insecticidal protein sequences that identifies genes encoding monalysin-like insecticidal proteins that would not be possible to identify using some methods of the art, e.g. BLAST.
- HMIM process An example of the HMIM process is described below and was built using eight insecticidal proteins discovered via the IPDP and found in Table 3 and highlighted in FIG. 4 .
- An example HIMM built using eight insecticidal proteins identified using methods described herein is provided in Table 6. These proteins have the amino acid sequences shown in: a) SEQ ID NO: 2 that is ZIP1, b) SEQ ID NO: 4 that is ZIP2, c) SEQ ID NO: 12 that is ZIP6, d) SEQ ID NO: 14 that is ZIP8, e) SEQ ID NO: 16 that is ZIP9, f) SEQ ID NO: 18 that is ZIP10, g) SEQ ID NO: 20 that is ZIP11 and h) SEQ ID NO: 22 that is ZIP12.
- the model was constructed using the HMMER software (Version 3.1b2; February 2015) and the output model can be found in Table 6.
- the HMM utilized the aforementioned eight sequences to create a model of what a “monalysin-like” sequence (based on the eight utilized sequences) would entail. Now, based on the HIMM, it is possible to analyze future putative insecticidal proteins discovered with the IPDP to determine the likelihood that the newly discovered sequences are a “monalysin-like” sequence.
- Soybean seeds are surface sanitized in 20% Clorox, rinsed with sterile water, then primed by allowing them to sit for 2 hours at room temperature. Seeds are then imbibed in Germination Medium overnight. Meristem explants are prepared the next day by removing seed coats and cotyledons from the seed. Meristem explants are then either dried under a variety of conditions, or used fresh.
- vectors are coated onto gold particles (0.6 ⁇ m) for particle bombardment via the Bio-Rad PDS-1000 Helium gun according to standard protocol.
- particle bombardment explants are pre-cultured overnight, bombarded, allowed to rest, then transferred to selection.
- Shoots from spectinomycin resistant plantlets are harvested and rooted on rooting media containing IAA and spectinomycin. Rooted plants are transplanted to soil and grown in the greenhouse to produce T1 seed.
- Immature embryos (1.5-2.0 mm) from greenhouse or field grown Hi-II maize are dissected out in a sterile hood. Embryos are co-cultured for 1-2 days at 23° C. in the dark with Agrobacterium strain AGL-1 at a final OD660 of ⁇ 0.4 axis side down on solid co-cultivation medium. Embryos are then transferred to solid induction media, axis side down, and incubated at 28° C. for 5 days in the dark. Embryos are then transferred to solid selection 1 medium (bialaphos) and incubated at 28° C. for two weeks in the dark. Embryos are transferred to solid selection medium 2 (bialaphos) and incubated at 28° C.
- Resistant callus forming embryos are transferred every two weeks until diameter is about 1.5-2 cm.
- insect feeding assays are being carried out with a part (e.g. leaves, stems, roots, flowers, fruits, seeds, or seedlings) of the transformed plants stably expressing the insecticidal proteins of interest, including ZIP1, ZIP2, and ZIP4 shown in Example 6 as well as other ZIP proteins found in Table 3.
- a part e.g. leaves, stems, roots, flowers, fruits, seeds, or seedlings
- the transformed plants stably expressing the insecticidal proteins of interest, including ZIP1, ZIP2, and ZIP4 shown in Example 6 as well as other ZIP proteins found in Table 3.
- An insecticidal protein encoding nucleic acid, as set forth in Table 3, or an insecticidal protein having an amino acid sequence, as set forth in Table 3, are embodiments of the present disclosure, as well as methods of using the same for the control of insect pests, and methods of discovering same.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pest Control & Pesticides (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Environmental Sciences (AREA)
- Virology (AREA)
- Agronomy & Crop Science (AREA)
- Insects & Arthropods (AREA)
- Cell Biology (AREA)
- Dentistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Physiology (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Farming Of Fish And Shellfish (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/977,778 US20210015109A1 (en) | 2018-03-02 | 2019-03-01 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862637515P | 2018-03-02 | 2018-03-02 | |
PCT/US2019/020218 WO2019169227A1 (en) | 2018-03-02 | 2019-03-01 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
US16/977,778 US20210015109A1 (en) | 2018-03-02 | 2019-03-01 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210015109A1 true US20210015109A1 (en) | 2021-01-21 |
Family
ID=65767319
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/977,778 Pending US20210015109A1 (en) | 2018-03-02 | 2019-03-01 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
US17/009,438 Active US11046974B2 (en) | 2018-03-02 | 2020-09-01 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
US17/328,883 Abandoned US20210277414A1 (en) | 2018-03-02 | 2021-05-24 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/009,438 Active US11046974B2 (en) | 2018-03-02 | 2020-09-01 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
US17/328,883 Abandoned US20210277414A1 (en) | 2018-03-02 | 2021-05-24 | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
Country Status (9)
Country | Link |
---|---|
US (3) | US20210015109A1 (de) |
EP (1) | EP3759122A1 (de) |
JP (1) | JP2021514643A (de) |
KR (1) | KR20200127180A (de) |
CN (1) | CN111770995A (de) |
AR (1) | AR114446A1 (de) |
BR (1) | BR112020017975A2 (de) |
CA (1) | CA3088011A1 (de) |
WO (1) | WO2019169227A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11046974B2 (en) | 2018-03-02 | 2021-06-29 | Zymergen Inc. | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113337503B (zh) * | 2021-04-09 | 2022-11-22 | 广东省农业科学院植物保护研究所 | 褐飞虱nlsp7作为靶点在防治褐飞虱中的应用 |
WO2024044596A1 (en) * | 2022-08-23 | 2024-02-29 | AgBiome, Inc. | Pesticidal genes and methods of use |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200267993A1 (en) * | 2017-11-09 | 2020-08-27 | Dow Agrosciences Llc | Hemipteran active insecticidal protein |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2164633T3 (es) | 1989-02-24 | 2002-03-01 | Monsanto Technology Llc | Genes vegetales sinteticos y procedimiento para su preparacion. |
US5188960A (en) | 1989-06-27 | 1993-02-23 | Mycogen Corporation | Bacillus thuringiensis isolate active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins |
US6083499A (en) | 1996-04-19 | 2000-07-04 | Mycogen Corporation | Pesticidal toxins |
US6063756A (en) | 1996-09-24 | 2000-05-16 | Monsanto Company | Bacillus thuringiensis cryET33 and cryET34 compositions and uses therefor |
US6713063B1 (en) | 1996-11-20 | 2004-03-30 | Monsanto Technology, Llc | Broad-spectrum δ-endotoxins |
US6017534A (en) | 1996-11-20 | 2000-01-25 | Ecogen, Inc. | Hybrid Bacillus thuringiensis δ-endotoxins with novel broad-spectrum insecticidal activity |
US5942664A (en) | 1996-11-27 | 1999-08-24 | Ecogen, Inc. | Bacillus thuringiensis Cry1C compositions toxic to lepidopteran insects and methods for making Cry1C mutants |
US6218188B1 (en) | 1997-11-12 | 2001-04-17 | Mycogen Corporation | Plant-optimized genes encoding pesticidal toxins |
EP1124967B1 (de) | 1998-10-23 | 2006-05-24 | Mycogen Corporation | Für 15kda und 45kda pestizid-proteine kodierende pflanzen-optimierte polynukleotide |
US6489542B1 (en) | 1998-11-04 | 2002-12-03 | Monsanto Technology Llc | Methods for transforming plants to express Cry2Ab δ-endotoxins targeted to the plastids |
US6248535B1 (en) | 1999-12-20 | 2001-06-19 | University Of Southern California | Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens |
CA2490548A1 (en) | 2002-06-26 | 2004-01-08 | E.I. Du Pont De Nemours And Company | Genes encoding proteins with pesticidal activity |
US7462760B2 (en) | 2002-06-26 | 2008-12-09 | Pioneer Hi-Bred International, Inc. | Genes encoding plant protease-resistant pesticidal proteins and method of their use |
US20060112447A1 (en) | 2002-08-29 | 2006-05-25 | Bogdanova Natalia N | Nucleotide sequences encoding cry1bb proteins for enhanced expression in plants |
US20040210964A1 (en) | 2003-02-20 | 2004-10-21 | Athenix Corporation | AXMI-009, a delta-endotoxin gene and methods for its use |
US20040197917A1 (en) | 2003-02-20 | 2004-10-07 | Athenix Corporation | AXMI-014, delta-endotoxin gene and methods for its use |
US7351881B2 (en) | 2003-02-20 | 2008-04-01 | Athenix Corporation | AXMI-008, a delta-endotoxin gene and methods for its use |
US20040210965A1 (en) | 2003-02-20 | 2004-10-21 | Athenix Corporation | AXMI-007, a delta-endotoxin gene and methods for its use |
US20040216186A1 (en) | 2003-02-20 | 2004-10-28 | Athenix Corporation | AXMI-006, a delta-endotoxin gene and methods for its use |
US7355099B2 (en) | 2003-02-20 | 2008-04-08 | Athenix Corporation | AXMI-004, a delta-endotoxin gene and methods for its use |
NZ567340A (en) | 2003-02-20 | 2008-10-31 | Athenix Corp | Delta-endotoxin genes of bacillus thuringiensis and methods for their use as pesticide |
MXPA06000293A (es) | 2003-07-07 | 2006-04-07 | Monsanto Technology Llc | Proteinas insecticidas secretadas a partir de bacillus thuringiensis y usos para las mismas. |
US7253343B2 (en) | 2003-08-28 | 2007-08-07 | Athenix Corporation | AXMI-003, a delta-endotoxin gene and methods for its use |
US20050183161A1 (en) | 2003-10-14 | 2005-08-18 | Athenix Corporation | AXMI-010, a delta-endotoxin gene and methods for its use |
EP1716230A2 (de) | 2004-02-20 | 2006-11-02 | Pioneer Hi-Bred International, Inc. | Lipasen und verwendungsverfahren |
AR048747A1 (es) | 2004-03-05 | 2006-05-24 | Agrigenetics Inc | Combinaciones de cry1ab y cry1fa como una herramienta para el control de la resistencia de los insectos |
US7036740B2 (en) | 2004-09-21 | 2006-05-02 | Michael Waters | Light card |
US20060212965A1 (en) | 2005-01-31 | 2006-09-21 | Athenix Corporation | AXMI-018, AXMI-020, and AXMI-021, a family of delta-endotoxin genes and methods for their use |
US7601498B2 (en) | 2005-03-17 | 2009-10-13 | Biotium, Inc. | Methods of using dyes in association with nucleic acid staining or detection and associated technology |
CA2601857A1 (en) | 2005-04-01 | 2006-10-12 | Nadine Carozzi | Axmi-027, axmi-036 and axmi-038, a family of delta-endotoxin genes and methods for their use |
EP1879913A1 (de) | 2005-05-02 | 2008-01-23 | Athenix Corporation | Axmi-028 und axmi-029, eine neue delta-endotoxin familie und ihre verwendung |
CN101300353A (zh) | 2005-08-31 | 2008-11-05 | 孟山都技术有限公司 | 用于制备抗虫转基因植物的杀虫组合物和方法 |
US7329736B2 (en) | 2006-04-14 | 2008-02-12 | Pioneer Hi-Bred International, Inc. | Bacillus thuringiensis cry gene and protein |
US7449552B2 (en) | 2006-04-14 | 2008-11-11 | Pioneer Hi-Bred International, Inc. | Bacillus thuringiensis cry gene and protein |
NZ573398A (en) | 2006-06-14 | 2011-11-25 | Athenix Corp | Axmi-031, axmi-039, axmi-040 and axmi-049, a family of delta-endotoxin genes and methods for their use |
EP2455394B1 (de) | 2006-06-15 | 2017-04-12 | Athenix Corporation | Pestizidproteinfamilie und Verwendungsverfahren dafür |
CA2672036C (en) | 2006-12-08 | 2015-10-13 | Pioneer Hi-Bred International, Inc. | Novel bacillus thuringiensis crystal polypeptides, polynucleotides, and compositions thereof |
ES2601577T3 (es) | 2007-03-28 | 2017-02-15 | Syngenta Participations Ag | Proteínas insecticidas |
US8609936B2 (en) | 2007-04-27 | 2013-12-17 | Monsanto Technology Llc | Hemipteran-and coleopteran active toxin proteins from Bacillus thuringiensis |
EP2201030A2 (de) | 2007-10-16 | 2010-06-30 | Athenix Corporation | Axmi-066 und axmi-076: delta-endotoxinproteine und anwendungsverfahren dafür |
EA020327B1 (ru) | 2008-06-25 | 2014-10-30 | Атеникс Корпорейшн | Гены токсинов и способы их применения |
EA035103B1 (ru) | 2008-07-02 | 2020-04-28 | Атеникс Корпорейшн | Инсектицидный полипептид axmi-115 дельта-эндотоксина и его применение |
CA2747826A1 (en) | 2008-12-23 | 2010-07-01 | Athenix Corporation | Axmi-150 delta-endotoxin gene and methods for its use |
BRPI0924153A2 (pt) | 2009-01-23 | 2016-05-24 | Pioneer Hi Bred Int | molécula de ácido nucleico isolado, construção de dna, célula hospedeira, planta transgênica, semente transformada, polipeptídeo isolado com atividade pesticida, composição e método para controlar uma população de praga de insetos, para exterminar uma praga de insetos, para produzir um polipeptídeo com atividade pesticida e para proteger uma planta de uma praga |
AR075371A1 (es) | 2009-02-05 | 2011-03-30 | Athenix Corp | Genes de delta endotoxina variante axmi-r1 y metodos de uso de los mismos |
US8318900B2 (en) | 2009-02-27 | 2012-11-27 | Athenix Corp. | Pesticidal proteins and methods for their use |
WO2010141141A2 (en) | 2009-03-11 | 2010-12-09 | Athenix Corporation | Axmi-001, axmi-002, axmi-030, axmi-035, and axmi-045: toxin genes and methods for their use |
CN102459315B (zh) | 2009-04-17 | 2016-03-02 | 陶氏益农公司 | Dig-3杀虫cry毒素 |
WO2010147880A2 (en) | 2009-06-16 | 2010-12-23 | Dow Agrosciences Llc | Dig-11 insecticidal cry toxins |
AR078052A1 (es) | 2009-07-02 | 2011-10-12 | Athenix Corp | Gen plaguicida axmi 205 de chromobacterium y metodos para su uso |
MX2012002951A (es) | 2009-09-11 | 2012-07-17 | Valent Biosciences Corp | Nuevo aislado de bacillus thuringiensis. |
WO2011075585A1 (en) | 2009-12-16 | 2011-06-23 | Dow Agrosciences Llc | Combined use of vip3ab and cry1fa for management of resistant insects |
CN102762095A (zh) | 2009-12-16 | 2012-10-31 | 陶氏益农公司 | 用于控制欧洲玉米螟的包含CRY1Ab和CYR2Aa的杀虫蛋白组合,和管理昆虫抗性的方法 |
NZ601102A (en) | 2009-12-16 | 2014-10-31 | Dow Agrosciences Llc | Use of cry1da in combination with cry1be for management of resistant insects |
CA2782626A1 (en) | 2009-12-16 | 2011-06-23 | Dow Agrosciences Llc | Insect resistance management with combinations of cry1be and cry1f proteins |
EP2512222B1 (de) | 2009-12-16 | 2018-01-24 | Dow AgroSciences LLC | Kombinierte verwendung von cry1ca- und cry1fa-proteinen für insektenbekämpfungsmanagement |
RU2596406C2 (ru) | 2009-12-16 | 2016-09-10 | ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи | КОМБИНИРОВАННОЕ ИСПОЛЬЗОВАНИЕ БЕЛКОВ CRY1Ca И CRY1Ab ДЛЯ КОНТРОЛЯ УСТОЙЧИВОСТИ НАСЕКОМЫХ |
CA2782546C (en) | 2009-12-16 | 2023-03-21 | Dow Agrosciences Llc | Combined use of cry1da and cry1fa proteins for insect resistance management |
BR122019005253A8 (pt) | 2010-02-18 | 2022-07-05 | Athenix Corp | Molécula de ácido nucleico recombinante, vetor, célula hospedeira, polipeptídeo recombinante com atividade pesticida, composição, bem como métodos para o controle de uma população de pragas para matar uma praga, para a produção de um polipeptídeo com atividade pesticida, para a proteção de uma planta de uma praga, e para aumentar o rendimento em uma planta |
AU2011218130B2 (en) | 2010-02-18 | 2016-03-03 | Athenix Corp. | AXMI218, AXMI219, AXMI220, AXMI226, AXMI227, AXMI228, AXMI229, AXMI230, and AXMI231 delta-endotoxin genes and methods for their use |
WO2011133895A1 (en) | 2010-04-23 | 2011-10-27 | Dow Agrosciences Llc | Combinations including cry34ab/35ab and cry6aaproteins to prevent development of resistance corn rootworms(diabrotica spp.) |
UA111592C2 (uk) | 2010-07-07 | 2016-05-25 | Сінгента Партісіпейшнс Аг | Спосіб контролю над твердокрилими комахами-шкідниками |
WO2012024200A2 (en) | 2010-08-19 | 2012-02-23 | Pioneer Hi-Bred International, Inc. | Novel bacillus thuringiensis gene with lepidopteran activity |
CA2807171A1 (en) | 2010-08-19 | 2012-02-23 | Pioneer Hi-Bred International, Inc. | Novel bacillus thuringiensis gene with lepidopteran activity |
CA3048240C (en) | 2011-02-11 | 2021-02-23 | Monsanto Technology Llc | Pesticidal nucleic acids and proteins and uses thereof |
MX346662B (es) | 2011-04-07 | 2017-03-27 | Monsanto Technology Llc | Familia de toxinas inhibidoras de insectos activas contra insectos hemipteros y lepidopteros. |
US8513494B2 (en) | 2011-04-08 | 2013-08-20 | Chunren Wu | Plants and seeds of spring canola variety SCV695971 |
UY34227A (es) | 2011-07-28 | 2013-02-28 | Athenix Corp | Acido nucleico recombinante que codifica el gen de la toxina axmi270, vectores, células, plantas y sus métodos de empleo |
UA122657C2 (uk) | 2011-07-29 | 2020-12-28 | Атенікс Корп. | Ген пестициду axmi279 та спосіб його застосування |
US9688730B2 (en) * | 2012-07-02 | 2017-06-27 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
EA030896B1 (ru) | 2013-08-16 | 2018-10-31 | Пайонир Хай-Бред Интернэшнл, Инк. | Инсектицидные белки и способы их применения |
BR122021005579B1 (pt) | 2013-09-13 | 2022-11-29 | Pioneer Hi-Bred International, Inc | Construto de dna, método de obtenção de planta transgênica, proteína de fusão, método para controlar uma população de praga de inseto, método para inibir o crescimento ou matar uma praga de inseto |
AU2016207026B2 (en) | 2015-01-15 | 2021-12-02 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
KR20200127180A (ko) | 2018-03-02 | 2020-11-10 | 지머젠 인코포레이티드 | 살충 단백질 발견 플랫폼 및 이로부터 발견된 살충 단백질 |
-
2019
- 2019-03-01 KR KR1020207024535A patent/KR20200127180A/ko unknown
- 2019-03-01 CA CA3088011A patent/CA3088011A1/en active Pending
- 2019-03-01 WO PCT/US2019/020218 patent/WO2019169227A1/en active Application Filing
- 2019-03-01 AR ARP190100524A patent/AR114446A1/es unknown
- 2019-03-01 EP EP19711215.4A patent/EP3759122A1/de not_active Withdrawn
- 2019-03-01 JP JP2020545249A patent/JP2021514643A/ja active Pending
- 2019-03-01 CN CN201980015137.5A patent/CN111770995A/zh active Pending
- 2019-03-01 BR BR112020017975-2A patent/BR112020017975A2/pt not_active Application Discontinuation
- 2019-03-01 US US16/977,778 patent/US20210015109A1/en active Pending
-
2020
- 2020-09-01 US US17/009,438 patent/US11046974B2/en active Active
-
2021
- 2021-05-24 US US17/328,883 patent/US20210277414A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200267993A1 (en) * | 2017-11-09 | 2020-08-27 | Dow Agrosciences Llc | Hemipteran active insecticidal protein |
Non-Patent Citations (3)
Title |
---|
Lang et al. Molecular Methods for Evolutionary Genetics, Chapter 14, page 245-256 (Year: 2011) * |
Opota et al. PLoS Pathogens 7:9 1-13 (Year: 2011) * |
Sonnhammer et al. Proteins: Structure, Function and Genetic 28:405-420 (Year: 1997) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11046974B2 (en) | 2018-03-02 | 2021-06-29 | Zymergen Inc. | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom |
Also Published As
Publication number | Publication date |
---|---|
AR114446A1 (es) | 2020-09-09 |
CN111770995A (zh) | 2020-10-13 |
KR20200127180A (ko) | 2020-11-10 |
CA3088011A1 (en) | 2019-09-06 |
JP2021514643A (ja) | 2021-06-17 |
BR112020017975A2 (pt) | 2020-12-29 |
US11046974B2 (en) | 2021-06-29 |
WO2019169227A1 (en) | 2019-09-06 |
US20210277414A1 (en) | 2021-09-09 |
EP3759122A1 (de) | 2021-01-06 |
US20200399654A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11325949B2 (en) | Insecticidal proteins and methods for their use | |
US20220010330A1 (en) | Insecticidal proteins and methods for their use | |
US20220024993A1 (en) | Insecticidal proteins and methods for their use | |
US11970705B2 (en) | Insecticidal proteins and methods for their use | |
US11208440B2 (en) | Structure based methods for modification of PIP-72 polypeptides and PIP-72 polypeptides derived therefrom | |
US11825843B2 (en) | Insecticidal proteins and methods for their use | |
US20210277414A1 (en) | Insecticidal protein discovery platform and insecticidal proteins discovered therefrom | |
US20230340522A1 (en) | Insecticidal proteins and methods for their use | |
US20210277390A1 (en) | Method for creating a genomic library enriched for bacillus and identification of novel cry toxins | |
US20220056469A1 (en) | Insecticidal proteins and methods for their use | |
US11193139B2 (en) | Insecticidal proteins and methods for their use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: ZYMERGEN INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JEFFREY;LIU, OLIVER;SHOCK, JENNIFER;AND OTHERS;SIGNING DATES FROM 20190730 TO 20190919;REEL/FRAME:053691/0263 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |