US20200335374A1 - Chip transferring machine - Google Patents

Chip transferring machine Download PDF

Info

Publication number
US20200335374A1
US20200335374A1 US16/599,312 US201916599312A US2020335374A1 US 20200335374 A1 US20200335374 A1 US 20200335374A1 US 201916599312 A US201916599312 A US 201916599312A US 2020335374 A1 US2020335374 A1 US 2020335374A1
Authority
US
United States
Prior art keywords
chip
module
conveyor belt
disposed
adhesive surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/599,312
Other versions
US10825704B1 (en
Inventor
Chien-Shou Liao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asti Global Inc Taiwan
Original Assignee
Asti Global Inc Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asti Global Inc Taiwan filed Critical Asti Global Inc Taiwan
Assigned to ASTI GLOBAL INC., TAIWAN reassignment ASTI GLOBAL INC., TAIWAN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIAO, CHIEN-SHOU
Publication of US20200335374A1 publication Critical patent/US20200335374A1/en
Application granted granted Critical
Publication of US10825704B1 publication Critical patent/US10825704B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G21/00Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors
    • B65G21/20Means incorporated in, or attached to, framework or housings for guiding load-carriers, traction elements or loads supported on moving surfaces
    • B65G21/2027Suction retaining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G35/00Mechanical conveyors not otherwise provided for
    • B65G35/04Mechanical conveyors not otherwise provided for comprising a flexible load carrier, e.g. a belt, which is wound up at one end and paid out at the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/91Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67333Trays for chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/98Methods for disconnecting semiconductor or solid-state bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2207/00Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
    • B65G2207/02Use of adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/13294Material of the matrix with a principal constituent of the material being a liquid not provided for in groups H01L2224/132 - H01L2224/13291
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/133Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75261Laser
    • H01L2224/75262Laser in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75261Laser
    • H01L2224/75263Laser in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7565Means for transporting the components to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/81005Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus being a temporary or sacrificial substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8122Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/81224Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present disclosure relates to a transferring machine, and more particularly to a chip transferring machine.
  • the present disclosure provides a chip transferring machine.
  • the present disclosure provides a chip transferring machine including: a chip carrier, a chip transferring module, and a chip carrier substrate.
  • the chip carrier carries a plurality of chips.
  • the chip transferring module includes at least one conveyor belt having an adhesive surface.
  • the chip carrier substrate carries the plurality of chips.
  • the chip carrier, the chip transferring module, and the chip carrier substrate are disposed on a same production line, and the chip carrier and the chip carrier substrate are disposed under or above the adhesive surface of the conveyor belt.
  • the present disclosure provides a chip transfer machine including a chip carrier, a chip transferring module, and a chip carrier substrate.
  • the chip transferring module includes at least one conveyor belt having an adhesive surface, and the chip carrier and the chip carrier substrate is disposed under or above the adhesive surface of the conveyor belt.
  • the chip transferring module including the at least one conveyor belt having the adhesive surface” and “the chip carrier, the chip transferring module, and the chip carrier substrate being disposed on the same production line, and the chip carrier and the chip carrier substrate being disposed under or above the adhesive surface of the conveyor belt,” the efficiency and speed of chip transferring can be improved.
  • FIG. 1 is a structural schematic view of a chip transferring machine according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an operation of a thimble module of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a state in which the chip transferring machine transfers a chip to a chip carrier substrate according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an operation of a push module of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a first state in a chip transfer process of the chip transferring machine according to the first embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a second state in the chip transfer process of the chip transferring machine according to the first embodiment of the present disclosure; wherein FIG. 6 and FIG. 5 depict the same chip transfer process.
  • FIG. 7 is a structural schematic view of the chip transferring machine according to the first embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an operation of the push module and the laser generating module of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 9 is a top view of the circuit substrate of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 10 is a structural schematic view of a chip transferring machine according to a second embodiment of the present disclosure.
  • FIG. 11 is a structural schematic view of the chip transferring machine according to the second embodiment of the present disclosure.
  • Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
  • a first embodiment of the present disclosure provides a chip transfer machine Z including a chip carrier 1 , a chip transferring module 2 , and a chip carrier substrate 3 .
  • the chip carrier 1 may be disposed under at least one conveyor belt 20 of the chip transferring module 2 and correspond to an adhesive surface 20 A of the conveyor belt 20 .
  • the chip carrier 1 can carry a plurality of chips C, each of the chips C has at least one solder Cl, and the solder Cl can be solder paste or other conductive materials.
  • the chip carrier 1 may include a carrier adjustment mechanism 10 and a carrier film 11 for carrying the chip C, and the carrier film 11 is disposed on the carrier adjustment mechanism 10 .
  • the carrier adjustment mechanism 10 can be an X-Y table, but the present disclosure is not limited thereto.
  • the carrier film 11 can be a blue PVC film, but the present disclosure is not limited thereto.
  • the carrier adjustment mechanism 10 can be fixed onto the carrier film 11 by suction or clamping, but the present disclosure is not limited thereto.
  • the carrier film 11 can carry the plurality of chips C, and there is a spacing D 1 between the adjacent two chips C.
  • the chip transferring module 2 includes the conveyor belt 20 having the adhesive surface 20 A, and the conveyor belt 20 may be a light-transmitting single-sided tape, but present disclosure is not limited thereto. Further, the chip transferring module 2 may further include at least two rollers 21 , one end of the conveyor belt 20 may be connected to one of the rollers 21 , and the other end of the conveyor belt 20 may be connected to the other roller 21 . Therefore, in a process of transferring and retracting the conveyor belt 20 , the conveyor belt 20 can be transferred from one of the rollers 21 to the other roller 21 , and is transferred in only one direction, but the present disclosure is not limited thereto.
  • the chip carrier substrate 3 can be used to carry a plurality of chips C, and the chip carrier substrate 3 can be disposed under the conveyor belt 20 of the chip transferring module 2 and corresponds to the adverse surface 20 A of the conveyor belt 20 .
  • the chip carrier substrate 3 may include a carrier substrate adjustment mechanism 30 and a circuit substrate 31 for carrying the chip C, and the circuit substrate 31 is disposed on the carrier substrate adjustment mechanism 30 .
  • the carrier substrate adjustment mechanism 30 can be an X-Y table, but the present disclosure is not limited thereto.
  • the chip carrier 1 , the chip transferring module 2 , and the chip carrier substrate 3 may be disposed on a same production line, and the chip carrier 1 and the chip carrier substrate 3 are disposed under the adhesive surface 20 A of the conveyor belt 20 . Therefore, the chip C on the chip carrier 1 can be transferred to the chip carrier substrate 3 by the conveyor belt 20 .
  • the chip transfer machine Z may further include: a thimble module 4 disposed under the chip carrier 1 , and the at least one chip C disposed on the chip carrier 1 is transferred by adhesion of the thimble module 4 to the adhesive surface 20 A of the conveyor belt 20 .
  • the thimble module 4 can be disposed under the carrier film 11 of the chip carrier 1 .
  • the material of the thimble module 4 can be a metal or plastic thimble, and a portion of the thimble module 4 that abuts against the chip C can be a sharp or blunt, but the present disclosure is not limited thereto. Therefore, as shown in FIG.
  • the thimble module 4 can pass through the carrier film 11 , and the chip C corresponding to the thimble module 4 can be abutted against the adhesive surface 20 A of the conveyor belt 20 , so that the chip C is attached to the adhesive surface 20 A by detaching from the carrier film 11 .
  • the above-mentioned process is repeated by the thimble module 4 , and the remaining chips C on the carrier film 11 are sequentially detached from the carrier film 11 and attached to the adhesive surface 20 A.
  • the chip transfer machine Z can also horizontally offset the thimble module 4 relative to the carrier film 11 by controlling the thimble module 4 , or the carrier film 11 can be horizontally offset relative to the thimble module 4 , so that the chip C is attached to the adhesive surface 20 A by the thimble module 4 sequentially or randomly abutting the chip C on the carrier film 11 .
  • the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • the chip transfer machine Z provided by the present disclosure may further include: a push module 5 disposed on at least one conveyor belt 20 and adhered to at least one chip C on the adhesive surface 20 A by the push module 5 abutting downwardly.
  • the push module 5 may be disposed above the conveyor belt 20 and face a non-adhesive surface 20 B.
  • the push module 5 may be a pillar of a metal or plastic material, but the present disclosure is not limited thereto.
  • the chip C when the chip C is transferred above the circuit substrate 31 through the adhesive surface 20 A of the conveyor belt 20 , the chip C adhered to the adhesive surface 20 A is transferred and disposed on the chip carrier substrate 31 by the push module 5 abutting downwardly.
  • the remaining chips C on the conveyor belt 20 can be transferred from the adhesive surface 20 A sequentially and then disposed on the circuit substrate 31 .
  • the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • the circuit substrate 31 provided with the chips C is subjected to a heating process so that the chips C are fixed by the solder C 1 and electrically connected to the circuit substrate 31 .
  • the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • the chip transfer machine Z may further include: a laser generating module 6 and a vacuum suction module 7 .
  • the laser generating module 6 and the vacuum suction module 7 are disposed above at least one conveyor belt 20 , and a laser beam L generated by the laser generating module 6 passes through at least one conveyor belt 20 to project onto the solder Cl disposed on at least one chip C.
  • the vacuum suction module 7 suctions at least one non-adhesive surface 20 B of the conveyor belt 20 to adjust the flatness of at least one conveyor belt 20 .
  • the chip transfer machine Z of the present disclosure can also be provided with the laser generating module 6 and the vacuum suction module 7 above the conveyor belt 20 . Therefore, after the chip C is transferred to the circuit substrate 31 , the laser beam L can be projected toward the chip C through the laser generating module 6 , and the laser beam L is projected through the conveyor belt 20 and projected on the solder C 1 disposed on the chip C, so that the solder C 1 is heated to be fixed and electrically connected to the circuit substrate 31 .
  • the flatness of the conveyor belt 20 can be maintained to avoid affecting the flatness of the conveyor belt 20 while the push module 5 is abutting downwardly against the conveyor belt 20 and the chip C, so that the chip C cannot easily attach to the adhesive surface 20 A, and other manufacturing problems can be avoided.
  • the laser generating module 6 can also be operated together with the push module 5 .
  • the laser generating module 6 and the push module 5 may be in the same axial direction, or a laser beam L projection path of the laser generating module 6 can correspond to the abutting surface of the push module 5 . Therefore, when the push module 5 abuts the chip C and the chip C is transferred to the circuit substrate 31 , the laser beam can be projected to the chip C through the laser generating module 6 , so that the chip C can be fixed and electrically connected to the circuit substrate 31 through the solder C 1 .
  • the chip transfer machine Z provided by the present disclosure can also be horizontally offset from the circuit substrate 31 by controlling the push module 5 , or the carrier substrate adjustment mechanism 30 drives the circuit substrate 31 to perform the horizontal offset relative to the push module 5 , so that after the chip C is transferred to the circuit substrate 31 , the spacing D 2 between the two adjacent chips C may be greater than or less than the spacing D 1 , but the present disclosure is not limited thereto, and the spacing D 2 may be equal to the spacing D 1 . Further, in the above-mentioned method, the circuit substrate 31 having damaged chips C can be repaired. For example, as shown in FIG. 1 to FIG.
  • the damaged chip C on the conveyor belt 20 can be transferred to a patch position P on the circuit substrate 31 through the push module 5 , thereby achieving the effect of chip patching.
  • the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • the present disclosure may further provide a chip transfer machine Z including a chip carrier 1 , a chip transferring module 2 and a chip carrier substrate 3 .
  • the chip transferring module 2 includes at least one conveyor belt 20 having an adhesive surface 20 A, both of which are disposed under or above the adhesive surface 20 A of the conveyor belt 20 .
  • a second embodiment of the present disclosure provides a chip transferring machine Z that is slightly similar to the chip transferring machine Z of the first embodiment. Therefore, similar steps will not be repeated herein.
  • the difference between the second embodiment of the present disclosure and the first embodiment is that, both a chip carrier 1 and a chip carrier substrate 3 are disposed above an adhesive surface 20 A of at least one conveyor belt 20 and face the adhesive surface 20 A. Therefore, the chip C on the chip carrier 1 can be transported to the chip carrier substrate 3 by conveyance of the conveyor belt 20 .
  • the chip transfer machine Z may further include: a thimble module 4 disposed above the chip carrier 1 , and at least one chip C disposed on the chip carrier 1 is transferred and adhered to the adhesive surface 20 A of the at least one conveyor belt 20 by the thimble module 4 abutting downwardly.
  • the thimble module 4 can be disposed above the carrier film 11 of the chip carrier 1 .
  • the thimble module 4 passes downward through the carrier film 11 , and the chip C corresponding to the thimble module 4 can be abutted against the adhesive surface 20 A of the conveyor belt 20 , so that the chip C is detached from the carrier film 11 and attached to the adhesive surface 20 A.
  • the present disclosure is not limited thereto.
  • the remaining chips C on the carrier film 11 are detached from the carrier film 11 sequentially and attached to the adhesive surface 20 A, and a more detailed description thereof can be referred to in the first embodiment so that details are not described herein again.
  • the chip transfer machine Z provided by the second embodiment may further include: a push module 5 disposed under the conveyor belt 20 and adhered to at least one of the chips C on the adhesive surface 20 A by the push module 5 abutting upwardly.
  • the push module 5 may be disposed under the conveyor belt 20 and face a non-adhesive surface 20 B. Therefore, when the chip C is transferred under the circuit substrate 31 through the adhesive surface 20 A of the conveyor belt 20 , the chip C adhered to the adhesive surface 20 A is transferred and disposed on the chip carrier substrate 31 by the push module 5 abutting upwardly.
  • the remaining chips C on the conveyor belt 20 can be sequentially transferred from the adhesive surface 20 A, and then disposed on the circuit substrate 31 .
  • the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • the circuit substrate 31 provided with the chips C is subjected to a heating process so that the chips C are fixed by the solder C 1 and electrically connected to the circuit substrate 31 .
  • the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • the chip transfer machine Z provided by the present embodiment may further include: a laser generating module 6 and a vacuum suction module 7 .
  • the laser generating module 6 and the vacuum suction module 7 are disposed under at least one conveyor belt 20 , and a laser beam L generated by the laser generating module 6 passes through the at least one conveyor belt 20 to project on the solder C 1 disposed on the at least one chip C.
  • the vacuum suction module 7 suctions at least one non-adhesive surface 20 B of the conveyor belt 20 to adjust the flatness of at least one conveyor belt 20 .
  • the chip transfer machine Z of the present disclosure can also be provided with the laser generating module 6 and the vacuum suction module 7 under the conveyor belt 20 .
  • the laser beam L can be projected toward the chip C through the laser generating module 6 , and the laser beam L is projected through the conveyor belt 20 and projected onto the solder Cl disposed on the chip C, so that the solder Cl is heated to be fixed and electrically connected to the circuit substrate 31 .
  • the flatness of the conveyor belt 20 can be maintained to avoid affecting the flatness of the conveyor belt 20 while the push module 5 is abutting upwardly against the conveyor belt 20 and the chip C, so that the chip C cannot easily attach to the adhesive surface 20 A, and other manufacturing problems can be avoided.
  • the laser generating module 6 can also be operated together with the push module 5 . Therefore, when the push module 5 is abuts the chip C and the chip C is transferred to the circuit substrate 31 , the laser beam can be projected to the chip C through the laser generating module 6 , so that the chip C can be fixed and electrically connected to the circuit substrate 31 through the solder C 1 . Details on a particular implementation of this embodiment can be referred to in the first embodiment, and will not be described herein again.
  • the chip transferring module 2 including the at least one conveyor belt 20 having the adhesive surface 20 A” and “the chip carrier 1 , the chip transferring module 2 , and the chip carrier substrate 3 being disposed on the same production line, and the chip carrier 1 and the chip carrier substrate 3 being disposed under or above the adhesive surface 20 A of the conveyor belt 20 ,” the transferring efficiency and speed of chip C can be improved.
  • the chip transfer machine Z provided by the present disclosure can not only improve the efficiency and speed of transferring the chips C, but also adjust the spacing D 2 of the chip C on the circuit substrate 31 , thereby customizing the circuit substrate 31 .
  • the chip transfer machine Z of the present disclosure can also repair the circuit substrate 31 having the damaged chip C by the above-described technical solution, and fix the new chip C onto the patch position P.
  • the chip transferring method and chip transferring apparatus provided by the present disclosure has the above-mentioned technical features so as to improve the efficiency and speed of the transferring of the chips 2 to the adhesive layer 4 of the substrate 5 , and shorten the time taken for performing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A chip transferring machine includes a chip carrier, a chip transferring module, and a chip carrier substrate. The chip carrier carries a plurality of chips. The chip transferring module includes at least one conveyor belt having an adhesive surface. The chip carrier substrate carries the plurality of chips. The chip carrier, the chip transferring module, and the chip carrier substrate are disposed on a same production line, and the chip carrier and the chip carrier substrate are disposed under or above the adhesive surface of the conveyor belt.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATION
  • This application claims the benefit of priority to Taiwan Patent Application No. 108113905, filed on Apr. 19, 2019. The entire content of the above identified application is incorporated herein by reference.
  • Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
  • FIELD OF THE DISCLOSURE
  • The present disclosure relates to a transferring machine, and more particularly to a chip transferring machine.
  • BACKGROUND OF THE DISCLOSURE
  • Generally, when the prepared chip array is transferred to a substrate or panel of different size, the time required for the migration is long due to the complicated process involved.
  • Therefore, improving the efficiency and speed of chip transferring through structural design or procedural improvement has become one of the important issues to be solved in the technical field of the present disclosure.
  • SUMMARY OF THE DISCLOSURE
  • In response to the above-referenced technical inadequacies, the present disclosure provides a chip transferring machine.
  • In one aspect, the present disclosure provides a chip transferring machine including: a chip carrier, a chip transferring module, and a chip carrier substrate. The chip carrier carries a plurality of chips. The chip transferring module includes at least one conveyor belt having an adhesive surface. The chip carrier substrate carries the plurality of chips. The chip carrier, the chip transferring module, and the chip carrier substrate are disposed on a same production line, and the chip carrier and the chip carrier substrate are disposed under or above the adhesive surface of the conveyor belt.
  • In one aspect, the present disclosure provides a chip transfer machine including a chip carrier, a chip transferring module, and a chip carrier substrate. The chip transferring module includes at least one conveyor belt having an adhesive surface, and the chip carrier and the chip carrier substrate is disposed under or above the adhesive surface of the conveyor belt.
  • Therefore, one of the beneficial effects of the present disclosure is that by the technical features of “the chip transferring module including the at least one conveyor belt having the adhesive surface” and “the chip carrier, the chip transferring module, and the chip carrier substrate being disposed on the same production line, and the chip carrier and the chip carrier substrate being disposed under or above the adhesive surface of the conveyor belt,” the efficiency and speed of chip transferring can be improved.
  • These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure will become more fully understood from the following detailed description and accompanying drawings.
  • FIG. 1 is a structural schematic view of a chip transferring machine according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an operation of a thimble module of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a state in which the chip transferring machine transfers a chip to a chip carrier substrate according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an operation of a push module of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a first state in a chip transfer process of the chip transferring machine according to the first embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram showing a second state in the chip transfer process of the chip transferring machine according to the first embodiment of the present disclosure; wherein FIG. 6 and FIG. 5 depict the same chip transfer process.
  • FIG. 7 is a structural schematic view of the chip transferring machine according to the first embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an operation of the push module and the laser generating module of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 9 is a top view of the circuit substrate of the chip transfer machine according to the first embodiment of the present disclosure.
  • FIG. 10 is a structural schematic view of a chip transferring machine according to a second embodiment of the present disclosure.
  • FIG. 11 is a structural schematic view of the chip transferring machine according to the second embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
  • The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
  • The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
  • First Embodiment
  • Referring to FIG. 1 to FIG. 9, a first embodiment of the present disclosure provides a chip transfer machine Z including a chip carrier 1, a chip transferring module 2, and a chip carrier substrate 3.
  • Firstly, as shown in FIG. 1, the chip carrier 1 may be disposed under at least one conveyor belt 20 of the chip transferring module 2 and correspond to an adhesive surface 20A of the conveyor belt 20. For example, the chip carrier 1 can carry a plurality of chips C, each of the chips C has at least one solder Cl, and the solder Cl can be solder paste or other conductive materials. Further, the chip carrier 1 may include a carrier adjustment mechanism 10 and a carrier film 11 for carrying the chip C, and the carrier film 11 is disposed on the carrier adjustment mechanism 10. The carrier adjustment mechanism 10 can be an X-Y table, but the present disclosure is not limited thereto. The carrier film 11 can be a blue PVC film, but the present disclosure is not limited thereto. The carrier adjustment mechanism 10 can be fixed onto the carrier film 11 by suction or clamping, but the present disclosure is not limited thereto. The carrier film 11 can carry the plurality of chips C, and there is a spacing D1 between the adjacent two chips C.
  • Next, as shown in FIG. 1, the chip transferring module 2 includes the conveyor belt 20 having the adhesive surface 20A, and the conveyor belt 20 may be a light-transmitting single-sided tape, but present disclosure is not limited thereto. Further, the chip transferring module 2 may further include at least two rollers 21, one end of the conveyor belt 20 may be connected to one of the rollers 21, and the other end of the conveyor belt 20 may be connected to the other roller 21. Therefore, in a process of transferring and retracting the conveyor belt 20, the conveyor belt 20 can be transferred from one of the rollers 21 to the other roller 21, and is transferred in only one direction, but the present disclosure is not limited thereto.
  • Next, as shown in FIG. 1, the chip carrier substrate 3 can be used to carry a plurality of chips C, and the chip carrier substrate 3 can be disposed under the conveyor belt 20 of the chip transferring module 2 and corresponds to the adverse surface 20A of the conveyor belt 20. Further, the chip carrier substrate 3 may include a carrier substrate adjustment mechanism 30 and a circuit substrate 31 for carrying the chip C, and the circuit substrate 31 is disposed on the carrier substrate adjustment mechanism 30. The carrier substrate adjustment mechanism 30 can be an X-Y table, but the present disclosure is not limited thereto.
  • Accordingly, as shown in FIG. 1, the chip carrier 1, the chip transferring module 2, and the chip carrier substrate 3 may be disposed on a same production line, and the chip carrier 1 and the chip carrier substrate 3 are disposed under the adhesive surface 20A of the conveyor belt 20. Therefore, the chip C on the chip carrier 1 can be transferred to the chip carrier substrate 3 by the conveyor belt 20.
  • Further, as shown in FIG. 1 to FIG. 3, the chip transfer machine Z provided by the present disclosure may further include: a thimble module 4 disposed under the chip carrier 1, and the at least one chip C disposed on the chip carrier 1 is transferred by adhesion of the thimble module 4 to the adhesive surface 20A of the conveyor belt 20. For example, the thimble module 4 can be disposed under the carrier film 11 of the chip carrier 1. The material of the thimble module 4 can be a metal or plastic thimble, and a portion of the thimble module 4 that abuts against the chip C can be a sharp or blunt, but the present disclosure is not limited thereto. Therefore, as shown in FIG. 2, the thimble module 4 can pass through the carrier film 11, and the chip C corresponding to the thimble module 4 can be abutted against the adhesive surface 20A of the conveyor belt 20, so that the chip C is attached to the adhesive surface 20A by detaching from the carrier film 11.
  • Further, as shown in FIG. 1 to FIG. 3, the above-mentioned process is repeated by the thimble module 4, and the remaining chips C on the carrier film 11 are sequentially detached from the carrier film 11 and attached to the adhesive surface 20A. Further, the chip transfer machine Z can also horizontally offset the thimble module 4 relative to the carrier film 11 by controlling the thimble module 4, or the carrier film 11 can be horizontally offset relative to the thimble module 4, so that the chip C is attached to the adhesive surface 20A by the thimble module 4 sequentially or randomly abutting the chip C on the carrier film 11. However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Further, as shown in FIG. 3 to FIG. 6, the chip transfer machine Z provided by the present disclosure may further include: a push module 5 disposed on at least one conveyor belt 20 and adhered to at least one chip C on the adhesive surface 20A by the push module 5 abutting downwardly. For example, as shown in FIG. 3 to FIG. 6, the push module 5 may be disposed above the conveyor belt 20 and face a non-adhesive surface 20B. The push module 5 may be a pillar of a metal or plastic material, but the present disclosure is not limited thereto. Therefore, when the chip C is transferred above the circuit substrate 31 through the adhesive surface 20A of the conveyor belt 20, the chip C adhered to the adhesive surface 20A is transferred and disposed on the chip carrier substrate 31 by the push module 5 abutting downwardly. In addition, by repeating the above process through the push module 5, the remaining chips C on the conveyor belt 20 can be transferred from the adhesive surface 20A sequentially and then disposed on the circuit substrate 31. However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Finally, the circuit substrate 31 provided with the chips C is subjected to a heating process so that the chips C are fixed by the solder C1 and electrically connected to the circuit substrate 31. However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Further, as shown in FIG. 6 and FIG. 7, the chip transfer machine Z provided by the present disclosure may further include: a laser generating module 6 and a vacuum suction module 7. The laser generating module 6 and the vacuum suction module 7 are disposed above at least one conveyor belt 20, and a laser beam L generated by the laser generating module 6 passes through at least one conveyor belt 20 to project onto the solder Cl disposed on at least one chip C. The vacuum suction module 7 suctions at least one non-adhesive surface 20B of the conveyor belt 20 to adjust the flatness of at least one conveyor belt 20. For example, as shown in FIG. 6 and FIG. 7, the chip transfer machine Z of the present disclosure can also be provided with the laser generating module 6 and the vacuum suction module 7 above the conveyor belt 20. Therefore, after the chip C is transferred to the circuit substrate 31, the laser beam L can be projected toward the chip C through the laser generating module 6, and the laser beam L is projected through the conveyor belt 20 and projected on the solder C1 disposed on the chip C, so that the solder C1 is heated to be fixed and electrically connected to the circuit substrate 31. In addition, by suctioning the non-adhesive surface 20B of the conveyor belt 20 through the vacuum suction module 7, the flatness of the conveyor belt 20 can be maintained to avoid affecting the flatness of the conveyor belt 20 while the push module 5 is abutting downwardly against the conveyor belt 20 and the chip C, so that the chip C cannot easily attach to the adhesive surface 20A, and other manufacturing problems can be avoided.
  • In addition, as shown in FIG. 6 to FIG. 8, the laser generating module 6 can also be operated together with the push module 5. Further, the laser generating module 6 and the push module 5 may be in the same axial direction, or a laser beam L projection path of the laser generating module 6 can correspond to the abutting surface of the push module 5. Therefore, when the push module 5 abuts the chip C and the chip C is transferred to the circuit substrate 31, the laser beam can be projected to the chip C through the laser generating module 6, so that the chip C can be fixed and electrically connected to the circuit substrate 31 through the solder C1.
  • Further, as shown in FIG. 1 and FIG. 6, the chip transfer machine Z provided by the present disclosure can also be horizontally offset from the circuit substrate 31 by controlling the push module 5, or the carrier substrate adjustment mechanism 30 drives the circuit substrate 31 to perform the horizontal offset relative to the push module 5, so that after the chip C is transferred to the circuit substrate 31, the spacing D2 between the two adjacent chips C may be greater than or less than the spacing D1, but the present disclosure is not limited thereto, and the spacing D2 may be equal to the spacing D1. Further, in the above-mentioned method, the circuit substrate 31 having damaged chips C can be repaired. For example, as shown in FIG. 1 to FIG. 9, after the circuit substrate 31 having the damaged chip C is placed in the carrier substrate adjustment mechanism 30, the damaged chip C on the conveyor belt 20 can be transferred to a patch position P on the circuit substrate 31 through the push module 5, thereby achieving the effect of chip patching. However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Furthermore, referring to FIG. 1 to FIG. 9, the present disclosure may further provide a chip transfer machine Z including a chip carrier 1, a chip transferring module 2 and a chip carrier substrate 3. The chip transferring module 2 includes at least one conveyor belt 20 having an adhesive surface 20A, both of which are disposed under or above the adhesive surface 20A of the conveyor belt 20.
  • However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Second Embodiment
  • Referring to FIG. 10 and FIG. 11 together with FIG. 1 to FIG. 9, a second embodiment of the present disclosure provides a chip transferring machine Z that is slightly similar to the chip transferring machine Z of the first embodiment. Therefore, similar steps will not be repeated herein. Further, according to FIG. 10, FIG. 11, FIG. 5 and FIG. 7, the difference between the second embodiment of the present disclosure and the first embodiment is that, both a chip carrier 1 and a chip carrier substrate 3 are disposed above an adhesive surface 20A of at least one conveyor belt 20 and face the adhesive surface 20A. Therefore, the chip C on the chip carrier 1 can be transported to the chip carrier substrate 3 by conveyance of the conveyor belt 20.
  • Further, as shown in FIG. 10, the chip transfer machine Z according to the second embodiment of the present disclosure may further include: a thimble module 4 disposed above the chip carrier 1, and at least one chip C disposed on the chip carrier 1 is transferred and adhered to the adhesive surface 20A of the at least one conveyor belt 20 by the thimble module 4 abutting downwardly. For example, as shown in FIG. 10, the thimble module 4 can be disposed above the carrier film 11 of the chip carrier 1. Therefore, the thimble module 4 passes downward through the carrier film 11, and the chip C corresponding to the thimble module 4 can be abutted against the adhesive surface 20A of the conveyor belt 20, so that the chip C is detached from the carrier film 11 and attached to the adhesive surface 20A. However, the present disclosure is not limited thereto. In addition, by repeating the above method, the remaining chips C on the carrier film 11 are detached from the carrier film 11 sequentially and attached to the adhesive surface 20A, and a more detailed description thereof can be referred to in the first embodiment so that details are not described herein again.
  • Further, as shown in FIG. 10, the chip transfer machine Z provided by the second embodiment may further include: a push module 5 disposed under the conveyor belt 20 and adhered to at least one of the chips C on the adhesive surface 20A by the push module 5 abutting upwardly. For example, as shown in FIG. 10, the push module 5 may be disposed under the conveyor belt 20 and face a non-adhesive surface 20B. Therefore, when the chip C is transferred under the circuit substrate 31 through the adhesive surface 20A of the conveyor belt 20, the chip C adhered to the adhesive surface 20A is transferred and disposed on the chip carrier substrate 31 by the push module 5 abutting upwardly. In addition, by repeating the above method through the push module 5, the remaining chips C on the conveyor belt 20 can be sequentially transferred from the adhesive surface 20A, and then disposed on the circuit substrate 31. However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Finally, the circuit substrate 31 provided with the chips C is subjected to a heating process so that the chips C are fixed by the solder C1 and electrically connected to the circuit substrate 31. However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • Further, as shown in FIG. 11, the chip transfer machine Z provided by the present embodiment may further include: a laser generating module 6 and a vacuum suction module 7. The laser generating module 6 and the vacuum suction module 7 are disposed under at least one conveyor belt 20, and a laser beam L generated by the laser generating module 6 passes through the at least one conveyor belt 20 to project on the solder C1 disposed on the at least one chip C. The vacuum suction module 7 suctions at least one non-adhesive surface 20B of the conveyor belt 20 to adjust the flatness of at least one conveyor belt 20. For example, as shown in FIG. 11, the chip transfer machine Z of the present disclosure can also be provided with the laser generating module 6 and the vacuum suction module 7 under the conveyor belt 20. Therefore, after the chip C is transferred to the circuit substrate 31, the laser beam L can be projected toward the chip C through the laser generating module 6, and the laser beam L is projected through the conveyor belt 20 and projected onto the solder Cl disposed on the chip C, so that the solder Cl is heated to be fixed and electrically connected to the circuit substrate 31. In addition, by suctioning the non-adhesive surface 20B of the conveyor belt 20 through the vacuum suction module 7, the flatness of the conveyor belt 20 can be maintained to avoid affecting the flatness of the conveyor belt 20 while the push module 5 is abutting upwardly against the conveyor belt 20 and the chip C, so that the chip C cannot easily attach to the adhesive surface 20A, and other manufacturing problems can be avoided.
  • In addition, as shown in FIG. 8 to FIG. 10, the laser generating module 6 can also be operated together with the push module 5. Therefore, when the push module 5 is abuts the chip C and the chip C is transferred to the circuit substrate 31, the laser beam can be projected to the chip C through the laser generating module 6, so that the chip C can be fixed and electrically connected to the circuit substrate 31 through the solder C1. Details on a particular implementation of this embodiment can be referred to in the first embodiment, and will not be described herein again.
  • However, the above-mentioned examples illustrate only one of the embodiments, and the present disclosure is not limited thereto.
  • In conclusion, one of the beneficial effects of the present disclosure is that by the technical features of “the chip transferring module 2 including the at least one conveyor belt 20 having the adhesive surface 20A” and “the chip carrier 1, the chip transferring module 2, and the chip carrier substrate 3 being disposed on the same production line, and the chip carrier 1 and the chip carrier substrate 3 being disposed under or above the adhesive surface 20A of the conveyor belt 20,” the transferring efficiency and speed of chip C can be improved.
  • Furthermore, the chip transfer machine Z provided by the present disclosure can not only improve the efficiency and speed of transferring the chips C, but also adjust the spacing D2 of the chip C on the circuit substrate 31, thereby customizing the circuit substrate 31. Moreover, the chip transfer machine Z of the present disclosure can also repair the circuit substrate 31 having the damaged chip C by the above-described technical solution, and fix the new chip C onto the patch position P.
  • Further, the chip transferring method and chip transferring apparatus provided by the present disclosure has the above-mentioned technical features so as to improve the efficiency and speed of the transferring of the chips 2 to the adhesive layer 4 of the substrate 5, and shorten the time taken for performing the same.
  • The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
  • The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.

Claims (10)

1. A chip transferring machine, comprising:
a chip carrier carrying a plurality of chips;
a chip transferring module including at least one conveyor belt having an adhesive surface;
a chip carrier substrate carrying the plurality of chips; and
a laser generating module and a vacuum suction module. wherein the laser generating module and the vacuum suction module are disposed above or under the conveyor belt, and a laser beam generated by the laser generating module passes through the conveyor belt to project onto a solder disposed on at least one of the chips. and the vacuum suction module suctions a non-adhesive surface of the conveyor belt to adjust the flatness of the conveyor belt:
wherein the chip carrier, the chip transferring module, and the chip carrier substrate are disposed on a same production line, and the chip carrier and the chip carrier substrate are both disposed under or above the adhesive surface of the conveyor belt.
2. The chip transferring machine according to claim 1, further comprising a thimble module disposed under the chip carrier, wherein at least one of the chips disposed on the chip carrier is transferred and disposed on the adhesive surface of the conveyor belt by the thimble module abutting upwardly.
3. The chip transferring machine according to claim 2, further comprising a push module disposed above the conveyor belt, wherein the at least one of the chips adhered to the adhesive surface is transferred and disposed on the chip carrier substrate by the push module abutting downwardly.
4. The chip transferring machine according to claim 1, further comprising a thimble module disposed above the chip carrier, wherein at least one of the chips disposed on the chip carrier is transferred and disposed on the adhesive surface of the conveyor belt by the thimble module abutting downwardly.
5. The chip transferring machine according to claim 4, further comprising a push module disposed under the conveyor belt, wherein the at least one of the chips adhered to the adhesive surface is transferred and disposed on the chip carrier substrate by the push module abutting upwardly.
6. (canceled)
7. (canceled)
8. The chip transferring machine according to claim 1, wherein the chip transferring module includes at least two rollers, and the conveyor belt is transported by one of the rollers to another roller, and the conveyor belt is a light transmissive single-sided tape.
9. The chip transferring machine according to claim 1, wherein the chip carrier includes a carrier adjustment mechanism and a carrier film for carrying the chip, and the carrier film is disposed on the carrier adjustment mechanism; wherein the chip carrier substrate includes a carrier substrate adjustment mechanism and a circuit substrate for carrying the chip, and the circuit substrate is disposed on the carrier substrate adjustment mechanism.
10. A chip transferring machine comprising a chip carrier, a chip transferring module, a chip carrier substrate. a laser generating module and a vacuum suction module, wherein the chip transferring module includes at least one conveyor belt having an adhesive surface, and the chip carrier and the chip carrier substrate are disposed under or above the adhesive surface of the conveyor belt, and wherein the laser generating module and the vacuum suction module are disposed above or under the conveyor belt, and a laser beam generated by the laser generating module passes through the conveyor belt to project onto a solder disposed on at least one chip, and the vacuum suction module suctions a non-adhesive surface of the conveyor belt to adjust the flatness of the conveyor belt.
US16/599,312 2019-04-19 2019-10-11 Chip transferring machine Active US10825704B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW108113905A 2019-04-19
TW108113905A TWI686895B (en) 2019-04-19 2019-04-19 Chip transferring machine
TW108113905 2019-04-19

Publications (2)

Publication Number Publication Date
US20200335374A1 true US20200335374A1 (en) 2020-10-22
US10825704B1 US10825704B1 (en) 2020-11-03

Family

ID=70766887

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/599,312 Active US10825704B1 (en) 2019-04-19 2019-10-11 Chip transferring machine

Country Status (3)

Country Link
US (1) US10825704B1 (en)
CN (1) CN111834266A (en)
TW (1) TWI686895B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230056420A1 (en) * 2020-02-21 2023-02-23 Muehlbauer GmbH & Co. KG Apparatus and method for transferring electronic components from a first carrier to a second carrier
US11872114B2 (en) * 2019-01-24 2024-01-16 Curt G. Joa, Inc. Method and apparatus for high-speed cross-folding of absorbent sanitary products
US11955506B2 (en) 2020-07-27 2024-04-09 Au Optronics Corporation Fabrication method of display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446816A (en) * 2020-10-30 2022-05-06 均华精密工业股份有限公司 Chip sorting device
TWI840763B (en) * 2022-03-09 2024-05-01 東捷科技股份有限公司 Repair equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204092B1 (en) * 1999-04-13 2001-03-20 Lucent Technologies, Inc. Apparatus and method for transferring semiconductor die to a carrier
JP3641217B2 (en) * 2000-03-31 2005-04-20 Tdk株式会社 End electrode forming method and apparatus for chip-shaped electronic component
KR100484088B1 (en) * 2002-12-06 2005-04-20 삼성전자주식회사 Die attach and cure in line apparatus for multi chip package
JP3739752B2 (en) * 2003-02-07 2006-01-25 株式会社 ハリーズ Small-piece transfer device capable of random-cycle shifting
JP2004296839A (en) * 2003-03-27 2004-10-21 Kansai Paint Co Ltd Method for manufacturing semiconductor chip
US9331230B2 (en) * 2012-10-30 2016-05-03 Cbrite Inc. LED die dispersal in displays and light panels with preserving neighboring relationship
JP6760742B2 (en) * 2015-09-09 2020-09-23 大森機械工業株式会社 Chip transfer device and pickup machine
US10672638B2 (en) * 2017-01-27 2020-06-02 International Business Machines Corporation Picking up irregular semiconductor chips
TWM559501U (en) * 2017-10-16 2018-05-01 Contrel Technology Co Ltd Rolling device for picking up miniature device
CN108010994B (en) * 2017-12-15 2019-10-18 惠州雷通光电器件有限公司 Micro- light emitting diode transfer method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872114B2 (en) * 2019-01-24 2024-01-16 Curt G. Joa, Inc. Method and apparatus for high-speed cross-folding of absorbent sanitary products
US20230056420A1 (en) * 2020-02-21 2023-02-23 Muehlbauer GmbH & Co. KG Apparatus and method for transferring electronic components from a first carrier to a second carrier
US12094736B2 (en) * 2020-02-21 2024-09-17 Muehlbauer GmbH & Co. KG Apparatus and method for transferring electronic components from a first carrier to a second carrier
US11955506B2 (en) 2020-07-27 2024-04-09 Au Optronics Corporation Fabrication method of display device

Also Published As

Publication number Publication date
US10825704B1 (en) 2020-11-03
TWI686895B (en) 2020-03-01
TW202040731A (en) 2020-11-01
CN111834266A (en) 2020-10-27

Similar Documents

Publication Publication Date Title
US10825704B1 (en) Chip transferring machine
CN102472711B (en) Substrate inspecting apparatus
US20200023479A1 (en) Die transfer method and die transfer system thereof
EP2093041A1 (en) Optical member adhering method, and apparatus using the method
WO2014208526A1 (en) Production system for optical display device
TW201841237A (en) Cutting mechanism, joining mechanism, substrate processing system
KR20140075171A (en) Apparatus for inspecting panel
JP2022542516A (en) Method for manufacturing a photovoltaic module
KR20110077681A (en) Apparatus and method for checking transferred thin film using vacuum suction conveyer belt
CN109285802B (en) Micro-device mass transfer device and method based on bidirectional crystal expansion method
JP5804404B2 (en) Optical display device production system and optical display device production method
TWI702146B (en) System and apparatus for laminating optical film
WO2014148568A1 (en) System and method for producing optical display devices
CN105008989B (en) The production system of optical display means
CN113068319A (en) Film pasting mechanism and full-automatic cover film pasting equipment
WO2014185099A1 (en) System for manufacturing optical display device
CN102549712A (en) Method and apparatus for inspecting a chip prior to bonding
KR102040594B1 (en) Device and method for inspecting micro OLED
KR20170126215A (en) Manufacturing apparatus and method of encapsulation film for organic light emitting display device
JP2014157344A (en) Production system of optical display device
CN214812773U (en) Mask strip sorting equipment
JP2013122534A (en) Apparatus and method for manufacturing optical member laminate
CN109916597A (en) Optical detection apparatus and optical detecting method
CN109699169B (en) Microwave multichannel T/R assembly surface mounting technology
CN104511400B (en) Adhesive coating device and method, display device component manufacture device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASTI GLOBAL INC., TAIWAN, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIAO, CHIEN-SHOU;REEL/FRAME:050720/0078

Effective date: 20191008

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY