US20200137164A1 - Data storage and retrieval - Google Patents

Data storage and retrieval Download PDF

Info

Publication number
US20200137164A1
US20200137164A1 US16/731,888 US201916731888A US2020137164A1 US 20200137164 A1 US20200137164 A1 US 20200137164A1 US 201916731888 A US201916731888 A US 201916731888A US 2020137164 A1 US2020137164 A1 US 2020137164A1
Authority
US
United States
Prior art keywords
data
data item
network
central server
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/731,888
Inventor
Gene Fein
Edward Merritt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Distributed Media Solutions LLC
Original Assignee
Callahan Cellular LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/052,345 external-priority patent/US8458285B2/en
Priority claimed from US12/170,925 external-priority patent/US7636758B1/en
Priority claimed from US12/170,901 external-priority patent/US7673009B2/en
Priority claimed from US12/184,866 external-priority patent/US7599997B1/en
Priority claimed from US12/240,925 external-priority patent/US7631051B1/en
Priority claimed from US12/240,951 external-priority patent/US7636759B1/en
Priority claimed from US12/240,991 external-priority patent/US7636761B1/en
Priority claimed from US12/240,967 external-priority patent/US7636760B1/en
Priority claimed from PCT/US2009/041817 external-priority patent/WO2009132345A1/en
Priority claimed from PCT/US2009/042971 external-priority patent/WO2009137571A1/en
Priority to US16/731,888 priority Critical patent/US20200137164A1/en
Application filed by Callahan Cellular LLC filed Critical Callahan Cellular LLC
Publication of US20200137164A1 publication Critical patent/US20200137164A1/en
Assigned to CALLAHAN CELLULAR L.L.C. reassignment CALLAHAN CELLULAR L.L.C. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: TAJITSHU TRANSFER LIMITED LIABILITY COMPANY
Assigned to TAJITSHU TRANSFER LIMITED LIABILITY COMPANY reassignment TAJITSHU TRANSFER LIMITED LIABILITY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MERRITT, EDWARD
Assigned to TAJITSHU TRANSFER LIMITED LIABILITY COMPANY reassignment TAJITSHU TRANSFER LIMITED LIABILITY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FEIN, GENE
Assigned to TAJITSHU TRANSFER LIMITED LIABILITY COMPANY reassignment TAJITSHU TRANSFER LIMITED LIABILITY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENEDICS LLC
Assigned to INTELLECTUAL VENTURES ASSETS 168 LLC reassignment INTELLECTUAL VENTURES ASSETS 168 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALLAHAN CELLULAR L.L.C.
Assigned to DISTRIBUTED MEDIA SOLUTIONS, LLC reassignment DISTRIBUTED MEDIA SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTELLECTUAL VENTURES ASSETS 168 LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0269Targeted advertisements based on user profile or attribute
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0269Targeted advertisements based on user profile or attribute
    • G06Q30/0271Personalized advertisement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0471Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload applying encryption by an intermediary, e.g. receiving clear information at the intermediary and encrypting the received information at the intermediary before forwarding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/20
    • H04L67/327
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/53Network services using third party service providers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/63Routing a service request depending on the request content or context

Definitions

  • DAS Direct Attached Storage
  • Network Storage includes disks connected directly to a server.
  • Network Storage includes disks that are attached to a network rather than a specific server and can then be accessed and shared by other devices and applications on that network.
  • Network Storage is typically divided into two segments, i.e., Storage Area Networks (SANs) and Network Attached Storage (NAS).
  • SANs Storage Area Networks
  • NAS Network Attached Storage
  • a SAN is a high-speed special-purpose network (or subnetwork) that interconnects different kinds of data storage devices with associated data servers on behalf of a larger network of users.
  • a SAN is part of the overall network of computing resources for an enterprise.
  • a storage area network is usually clustered in close proximity to other computing resources but may also extend to remote locations for backup and archival storage, using wide area (WAN) network carrier technologies.
  • WAN wide area
  • NAS is hard disk storage that is set up with its own network address rather than being attached to the local computer that is serving applications to a network's workstation users. By removing storage access and its management from the local server, both application programming and files can be served faster because they are not competing for the same processor resources.
  • the NAS is attached to a local area network (typically, an Ethernet network) and assigned an IP address. File requests are mapped by the main server to the NAS file server.
  • FIG. 1A is a block diagram of an exemplary network.
  • FIG. 1B is a block diagram of an exemplary continuous data forwarding framework including two user systems.
  • FIG. 1C is a block diagram of an exemplary framework that includes a user system and a number of network systems.
  • FIG. 2 is a block diagram of an exemplary user system.
  • FIG. 3A is a block diagram of an exemplary network system.
  • FIG. 3B is a block diagram of another exemplary network system.
  • FIG. 4A is a flow diagram of an exemplary storage process.
  • FIG. 4B is a flow diagram of another exemplary storage process.
  • FIG. 5A is a flow diagram of an exemplary data forwarding process.
  • FIG. 5B is a flow diagram of another exemplary data file forwarding process.
  • FIG. 5C is a flow diagram of another exemplary data file forwarding process.
  • FIG. 6A is a flow diagram of an exemplary process for forwarding advertisements.
  • FIG. 6B is a flow diagram of an exemplary data forwarding process.
  • FIG. 6C is a flow diagram of an exemplary search process.
  • FIG. 7 is a flow diagram of an exemplary file retrieval process.
  • FIG. 8 is a flow diagram of an exemplary file deletion process.
  • FIG. 9 is an example of a user interface for an instant messaging client program.
  • the present invention is a continuous data forwarding system, i.e., data is stored by continually forwarding it from one node memory to another node memory.
  • an exemplary network 10 includes a user system 12 and a number of network systems 14 , 16 , 18 , 20 , 22 .
  • Each of the network systems 14 , 16 , 18 , 20 , 22 can be considered to be a node in the network 10 and one such network system may be designated as a central server, such as network system 14 , which may assume a control position in network 10 .
  • Each of the nodes 14 , 16 , 18 , 20 , 22 may be established as a privately controlled network of peers under direct control of the central server 14 .
  • Peered nodes may also be a mix of private and public nodes, and thus not under the direct physical control of the central server 14 .
  • the network 10 may also be wholly public where the central server 14 (or servers) has no direct ownership or direct physical control of any of the peered nodes.
  • an exemplary continuously data forwarding framework 10 includes two user systems 12 , 14 (also referred to as client systems) coupled to a number of network systems 16 , 18 , 20 , 22 (also referred to as servers).
  • Each of the network systems 16 , 18 , 20 , 22 is considered to be a node in a network 24 and one such network system may be designated as a host or central server, such as network system 16 .
  • network system 16 may assume a control position in network 24 .
  • Each of the nodes 16 , 18 , 20 , 22 can be established as a privately controlled network of peers under direct control of the central server 16 .
  • Peered nodes can also be a mix of private and public nodes (e.g., the Internet), and thus not under the direct physical control of the central server 16 .
  • the network 24 can also be wholly public where the central server 16 (or servers) has no direct ownership or direct physical control of any of the peered nodes.
  • the continuously data forwarding framework 10 supports communications between computer users, such as users on user systems 12 , 14 .
  • Computer users on user systems 12 , 14 are distributed geographically and communicate using one or more of the network systems 16 , 18 , 20 , 22 in network 24 .
  • User systems 12 , 14 are connected to network 24 through various communication mediums, such as a modem connected to a telephone line (using, for example, serial line internet protocol (SLIP) or point-to-point protocol (PPP)) or a direct internetwork connection (using, for example, transmission control protocol/internet protocol (TCP/IP)).
  • SLIP serial line internet protocol
  • PPP point-to-point protocol
  • TCP/IP transmission control protocol/internet protocol
  • Each of the user systems 12 , 14 may be implemented using, for example, a general-purpose computer capable of responding to and executing instructions in a defined manner, a personal computer, a special-purpose computer, a workstation, a server, a device, a component, or other equipment or some combination thereof capable of responding to and executing instructions.
  • User systems 12 , 14 may receive instructions from, for example, a software application, a program, a piece of code, a device, a computer, a computer system, or a combination thereof, which independently or collectively direct operations, as described herein. These instructions may take the form of one or more communications programs that facilitate communications between the users of client systems 12 , 14 .
  • Such communications programs may include E-mail programs, Instant Messaging (IM) programs, File Transfer Protocol (FTP) programs, Voice-over-Internet (VoIP) programs, as so forth.
  • IM Instant Messaging
  • FTP File Transfer Protocol
  • VoIP Voice-over-Internet
  • the instructions may be embodied permanently or temporarily in any type of machine, component, equipment, or storage medium.
  • Clients systems 12 , 14 include a communications interface (not shown) used by the communications programs to send communications through network 24 .
  • the communications may include E-mail, audio data, video data, general binary data, or text data (e.g., encoded in American Standard Code for Information Interchange (ASCII) format).
  • ASCII American Standard Code for Information Interchange
  • the network 24 can include a series of portals interconnected through a coherent system.
  • Examples of the network 24 include the Internet, Wide Area Networks (WANs), Local Area Networks (LANs), analog or digital wired and wireless telephone networks (e.g. a Public Switched Telephone Network (PSTN)), an Integrated Services Digital Network (ISDN), a Digital Subscriber Line (xDSL)), or any other wired or wireless network.
  • PSTN Public Switched Telephone Network
  • ISDN Integrated Services Digital Network
  • xDSL Digital Subscriber Line
  • the network 24 may include multiple networks or sub-networks, each of which may include, for example, a wired or wireless data pathway.
  • a central server 16 may be connected to network 24 and may be used to facilitate some direct or indirect communications between the client systems 12 , 14 .
  • central server 16 may be implemented using, for example, a general-purpose computer capable of responding to and executing instructions in a defined manner, a personal computer, a special-purpose computer, a workstation, a server, a device, a component, or other equipment or some combination thereof capable of responding to and executing instructions.
  • Central server 16 may receive instructions from, for example, a software application, a program, a piece of code, a device, a computer, a computer system, or a combination thereof, which independently or collectively direct operations, as described herein.
  • These instructions may take the form of one or more communications programs.
  • communications programs may include E-mail programs, IM programs, FTP programs, VoIP programs, and so forth.
  • the instructions may be embodied permanently or temporarily in any type of machine, component, equipment, or storage medium.
  • central server 16 includes a communications interface (not shown) used by the communications programs to send communications through network 24 .
  • the communications may include E-mail, audio data, video data, general binary data, or text data (e.g., encoded in American Standard Code for Information Interchange (ASCII) format).
  • ASCII American Standard Code for Information Interchange
  • the user systems 12 , 14 can execute an instant messaging (IM) client program.
  • IM programs typically enable users to communicate in real-time with each other in a variety of ways. Most IM programs provide, for example:
  • IM communications examples include those provided by AIM (America OnlineTM Instant Messenger), YahooTM Messenger, MSNTM Messenger, and ICQTM, and so forth.
  • AIM America OnlineTM Instant Messenger
  • YahooTM Messenger YahooTM Messenger
  • MSNTM Messenger MSNTM Messenger
  • ICQTM ICQTM
  • the framework 10 supports these IM communications and enables users to store video, images, sounds, files and other content, which can be included in IM communications. Unlike other systems, such as data storage networks, the framework 10 does not use fixed physical data storage to store data, such as image files and video files, for example.
  • data When a request to store data is received by the central server 16 from one of the user systems 12 , 14 , data is directed to a node in the network 24 where it is then continuously forwarded from node memory to node memory in the network 24 without storing on any physical storage medium such as a disk drive.
  • the forwarded data resides only for a very brief period of time in the memory of any one node in the network 24 . Data is not stored on any physical storage medium in any network node.
  • Data forwarded in this manner can be segmented and segments forwarded as described above. Still, the segmented data is not stored on any physical storage medium in any network node, but merely forwarded from the memory of one node to the memory of another node.
  • an exemplary framework 10 A includes a user system 12 (also referred to as client systems) and a number of network systems 14 , 16 , 18 , 20 , 22 .
  • Each of the network systems 14 , 16 , 18 , 20 , 22 can be considered to be a node in the framework 10 A and one such network system may be designated as a central server, such as network system 14 , which may assume a control position in framework 10 A.
  • Each of the nodes 14 , 16 , 18 , 20 , 22 may be established as a privately controlled network of peers under direct control of the central server 14 .
  • Peered nodes may also be a mix of private and public nodes, and thus not under the direct physical control of the central server 14 .
  • the framework 10 A may also be wholly public where the central server 14 (or servers) has no direct ownership or direct physical control of any of the peered nodes.
  • nodes 14 , 16 , 18 , 20 and 22 are considered to be a private network.
  • an administrator controls the nodes and may designate which node is the central server.
  • the framework 10 A can also include one or more additional nodes, for example, nodes 24 , 26 and 28 . These nodes 24 , 26 and 28 are considered to be part of one or more public networks in which the administrator has little or no control.
  • a request to store data when a request to store data is received, its ownership and/or data type can be checked against entries in a store maintained by the central server 14 .
  • data owned by a paid subscriber may be forwarded from node memory to node memory, and/or data of a particular type, such as office productivity file data type, an audio data file type, a visual data file type, a video data file type, an object oriented file type and/or a database data file type.
  • data forwarding is selective based on ownership and/or type. Certain users can have data forwarded from node memory to node memory, and/or certain types of data can be forwarded from node memory to node memory.
  • Entries in the store can be added, modified or deleted, enabling even more flexibility in selectively forwarding data from node memory to node memory.
  • Such a store can reside locally at the central server 14 or be forwarded from node memory to node memory without storing on any physical storage medium such as a disk drive.
  • other data parameters that can be evaluated include file size, file use frequency, user history, user preferences, and premiums paid by users.
  • the user system 12 can include a processor 30 , memory 32 and input/output (I/O) device 34 .
  • Memory 32 can include an operating system (OS) 36 , such as Linux, AppleTM OS or WindowsTM, one or more application processes 38 , and a storage process 100 , explained in detail below.
  • Application processes 38 can include user productivity software, such as OpenOffice or Microsoft OfficeTM.
  • the I/O device 34 can include a graphical user interface (GUI) 40 for display to a user 42 .
  • GUI graphical user interface
  • each of the network systems can include a processor 50 and memory 52 .
  • Memory 52 can include an OS 54 , such as Linux, AppleTM OS or WindowsTM, and a data forwarding process 200 , explained in detail below.
  • OS 54 such as Linux, AppleTM OS or WindowsTM
  • data forwarding process 200 explained in detail below.
  • each of the network systems can include a processor 50 and memory 52 .
  • Memory 52 can include an OS 54 , such as Linux, AppleTM OS or WindowsTM, a data file forwarding process 200 , a search process 300 and a retrieval process 400 , fully described below.
  • OS 54 such as Linux, AppleTM OS or WindowsTM
  • One network system such as network system 22
  • Memory of the deletion node 22 does not include a data file forwarding process 200 , search process 300 and retrieval process 400 . Any data file received by the deletion node is not forwarded or saved. New data received in the memory of the deletion node overwrites old data received by the memory of the deletion node. In effect, the deletion node 22 acts as a black hole for data files forwarded to it.
  • application processes 38 needs to store, delete, search and retrieve data files.
  • a data file is stored on local or remote physical devices. And in some systems, this data file can be segmented into different pieces or packets and stored locally or remotely on physical mediums of storage.
  • Use of fixed physical data storage devices add cost, maintenance, management and generate a fixed physical record of the data, whether or not that is the desire of the user 42 .
  • the present invention as described in FIG. 3A and 3B does not use fixed physical data storage to store data files.
  • data file are used to represent all file and media types handled by the system, such as, for example, files for data, program files, audio files, video files, picture files, and so forth.
  • the data file is directed to a node memory in the framework 10 where it is then continuously forwarded from node memory to node memory in the framework 10 by the data file forwarding process 200 in each of the network nodes without storing on any physical storage medium, such as a disk drive.
  • the forwarded data file resides only for a very brief period of time in the memory of any one node in the framework 10 .
  • Data files are not stored on any physical storage medium in any network node.
  • the central server 14 When a request to retrieve a data file is received by the central server 14 from storage process 100 , the requested data file, which is being forwarded from node memory to node memory in the framework 10 , is retrieved.
  • Data files forwarded in this manner can be segmented and segments forwarded as described above. Still, the segmented data is not stored on any physical storage medium in any network node, but forwarded from the memory of one node to the memory of another node.
  • Data files being forwarded in this manner can be deleted and thus no longer forwarded from node memory to node memory.
  • storage process 100 includes sending ( 102 ) a request to a central server 14 to store or retrieve data. If the request is a retrieve data request, storage process 100 receives the requested data from the central server 14 or node in the network.
  • storage process 100 receives ( 104 ) an address of a node from the central server 14 and forwards ( 106 ) the data to the node memory represented by the received address. Determining an address of a node available to receive the data can be based on one or more factors, such as network traffic analysis, available memory, combinations of factors, and so forth. A time stamp can be applied to the data in the computer memory of the specific node.
  • storage process 100 A includes sending ( 102 ) a request to a central server 14 to store, retrieve or delete a data file. If the request is a retrieve data file request, storage process 100 receives ( 104 ) the requested data file from the central server 14 or node in the network. Any reference herein to storage process 100 may refer to storage process 100 of FIG. 4A and/or storage system 100 A of FIG. 4B .
  • storage process 100 receives ( 106 ) an address of a node from the central server 14 and forwards ( 108 ) the data file to the node memory represented by the received address.
  • FIGS. 5A, 5B, and 5C are flowcharts illustrating example processes of data forwarding. Any reference herein to process 200 may refer to process 200 A of FIG. 5A , process 200 B of FIG. 5B , and/or process 200 C of FIG. 5C , depending on context of the reference.
  • data forwarding process 200 includes receiving ( 202 ) a request to store or retrieve data. If the received request is a request to store data, data forwarding process 200 determines ( 204 ) an address of a node available to receive the data in memory. This determination ( 204 ) can include pinging the network and determining which of the nodes in a network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or any combination of these or other factors.
  • Process 200 sends ( 206 ) a message to the user system with the address of a specific node for the requester to forward the data.
  • Process 200 detects ( 208 ) the presence of data in node memory.
  • Process 200 forwards ( 210 ) the data in memory to another node in the network of nodes and continues to repeat detecting ( 208 ) and forwarding ( 210 ) of the data from node memory to node memory.
  • process 200 affixes ( 212 ) a time stamp to the data. Additionally, as data enters and exits any mode memory, the data may be encrypted and de-encrypted.
  • Forwarding can include pinging the node in the network to determine which of the nodes in the network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or any combination of these or other factors.
  • data undergoes an encrypted “handshake” with the node or central server 14 or user.
  • This can be a public or private encryption system, such as the Cashmere system, which can use public-private keys.
  • Cashmere decouples the encrypted forwarding path and message payload, which improves the performance as the source only needs to perform a single public key encryption on each message that uses the destination's unique public key. This has the benefit that only the true destination node will be able to decrypt the message payload and not every node in the corresponding relay group.
  • Cashmere provides the capability that the destination can send anonymous reply messages without knowing the source's identity. This is done in a similar way, where the source creates a reply path and encrypts it in a similar manner as the forwarding path.
  • data forwarding process 200 matches ( 214 ) at the central server 14 using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network.
  • Process 200 sends ( 216 ) the message to return the data to the user directly to the node or node state where the central server 14 believes the data will likely appear.
  • process 200 forwards ( 218 ) in node memory the data to the requester and forwards ( 220 ) a confirmation message that the data has been sent to the user.
  • This routing message may be sent directly to the central server 14 or may be passed to the central server 14 or servers via other node(s) or supernode(s) in the network 10 .
  • the user's application functions to automatically ping the central server 14 that the data requested has been received.
  • the network 10 creates data storage without caching, downloading and/or storing the data on any physical storage medium. Data storage and management is accomplished via a continuous routing of the data from node memory to node memory, the forwarded data only downloaded when the user requests the data to be returned to the user from the network 10 .
  • New nodes and node states may be added and/or deleted from the network 10 based upon performance. Users may have access to all nodes or may be segmented to certain nodes or “node states” by the central server(s) or via the specific architecture of the private, public or private-public network.
  • Individual nodes, nodes states and supernodes may also be extranet peers, wireless network peers, satellite peered nodes, Wi-Fi peered nodes, broadband networks, and so forth, in public or private networks.
  • Peered nodes or users may be used as routing participants in the network 10 from any valid peer point with the same security systems employed, as well as custom solutions suitable for the rigors of specific deployments, such as wireless encryption schemes for wireless peers, and so forth.
  • process 200 rather than have data cached or held in remote servers, hard drives or other fixed storage medium, the data are passed, routed, forwarded from node memory to node memory. The data are never downloaded until the authorized user calls for the data. A user on the system may authorize more than one user to have access to the data.
  • a primary goal in process 200 is to generate a data storage and management system where the data is never fixed in physical storage, but in fact, is continually being routed/forwarded from node memory to node memory in the network.
  • the path of the nodes to which data is forwarded may also be altered by the central server 14 to adjust for system capacities and to eliminate redundant paths of data that may weaken the security of the network due to the increased probability of data path without this feature.
  • data file forwarding process 200 B includes receiving ( 202 ) a request from a source system in a network to store a data file.
  • Process 200 directs ( 204 ) the data file to a computer memory in a network.
  • Process 200 saves ( 206 ) a file name of the data file, and in some implementations, a file type, a username and a date stamp, in an index file associated with the central server 14 ; the actual data contained in the data file is not stored on any physical medium.
  • the index file is used to search for data files during the search process 300 , described fully below.
  • Process 200 scrambles ( 208 ) a copy of the contents of the data file and saves ( 210 ) the copied scrambled data in memory or on a physical storage device associated with the central server 14 .
  • a data file named “myfile.txt” includes the following text: This is an example of data contained in an exemplary data file.
  • the text herein is maintained as written in the data file and the data file continuously forwarded from node memory to node memory without storing on a physical medium.
  • Scrambling ( 208 ) a copy of the above data file may, in one example, results in the following scrambled data: to without storing on a physical medium example node this contained exemplary herein file from maintained text data, and the in continuously is an of forwarded memory.
  • Process 200 continuously forwards ( 212 ) the data file from the first computer memory to other computer memories in the network without storing on any physical storage device in the network.
  • Continuously forwarding ( 212 ) includes detecting a presence of the data file in memory of the specific node of the network and forwarding the data file to another computer memory of a node in the network of interconnected computer system nodes without storing any physical storage device.
  • forwarded data in the data file undergoes an encrypted “handshake” with the node or central server 14 or user.
  • This can be a public or private encryption system, such as the Cashmere system, which can use public-private keys.
  • Cashmere decouples the encrypted forwarding path and message payload, which improves the performance as the source only needs to perform a single public key encryption on each message that uses the destination's unique public key. This has the benefit that only the true destination node will be able to decrypt the message payload and not every node in the corresponding relay group.
  • Cashmere provides the capability that the destination can send anonymous reply messages without knowing the source's identity. This is done in a similar way, where the source creates a reply path and encrypts it in a similar manner as the forwarding path. In another example, other routing schemes are utilized.
  • New nodes and node states may be added and/or deleted from the framework 10 based upon performance. Users may have access to all nodes or may be segmented to certain nodes or “node states” by the central server(s) or via the specific architecture of the private, public or private-public network.
  • Data forwarded in the network can be measured.
  • the central server 14 maintains a store of data statistics each time new data is requested to be forwarded in the network.
  • the store can be a flat file, a table, or a database file, and is continuously forwarded from node memory to node memory in the network with storage on any physical medium, such as a disk drive. Contents of the store record each time a file is requested to be forwarded, its owner, its type, and/or additional information. In this manner, the central server 14 can generate a list of useful information when requested. More particularly, the central server 14 can account for the number of files, the number of file types, and the gross amount of data (e.g., megabytes) in the system as a whole, or owned per user of group of users. The central server 14 tracks data added and removed from the network using the store. The central server 14 can generate a list of all data being forwarded in the network, and/or data being forwarded by a specific user or group of users.
  • Geolocation generally refers to identifying a real-world geographic location of an Internet connected computer, mobile device, website visitor or other. Geolocation can be used to refer to the practice of assessing the location, or it can be used to refer to the actual assessed location or location data. Geolocation can be performed by associating a geographic location with, for example, the Internet Protocol address, Media Access Control (MAC) address, Radio Frequency Identification (RFID), hardware embedded article/production number, embedded software number (such as UUID, Exif/IPTC/XMP or modern steganography), Wi-Fi connection location, or device GPS coordinates, or other, perhaps self-disclosed, information.
  • MAC Media Access Control
  • RFID Radio Frequency Identification
  • hardware embedded article/production number such as UUID, Exif/IPTC/XMP or modern steganography
  • Wi-Fi connection location or device GPS coordinates, or other, perhaps self-disclosed, information.
  • Geolocation by IP address is the technique of determining a user's geographic latitude, longitude and, by inference, city, region and nation by comparing the user's public Internet IP address with known locations of other electronically neighboring servers and routers.
  • GPS Global Positioning System
  • the NetGeo response includes the city, state, country, latitude and longitude of the IP address in question. Furthermore, the granularity (LAT_LONG_GRAN) also is estimated to give some idea about the accuracy of the location. This accuracy also can be deduced from the LAST_UPDATED field. Obviously, the older the update, the more likely it is that the location has changed. This is true especially for IP addresses assigned to residential customers, as companies holding these addresses are in constant flux.
  • the PEAR system has a PHP package, and a PERL module, CAIDA::NetGeo::Client, is available. It is a relatively straightforward task to make a request in whatever language you are using for your application or service. For example, a function in PHP for getting and parsing the NetGeo response looks like this:
  • the NetGeo database slowly is becoming more inaccurate as IP address blocks change hands in company close-outs and absorptions.
  • Several other tools are available for determining location, however.
  • a description of the NetGeo infrastructure itself presents some of the methods it employed for mapping IP addresses and can be a source of guidance for future projects.
  • RFC 1876 is the standard that outlines “A Means for Expressing Location Information in the Domain Name System.” Specifically, this is done by placing the location information of a server on the DNS registration page. Several popular servers have employed this standard but not enough to be directly useful as of yet.
  • the “host” is a DNS lookup utility that allows users to find out various pieces of information about a host.
  • the simplest use is doing hostname to IP address lookups and the reverse.
  • the reverse, dotted-decimal IPv4 notation, is used for this, and the actual server that hosts the canonical name is returned.
  • the type flag, ⁇ t can be used to obtain specific information from the host record from the name server.
  • IP addresses typically provide an internal naming scheme for assigning IP addresses and associating names with these addresses.
  • the canonical name of an IP address contains the country-code top-level domain (ccTLDs) in a suffix. CN is China, FR is France, RO is Bulgaria and so on. Furthermore, the name even may contain the city or region in which the IP address is located. Often, however, this information is shortened to some name that requires a heuristic to determine. For example, in your service or application, a user may appear to be coming from d14-69-1-64.try.wideopenwest.com. A whois at this address reveals it is a WideOpenWest account from Michigan. Using some logic, it is possible to deduce that this user is connecting through a server located in Troy, Mich., hence the .try. in the canonical name.
  • ccTLDs country-code top-level domain
  • GNS GEOnet Names Server
  • Information such as that presented on the GNS also can be used to provide users with utilities and services specific to their geographical locations. For example, it is possible to determine a user's local currency, time zone and language. Time zone is especially useful for members of a community or chat group to determine when another friend may be available and on-line.
  • the central server 14 When a request to retrieve data is received by the central server 14 from storage process 100 , the requested data, which is being forwarded from node memory to node memory in the network 10 assisted by geolocations of the nodes, is retrieved.
  • storage process 100 includes sending ( 102 ) a request to a central server 14 to store or retrieve data. If the request is a retrieve data request, storage process 100 receives the requested data from the central server 14 or node in the network.
  • storage process 100 receives ( 104 ) an address of a node from the central server 14 and forwards ( 106 ) the data to the node memory represented by the received address.
  • the central server 14 is assisted in finding an appropriate address by a geolocation, which can help locate a node that is underutilized or light in terms of network traffic.
  • data forwarding process 200 C includes receiving ( 202 ) a request to store or retrieve data. If the received request is a request to store data, data forwarding process 200 determines ( 204 ) an address of a node available to receive the data in memory assisted by its geolocation. This determination ( 204 ) can include using a geolocation to help locate a node, pinging the network and determining which of the nodes in a network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or the geographic coordinates of the node, or any combination of these or other factors. Using geolocation enables greater speed and efficiency by selecting nodes that are proximate to each other and/or the user.
  • Process 200 sends ( 206 ) a message to the user system with the address of a specific node for the requester to forward the data.
  • Process 200 detects ( 208 ) the presence of data in node memory.
  • Process 200 forwards ( 210 ) the data in memory to another node in the network of nodes, assisted by geolocation (e.g., a location of the node in the network) and continues to repeat detecting ( 208 ) and forwarding ( 210 ) of the data from node memory to node memory assisted by geolocation.
  • process 200 affixes ( 212 ) a time stamp to the data.
  • Forwarding can include pinging the node in the network to determine which of the nodes in the network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or any combination of these or other factors.
  • a node typically has one network interface with one associated network address.
  • a node may include multiple network interfaces, each with their own associated non-loopback network address, such as a non-loopback Internet protocol (IP) address.
  • IP Internet protocol
  • a node may include a network interface with multiple associated non-loopback network addresses, such as multiple non-loopback IP addresses. Such a node is referred to as a “multi-homed node.”
  • IPv6 IP version 6
  • IPv4 IP version 6
  • IPv4 IP version 6
  • hosts in IPv6 may only have one network interface, but respond to multiple global IPv6 addresses, link-local addresses, and site-local addresses.
  • IPv6 IP version 6
  • almost every host in the IPv6 network can be a multi-homed host.
  • Process 200 can be modified and enabled within a single computer system that includes multiple IP (IP) addresses (e.g., 2001:db8::1, 2001:db8::2 and 2001:db8::3 in IPv6), but only one physical upstream link. This is sometimes referred to as single link, multiple IP address (spaces) multi-homing.
  • IP IP
  • a device can be multi-homed (e.g., host-centric multi-homing), when it has more than one interface, and each of the interfaces is attached to different networks (may be within a multi-homed network).
  • each interface can have multiple addresses, which means than even with a single interface, a host can be multi-homed.
  • Multi-homing can provide a certain degree of resilience/redundancy against failures (link, hardware, protocols, others) and also enables features such as load balancing. Moreover, multi-homing can be used in order to differentiate traffic based on policy, for non-technical reasons, such as cost associated with different flows, time of the day, and so forth. For highly distributed enterprises, it can also occur as an aid to address that enterprise's geographical distribution, and as a traffic engineering mechanism to improve local performance such as latency and hop count reductions for real time protocols.
  • a modified process 200 forwards data in memory within a single computer having multiple assigned IP addresses.
  • all data being forwarded in memory is automatically forwarded to a node memory in the network 10 , where it is continually routed/forwarded from node memory to node memory in the network 10 according to process 200 .
  • power is restored to the computer, data is recovered/reloaded from the network 10 and then continuously forwarded within the memory of the computer without ever being fixed in physical storage.
  • this data forwarding storage and management system where the data is continually being routed/forwarded from node memory to node memory in the network is used as an advertisement forwarding and retrieval system.
  • Advertisement is deployed into the data forwarding storage and management system from a master server or control station and recalled on demand or in response to a stimulus or activity.
  • advertisement as a broad term that can include any content, including, but limited to, text, audio, visual or any combination thereof.
  • Advertisement can be deployed into the data forwarding storage network and recalled/retrieved when needed, e.g., directed to an IP address of a specific user system, directed to paid and/or unpaid subscribers of applications within the data forwarding storage network, and/or directed to users outside of the data forwarding storage network.
  • Advertisement being continuously forwarded in the data forwarding storage network can be sent to all users or specifically targeted according to one or more user characteristics, user profiles, usage patterns, history and/or past or present viewed page content.
  • the advertisement being continuously forwarded in the data forwarding storage network can be displayed to a current user within an application or web browser or delivered to a wired or wireless radio, television and/or television network.
  • Advertisements can be retrieved in response to a stimulus or activity, such as the user's profile, traffic patterns of one or more users, application profiles, and so forth.
  • Advertisements can be stored and delivered in any media form and either pre-configured by specific file type and size for a specific end user or site delivery requirements/formats, or delivered and formatted by virtue of the end user or middleware software compatibility systems.
  • selected advertisement can be delivered to a user through a web browser.
  • a plug-in and/or helper application can be associated with a user's web browser.
  • a plug-in is a computer program that interacts with a host application (a web browser or an email client, for example) to provide a certain, usually very specific, function “on demand.”
  • a host application a web browser or an email client, for example
  • the plug-in can parse displayed text.
  • the plug-in can then request specific advertisement being continuously forwarded in the data forwarding storage network that matches the parsed text to the web browser of the user for display in a section of the display screen or as a pop-up.
  • a user requesting retrieval of a data file being continuously forwarded in the data forwarding storage network may be presented with specific advertisement being continuously forwarded in the data forwarding storage network that matches the user's profile.
  • the user's profile may include various personal and/or demographic data that aids in directing appropriate advertisement to the user.
  • the advertisement may then be displayed as a banner or in a shared window or in a separate window.
  • a process 300 A includes directing ( 302 ) advertisement to a computer memory.
  • the advertisement can include any content, including, but limited to, text, audio, visual or any combination thereof.
  • the advertisement can include multiple configurations in order to satisfy different systems delivery specifications. Advertisements can be stored and delivered in any media form and either pre-configured by specific file type and size for a specific end user or site delivery requirements/formats, or delivered and formatted by virtue of the end user or middleware software compatibility systems.
  • Process 300 directs ( 304 ) data to a computer memory.
  • Process 300 continuously forwards ( 306 ) each of the unique data, independent of each other, from one computer memory to another computer memory in the network of interconnected computer system nodes without storing on any physical storage device in the network.
  • Process 300 continuously forwards ( 308 ) each of the unique advertisements, independent of each other, from one computer memory to another computer memory in the network of interconnected computer system nodes without storing on any physical storage device in the network.
  • Process 300 retrieves ( 310 ) one of the advertisements in response to an activity.
  • FIGS. 6A, 6B, and 6C are flowcharts illustrating example processes. Any reference herein to process 300 may refer to process 300 A of FIG. 6A , process 300 B of FIG. 6B , and/or process 400 C of FIG. 6C , depending on context of the reference.
  • data forwarding process 300 B includes receiving ( 302 ) a request to store or retrieve data. If the received request is a request to store data, data forwarding process 300 determines ( 304 ) a memory location associated with an IP address available to receive the data.
  • Process 300 sends ( 306 ) a message with the memory location associated with the IP address for the requester to forward the data.
  • Process 300 detects ( 308 ) the presence of data in a memory location.
  • Process 300 forwards ( 310 ) the data in the memory location to another memory location associated with another IP address within the computer and continues to repeat detecting ( 308 ) and forwarding ( 310 ) of the data from memory location associated with one IP address to a memory location associated with another IP address.
  • data forwarding process 300 locates ( 312 ) the requested data being forwarded within the memory and returns ( 314 ) the located data to the requester.
  • the search process 300 C includes receiving ( 302 ) a query.
  • Example queries include filenames, file types, usernames, dates and so forth.
  • the query is a keyword or keywords.
  • Search process 300 searches ( 304 ) the database of scrambled files represented by the index of file names for a match of the keyword or keywords. If a match of the keyword or keywords is found among the scrambled files, process 300 generates ( 306 ) a list of filenames containing the keyword or keywords. In one example, the list of file names is displayed to a user on an input/output device, enabling the user to select one of the file names.
  • the list of filenames displayed includes supplemental information with respect to the file, such as, file type, file size, date saved and/or last modified, and so forth.
  • Process 300 receives ( 308 ) a user selection of one of the filenames contained in the generated list of file names.
  • the user selection can include a mouse click, a key board input, an audio input, and so forth, indicating a selected filename.
  • Process 300 launches ( 310 ) a file retrieval process 400 .
  • the file retrieval process 400 matches ( 402 ) the requested filename at the central server using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network.
  • Process 400 sends ( 404 ) the message to return the data to the user directly to the node or node state where the central server believes the data will likely appear. The more the central server can narrow the node state that it pings to, then the more efficient the retrieval will become and the less burdened by unnecessary messaging traffic to nodes that are not necessary for a transaction between the central server and the node capable of forwarding the data.
  • process 400 forwards ( 406 ) in node memory the data to the requester and forwards ( 408 ) a confirmation message that the data has been sent to the user.
  • This routing message may be sent directly to the central server or may be passed to the central server or servers via other node(s) or supernode(s) in the framework 10 .
  • the user's application functions to automatically ping the central server that the data requested has been received.
  • the framework 10 creates data storage without caching, downloading and/or storing the data on any physical storage medium. Data storage and management is accomplished via a continuous routing of the data from node memory to node memory.
  • storage process 100 only stores the scrambled data along with filename, and in some instances, file type, username, and/or date stamp, while automatically deleting the non-scrambled data file.
  • the central server 14 launches a file deletion process 500 .
  • process 500 matches ( 502 ) the filename to delete at the central server 14 using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network.
  • Process 500 sends ( 504 ) the message to forward the data to the deletion node 28 directly to the node or node state where the central server believes the data will likely appear. The more the central server can narrow the node state that it pings to, then the more efficient the retrieval will become and the less burdened by unnecessary messaging traffic to nodes that are not necessary for a transaction between the central server and the node capable of forwarding the data.
  • Process 500 forwards ( 506 ) in node memory the data to the deletion node.
  • Process 500 removes ( 508 ) the data file name from the index and forwards ( 510 ) a confirmation message that the data has been deleted to the user.
  • This routing message may be sent directly to the central server or may be passed to the central server or servers via other node(s) or supernode(s) in the framework 10 .
  • the framework 10 creates data storage without caching, downloading and/or storing the data on any physical storage medium. Data storage and management is accomplished via a continuous routing of the data from node memory to node memory, the forwarded data only downloaded when the user requests the data to be returned to the user from the framework 10 .
  • FIG. 9 illustrates an example interface presented to a user of one of the client systems 12 , 14 when running an instant messaging client program.
  • instant messaging programs typically enable users to communicate in real-time with each other in a variety of ways. For example, many instant messaging programs enable users to send text as an instant message, to transfer files, and to communicate by voice.
  • User interface 905 has a text box 910 that displays representations 915 of the program user's contacts or buddies (both terms are used interchangeably herein), which are other users of an instant messaging program with whom the program user desires to communicate and interact.
  • the representations 915 may provide contextual information to the program user about the buddy, such as whether the contact is online, how long the contact has been online, whether the contact is away, or whether the contact is using a mobile device.
  • the list of contacts displayed in text box 910 of user interface 905 typically is referred to as the contact list or buddy list.
  • the IM program user can typically add or remove contacts from the contact list.
  • the representations 915 are text icons showing the screen names of the contacts.
  • Instant messaging programs may use an instant messaging server to assist in communications between users of the instant messaging program.
  • the instant messaging server may be implemented, for example, using central server 16 .
  • the instant messaging program contacts the central server 16 and logs the user onto the central server 16 .
  • the central server 16 informs the instant messaging program when the program user's contacts are online and facilitates communications between the program user and an online contact.
  • the central server 16 may support IM services irrespective of a program user's network or Internet access. Thus, central server 16 may enable users to send and receive IMs, regardless of whether they have access to any particular Internet service provider (ISP).
  • the central server 16 also may support associated services, such as administrative matters, advertising, directory services, chat, and interest groups related to IM.
  • the central server 16 employs one or more IM protocols. The data may be encrypted and de-encrypted.
  • the IM client program running on a client system 12 , 14 establishes a connection with the central server 16 and logs onto the central server 16 .
  • a user can use the IM client program to view whether particular buddies are online, exchange IMs with particular buddies, participate in group chat rooms, and trade files such as pictures, invitations or documents.
  • the IM program user also may be able to find other buddies with similar interests, get customized information such as news and stock quotes, and search the World Wide Web.
  • Central server 16 may assist IM communications between users of IM client programs by facilitating the establishment of a peer-to-peer communication session between the IM client programs. Or the central server 16 may assist IM communications by directly routing communications between the IM client programs.
  • the IM program user can communicate or interact with the contact in a number of ways. For instance, the IM program user can send an instant message to the contact (typically in the form of text).
  • Sending a message opens up a window in which messages can be typed back-and-forth between the IM program user and the contact. Similarly, the IM program user also can send a file or other content to the contact.
  • the IM program user To initiate these actions for a contact, the IM program user performs operations on the representation of the contact displayed in user interface 905 . The program then executes the corresponding action in response to the operation performed on the representation. For example, an instant message might be initiated by double-clicking on a contact's representation. Or, a file transfer might be initiated by the IM program user selecting the contact's representation to bring up a context menu and choosing “send a file” from the menu.
  • a “buddy icon” can be set for the contact such that communications with the contact display the buddy icon.
  • profile information about the contact can be retrieved, an alert can be set to inform the program user when the contact is online, a VoIP communication session can be established, or an e-mail can be sent.
  • User interface 905 may have icons 930 to help a user set various options or perform operations in the instant messaging program.
  • encryption scheme employed is under the control of the central server 14 , which can change or rotate the scheme periodically or in response to external factors. Any two or more encryption schemes can be used.
  • encryption schemes involving simple conversions can include ASCII to Binary, Binary to ASCII, ASCII to Hex, Hex to ASCII, Binary to Hex, Hex to Binary, Dec to Hex, Hex to Dec, Dec to Roman, and Roman to Dec, and so forth.
  • Encryption schemes involving network tools can include IP to Dec, Dec to IP, IP to Hex, Hex to IP, IP/Net Calculator, IPv6 Validator, IPv6 Compress, IPv6 Uncompress, and so forth.
  • Non-Key En/DeCryption schemes can include PasswordGen, Backwards, Base 64 Encode, Base 64 Decode, Caesar Bruteforce, 133t 5p34k 3nc0d3, 133t 5p34k d3c0d3, Igpay Atinlay, Un-Pig Latin, ROT-13, and so forth.
  • HTML Encoding schemes can include HTML Entities Encode, HTML Entities Decode, URL Encode, URL Decode and so forth.
  • Hash Algorithm schemes can include DES, MD4, MD5, SHA1, SHA-224, SHA-256, SHA-384, SHA-512, HAVAL 128, HAVAL 160, HAVAL 192, HAVAL 224, HAVAL 256, RIPEMD 128, RIPEMD 160, RIPEMD 256, RIPEMD 320, Tiger, Tiger 128, Tiger 160, Adler 32, Whirlpool, GOST, CRC32, CRC32B, and so forth.
  • Key En/DeCryption schemes can include Tripple DES, Blowfish, CAST 128, CAST 256, GOST, Rijndael 128, Rijndael 192, Rijndael 256, SERPENT, Safer+, RC2, XTEA, LOKI97, DES, TwoFish, Wake (ECB mode, BASE64 armored), and so forth.
  • Time Conversion schemes can include Unix Timestamp to Date/Time, Date/Time to Unix Timestamp, Unix Timestamp to RFC 2822, Unix Timestamp to Internet Time, Unix Timestamp to ISO 8601, and so forth.
  • the central server 14 can direct a different encryption scheme to each of the network systems 16 , 18 , 20 , 22 , or a single encryption scheme to all of the network systems 16 , 18 , 20 , 22 .
  • the central server 14 can periodically direct one or more of the network systems 16 , 18 , 20 , 22 , to change their current encryption scheme to another encryption scheme.
  • the central server 14 can direct the network systems 16 , 18 , 20 , 22 , to employ a particular encryption scheme based on the type of data being forwarded from node memory to node memory.
  • the central server 14 can direct the network systems 16 , 18 , 20 , 22 , to employ a particular encryption scheme based on an owner of the data being forwarded from node memory to node memory.
  • the central server 14 can store the various encryption schemes locally and send a particular encryption scheme to a node memory for use, or the network systems 16 , 18 , 20 , 22 , can store the various encryption schemes locally and wait for instructions received from the central server 14 to select a particular encryption scheme for use.
  • data forwarding process 200 matches ( 214 ) at the central server 14 using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network.
  • Process 200 sends ( 216 ) the message to return the data to the user directly to the node or node state where the central server 14 believes the data will likely appear.
  • a redundant data storage and management system may be implemented where the redundant data is never fixed in physical storage, but in fact, is continually being routed/forwarded from node memory to node memory.
  • the path of the nodes to which redundant data is forwarded may also be altered by the central server 14 to adjust for system capacities and to eliminate redundant paths of data that may weaken the security of the network due to the increased probability of data path without this feature.
  • One or more networks create redundant data storage without caching or downloads. Redundant data storage and management are accomplished via a constant routing of the redundant data.
  • This data storage and management system in which the data is never fixed in physical storage, but in fact, is continually being routed/forwarded from node memory to node memory in the network, can be used as a backend system(s) in many applications that currently used fixed medium storage.
  • this data storage and management system where the data is continually being routed/forwarded from node memory to node memory in the network is used in a media delivery system.
  • media can broadly include any predictable content, any archival content, any audio content, visual content, any text-based content, and so forth. Predictable content can be deployed into the data forwarding storage network and recalled/retrieved when needed, e.g., directed to an IP address of a specific user system.
  • the content can include text, audio, visual images, audiovisual images, or any combination thereof.
  • the network can continuously forward certain audiovisual highlights that are used each day, such as program introductions, graphic packages, introduction and theme music, historical footage of significance, commonly used reference footage, and so forth.
  • This content being continuously forwarded in the network may or may not be needed in the future. More specifically, content that is most likely needed but are seeded into the network according to the probability of use, not based upon the individual needs of a user to store a file.
  • the network can use a more diverse distribution list for the stored content than the forward storage system utilized by a user for “normal file storage” because users are delivered material not by calling/requesting a file from the network itself, but by virtue of a content provider using the network as a distribution tool to their audience.
  • a stock quote system In traditional stock quote systems used on the World Wide Web (“Web”), a user accesses a stock quote website through a graphical user interface (GUI) used for web browsing, such as FirefoxTM OperaTM, or FlockTM.
  • GUI graphical user interface
  • One example stock quote website is Yahoo! TM financial.
  • the user enters a trading symbol of a stock in which he/she wants to query.
  • the stock quote website receives the stock symbol, sends the stock symbol to a stock quote backend for a current price, receives the current price from the stock quote backend, and sends the current price to the user's GUI for viewing by the user.
  • the current price is a numerical value, such as 171/2, in this example.
  • Numeric values can be deployed into the data storage and management system and continually routed/forwarded from node memory to node memory in the network.
  • a range of numeric values in appropriate increments can be deployed in the data storage and management system, similar to how data files are deployed when a message to store is received.
  • Each of the numeric values is sent from a user system to the central server 14 using the data forwarding process 200 , fully described above. This results in a large number of distinct and unique numeric values continually being routed/forwarded from node memory to node memory in the network.
  • a range of numeric values embedded in text can be deployed into the data storage and management system where they are continually being routed/forwarded from node memory to node memory in the network. For example, “IBM is selling at 25,” “IBM is selling at 251/8,” and forth, can be deployed.
  • the financial web site requests from the backend stock quote server a current price and the central server 14 is informed of this price directly from the back end stock quote server.
  • the central server 14 requests the numeric value representing the received price, along with associated text, from the network and once found, directs the numeric value with associated text to the Internet Protocol (IP) address of the user requesting the price. For example, if the current price of IBM sock is 25, the central server 14 requests that “IBM is selling at 25” be delivered to the user requesting the quote.
  • IP Internet Protocol
  • any predictable content, archival data and/or media data can be deployed in our data storage and management system.
  • election results can be deployed into our data storage and management system. More specifically, a news item reporting “Senator Obama won the general election” and that “Senator McKane won the general election” can be deployed to the network where they are never fixed in physical storage, but in fact, continually being routed/forwarded from node memory to node memory in the network.
  • the web application makes a request to a news service requesting election results from a web application having a back end supported by our data storage and management system.
  • the central server 14 is informed of election results by a news server.
  • the central server 14 locates the news item in the network and directs the news story to the Internet Protocol (IP) address of the user requesting the news information.
  • IP Internet Protocol
  • the network includes a group of interconnected computer system nodes each adapted to receive data items and continuously forward the data items from computer memory to computer memory, independent of each other, without storing on any physical storage device, in response to a request to store the data items from a requesting system and retrieve a particular data item being continuously forwarded from computer memory to computer memory in response to a request to retrieve the data item from the requesting system.
  • Each node in the network is adapted to detect the presence of a data item in its memory and forward the data item to a computer memory of another node in the interconnected computer systems nodes according to a node's availability. The node's availability can be determined according to its volume of network traffic.
  • Each node can encrypt the data item.
  • a central node can be adapted to match the data retrieval request at a central server using a hash mark representing the data item entering a node, send a message to a node that is predicted to have the data item in memory, the message instructing the node to forward the data item in memory to the requester, and send a confirmation message to the central server that the data item in memory has been forwarded to the requester.
  • the techniques described above are not limited to any particular hardware or software configuration. Rather, they may be implemented using hardware, software, or a combination of both.
  • the programs may be implemented in a high-level programming language and may also be implemented in assembly or other lower level languages, if desired. Any such program will typically be stored on a computer-usable storage medium or device (e.g., CD-ROM, RAM, or magnetic disk). When read into the processor of the computer and executed, the instructions of the program cause the programmable computer to carry out the various operations described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

A method for data forwarding storage and retrieval in a network of interconnected computer system nodes may include directing data to a computer memory, continuously forwarding the data, from one computer memory to anther computer memory in the network of interconnected computer system nodes without storing on any physical storage device in the network, and retrieving the data in response to an activity.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. application Ser. No. 15/965,541, filed Apr. 27, 2018 which is a continuation of U.S. application Ser. No. 14/951,157, filed Nov. 24, 2015, which is a continuation of U.S. application Ser. No. 13/735,759, filed Jan. 7, 2013, now U.S. Pat. No. 9,203,928 which is a continuation-in-part of each of the following:
      • U.S. application Ser. No. 13/003,502, filed Feb. 1, 2011, now U.S. Pat. No. 8,370,446 which is the U.S. National Phase of International Application No. PCT/US2009/049763, filed Jul. 7, 2009, which is a continuation of U.S. patent application Ser. No. 12/170,925, filed Jul. 10, 2008, now U.S. Pat. No. 7,636,758, each entitled “ADVERTISEMENT FORWARDING STORAGE”
      • U.S. application Ser. No. 13/003,505, filed Apr. 11, 2011, now U.S. Pat. No. 8,599,678 which is the U.S. National Phase of International Application No. PCT/US2009/049755, filed Jul. 7, 2009, which is a continuation of U.S. patent application Ser. No. 12/170,901, filed Jul. 10, 2008, now U.S. Pat. No. 7,673,009, each entitled “MEDIA DELIVERY IN DATA FORWARDING STORAGE NETWORK”
      • U.S. application Ser. No. 13/057,072, filed Feb. 1, 2011, now U.S. Pat. No. 8,356,078 which is the U.S. National Phase of International Application No. PCT/US2009/050008, filed Jul. 9, 2009, which is a continuation of U.S. patent application Ser. No. 12/184,866, filed Aug. 1, 2008, now U.S. Pat. No. 7,599,997, each entitled “MULTI-HOMED DATA FORWARDING STORAGE”
      • U.S. application Ser. No. 12/989,638, filed Feb. 25, 2011, now U.S. Pat. No. 8,386,585 which is the U.S. National Phase of International Application No. PCT/US2009/041817, filed Apr. 27, 2009, which is a continuation of U.S. patent application Ser. No. 12/109,458, filed Apr. 25, 2008, now abandoned, each entitled “REAL-TIME COMMUNICATIONS OVER DATA FORWARDING FRAMEWORK”
      • U.S. application Ser. No. 12/991,383, filed Jan. 24, 2011, now U.S. Pat. No. 8,452,844 which is the U.S. National Phase of International Application No. PCT/US2009/042971, filed May 6, 2009, which is a continuation of U.S. patent application Ser. No. 12/116,610, filed May 7, 2008, now abandoned, each entitled “DELETION IN DATA FILE FORWARDING FRAMEWORK”
      • U.S. application Ser. No. 13/119,133, filed Mar. 15, 2011, now U.S. Pat. No. 8,352,635 which is the U.S. National Phase of International Application No. PCT/US2009/058368, filed Sep. 25, 2009, which is a continuation of U.S. patent application Ser. No. 12/240,925, filed Sep. 29, 2008, now U.S. Pat. No. 7,631,051, each entitled “GEOLOCATION ASSISTED DATA FORWARDING STORAGE”
      • U.S. application Ser. No. 13/119,124, filed Mar. 15, 2011, now U.S. Pat. No. 8,489,687 which is the U.S. National Phase of International Application No. PCT/US2009/058362, filed Sep. 25, 2009, which is a continuation of U.S. patent application Ser. No. 12/240,951, filed Sep. 29, 2008, now U.S. Pat. No. 7,636,759, each entitled “ROTATING ENCRYPTION IN DATA FORWARDING STORAGE”
      • U.S. application Ser. No. 13/119,122, filed Mar. 15, 2011, now U.S. Pat. No. 8,478,823 which is the U.S. National Phase of International Application No. PCT/US2009/058052, filed Sep. 23, 2009, which is a continuation of U.S. patent application Ser. No. 12/240,967, filed Sep. 29, 2008, now U.S. Pat. No. 7,636,760, each entitled “SELECTIVE DATA FORWARDING STORAGE”
      • U.S. application Ser. No. 13/119,147, filed Mar. 15, 2011, now U.S. Pat. No. 8,554,866 which is the U.S. National Phase of International Application No. PCT/US2009/058376, filed Sep. 25, 2009, which is a continuation of U.S. patent application Ser. No. 12/240,991, filed Sep. 29, 2008, now U.S. Pat. No. 7,636,761, each entitled “MEASUREMENT IN DATA FORWARDING STORAGE”
      • U.S. application Ser. No. 12/052,345, filed Mar. 20, 2008, now U.S. Pat. No. 8,458,285 entitled “REDUNDANT DATA FORWARDING STORAGE.”
  • Each of the above-listed references is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • The volume of data that must be stored by individuals, organizations, businesses and government is growing every year. In addition to just keeping up with demand, organizations face other storage challenges. With the move to on-line, real-time business and government, critical data must be protected from loss or inaccessibility due to software or hardware failure. Today, many storage products do not provide complete failure protection and expose users to the risk of data loss or unavailability. For example, many storage solutions on the market today offer protection against some failure modes, such as processor failure, but not against others, such as disk drive failure. Many organizations are exposed to the risk of data loss or data unavailability due to component failure in their data storage system.
  • The data storage market is typically divided into two major segments, i.e., Direct Attached Storage (DAS) and Network Storage. DAS includes disks connected directly to a server.
  • Network Storage includes disks that are attached to a network rather than a specific server and can then be accessed and shared by other devices and applications on that network. Network Storage is typically divided into two segments, i.e., Storage Area Networks (SANs) and Network Attached Storage (NAS).
  • A SAN is a high-speed special-purpose network (or subnetwork) that interconnects different kinds of data storage devices with associated data servers on behalf of a larger network of users. Typically, a SAN is part of the overall network of computing resources for an enterprise. A storage area network is usually clustered in close proximity to other computing resources but may also extend to remote locations for backup and archival storage, using wide area (WAN) network carrier technologies.
  • NAS is hard disk storage that is set up with its own network address rather than being attached to the local computer that is serving applications to a network's workstation users. By removing storage access and its management from the local server, both application programming and files can be served faster because they are not competing for the same processor resources. The NAS is attached to a local area network (typically, an Ethernet network) and assigned an IP address. File requests are mapped by the main server to the NAS file server.
  • All of the above share one common feature that can be an Achilles tendon in more ways than one, i.e., data is stored on a physical medium, such as a disk drive, CD drive, and so forth.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements.
  • FIG. 1A is a block diagram of an exemplary network.
  • FIG. 1B is a block diagram of an exemplary continuous data forwarding framework including two user systems.
  • FIG. 1C is a block diagram of an exemplary framework that includes a user system and a number of network systems.
  • FIG. 2 is a block diagram of an exemplary user system.
  • FIG. 3A is a block diagram of an exemplary network system.
  • FIG. 3B is a block diagram of another exemplary network system.
  • FIG. 4A is a flow diagram of an exemplary storage process.
  • FIG. 4B is a flow diagram of another exemplary storage process.
  • FIG. 5A is a flow diagram of an exemplary data forwarding process.
  • FIG. 5B is a flow diagram of another exemplary data file forwarding process.
  • FIG. 5C is a flow diagram of another exemplary data file forwarding process.
  • FIG. 6A is a flow diagram of an exemplary process for forwarding advertisements.
  • FIG. 6B is a flow diagram of an exemplary data forwarding process.
  • FIG. 6C is a flow diagram of an exemplary search process.
  • FIG. 7 is a flow diagram of an exemplary file retrieval process.
  • FIG. 8 is a flow diagram of an exemplary file deletion process.
  • FIG. 9 is an example of a user interface for an instant messaging client program.
  • DETAILED DESCRIPTIONS
  • Unlike peer to peer networks, which use data forwarding in a transient fashion so that data is eventually stored on a physical medium such as a disk drive, the present invention is a continuous data forwarding system, i.e., data is stored by continually forwarding it from one node memory to another node memory.
  • Example Continuous Data Forwarding Frameworks
  • As shown in FIG. 1A, an exemplary network 10 includes a user system 12 and a number of network systems 14, 16, 18, 20, 22. Each of the network systems 14, 16, 18, 20, 22 can be considered to be a node in the network 10 and one such network system may be designated as a central server, such as network system 14, which may assume a control position in network 10. Each of the nodes 14, 16, 18, 20, 22 may be established as a privately controlled network of peers under direct control of the central server 14. Peered nodes may also be a mix of private and public nodes, and thus not under the direct physical control of the central server 14. The network 10 may also be wholly public where the central server 14 (or servers) has no direct ownership or direct physical control of any of the peered nodes.
  • As shown in FIG. 1B, an exemplary continuously data forwarding framework 10 includes two user systems 12, 14 (also referred to as client systems) coupled to a number of network systems 16, 18, 20, 22 (also referred to as servers). Each of the network systems 16, 18, 20, 22 is considered to be a node in a network 24 and one such network system may be designated as a host or central server, such as network system 16. As such, network system 16 may assume a control position in network 24. Each of the nodes 16, 18, 20, 22 can be established as a privately controlled network of peers under direct control of the central server 16. Peered nodes can also be a mix of private and public nodes (e.g., the Internet), and thus not under the direct physical control of the central server 16. The network 24 can also be wholly public where the central server 16 (or servers) has no direct ownership or direct physical control of any of the peered nodes.
  • The continuously data forwarding framework 10 supports communications between computer users, such as users on user systems 12, 14. Computer users on user systems 12, 14 are distributed geographically and communicate using one or more of the network systems 16, 18, 20, 22 in network 24. User systems 12, 14 are connected to network 24 through various communication mediums, such as a modem connected to a telephone line (using, for example, serial line internet protocol (SLIP) or point-to-point protocol (PPP)) or a direct internetwork connection (using, for example, transmission control protocol/internet protocol (TCP/IP)).
  • Each of the user systems 12, 14 may be implemented using, for example, a general-purpose computer capable of responding to and executing instructions in a defined manner, a personal computer, a special-purpose computer, a workstation, a server, a device, a component, or other equipment or some combination thereof capable of responding to and executing instructions. User systems 12, 14 may receive instructions from, for example, a software application, a program, a piece of code, a device, a computer, a computer system, or a combination thereof, which independently or collectively direct operations, as described herein. These instructions may take the form of one or more communications programs that facilitate communications between the users of client systems 12, 14. For instance, such communications programs may include E-mail programs, Instant Messaging (IM) programs, File Transfer Protocol (FTP) programs, Voice-over-Internet (VoIP) programs, as so forth. The instructions may be embodied permanently or temporarily in any type of machine, component, equipment, or storage medium.
  • Clients systems 12, 14 include a communications interface (not shown) used by the communications programs to send communications through network 24. The communications may include E-mail, audio data, video data, general binary data, or text data (e.g., encoded in American Standard Code for Information Interchange (ASCII) format).
  • The network 24 can include a series of portals interconnected through a coherent system. Examples of the network 24 include the Internet, Wide Area Networks (WANs), Local Area Networks (LANs), analog or digital wired and wireless telephone networks (e.g. a Public Switched Telephone Network (PSTN)), an Integrated Services Digital Network (ISDN), a Digital Subscriber Line (xDSL)), or any other wired or wireless network. The network 24 may include multiple networks or sub-networks, each of which may include, for example, a wired or wireless data pathway.
  • A central server 16 (also referred to as host server) may be connected to network 24 and may be used to facilitate some direct or indirect communications between the client systems 12, 14. As with the client systems 12, 14, central server 16 may be implemented using, for example, a general-purpose computer capable of responding to and executing instructions in a defined manner, a personal computer, a special-purpose computer, a workstation, a server, a device, a component, or other equipment or some combination thereof capable of responding to and executing instructions. Central server 16 may receive instructions from, for example, a software application, a program, a piece of code, a device, a computer, a computer system, or a combination thereof, which independently or collectively direct operations, as described herein. These instructions may take the form of one or more communications programs. For instance, such communications programs may include E-mail programs, IM programs, FTP programs, VoIP programs, and so forth. The instructions may be embodied permanently or temporarily in any type of machine, component, equipment, or storage medium.
  • Further, central server 16 includes a communications interface (not shown) used by the communications programs to send communications through network 24. The communications may include E-mail, audio data, video data, general binary data, or text data (e.g., encoded in American Standard Code for Information Interchange (ASCII) format).
  • The user systems 12, 14 can execute an instant messaging (IM) client program. IM programs typically enable users to communicate in real-time with each other in a variety of ways. Most IM programs provide, for example:
  • (1) Instant messages—send notes back and forth with a friend who is online
  • (2) Chat—create a chat room with friends or co-workers
  • (3) Web links—share links to your favorite Web sites
  • (4) Video—send and view videos, and chat face to face with friends
  • (5) Images—look at an image stored on your friend's computer
  • (6) Sounds—play sounds for your friends
  • (7) Files—share files by sending them directly to your friends
  • (8) Talk—use the Internet instead of a phone to actually talk with friends
  • (9) Streaming content—real-time or near-real-time stock quotes and news
  • (10) Mobile capabilities—send instant messages from your cell phone
  • Examples of IM communications include those provided by AIM (America Online™ Instant Messenger), Yahoo™ Messenger, MSN™ Messenger, and ICQ™, and so forth.
  • The framework 10 supports these IM communications and enables users to store video, images, sounds, files and other content, which can be included in IM communications. Unlike other systems, such as data storage networks, the framework 10 does not use fixed physical data storage to store data, such as image files and video files, for example. When a request to store data is received by the central server 16 from one of the user systems 12, 14, data is directed to a node in the network 24 where it is then continuously forwarded from node memory to node memory in the network 24 without storing on any physical storage medium such as a disk drive. The forwarded data resides only for a very brief period of time in the memory of any one node in the network 24. Data is not stored on any physical storage medium in any network node.
  • In a like manner, when a request to retrieve data is received by the central server 16 from a user system 12, 14, the requested data, which is being forwarded from node memory to node memory in the network 24, is retrieved.
  • Data forwarded in this manner can be segmented and segments forwarded as described above. Still, the segmented data is not stored on any physical storage medium in any network node, but merely forwarded from the memory of one node to the memory of another node.
  • As shown in FIG. 1C, an exemplary framework 10A includes a user system 12 (also referred to as client systems) and a number of network systems 14, 16, 18, 20, 22. Each of the network systems 14, 16, 18, 20, 22 can be considered to be a node in the framework 10A and one such network system may be designated as a central server, such as network system 14, which may assume a control position in framework 10A. Each of the nodes 14, 16, 18, 20, 22 may be established as a privately controlled network of peers under direct control of the central server 14. Peered nodes may also be a mix of private and public nodes, and thus not under the direct physical control of the central server 14. The framework 10A may also be wholly public where the central server 14 (or servers) has no direct ownership or direct physical control of any of the peered nodes.
  • In one example, nodes 14, 16, 18, 20 and 22 are considered to be a private network. In a private network, an administrator controls the nodes and may designate which node is the central server. The framework 10A can also include one or more additional nodes, for example, nodes 24, 26 and 28. These nodes 24, 26 and 28 are considered to be part of one or more public networks in which the administrator has little or no control.
  • Example Selective Data Forwarding
  • In addition, when a request to store data is received, its ownership and/or data type can be checked against entries in a store maintained by the central server 14. For example, data owned by a paid subscriber may be forwarded from node memory to node memory, and/or data of a particular type, such as office productivity file data type, an audio data file type, a visual data file type, a video data file type, an object oriented file type and/or a database data file type. Thus, data forwarding is selective based on ownership and/or type. Certain users can have data forwarded from node memory to node memory, and/or certain types of data can be forwarded from node memory to node memory. Entries in the store can be added, modified or deleted, enabling even more flexibility in selectively forwarding data from node memory to node memory. Such a store can reside locally at the central server 14 or be forwarded from node memory to node memory without storing on any physical storage medium such as a disk drive. In addition to ownership and file type, other data parameters that can be evaluated include file size, file use frequency, user history, user preferences, and premiums paid by users.
  • Example User System
  • As shown in FIG. 2, the user system 12 can include a processor 30, memory 32 and input/output (I/O) device 34. Memory 32 can include an operating system (OS) 36, such as Linux, Apple™ OS or Windows™, one or more application processes 38, and a storage process 100, explained in detail below. Application processes 38 can include user productivity software, such as OpenOffice or Microsoft Office™. The I/O device 34 can include a graphical user interface (GUI) 40 for display to a user 42.
  • Example Network Systems
  • As shown in FIG. 3A, each of the network systems, such as network system 14, can include a processor 50 and memory 52. Memory 52 can include an OS 54, such as Linux, Apple™ OS or Windows™, and a data forwarding process 200, explained in detail below.
  • As shown in FIG. 3B, each of the network systems, such as network system 14A (any reference herein to system 14 may refer to system 14 of FIG. 3A and/or system 14A of FIG. 3B), can include a processor 50 and memory 52. Memory 52 can include an OS 54, such as Linux, Apple™ OS or Windows™, a data file forwarding process 200, a search process 300 and a retrieval process 400, fully described below.
  • One network system, such as network system 22, is designated as a deletion node, more fully described below. Memory of the deletion node 22 does not include a data file forwarding process 200, search process 300 and retrieval process 400. Any data file received by the deletion node is not forwarded or saved. New data received in the memory of the deletion node overwrites old data received by the memory of the deletion node. In effect, the deletion node 22 acts as a black hole for data files forwarded to it.
  • In traditional systems, application processes 38 needs to store, delete, search and retrieve data files. In these traditional systems, a data file is stored on local or remote physical devices. And in some systems, this data file can be segmented into different pieces or packets and stored locally or remotely on physical mediums of storage. Use of fixed physical data storage devices add cost, maintenance, management and generate a fixed physical record of the data, whether or not that is the desire of the user 42.
  • The present invention as described in FIG. 3A and 3B does not use fixed physical data storage to store data files. Herein, the terms “data file” are used to represent all file and media types handled by the system, such as, for example, files for data, program files, audio files, video files, picture files, and so forth. When a request to store a data file is received by the central server 14 from storage process 100, the data file is directed to a node memory in the framework 10 where it is then continuously forwarded from node memory to node memory in the framework 10 by the data file forwarding process 200 in each of the network nodes without storing on any physical storage medium, such as a disk drive. The forwarded data file resides only for a very brief period of time in the memory of any one node in the framework 10. Data files are not stored on any physical storage medium in any network node.
  • When a request to retrieve a data file is received by the central server 14 from storage process 100, the requested data file, which is being forwarded from node memory to node memory in the framework 10, is retrieved.
  • Data files forwarded in this manner can be segmented and segments forwarded as described above. Still, the segmented data is not stored on any physical storage medium in any network node, but forwarded from the memory of one node to the memory of another node.
  • Data files being forwarded in this manner can be deleted and thus no longer forwarded from node memory to node memory.
  • Example Storage Processes
  • As shown in FIG. 4A, storage process 100 includes sending (102) a request to a central server 14 to store or retrieve data. If the request is a retrieve data request, storage process 100 receives the requested data from the central server 14 or node in the network.
  • If the request to the central server 14 is a store data request, storage process 100 receives (104) an address of a node from the central server 14 and forwards (106) the data to the node memory represented by the received address. Determining an address of a node available to receive the data can be based on one or more factors, such as network traffic analysis, available memory, combinations of factors, and so forth. A time stamp can be applied to the data in the computer memory of the specific node.
  • As shown in FIG. 4B, storage process 100A includes sending (102) a request to a central server 14 to store, retrieve or delete a data file. If the request is a retrieve data file request, storage process 100 receives (104) the requested data file from the central server 14 or node in the network. Any reference herein to storage process 100 may refer to storage process 100 of FIG. 4A and/or storage system 100A of FIG. 4B.
  • If the request to the central server 14 is a store data file request, storage process 100 receives (106) an address of a node from the central server 14 and forwards (108) the data file to the node memory represented by the received address.
  • Example Data Forwarding Processes
  • FIGS. 5A, 5B, and 5C are flowcharts illustrating example processes of data forwarding. Any reference herein to process 200 may refer to process 200A of FIG. 5A, process 200B of FIG. 5B, and/or process 200C of FIG. 5C, depending on context of the reference.
  • As shown in FIG. 5A, data forwarding process 200 includes receiving (202) a request to store or retrieve data. If the received request is a request to store data, data forwarding process 200 determines (204) an address of a node available to receive the data in memory. This determination (204) can include pinging the network and determining which of the nodes in a network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or any combination of these or other factors.
  • Process 200 sends (206) a message to the user system with the address of a specific node for the requester to forward the data.
  • Process 200 detects (208) the presence of data in node memory. Process 200 forwards (210) the data in memory to another node in the network of nodes and continues to repeat detecting (208) and forwarding (210) of the data from node memory to node memory. When data arrive in any node memory, process 200 affixes (212) a time stamp to the data. Additionally, as data enters and exits any mode memory, the data may be encrypted and de-encrypted.
  • Forwarding (210) can include pinging the node in the network to determine which of the nodes in the network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or any combination of these or other factors.
  • In one specific example, at the point of entry to a node, data undergoes an encrypted “handshake” with the node or central server 14 or user. This can be a public or private encryption system, such as the Cashmere system, which can use public-private keys. Cashmere decouples the encrypted forwarding path and message payload, which improves the performance as the source only needs to perform a single public key encryption on each message that uses the destination's unique public key. This has the benefit that only the true destination node will be able to decrypt the message payload and not every node in the corresponding relay group. Cashmere provides the capability that the destination can send anonymous reply messages without knowing the source's identity. This is done in a similar way, where the source creates a reply path and encrypts it in a similar manner as the forwarding path.
  • In another example, other routing schemes are utilized.
  • If the received request is a request to retrieve data being continuously forwarded from node memory to node memory, data forwarding process 200 matches (214) at the central server 14 using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network. Process 200 sends (216) the message to return the data to the user directly to the node or node state where the central server 14 believes the data will likely appear. The more the central server 14 can narrow the node state that it pings to, then the more efficient the retrieval will become and the less burdened by unnecessary messaging traffic to nodes that are not necessary for a transaction between the central server 14 and the node capable of forwarding the data.
  • Once the correct node receives the message to forward the data in node memory to the requester, process 200 forwards (218) in node memory the data to the requester and forwards (220) a confirmation message that the data has been sent to the user. This routing message may be sent directly to the central server 14 or may be passed to the central server 14 or servers via other node(s) or supernode(s) in the network 10. Upon the user receiving the requested data the user's application functions to automatically ping the central server 14 that the data requested has been received. Thus the network 10 creates data storage without caching, downloading and/or storing the data on any physical storage medium. Data storage and management is accomplished via a continuous routing of the data from node memory to node memory, the forwarded data only downloaded when the user requests the data to be returned to the user from the network 10.
  • New nodes and node states may be added and/or deleted from the network 10 based upon performance. Users may have access to all nodes or may be segmented to certain nodes or “node states” by the central server(s) or via the specific architecture of the private, public or private-public network.
  • Individual nodes, nodes states and supernodes may also be extranet peers, wireless network peers, satellite peered nodes, Wi-Fi peered nodes, broadband networks, and so forth, in public or private networks. Peered nodes or users may be used as routing participants in the network 10 from any valid peer point with the same security systems employed, as well as custom solutions suitable for the rigors of specific deployments, such as wireless encryption schemes for wireless peers, and so forth.
  • In process 200, rather than have data cached or held in remote servers, hard drives or other fixed storage medium, the data are passed, routed, forwarded from node memory to node memory. The data are never downloaded until the authorized user calls for the data. A user on the system may authorize more than one user to have access to the data.
  • A primary goal in process 200 is to generate a data storage and management system where the data is never fixed in physical storage, but in fact, is continually being routed/forwarded from node memory to node memory in the network. The path of the nodes to which data is forwarded may also be altered by the central server 14 to adjust for system capacities and to eliminate redundant paths of data that may weaken the security of the network due to the increased probability of data path without this feature.
  • As shown in FIG. 5B, data file forwarding process 200B includes receiving (202) a request from a source system in a network to store a data file.
  • Process 200 directs (204) the data file to a computer memory in a network. Process 200 saves (206) a file name of the data file, and in some implementations, a file type, a username and a date stamp, in an index file associated with the central server 14; the actual data contained in the data file is not stored on any physical medium. The index file is used to search for data files during the search process 300, described fully below. Process 200 scrambles (208) a copy of the contents of the data file and saves (210) the copied scrambled data in memory or on a physical storage device associated with the central server 14.
  • For example, assume a data file named “myfile.txt” includes the following text: This is an example of data contained in an exemplary data file. The text herein is maintained as written in the data file and the data file continuously forwarded from node memory to node memory without storing on a physical medium.
  • Scrambling (208) a copy of the above data file may, in one example, results in the following scrambled data: to without storing on a physical medium example node this contained exemplary herein file from maintained text data, and the in continuously is an of forwarded memory.
  • Only this scrambled data, indexed by file name, is saved to physical storage—no unscrambled data file is stored in any physical medium, such as a disk drive. Saving the copied scrambled data aids in maintaining security and in searching for data files being continuously forwarded.
  • Process 200 continuously forwards (212) the data file from the first computer memory to other computer memories in the network without storing on any physical storage device in the network. Continuously forwarding (212) includes detecting a presence of the data file in memory of the specific node of the network and forwarding the data file to another computer memory of a node in the network of interconnected computer system nodes without storing any physical storage device.
  • In one specific example, at the point of entry to a node, forwarded data in the data file undergoes an encrypted “handshake” with the node or central server 14 or user. This can be a public or private encryption system, such as the Cashmere system, which can use public-private keys. Cashmere decouples the encrypted forwarding path and message payload, which improves the performance as the source only needs to perform a single public key encryption on each message that uses the destination's unique public key. This has the benefit that only the true destination node will be able to decrypt the message payload and not every node in the corresponding relay group. Cashmere provides the capability that the destination can send anonymous reply messages without knowing the source's identity. This is done in a similar way, where the source creates a reply path and encrypts it in a similar manner as the forwarding path. In another example, other routing schemes are utilized.
  • New nodes and node states may be added and/or deleted from the framework 10 based upon performance. Users may have access to all nodes or may be segmented to certain nodes or “node states” by the central server(s) or via the specific architecture of the private, public or private-public network.
  • Example Measurement in Data Forwarding and Storage
  • Data forwarded in the network can be measured. For example, the central server 14 maintains a store of data statistics each time new data is requested to be forwarded in the network. The store can be a flat file, a table, or a database file, and is continuously forwarded from node memory to node memory in the network with storage on any physical medium, such as a disk drive. Contents of the store record each time a file is requested to be forwarded, its owner, its type, and/or additional information. In this manner, the central server 14 can generate a list of useful information when requested. More particularly, the central server 14 can account for the number of files, the number of file types, and the gross amount of data (e.g., megabytes) in the system as a whole, or owned per user of group of users. The central server 14 tracks data added and removed from the network using the store. The central server 14 can generate a list of all data being forwarded in the network, and/or data being forwarded by a specific user or group of users.
  • Example Data Forwarding Assisted by Geolocation
  • Geolocation generally refers to identifying a real-world geographic location of an Internet connected computer, mobile device, website visitor or other. Geolocation can be used to refer to the practice of assessing the location, or it can be used to refer to the actual assessed location or location data. Geolocation can be performed by associating a geographic location with, for example, the Internet Protocol address, Media Access Control (MAC) address, Radio Frequency Identification (RFID), hardware embedded article/production number, embedded software number (such as UUID, Exif/IPTC/XMP or modern steganography), Wi-Fi connection location, or device GPS coordinates, or other, perhaps self-disclosed, information.
  • Networks in general, and more particularly the Internet, have become a collection of resources meant to appeal to a large general audience. Although this multitude of information has been a great boon, it also has diluted the importance of geographically localized information. Offering the ability for network users to garner information based on geographic location can decrease search times and increase visibility of local establishments. Similarly, user communities and chat-rooms can be enhanced through knowing the locations (and therefore, local times, weather conditions and news events) of their members as they roam the globe. It is possible to provide user services in applications and Web sites without the need for users to carry GPS receivers or even to know where they themselves are.
  • Geolocation by IP address is the technique of determining a user's geographic latitude, longitude and, by inference, city, region and nation by comparing the user's public Internet IP address with known locations of other electronically neighboring servers and routers.
  • Possible applications for geolocation by IP address exist for Weblogs, chat programs, user communities, forums, distributed computing environments, security, urban mapping and network robustness.
  • Although several methods of geographically locating an individual currently exist, each system has cost and other detriments that make them technology prohibitive in computing environments. Global Positioning System (GPS) is limited by line-of-sight to the constellation of satellites in Earth's orbit, which severely limits locating systems in cities, due to high buildings, and indoors, due to complete overhead blockage. Several projects have been started to install sensors or to use broadcast television signals to provide for urban and indoor geolocation.
  • By contrast, these environments already are witnessing a growing trend of installing wireless access points (AP). Airports, cafes, offices and city neighborhoods all have begun installing wireless APs to provide Internet access to wireless devices. Using this available and symbiotic infrastructure, geolocation by IP address can be implemented immediately.
  • Several RFC proposals have been made by the Internet Engineering Task Force (IETF) that aim to provide geolocation resources and infrastructure. Several companies now offer pay-per-use services for determining location by IP. Several years ago, CAIDA, the Cooperative Association for Internet Data Analysis, began a geolocation by IP address effort called NetGeo. This system was a publicly accessible database of geographically located IP addresses. Through the use of many complex rules, the NetGeo database slowly filled and was corrected for the location of IP addresses.
  • To query the NetGeo database, an HTTP request is made with the query IP address, like this:
  • ----
    $ http://netgeo.caida.org/perl/netgeo.cgi?target=192.168.0.1
    VERSION=1.0
    TARGET:192.168.0.1
    NAME:IANA-CBLK1
    CITY:MARINA DEL REY
    STATE: CALIFORNIA
    COUNTRY: US
    LAT: 33.98
    LONG: −118.45
    LAT_LONG_GRAN: cITY
    LAST-UPDATED: 16-MAY-2001
    NIC: ARIN
    LOOKUP_TYPE: Block Allocation
    RATING:
    DOMAIN_GUESS:iana.org
    STATUS: OK
    ----
  • The NetGeo response includes the city, state, country, latitude and longitude of the IP address in question. Furthermore, the granularity (LAT_LONG_GRAN) also is estimated to give some idea about the accuracy of the location. This accuracy also can be deduced from the LAST_UPDATED field. Obviously, the older the update, the more likely it is that the location has changed. This is true especially for IP addresses assigned to residential customers, as companies holding these addresses are in constant flux.
  • Several existing packages assist in retrieving information from the NetGeo database. The PEAR system has a PHP package, and a PERL module, CAIDA::NetGeo::Client, is available. It is a relatively straightforward task to make a request in whatever language you are using for your application or service. For example, a function in PHP for getting and parsing the NetGeo response looks like this:
  • ----
    1: function getLocationCaidaNetGeo($ip)
    2: {
    3: $NetGeoURL = ″http://netgeo.caida.org/perl/netgeo.cgi?target=″.$ip;
    4:
    5: if($NetGeoFP = fopen($NetGeoURL,r))
    6: {
    7: ob_start( );
    8:
    9: fpassthru($NetGeoFP);
    10: $NetGeoHTML = ob_get_contents( );
    11: ob_end_clean( );
    12:
    13: fclose($NetGeoFP);
    14: }
    15: preg_match (″/LAT:(.*)/i″, $NetGeoHTML, $temp) or die(″Could not find element
    LAT″);
    16: $location[0] = $temp[1];
    17: preg_match (″/LONG:(.*)/i″, $NetGeoHTML, $temp) or die(″Could not find element
    LONG″);
    18: $location[1] = $temp[1];
    19:
    20: return $location;
    21: }
  • The NetGeo database slowly is becoming more inaccurate as IP address blocks change hands in company close-outs and absorptions. Several other tools are available for determining location, however. A description of the NetGeo infrastructure itself presents some of the methods it employed for mapping IP addresses and can be a source of guidance for future projects.
  • One of the most useful geolocation resources is DNS LOC information, but it is difficult to enforce across the Internet infrastructure. RFC 1876 is the standard that outlines “A Means for Expressing Location Information in the Domain Name System.” Specifically, this is done by placing the location information of a server on the DNS registration page. Several popular servers have employed this standard but not enough to be directly useful as of yet.
  • To check the LOC DNS information of a server, you need to get the LOC type of the host:
  • ----
    $ host -t LOC yahoo.com
    yahoo.com LOC 37 23 30.900 N 121 59 19.000 W 7.00m 100m 100m 2m
    ----
  • This parses out to 37 degrees 23′ 30.900″ North Latitude by 121 degrees 59′ 19.000″ West Longitude at 7 meters in altitude, with an approximate size of 100 meters at 100 meters horizontal precision and 2 meters vertical precision. There are several benefits to servers that offer their geographic location in this way. First, if you are connecting from a server that shows its DNS LOC information, determining your geolocation is simple, and applications may use this information without further work, although some verification may be useful. Second, if you are connecting on your second or third bounce through a server that has DNS LOC information, it may be possible to make an estimate of your location based on traffic and ping times. However, these estimates greatly degrade accuracy.
  • It also is possible to put the DNS LOC information for your Web site in its registration. If more servers come to use LOC information, geolocation accuracy will be much easier to attain.
  • The “host” is a DNS lookup utility that allows users to find out various pieces of information about a host. The simplest use is doing hostname to IP address lookups and the reverse. The reverse, dotted-decimal IPv4 notation, is used for this, and the actual server that hosts the canonical name is returned. The type flag, −t, can be used to obtain specific information from the host record from the name server.
  • Service providers typically provide an internal naming scheme for assigning IP addresses and associating names with these addresses. Typically, the canonical name of an IP address contains the country-code top-level domain (ccTLDs) in a suffix. CN is China, FR is France, RO is Romania and so on. Furthermore, the name even may contain the city or region in which the IP address is located. Often, however, this information is shortened to some name that requires a heuristic to determine. For example, in your service or application, a user may appear to be coming from d14-69-1-64.try.wideopenwest.com. A whois at this address reveals it is a WideOpenWest account from Michigan. Using some logic, it is possible to deduce that this user is connecting through a server located in Troy, Mich., hence the .try. in the canonical name.
  • Some projects have been started to decipher these addresses, and you also can get all of the country codes and associated cities and regions of a country from the IANA Root-Zone Whois Information or the US Geospatial Intelligence Agency, which hosts the GEOnet Names Server (GNS). The GNS has freely available data files on almost all world countries, regions, states and cities, including their sizes, geographic locations and abbreviations, as well as other information.
  • Information such as that presented on the GNS also can be used to provide users with utilities and services specific to their geographical locations. For example, it is possible to determine a user's local currency, time zone and language. Time zone is especially useful for members of a community or chat group to determine when another friend may be available and on-line.
  • When a request to retrieve data is received by the central server 14 from storage process 100, the requested data, which is being forwarded from node memory to node memory in the network 10 assisted by geolocations of the nodes, is retrieved.
  • Data forwarded in this manner can be segmented and segments forwarded as described above. Still, the segmented data is not stored on any physical storage medium in any network node, but merely forwarded from the memory of one node to the memory of another node. As shown in FIG. 4A, storage process 100 includes sending (102) a request to a central server 14 to store or retrieve data. If the request is a retrieve data request, storage process 100 receives the requested data from the central server 14 or node in the network.
  • If the request to the central server 14 is a store data request, storage process 100 receives (104) an address of a node from the central server 14 and forwards (106) the data to the node memory represented by the received address. The central server 14 is assisted in finding an appropriate address by a geolocation, which can help locate a node that is underutilized or light in terms of network traffic.
  • As shown in FIG. 5C, data forwarding process 200C includes receiving (202) a request to store or retrieve data. If the received request is a request to store data, data forwarding process 200 determines (204) an address of a node available to receive the data in memory assisted by its geolocation. This determination (204) can include using a geolocation to help locate a node, pinging the network and determining which of the nodes in a network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or the geographic coordinates of the node, or any combination of these or other factors. Using geolocation enables greater speed and efficiency by selecting nodes that are proximate to each other and/or the user.
  • Process 200 sends (206) a message to the user system with the address of a specific node for the requester to forward the data.
  • Process 200 detects (208) the presence of data in node memory. Process 200 forwards (210) the data in memory to another node in the network of nodes, assisted by geolocation (e.g., a location of the node in the network) and continues to repeat detecting (208) and forwarding (210) of the data from node memory to node memory assisted by geolocation. When data arrives in any node memory, process 200 affixes (212) a time stamp to the data.
  • Forwarding (210) can include pinging the node in the network to determine which of the nodes in the network is available, or determining which node in the network has the least traffic, or determining which node in the network has the largest available memory, or any combination of these or other factors.
  • Example Multi-Homed Data Forwarding and Storage
  • A node typically has one network interface with one associated network address. However, a node may include multiple network interfaces, each with their own associated non-loopback network address, such as a non-loopback Internet protocol (IP) address. Furthermore, a node may include a network interface with multiple associated non-loopback network addresses, such as multiple non-loopback IP addresses. Such a node is referred to as a “multi-homed node.”
  • For example, the Internet Engineering Task Force (IETF) has developed IP version 6 (IPv6). The hierarchical layers provided by IPv6 may change the way multi-homing devices within a network are perceived. In IPv4, multi-homing is generally perceived as a host or system that uses multiple network interfaces. In contrast, hosts in IPv6 may only have one network interface, but respond to multiple global IPv6 addresses, link-local addresses, and site-local addresses. As a result, almost every host in the IPv6 network can be a multi-homed host.
  • Process 200 can be modified and enabled within a single computer system that includes multiple IP (IP) addresses (e.g., 2001:db8::1, 2001:db8::2 and 2001:db8::3 in IPv6), but only one physical upstream link. This is sometimes referred to as single link, multiple IP address (spaces) multi-homing.
  • As described above, a device can be multi-homed (e.g., host-centric multi-homing), when it has more than one interface, and each of the interfaces is attached to different networks (may be within a multi-homed network). In addition, in IPv6, each interface can have multiple addresses, which means than even with a single interface, a host can be multi-homed.
  • Multi-homing can provide a certain degree of resilience/redundancy against failures (link, hardware, protocols, others) and also enables features such as load balancing. Moreover, multi-homing can be used in order to differentiate traffic based on policy, for non-technical reasons, such as cost associated with different flows, time of the day, and so forth. For highly distributed enterprises, it can also occur as an aid to address that enterprise's geographical distribution, and as a traffic engineering mechanism to improve local performance such as latency and hop count reductions for real time protocols.
  • With single link, multiple IP address (spaces) multi-homing, a modified process 200 forwards data in memory within a single computer having multiple assigned IP addresses. When the computer is powered-off or experiences a failure, such as loss of power, all data being forwarded in memory is automatically forwarded to a node memory in the network 10, where it is continually routed/forwarded from node memory to node memory in the network 10 according to process 200. When power is restored to the computer, data is recovered/reloaded from the network 10 and then continuously forwarded within the memory of the computer without ever being fixed in physical storage.
  • Example Advertisement Forwarding
  • In one example, this data forwarding storage and management system where the data is continually being routed/forwarded from node memory to node memory in the network is used as an advertisement forwarding and retrieval system. Advertisement is deployed into the data forwarding storage and management system from a master server or control station and recalled on demand or in response to a stimulus or activity. Here, we consider advertisement as a broad term that can include any content, including, but limited to, text, audio, visual or any combination thereof. Advertisement can be deployed into the data forwarding storage network and recalled/retrieved when needed, e.g., directed to an IP address of a specific user system, directed to paid and/or unpaid subscribers of applications within the data forwarding storage network, and/or directed to users outside of the data forwarding storage network. Advertisement being continuously forwarded in the data forwarding storage network can be sent to all users or specifically targeted according to one or more user characteristics, user profiles, usage patterns, history and/or past or present viewed page content. The advertisement being continuously forwarded in the data forwarding storage network can be displayed to a current user within an application or web browser or delivered to a wired or wireless radio, television and/or television network. Advertisements can be retrieved in response to a stimulus or activity, such as the user's profile, traffic patterns of one or more users, application profiles, and so forth. Advertisements can be stored and delivered in any media form and either pre-configured by specific file type and size for a specific end user or site delivery requirements/formats, or delivered and formatted by virtue of the end user or middleware software compatibility systems.
  • In one example, selected advertisement can be delivered to a user through a web browser. More particularly, a plug-in and/or helper application can be associated with a user's web browser. In general, a plug-in is a computer program that interacts with a host application (a web browser or an email client, for example) to provide a certain, usually very specific, function “on demand.” As a user navigates to a particular web page, the plug-in can parse displayed text. The plug-in can then request specific advertisement being continuously forwarded in the data forwarding storage network that matches the parsed text to the web browser of the user for display in a section of the display screen or as a pop-up.
  • In another example, a user requesting retrieval of a data file being continuously forwarded in the data forwarding storage network may be presented with specific advertisement being continuously forwarded in the data forwarding storage network that matches the user's profile. The user's profile may include various personal and/or demographic data that aids in directing appropriate advertisement to the user. The advertisement may then be displayed as a banner or in a shared window or in a separate window.
  • As shown in FIG. 6A, a process 300A includes directing (302) advertisement to a computer memory. The advertisement can include any content, including, but limited to, text, audio, visual or any combination thereof. The advertisement can include multiple configurations in order to satisfy different systems delivery specifications. Advertisements can be stored and delivered in any media form and either pre-configured by specific file type and size for a specific end user or site delivery requirements/formats, or delivered and formatted by virtue of the end user or middleware software compatibility systems.
  • Process 300 directs (304) data to a computer memory.
  • Process 300 continuously forwards (306) each of the unique data, independent of each other, from one computer memory to another computer memory in the network of interconnected computer system nodes without storing on any physical storage device in the network.
  • Process 300 continuously forwards (308) each of the unique advertisements, independent of each other, from one computer memory to another computer memory in the network of interconnected computer system nodes without storing on any physical storage device in the network.
  • Process 300 retrieves (310) one of the advertisements in response to an activity.
  • Example Data Retrieval
  • FIGS. 6A, 6B, and 6C are flowcharts illustrating example processes. Any reference herein to process 300 may refer to process 300A of FIG. 6A, process 300B of FIG. 6B, and/or process 400C of FIG. 6C, depending on context of the reference.
  • As shown in FIG. 6B, data forwarding process 300B includes receiving (302) a request to store or retrieve data. If the received request is a request to store data, data forwarding process 300 determines (304) a memory location associated with an IP address available to receive the data.
  • Process 300 sends (306) a message with the memory location associated with the IP address for the requester to forward the data.
  • Process 300 detects (308) the presence of data in a memory location. Process 300 forwards (310) the data in the memory location to another memory location associated with another IP address within the computer and continues to repeat detecting (308) and forwarding (310) of the data from memory location associated with one IP address to a memory location associated with another IP address.
  • If the received request is a request to retrieve data being continuously forwarded from memory location to memory location, data forwarding process 300 locates (312) the requested data being forwarded within the memory and returns (314) the located data to the requester.
  • Example Search Query Processing
  • As shown in FIG. 6C, the search process 300C includes receiving (302) a query. Example queries include filenames, file types, usernames, dates and so forth. In one example, the query is a keyword or keywords. Search process 300 searches (304) the database of scrambled files represented by the index of file names for a match of the keyword or keywords. If a match of the keyword or keywords is found among the scrambled files, process 300 generates (306) a list of filenames containing the keyword or keywords. In one example, the list of file names is displayed to a user on an input/output device, enabling the user to select one of the file names. In another example, the list of filenames displayed includes supplemental information with respect to the file, such as, file type, file size, date saved and/or last modified, and so forth. Process 300 receives (308) a user selection of one of the filenames contained in the generated list of file names. The user selection can include a mouse click, a key board input, an audio input, and so forth, indicating a selected filename.
  • Process 300 launches (310) a file retrieval process 400.
  • Example File Retrieval Process
  • As shown in FIG. 7, the file retrieval process 400 matches (402) the requested filename at the central server using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network. Process 400 sends (404) the message to return the data to the user directly to the node or node state where the central server believes the data will likely appear. The more the central server can narrow the node state that it pings to, then the more efficient the retrieval will become and the less burdened by unnecessary messaging traffic to nodes that are not necessary for a transaction between the central server and the node capable of forwarding the data.
  • Once the correct node receives the message to forward the data in node memory to the requester, process 400 forwards (406) in node memory the data to the requester and forwards (408) a confirmation message that the data has been sent to the user. This routing message may be sent directly to the central server or may be passed to the central server or servers via other node(s) or supernode(s) in the framework 10. Upon the user receiving the requested data the user's application functions to automatically ping the central server that the data requested has been received. Thus the framework 10 creates data storage without caching, downloading and/or storing the data on any physical storage medium. Data storage and management is accomplished via a continuous routing of the data from node memory to node memory.
  • In another embodiment, storage process 100 only stores the scrambled data along with filename, and in some instances, file type, username, and/or date stamp, while automatically deleting the non-scrambled data file.
  • If the request to the central server 14 is a delete data file request, the central server 14 launches a file deletion process 500.
  • Example File Deletion
  • As shown in FIG. 8, process 500 matches (502) the filename to delete at the central server 14 using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network. Process 500 sends (504) the message to forward the data to the deletion node 28 directly to the node or node state where the central server believes the data will likely appear. The more the central server can narrow the node state that it pings to, then the more efficient the retrieval will become and the less burdened by unnecessary messaging traffic to nodes that are not necessary for a transaction between the central server and the node capable of forwarding the data.
  • Process 500 forwards (506) in node memory the data to the deletion node. Process 500 removes (508) the data file name from the index and forwards (510) a confirmation message that the data has been deleted to the user. This routing message may be sent directly to the central server or may be passed to the central server or servers via other node(s) or supernode(s) in the framework 10.
  • The framework 10 creates data storage without caching, downloading and/or storing the data on any physical storage medium. Data storage and management is accomplished via a continuous routing of the data from node memory to node memory, the forwarded data only downloaded when the user requests the data to be returned to the user from the framework 10.
  • Example User Interface for Real-Time Communications
  • FIG. 9 illustrates an example interface presented to a user of one of the client systems 12, 14 when running an instant messaging client program. As described above, instant messaging programs typically enable users to communicate in real-time with each other in a variety of ways. For example, many instant messaging programs enable users to send text as an instant message, to transfer files, and to communicate by voice.
  • Shown is a desktop 900 with a user interface 905 of the instant messaging client program. User interface 905 has a text box 910 that displays representations 915 of the program user's contacts or buddies (both terms are used interchangeably herein), which are other users of an instant messaging program with whom the program user desires to communicate and interact. The representations 915 may provide contextual information to the program user about the buddy, such as whether the contact is online, how long the contact has been online, whether the contact is away, or whether the contact is using a mobile device.
  • The list of contacts displayed in text box 910 of user interface 905 typically is referred to as the contact list or buddy list. The IM program user can typically add or remove contacts from the contact list. In the example shown, the representations 915 are text icons showing the screen names of the contacts.
  • Instant messaging programs may use an instant messaging server to assist in communications between users of the instant messaging program. The instant messaging server may be implemented, for example, using central server 16. When a user is connected to the network and executes the instant messaging program, the instant messaging program contacts the central server 16 and logs the user onto the central server 16. The central server 16 informs the instant messaging program when the program user's contacts are online and facilitates communications between the program user and an online contact.
  • The central server 16 may support IM services irrespective of a program user's network or Internet access. Thus, central server 16 may enable users to send and receive IMs, regardless of whether they have access to any particular Internet service provider (ISP). The central server 16 also may support associated services, such as administrative matters, advertising, directory services, chat, and interest groups related to IM. To transfer data, the central server 16 employs one or more IM protocols. The data may be encrypted and de-encrypted.
  • To begin an IM session, the IM client program running on a client system 12, 14 establishes a connection with the central server 16 and logs onto the central server 16. Once a session is established, a user can use the IM client program to view whether particular buddies are online, exchange IMs with particular buddies, participate in group chat rooms, and trade files such as pictures, invitations or documents. The IM program user also may be able to find other buddies with similar interests, get customized information such as news and stock quotes, and search the World Wide Web.
  • Central server 16 may assist IM communications between users of IM client programs by facilitating the establishment of a peer-to-peer communication session between the IM client programs. Or the central server 16 may assist IM communications by directly routing communications between the IM client programs.
  • When a contact is online, the IM program user can communicate or interact with the contact in a number of ways. For instance, the IM program user can send an instant message to the contact (typically in the form of text).
  • Sending a message opens up a window in which messages can be typed back-and-forth between the IM program user and the contact. Similarly, the IM program user also can send a file or other content to the contact.
  • To initiate these actions for a contact, the IM program user performs operations on the representation of the contact displayed in user interface 905. The program then executes the corresponding action in response to the operation performed on the representation. For example, an instant message might be initiated by double-clicking on a contact's representation. Or, a file transfer might be initiated by the IM program user selecting the contact's representation to bring up a context menu and choosing “send a file” from the menu.
  • Other actions can be executed in response to operations performed on the representation of the contact displayed in interface 905. For instance, a “buddy icon” can be set for the contact such that communications with the contact display the buddy icon. In addition, for example, profile information about the contact can be retrieved, an alert can be set to inform the program user when the contact is online, a VoIP communication session can be established, or an e-mail can be sent.
  • User interface 905 may have icons 930 to help a user set various options or perform operations in the instant messaging program.
  • Example Rotating Encryption in Data Forwarding Storage
  • In one specific example, at the point of entry to a node, data undergoes an encrypted “handshake” with the node or central server 14 or user. The encryption scheme employed is under the control of the central server 14, which can change or rotate the scheme periodically or in response to external factors. Any two or more encryption schemes can be used. For example, encryption schemes involving simple conversions can include ASCII to Binary, Binary to ASCII, ASCII to Hex, Hex to ASCII, Binary to Hex, Hex to Binary, Dec to Hex, Hex to Dec, Dec to Roman, and Roman to Dec, and so forth.
  • Encryption schemes involving network tools can include IP to Dec, Dec to IP, IP to Hex, Hex to IP, IP/Net Calculator, IPv6 Validator, IPv6 Compress, IPv6 Uncompress, and so forth.
  • Non-Key En/DeCryption schemes can include PasswordGen, Backwards, Base 64 Encode, Base 64 Decode, Caesar Bruteforce, 133t 5p34k 3nc0d3, 133t 5p34k d3c0d3, Igpay Atinlay, Un-Pig Latin, ROT-13, and so forth.
  • HTML Encoding schemes can include HTML Entities Encode, HTML Entities Decode, URL Encode, URL Decode and so forth.
  • Hash Algorithm schemes can include DES, MD4, MD5, SHA1, SHA-224, SHA-256, SHA-384, SHA-512, HAVAL 128, HAVAL 160, HAVAL 192, HAVAL 224, HAVAL 256, RIPEMD 128, RIPEMD 160, RIPEMD 256, RIPEMD 320, Tiger, Tiger 128, Tiger 160, Adler 32, Whirlpool, GOST, CRC32, CRC32B, and so forth.
  • Key En/DeCryption schemes can include Tripple DES, Blowfish, CAST 128, CAST 256, GOST, Rijndael 128, Rijndael 192, Rijndael 256, SERPENT, Safer+, RC2, XTEA, LOKI97, DES, TwoFish, Wake (ECB mode, BASE64 armored), and so forth.
  • Time Conversion schemes can include Unix Timestamp to Date/Time, Date/Time to Unix Timestamp, Unix Timestamp to RFC 2822, Unix Timestamp to Internet Time, Unix Timestamp to ISO 8601, and so forth.
  • The central server 14 can direct a different encryption scheme to each of the network systems 16, 18, 20, 22, or a single encryption scheme to all of the network systems 16, 18, 20, 22.
  • The central server 14 can periodically direct one or more of the network systems 16, 18, 20, 22, to change their current encryption scheme to another encryption scheme. The central server 14 can direct the network systems 16, 18, 20, 22, to employ a particular encryption scheme based on the type of data being forwarded from node memory to node memory. The central server 14 can direct the network systems 16, 18, 20, 22, to employ a particular encryption scheme based on an owner of the data being forwarded from node memory to node memory.
  • The central server 14 can store the various encryption schemes locally and send a particular encryption scheme to a node memory for use, or the network systems 16, 18, 20, 22, can store the various encryption schemes locally and wait for instructions received from the central server 14 to select a particular encryption scheme for use.
  • If the received request is a request to retrieve data being continuously forwarded from node memory to node memory, data forwarding process 200 matches (214) at the central server 14 using a hash mark or other unique code that can be “sniffed” by the node upon the data entering the node via the encryption handshake. This can occur by pinging the nodes in the network. Process 200 sends (216) the message to return the data to the user directly to the node or node state where the central server 14 believes the data will likely appear. The more the central server 14 can narrow the node state that it pings to, then the more efficient the retrieval will become and the less burdened by unnecessary messaging traffic to nodes that are not necessary for a transaction between the central server 14 and the node capable of forwarding the data.
  • Redundant Data Forwarding
  • A redundant data storage and management system may be implemented where the redundant data is never fixed in physical storage, but in fact, is continually being routed/forwarded from node memory to node memory. The path of the nodes to which redundant data is forwarded may also be altered by the central server 14 to adjust for system capacities and to eliminate redundant paths of data that may weaken the security of the network due to the increased probability of data path without this feature.
  • The invention can be implemented to realize one or more of the following advantages. One or more networks create redundant data storage without caching or downloads. Redundant data storage and management are accomplished via a constant routing of the redundant data.
  • Other Descriptions
  • This data storage and management system in which the data is never fixed in physical storage, but in fact, is continually being routed/forwarded from node memory to node memory in the network, can be used as a backend system(s) in many applications that currently used fixed medium storage. In one example, this data storage and management system where the data is continually being routed/forwarded from node memory to node memory in the network is used in a media delivery system. Here, we consider media to broadly include any predictable content, any archival content, any audio content, visual content, any text-based content, and so forth. Predictable content can be deployed into the data forwarding storage network and recalled/retrieved when needed, e.g., directed to an IP address of a specific user system.
  • The content can include text, audio, visual images, audiovisual images, or any combination thereof. For example, the network can continuously forward certain audiovisual highlights that are used each day, such as program introductions, graphic packages, introduction and theme music, historical footage of significance, commonly used reference footage, and so forth.
  • This content being continuously forwarded in the network may or may not be needed in the future. More specifically, content that is most likely needed but are seeded into the network according to the probability of use, not based upon the individual needs of a user to store a file. In addition to using probability of need as a storage priority, the network can use a more diverse distribution list for the stored content than the forward storage system utilized by a user for “normal file storage” because users are delivered material not by calling/requesting a file from the network itself, but by virtue of a content provider using the network as a distribution tool to their audience.
  • One such example is a stock quote system. In traditional stock quote systems used on the World Wide Web (“Web”), a user accesses a stock quote website through a graphical user interface (GUI) used for web browsing, such as Firefox™ Opera™, or Flock™. One example stock quote website is Yahoo! ™ financial. The user enters a trading symbol of a stock in which he/she wants to query. The stock quote website receives the stock symbol, sends the stock symbol to a stock quote backend for a current price, receives the current price from the stock quote backend, and sends the current price to the user's GUI for viewing by the user. The current price is a numerical value, such as 171/2, in this example.
  • Numeric values can be deployed into the data storage and management system and continually routed/forwarded from node memory to node memory in the network. A range of numeric values in appropriate increments can be deployed in the data storage and management system, similar to how data files are deployed when a message to store is received. Each of the numeric values is sent from a user system to the central server 14 using the data forwarding process 200, fully described above. This results in a large number of distinct and unique numeric values continually being routed/forwarded from node memory to node memory in the network.
  • When a user requests a current stock price from a web application like Yahoo! financial, Yahoo! financial requests from the backend stock quote server a current price and the central server 14 is informed of this price directly from the back end stock quote server. The central server 14 requests the numeric value representing the received price from the network and once found, directs the numeric value to the Internet Protocol (IP) address of the user requesting the quote.
  • In another stock quote example, a range of numeric values embedded in text can be deployed into the data storage and management system where they are continually being routed/forwarded from node memory to node memory in the network. For example, “IBM is selling at 25,” “IBM is selling at 251/8,” and forth, can be deployed. When a result for the current price of IBM is received, the financial web site requests from the backend stock quote server a current price and the central server 14 is informed of this price directly from the back end stock quote server. The central server 14 requests the numeric value representing the received price, along with associated text, from the network and once found, directs the numeric value with associated text to the Internet Protocol (IP) address of the user requesting the price. For example, if the current price of IBM sock is 25, the central server 14 requests that “IBM is selling at 25” be delivered to the user requesting the quote.
  • The above specific example used a range of unique numeric values in appropriate increments deployed in our data storage and management system. However, any predictable content, archival data and/or media data can be deployed in our data storage and management system. For example, election results can be deployed into our data storage and management system. More specifically, a news item reporting “Senator Obama won the general election” and that “Senator McKane won the general election” can be deployed to the network where they are never fixed in physical storage, but in fact, continually being routed/forwarded from node memory to node memory in the network.
  • When the election results are known in November 2008, a user can request election results. The web application makes a request to a news service requesting election results from a web application having a back end supported by our data storage and management system. The central server 14 is informed of election results by a news server. The central server 14 locates the news item in the network and directs the news story to the Internet Protocol (IP) address of the user requesting the news information.
  • In each of the examples above, the network includes a group of interconnected computer system nodes each adapted to receive data items and continuously forward the data items from computer memory to computer memory, independent of each other, without storing on any physical storage device, in response to a request to store the data items from a requesting system and retrieve a particular data item being continuously forwarded from computer memory to computer memory in response to a request to retrieve the data item from the requesting system. Each node in the network is adapted to detect the presence of a data item in its memory and forward the data item to a computer memory of another node in the interconnected computer systems nodes according to a node's availability. The node's availability can be determined according to its volume of network traffic. Each node can encrypt the data item.
  • A central node can be adapted to match the data retrieval request at a central server using a hash mark representing the data item entering a node, send a message to a node that is predicted to have the data item in memory, the message instructing the node to forward the data item in memory to the requester, and send a confirmation message to the central server that the data item in memory has been forwarded to the requester.
  • The techniques described above are not limited to any particular hardware or software configuration. Rather, they may be implemented using hardware, software, or a combination of both. The programs may be implemented in a high-level programming language and may also be implemented in assembly or other lower level languages, if desired. Any such program will typically be stored on a computer-usable storage medium or device (e.g., CD-ROM, RAM, or magnetic disk). When read into the processor of the computer and executed, the instructions of the program cause the programmable computer to carry out the various operations described.
  • Furthermore, while the techniques have been described primarily with IM applications, they may be applied to other communications programs such as FTP programs, e-mail programs, voice-over-IP (VoIP) or other telephony programs, or players for streaming media.
  • It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the disclosure, which is defined by the scope of the appended claims. Other embodiments are within the scope of the following claims.

Claims (21)

1. (canceled)
2. A method comprising:
in a network of interconnected computer system nodes, configured to continuously route one or more data items among the nodes without storing the one or more data items on any fixed storage medium in the network:
receiving, at a central server included in the network, a request to store a data item;
generating a scrambled version of the data item;
storing the scrambled version of the data item and a file name associated with the scrambled version of the data item; and
in response to receiving a query for the data item:
identifying the scrambled version of the data item based on information in the query; and
initiating continuous routing of the data item corresponding to the scrambled version among the interconnected computer system nodes without storing the data item on any fixed storage medium within the network.
3. The method of claim 2, further comprising saving the scrambled version of the data item in a memory.
4. The method of claim 2, further comprising saving the scrambled version of the data item on a physical storage device.
5. The method of claim 2, further comprising deleting a non-scrambled version of the data item.
6. The method of claim 2, further comprising storing the file name in an index file associated with the central server.
7. The method of claim 6, wherein the index file additionally saves one or more items from a group comprising a file type, a username, and a date stamp of the scrambled version of the data item.
8. The method of claim 2, further comprising:
receiving, at the central server, a search request; and
identifying the data item based on a comparison of at least a portion of the search request and a portion of the scrambled version of the data item.
9. The method of claim 8, wherein the comparison comprises matching at least a keyword.
10. The method of claim 8, further comprising generating a list of filenames, associated with scrambled versions of the one or more data items, containing at least the keyword.
11. The method of claim 10, further comprising displaying the list of filenames to a user using an input/output device.
12. A device comprising:
a digital processor configured to:
receive, in a network of interconnected computer system nodes configured to continuously route one or more data items without storing the one or more data items on any fixed storage medium in the network, a request to store a data item;
generate a scrambled version of the data item;
store the scrambled version of the data item and a file name associated with the scrambled version of the data item; and
in response to receiving a query for the data item:
identify the scrambled version of the data item based on information in the query; and
initiate continuous routing of the data item corresponding to the scrambled version among the interconnected computer system nodes without storing the data item on any fixed storage medium within the network.
13. The device of claim 12, wherein the digital processor is further configured to save the scrambled version of the data item in a memory.
14. The device of claim 12, wherein the digital processor is further configured to save the scrambled version of the data item on a physical storage device.
15. The device of claim 12, wherein the digital processor is further configured to store the file name in an index file associated with the central server.
16. The device of claim 12, wherein the digital processor is further configured to:
receive a search request; and
identify the data item based on a comparison of at least a portion of the search request and a portion of the scrambled version of the data item.
17. The device of claim 16, wherein the comparison comprises matching at least a keyword and wherein the digital processor is further configured to generate a list of filenames, associated with scrambled versions of the one or more data items, containing at least the keyword.
18. A network comprising:
a group of interconnected computer system nodes, each node configured to continuously route one or more data items among the nodes without storing the one or more data items on any fixed storage medium in the group;
a central server in communication with the group of interconnected computer system nodes, the central server configured to:
receive a request to store a data item;
generate a scrambled version of the data item;
store the scrambled version of the data item and a file name associated with the scrambled version of the data item; and
in response to receiving a query for the data item:
identifying the scrambled version of the data item based on information in the query; and
initiate continuous routing of the data item corresponding to the scrambled version among the interconnected computer system nodes without storing the data item on any fixed storage medium within the group of computer system nodes or the central server.
19. The network of claim 18, wherein the central server is further configured to save the scrambled version of the data item on a physical storage device.
20. The network of claim 18, wherein the central server is further configured to:
receive a search request; and
identify the data item based on a comparison of at least a portion of the search request and a portion of the scrambled version of the data item.
21. The network of claim 18, wherein the central server is further configured to:
receive a request to delete the data item being constantly routed in the network of interconnected computer system nodes; and
in response to determining that an identifier for the data item is not included in an index of data items within the group of interconnected computer system nodes or the central server, route the data item to a deletion node in the network of interconnected computer system nodes for deletion.
US16/731,888 2008-03-20 2019-12-31 Data storage and retrieval Abandoned US20200137164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/731,888 US20200137164A1 (en) 2008-03-20 2019-12-31 Data storage and retrieval

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
US12/052,345 US8458285B2 (en) 2008-03-20 2008-03-20 Redundant data forwarding storage
US10945808A 2008-04-25 2008-04-25
US11661008A 2008-05-07 2008-05-07
US12/170,925 US7636758B1 (en) 2008-07-10 2008-07-10 Advertisement forwarding storage and retrieval network
US12/170,901 US7673009B2 (en) 2008-07-10 2008-07-10 Media delivery in data forwarding storage network
US12/184,866 US7599997B1 (en) 2008-08-01 2008-08-01 Multi-homed data forwarding storage
US12/240,967 US7636760B1 (en) 2008-09-29 2008-09-29 Selective data forwarding storage
US12/240,951 US7636759B1 (en) 2008-09-29 2008-09-29 Rotating encryption in data forwarding storage
US12/240,991 US7636761B1 (en) 2008-09-29 2008-09-29 Measurement in data forwarding storage
US12/240,925 US7631051B1 (en) 2008-09-29 2008-09-29 Geolocation assisted data forwarding storage
PCT/US2009/041817 WO2009132345A1 (en) 2008-04-25 2009-04-27 Real-time communications over data forwarding framework
PCT/US2009/042971 WO2009137571A1 (en) 2008-05-07 2009-05-06 Deletion in data file forwarding framework
PCT/US2009/049763 WO2010005935A1 (en) 2008-07-10 2009-07-07 Advertisement forwarding storage and retrieval network
PCT/US2009/049755 WO2010005928A1 (en) 2008-07-10 2009-07-07 Media delivery in data forwarding storage network
PCT/US2009/050008 WO2010014368A1 (en) 2008-08-01 2009-07-09 Multi-homed data forwarding storage
PCT/US2009/058052 WO2010036712A1 (en) 2008-09-29 2009-09-23 Selective data forwarding storage
PCT/US2009/058362 WO2010036881A1 (en) 2008-09-29 2009-09-25 Rotating encryption in data forwarding storage
PCT/US2009/058368 WO2010036887A1 (en) 2008-09-29 2009-09-25 Geolocation assisted data forwarding storage
PCT/US2009/058376 WO2010036891A1 (en) 2008-09-29 2009-09-25 Measurement in data forwarding storage
US99138311A 2011-01-24 2011-01-24
US201113003502A 2011-02-01 2011-02-01
US201113057072A 2011-02-01 2011-02-01
US98963811A 2011-02-25 2011-02-25
US201113119133A 2011-03-15 2011-03-15
US201113119147A 2011-03-15 2011-03-15
US201113119122A 2011-03-15 2011-03-15
US201113119124A 2011-03-15 2011-03-15
US201113003505A 2011-04-11 2011-04-11
US13/735,759 US9203928B2 (en) 2008-03-20 2013-01-07 Data storage and retrieval
US14/951,157 US9961144B2 (en) 2008-03-20 2015-11-24 Data storage and retrieval
US15/965,541 US20190037021A1 (en) 2008-03-20 2018-04-27 Data storage and retrieval
US16/731,888 US20200137164A1 (en) 2008-03-20 2019-12-31 Data storage and retrieval

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/965,541 Division US20190037021A1 (en) 2008-03-20 2018-04-27 Data storage and retrieval

Publications (1)

Publication Number Publication Date
US20200137164A1 true US20200137164A1 (en) 2020-04-30

Family

ID=48281536

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/735,759 Expired - Fee Related US9203928B2 (en) 2008-03-20 2013-01-07 Data storage and retrieval
US14/951,157 Expired - Fee Related US9961144B2 (en) 2008-03-20 2015-11-24 Data storage and retrieval
US15/965,541 Abandoned US20190037021A1 (en) 2008-03-20 2018-04-27 Data storage and retrieval
US16/731,888 Abandoned US20200137164A1 (en) 2008-03-20 2019-12-31 Data storage and retrieval

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/735,759 Expired - Fee Related US9203928B2 (en) 2008-03-20 2013-01-07 Data storage and retrieval
US14/951,157 Expired - Fee Related US9961144B2 (en) 2008-03-20 2015-11-24 Data storage and retrieval
US15/965,541 Abandoned US20190037021A1 (en) 2008-03-20 2018-04-27 Data storage and retrieval

Country Status (1)

Country Link
US (4) US9203928B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7636761B1 (en) * 2008-09-29 2009-12-22 Gene Fein Measurement in data forwarding storage
US9203928B2 (en) 2008-03-20 2015-12-01 Callahan Cellular L.L.C. Data storage and retrieval
US8458285B2 (en) 2008-03-20 2013-06-04 Post Dahl Co. Limited Liability Company Redundant data forwarding storage
US8599678B2 (en) * 2008-07-10 2013-12-03 Tajitshu Transfer Limited Liability Company Media delivery in data forwarding storage network
US8898287B2 (en) * 2010-02-24 2014-11-25 Salesforce.Com, Inc. System, method and computer program product for monitoring data activity utilizing a shared data store
US8606922B1 (en) 2010-09-27 2013-12-10 Amazon Technologies, Inc. Dynamic resource zone mapping
WO2012138760A1 (en) * 2011-04-04 2012-10-11 Interdigital Patent Holdings, Inc. Selected ip traffic offload and local ip access
US9904897B2 (en) 2015-03-30 2018-02-27 International Business Machines Corporation Generation of social business insights by fractal analysis
CA3107919A1 (en) 2018-07-27 2020-01-30 GoTenna, Inc. Vinetm: zero-control routing using data packet inspection for wireless mesh networks
US11270311B1 (en) * 2018-12-27 2022-03-08 Worldpay, Llc Systems and methods for a context-driven electronic transactions fraud detection
CN112491571B (en) * 2019-09-11 2022-03-18 比亚迪股份有限公司 Network data debugging method and device and storage medium

Family Cites Families (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786424A (en) 1972-02-22 1974-01-15 Coaxial Scient Corp Communications system for data transmission and retrieval
JPS5613857Y2 (en) 1973-10-20 1981-03-31
JPS5613857A (en) 1979-07-13 1981-02-10 Nec Corp Information transmission memory system
JPS56116145U (en) 1980-01-29 1981-09-05
JPS6113246Y2 (en) 1980-02-08 1986-04-24
JPS56116144A (en) 1980-02-15 1981-09-11 Nec Corp Memory system of loop transmission
JPS56116145A (en) 1980-02-15 1981-09-11 Nec Corp Memory system of loop transmission
JPS60241346A (en) 1984-05-16 1985-11-30 Fujitsu Ltd Storage system of ring network
JPS61163757A (en) 1985-01-14 1986-07-24 Nec Corp High speed slot ring system
JPS61165889A (en) 1985-01-17 1986-07-26 Fujitsu Ltd Multiplex space memory system
JPS61163757U (en) 1985-03-30 1986-10-11
JPS61165889U (en) 1985-04-04 1986-10-15
AU623124B2 (en) 1988-03-31 1992-05-07 Union Carbide Corporation Polyolefin compositions containing polyorganosiloxanes and the use thereof in the production of film material
US5121483A (en) 1990-05-21 1992-06-09 International Business Machines Corporation Virtual drives in an automated storage library
JPH0621953Y2 (en) 1990-05-22 1994-06-08 建設基礎エンジニアリング株式会社 Deformed sheath of structure fixing device
DE69226088T2 (en) 1991-11-08 1999-02-11 Teledesic Llc A Delaware Limit MEDIATION METHOD AND DEVICE FOR A SATELLITE COMMUNICATION SYSTEM
JPH0668047A (en) 1992-08-13 1994-03-11 Nippon Telegr & Teleph Corp <Ntt> Shared storage method using network of distributed system
US5361385A (en) 1992-08-26 1994-11-01 Reuven Bakalash Parallel computing system for volumetric modeling, data processing and visualization
JPH0691550B2 (en) 1992-09-18 1994-11-14 株式会社日立製作所 Information processing system
GB9320404D0 (en) 1993-10-04 1993-11-24 Dixon Robert Method & apparatus for data storage & retrieval
AU5386796A (en) 1995-04-11 1996-10-30 Kinetech, Inc. Identifying data in a data processing system
AU703984B2 (en) 1995-11-21 1999-04-01 Citibank, N.A. Foreign exchange transaction system
US5787258A (en) 1996-05-10 1998-07-28 General Signal Corporation Life safety system having a panel network with message priority
JPH09311839A (en) 1996-05-21 1997-12-02 Hitachi Ltd Data sharing system
US6148377A (en) 1996-11-22 2000-11-14 Mangosoft Corporation Shared memory computer networks
US6085030A (en) 1997-05-02 2000-07-04 Novell, Inc. Network component server
US6006268A (en) 1997-07-31 1999-12-21 Cisco Technology, Inc. Method and apparatus for reducing overhead on a proxied connection
JPH1165911A (en) 1997-08-20 1999-03-09 Kyushu Nippon Denki Software Kk Client/server type filing system
US6425005B1 (en) 1997-10-06 2002-07-23 Mci Worldcom, Inc. Method and apparatus for managing local resources at service nodes in an intelligent network
US6219691B1 (en) 1997-11-19 2001-04-17 At&T Corporation Communication circulation system and method for communication in a network
US6151395A (en) 1997-12-04 2000-11-21 Cisco Technology, Inc. System and method for regenerating secret keys in diffie-hellman communication sessions
US7277941B2 (en) 1998-03-11 2007-10-02 Commvault Systems, Inc. System and method for providing encryption in a storage network by storing a secured encryption key with encrypted archive data in an archive storage device
US7739381B2 (en) 1998-03-11 2010-06-15 Commvault Systems, Inc. System and method for providing encryption in storage operations in a storage network, such as for use by application service providers that provide data storage services
WO1999065184A2 (en) 1998-06-05 1999-12-16 British Telecommunications Public Limited Company Accounting in a communications network
US6260159B1 (en) 1998-06-15 2001-07-10 Sun Microsystems, Inc. Tracking memory page modification in a bridge for a multi-processor system
US6724767B1 (en) 1998-06-27 2004-04-20 Intel Corporation Two-dimensional queuing/de-queuing methods and systems for implementing the same
JP3654773B2 (en) 1998-07-08 2005-06-02 富士通株式会社 Information exchange method, information management distribution device, information management device, information distribution device, computer readable recording medium recording information management distribution program, computer readable recording medium recording information management program, and information distribution program Computer-readable recording medium
US7065050B1 (en) 1998-07-08 2006-06-20 Broadcom Corporation Apparatus and method for controlling data flow in a network switch
US7218952B1 (en) 1998-07-22 2007-05-15 Ericsson Inc. Method, system and apparatus in a telecommunications network for selectively transmitting information utilizing the internet
JP2000122816A (en) 1998-10-20 2000-04-28 Fujitsu Ltd File managing device and managing method
US6502135B1 (en) 1998-10-30 2002-12-31 Science Applications International Corporation Agile network protocol for secure communications with assured system availability
US6549957B1 (en) 1998-12-22 2003-04-15 International Business Machines Corporation Apparatus for preventing automatic generation of a chain reaction of messages if a prior extracted message is similar to current processed message
US6650640B1 (en) 1999-03-01 2003-11-18 Sun Microsystems, Inc. Method and apparatus for managing a network flow in a high performance network interface
US7549056B2 (en) 1999-03-19 2009-06-16 Broadcom Corporation System and method for processing and protecting content
US6848047B1 (en) 1999-04-28 2005-01-25 Casio Computer Co., Ltd. Security managing system, data distribution apparatus and portable terminal apparatus
US6721275B1 (en) 1999-05-03 2004-04-13 Hewlett-Packard Development Company, L.P. Bridged network stations location revision
US6810410B1 (en) 1999-08-03 2004-10-26 Microsoft Corporation Customizing a client application using an options page stored on a server computer
US6385604B1 (en) 1999-08-04 2002-05-07 Hyperroll, Israel Limited Relational database management system having integrated non-relational multi-dimensional data store of aggregated data elements
US6408292B1 (en) 1999-08-04 2002-06-18 Hyperroll, Israel, Ltd. Method of and system for managing multi-dimensional databases using modular-arithmetic based address data mapping processes on integer-encoded business dimensions
US6941338B1 (en) 1999-09-01 2005-09-06 Nextwave Telecom Inc. Distributed cache for a wireless communication system
US6675205B2 (en) 1999-10-14 2004-01-06 Arcessa, Inc. Peer-to-peer automated anonymous asynchronous file sharing
US8145776B1 (en) 1999-10-15 2012-03-27 Sony Corporation Service providing apparatus and method, and information processing apparatus and method as well as program storage medium
GB2357658B (en) 1999-12-23 2002-09-25 3Com Corp Stackable network unit including burst trasmission of packets
US6587866B1 (en) 2000-01-10 2003-07-01 Sun Microsystems, Inc. Method for distributing packets to server nodes using network client affinity and packet distribution table
US6877044B2 (en) 2000-02-10 2005-04-05 Vicom Systems, Inc. Distributed storage management platform architecture
US7043530B2 (en) 2000-02-22 2006-05-09 At&T Corp. System, method and apparatus for communicating via instant messaging
US7428540B1 (en) 2000-03-03 2008-09-23 Intel Corporation Network storage system
US7545755B2 (en) 2000-03-03 2009-06-09 Adtran Inc. Routing switch detecting change in session identifier before reconfiguring routing table
AU2001261232A1 (en) * 2000-05-08 2001-11-20 Walker Digital, Llc Method and system for providing a link in an electronic file being presented to a user
US6718404B2 (en) 2000-06-02 2004-04-06 Hewlett-Packard Development Company, L.P. Data migration using parallel, distributed table driven I/O mapping
US7111141B2 (en) 2000-10-17 2006-09-19 Igt Dynamic NV-RAM
JP2002203057A (en) 2000-11-01 2002-07-19 Cec:Kk Added value data warehouse system
WO2002052417A1 (en) 2000-12-21 2002-07-04 Exanet Co. Method and apparatus for scalable distributed storage
EP1370947A4 (en) 2001-02-13 2009-05-27 Candera Inc Silicon-based storage virtualization server
JP2002268952A (en) 2001-03-13 2002-09-20 Mitsubishi Heavy Ind Ltd Distributed storage system of data, program and server
US20020143798A1 (en) 2001-04-02 2002-10-03 Akamai Technologies, Inc. Highly available distributed storage system for internet content with storage site redirection
US7209973B2 (en) 2001-04-09 2007-04-24 Swsoft Holdings, Ltd. Distributed network data storage system and method
US7274706B1 (en) 2001-04-24 2007-09-25 Syrus Ziai Methods and systems for processing network data
US6907447B1 (en) 2001-04-30 2005-06-14 Microsoft Corporation Method and apparatus for providing an instant message notification
US20020158899A1 (en) 2001-04-30 2002-10-31 Robert Raymond Portal system and method for managing resources in a networked computing environment
JP3541819B2 (en) 2001-06-05 2004-07-14 日本電気株式会社 Loop type network and its operation method
US7054951B1 (en) 2001-07-02 2006-05-30 Cisco Technology, Inc. Plug and play node addition in a dual ring topology network using locally significant ring identifiers for determining routing decisions
US6839808B2 (en) 2001-07-06 2005-01-04 Juniper Networks, Inc. Processing cluster having multiple compute engines and shared tier one caches
US6853620B2 (en) 2001-07-17 2005-02-08 Intel Corporation Bus protocol
US6985476B1 (en) 2001-08-20 2006-01-10 Bbnt Solutions Llc Automatic setting of time-to-live fields for packets in an ad hoc network
US7035933B2 (en) 2001-09-13 2006-04-25 Network Foundation Technologies, Inc. System of distributing content data over a computer network and method of arranging nodes for distribution of data over a computer network
US6677976B2 (en) 2001-10-16 2004-01-13 Sprint Communications Company, LP Integration of video telephony with chat and instant messaging environments
US7257817B2 (en) 2001-10-16 2007-08-14 Microsoft Corporation Virtual network with adaptive dispatcher
US20030093463A1 (en) 2001-11-13 2003-05-15 Graf Eric S. Dynamic distribution and network storage system
JP4186456B2 (en) 2001-11-28 2008-11-26 沖電気工業株式会社 Distributed file sharing system and control method thereof
EP1316955A1 (en) 2001-11-30 2003-06-04 Infineon Technologies AG Intermediate storage device
KR100632529B1 (en) 2001-12-10 2006-10-11 지멘스 악티엔게젤샤프트 Method for transmitting data of applications with different quality
US8040869B2 (en) 2001-12-19 2011-10-18 Alcatel Lucent Method and apparatus for automatic discovery of logical links between network devices
US7120631B1 (en) 2001-12-21 2006-10-10 Emc Corporation File server system providing direct data sharing between clients with a server acting as an arbiter and coordinator
US6983303B2 (en) 2002-01-31 2006-01-03 Hewlett-Packard Development Company, Lp. Storage aggregator for enhancing virtualization in data storage networks
US7007142B2 (en) 2002-02-19 2006-02-28 Intel Corporation Network data storage-related operations
US20030158958A1 (en) 2002-02-20 2003-08-21 Koninklijke Philips Electronics N.V. Distributed storage network architecture using user devices
US7139820B1 (en) 2002-02-26 2006-11-21 Cisco Technology, Inc. Methods and apparatus for obtaining location information in relation to a target device
US7295556B2 (en) 2002-03-01 2007-11-13 Enterasys Networks, Inc. Location discovery in a data network
US7707287B2 (en) 2002-03-22 2010-04-27 F5 Networks, Inc. Virtual host acceleration system
JP4685317B2 (en) 2002-03-29 2011-05-18 株式会社富士通ソーシアルサイエンスラボラトリ Data distributed storage method, data distributed storage device, program, and backup site
JP2003296179A (en) 2002-03-29 2003-10-17 Mitsubishi Electric Corp Information processor and network file method
JP4704659B2 (en) 2002-04-26 2011-06-15 株式会社日立製作所 Storage system control method and storage control device
US7461378B2 (en) 2002-06-11 2008-12-02 Siemens Communications, Inc. Methods and apparatus for processing an instant message
US7376713B2 (en) 2002-06-27 2008-05-20 International Business Machines Corporation Apparatus, system and method of distributing block data on a private network without using TCP/IP
US7356540B2 (en) 2002-07-03 2008-04-08 Smith David E A Data storage and retrieval system
AU2003263800B2 (en) 2002-07-29 2008-08-21 Robert Halford Multi-dimensional data protection and mirroring method for micro level data
US7191298B2 (en) 2002-08-02 2007-03-13 International Business Machines Corporation Flexible system and method for mirroring data
DE10236796B4 (en) 2002-08-08 2004-12-02 Christian Dr. Scheideler Method and arrangement for randomized data storage in storage networks and / or an intranet and / or the Internet as well as a corresponding computer program product and a corresponding computer-readable storage medium
US7613796B2 (en) 2002-09-11 2009-11-03 Microsoft Corporation System and method for creating improved overlay network with an efficient distributed data structure
US7337351B2 (en) 2002-09-18 2008-02-26 Netezza Corporation Disk mirror architecture for database appliance with locally balanced regeneration
JP2004126716A (en) 2002-09-30 2004-04-22 Fujitsu Ltd Data storing method using wide area distributed storage system, program for making computer realize the method, recording medium, and controller in the system
US7240214B2 (en) 2002-10-25 2007-07-03 Yahoo!, Inc. Centrally controllable instant messaging system
US7136638B2 (en) 2002-10-25 2006-11-14 Nokia Corporation Method and system for analyzing a network environment and network parameters
US7424514B2 (en) 2002-11-08 2008-09-09 The Regents Of The University Of Michigan Peer-to-peer method and system for performing and managing backups in a network of nodes
US20040093390A1 (en) 2002-11-12 2004-05-13 Matthias Oberdorfer Connected memory management
US7266776B2 (en) 2002-11-25 2007-09-04 Aol Llc Facilitating communications between computer users across a network
US7386530B2 (en) 2002-12-19 2008-06-10 Mathon Systems, Inc. System and method for managing content including addressability features
GB0230331D0 (en) 2002-12-31 2003-02-05 British Telecomm Method and apparatus for operating a computer network
ATE381836T1 (en) 2003-01-23 2008-01-15 Cisco Tech Inc METHOD AND DEVICES FOR DATA TRANSMISSION BETWEEN STORAGE NETWORKS
US20040165525A1 (en) 2003-02-10 2004-08-26 Invensys Systems, Inc. System and method for network redundancy
US7404002B1 (en) 2003-03-06 2008-07-22 Nvidia Corporation Method and system for broadcasting live data over a network
US7392378B1 (en) 2003-03-19 2008-06-24 Verizon Corporate Services Group Inc. Method and apparatus for routing data traffic in a cryptographically-protected network
US7327731B1 (en) 2003-04-09 2008-02-05 At&T Corp. Point-to-multipoint connections for data delivery
US7426745B2 (en) 2003-04-24 2008-09-16 International Business Machines Corporation Methods and systems for transparent data encryption and decryption
US7143170B2 (en) 2003-04-30 2006-11-28 Akamai Technologies, Inc. Automatic migration of data via a distributed computer network
US6928050B2 (en) 2003-05-06 2005-08-09 Overture Networks, Inc. Protected switching ring
US7355965B2 (en) 2003-05-06 2008-04-08 Overture Networks, Inc. Apparatus and method for rapid detection of unidirectional breaks in a network ring
US7339887B2 (en) 2003-05-06 2008-03-04 Overture Networks, Inc. Multipoint protected switching ring
US7426637B2 (en) 2003-05-21 2008-09-16 Music Public Broadcasting, Inc. Method and system for controlled media sharing in a network
ATE529962T1 (en) 2003-06-06 2011-11-15 Meshnetworks Inc METHOD FOR IMPROVING THE OVERALL PERFORMANCE OF A WIRELESS COMMUNICATIONS NETWORK
US7380081B2 (en) 2003-06-06 2008-05-27 Hewlett-Packard Development Company, L.P. Asynchronous data redundancy technique
US20050010685A1 (en) 2003-07-11 2005-01-13 Agency For Science, Technology And Research Method and a system for enabling data to be stored in a computer network; a method and a system for storing data in a computer network
US7953819B2 (en) 2003-08-22 2011-05-31 Emc Corporation Multi-protocol sharable virtual storage objects
JP2005070987A (en) 2003-08-22 2005-03-17 Nippon Telegr & Teleph Corp <Ntt> Node to be used in file sharing system, file storage method to be used in file sharing system, and file storing program
US7191248B2 (en) 2003-08-29 2007-03-13 Microsoft Corporation Communication stack for network communication and routing
CN100484148C (en) 2003-09-29 2009-04-29 株式会社日立制作所 Information terminals, information sharing method and p2p system and point system using the same
US7698456B2 (en) 2003-09-29 2010-04-13 Cisco Technology, Inc. Methods and apparatus to support routing of information
US7426574B2 (en) 2003-12-16 2008-09-16 Trend Micro Incorporated Technique for intercepting data in a peer-to-peer network
US7634582B2 (en) 2003-12-19 2009-12-15 Intel Corporation Method and architecture for optical networking between server and storage area networks
JP4522103B2 (en) 2004-02-02 2010-08-11 大日本印刷株式会社 User terminal, history analysis device, program, and distribution system
EP1723564A2 (en) 2004-02-11 2006-11-22 Storage Technology Corporation Clustered hierarchical file services
US7428219B2 (en) 2004-02-27 2008-09-23 Intel Corporation System and method to exchange information between a control element and forwarding elements in a network element architecture
JP2005275937A (en) 2004-03-25 2005-10-06 Fujitsu Ltd P2p network system
JP4729683B2 (en) 2004-03-26 2011-07-20 株式会社エヌ・ティ・ティ ネオメイト Data distribution storage device, data configuration management server, client terminal, and business consignment system including data distribution storage device
GB2412760B (en) 2004-04-01 2006-03-15 Toshiba Res Europ Ltd Secure storage of data in a network
JP4585233B2 (en) 2004-05-28 2010-11-24 株式会社日立製作所 A program that manages the transfer of digital content
US7739577B2 (en) 2004-06-03 2010-06-15 Inphase Technologies Data protection system
US20070195772A1 (en) 2004-06-14 2007-08-23 Alloptic, Inc. Distributed igmp processing
US8375146B2 (en) 2004-08-09 2013-02-12 SanDisk Technologies, Inc. Ring bus structure and its use in flash memory systems
US7363316B2 (en) 2004-08-30 2008-04-22 Mendocino Software, Inc. Systems and methods for organizing and mapping data
US20060080286A1 (en) 2004-08-31 2006-04-13 Flashpoint Technology, Inc. System and method for storing and accessing images based on position data associated therewith
US7090755B2 (en) 2004-10-28 2006-08-15 Figaro Engineering Inc. Gas detecting device with self-diagnosis for electrochemical gas sensor
DE102004052555A1 (en) 2004-10-29 2006-05-04 Bosch Rexroth Ag Method for exchanging data between subscribers from different networks
US20060143505A1 (en) 2004-12-22 2006-06-29 Dell Products L.P. Method of providing data security between raid controller and disk drives
US7356567B2 (en) 2004-12-30 2008-04-08 Aol Llc, A Delaware Limited Liability Company Managing instant messaging sessions on multiple devices
US20060159456A1 (en) 2005-01-18 2006-07-20 Fujitsu Limited System and method for conserving resources in an optical storage area network
US20070050446A1 (en) 2005-02-01 2007-03-01 Moore James F Managing network-accessible resources
US7457835B2 (en) 2005-03-08 2008-11-25 Cisco Technology, Inc. Movement of data in a distributed database system to a storage location closest to a center of activity for the data
US7522618B2 (en) 2005-03-18 2009-04-21 Panasonic Corporation Communication apparatus, communication system and communication method
CN100421401C (en) 2005-04-19 2008-09-24 华为技术有限公司 Network optimization based on distributive wireless access network
US8266237B2 (en) 2005-04-20 2012-09-11 Microsoft Corporation Systems and methods for providing distributed, decentralized data storage and retrieval
US7490140B2 (en) 2005-05-12 2009-02-10 International Business Machines Corporation Peer data transfer orchestration
US7921301B2 (en) 2005-05-17 2011-04-05 Dot Hill Systems Corporation Method and apparatus for obscuring data on removable storage devices
US7693958B2 (en) 2005-06-20 2010-04-06 Microsoft Corporation Instant messaging with data sharing
US20070005694A1 (en) 2005-06-30 2007-01-04 Pando Networks, Inc. System and method for distributed multi-media production, sharing and low-cost mass publication
US20070011097A1 (en) 2005-07-06 2007-01-11 Andreas Eckleder License server and user processor
ATE443959T1 (en) 2005-07-20 2009-10-15 Research In Motion Ltd METHOD FOR SHARING A STORY BY INSTANT MESSAGING
WO2007019689A1 (en) 2005-08-16 2007-02-22 Corporation De L'ecole Polytechnique De Montreal Coordination of client and geo-location oriented services in a mobile network
US8255998B2 (en) 2005-08-16 2012-08-28 Emc Corporation Information protection method and system
US7320059B1 (en) 2005-08-26 2008-01-15 Emc Corporation Methods and apparatus for deleting content from a storage system
US7512943B2 (en) 2005-08-30 2009-03-31 Microsoft Corporation Distributed caching of files in a network
US20110258049A1 (en) * 2005-09-14 2011-10-20 Jorey Ramer Integrated Advertising System
FI20050919A0 (en) 2005-09-15 2005-09-15 Nokia Corp Routing of data packets from a multicast host
US20070073965A1 (en) 2005-09-28 2007-03-29 Rajakarunanayake Yasantha N Direct storage and retrieval of multimedia data using a data storage device
US20070079087A1 (en) 2005-09-29 2007-04-05 Copan Systems, Inc. User interface for archival storage of data
EP1798934A1 (en) 2005-12-13 2007-06-20 Deutsche Thomson-Brandt Gmbh Method and apparatus for organizing nodes in a network
US7962709B2 (en) 2005-12-19 2011-06-14 Commvault Systems, Inc. Network redirector systems and methods for performing data replication
US20070147364A1 (en) 2005-12-22 2007-06-28 Mcdata Corporation Local and remote switching in a communications network
US7596088B2 (en) 2006-01-24 2009-09-29 Corrigent Systems Ltd. Route selection with bandwidth sharing optimization over rings
US20070214105A1 (en) 2006-03-08 2007-09-13 Omneon Video Networks Network topology for a scalable data storage system
JP2007304665A (en) 2006-05-08 2007-11-22 Canon Inc Device connected to peer-to-peer network and distribution system
JP2007310673A (en) 2006-05-18 2007-11-29 Nippon Telegr & Teleph Corp <Ntt> Storage configuration method and storage system of p2p network
US8428098B2 (en) 2006-07-06 2013-04-23 Qualcomm Incorporated Geo-locating end-user devices on a communication network
US8340682B2 (en) 2006-07-06 2012-12-25 Qualcomm Incorporated Method for disseminating geolocation information for network infrastructure devices
JP2008020977A (en) 2006-07-11 2008-01-31 Sony Computer Entertainment Inc Network processor system and network protocol processing method
US8145760B2 (en) 2006-07-24 2012-03-27 Northwestern University Methods and systems for automatic inference and adaptation of virtualized computing environments
JP2008033406A (en) 2006-07-26 2008-02-14 Brother Ind Ltd Node device, information processing program, content distribution method and content distribution system
JP4915848B2 (en) 2006-08-22 2012-04-11 株式会社野村総合研究所 Computer program for sending and receiving peer-to-peer files over an overlay network
US7346909B1 (en) 2006-08-28 2008-03-18 Intel Corporation Network-like communication and stack synchronization for different virtual machines on the same physical device
US7974645B2 (en) 2006-08-30 2011-07-05 At&T Mobility Ii Llc Mobile registration using a service area identifier or plurality of service area identifiers
US7965758B2 (en) 2006-09-15 2011-06-21 Itron, Inc. Cell isolation through quasi-orthogonal sequences in a frequency hopping network
US20080091744A1 (en) 2006-10-11 2008-04-17 Hidehisa Shitomi Method and apparatus for indexing and searching data in a storage system
US7761485B2 (en) 2006-10-25 2010-07-20 Zeugma Systems Inc. Distributed database
CN101188569B (en) 2006-11-16 2011-05-04 饶大平 Method for constructing data quanta space in network and distributed file storage system
DE602006011923D1 (en) 2006-12-06 2010-03-11 Research In Motion Ltd Method and system for communication of a message system
US9008081B2 (en) 2006-12-14 2015-04-14 Rpx Clearinghouse Llc Serving gateway proxies for non-SIP speakers in a next generation network
US20080144655A1 (en) 2006-12-14 2008-06-19 James Frederick Beam Systems, methods, and computer program products for passively transforming internet protocol (IP) network traffic
US7738457B2 (en) 2006-12-20 2010-06-15 Oracle America, Inc. Method and system for virtual routing using containers
US8161543B2 (en) 2006-12-22 2012-04-17 Aruba Networks, Inc. VLAN tunneling
US7882365B2 (en) 2006-12-22 2011-02-01 Spansion Llc Systems and methods for distinguishing between actual data and erased/blank memory with regard to encrypted data
JP5042800B2 (en) 2007-01-09 2012-10-03 ドコモ・テクノロジ株式会社 Network data sharing system
US20080183555A1 (en) 2007-01-29 2008-07-31 Hunter Walk Determining and communicating excess advertiser demand information to users, such as publishers participating in, or expected to participate in, an advertising network
US8477771B2 (en) 2007-03-01 2013-07-02 Meraki Networks, Inc. System and method for remote monitoring and control of network devices
US8310920B2 (en) 2007-03-02 2012-11-13 Saratoga Data Systems, Inc. Method and system for accelerating transmission of data between network devices
WO2008108699A1 (en) 2007-03-05 2008-09-12 Telefonaktiebolaget Lm Ericsson (Publ) Method for remotely controlling multimedia communication across local networks.
US8751683B2 (en) 2007-03-13 2014-06-10 Alcatel Lucent Failure protection in a provider backbone bridge network using selective redirection
US8428057B2 (en) 2007-03-14 2013-04-23 Cisco Technology, Inc. Optimizing return traffic paths using network address translation
US8903938B2 (en) 2007-06-18 2014-12-02 Amazon Technologies, Inc. Providing enhanced data retrieval from remote locations
CN101330451B (en) 2007-06-20 2013-01-30 华为技术有限公司 Method for processing forwarding of data packet, node and packet core apparatus
US7761687B2 (en) 2007-06-26 2010-07-20 International Business Machines Corporation Ultrascalable petaflop parallel supercomputer
US8687676B2 (en) 2007-07-30 2014-04-01 Telefonaktiebolaget L M Ericsson (Publ) Efficient storing of backoff and crestcomp values
US7783608B2 (en) 2007-08-09 2010-08-24 Hitachi, Ltd. Method and apparatus for NAS/CAS integrated storage system
WO2009021289A1 (en) 2007-08-14 2009-02-19 The Walter And Eliza Hall Institute Of Medical Research Potassium channel inhibitors
US9848058B2 (en) 2007-08-31 2017-12-19 Cardiac Pacemakers, Inc. Medical data transport over wireless life critical network employing dynamic communication link mapping
US8554784B2 (en) 2007-08-31 2013-10-08 Nokia Corporation Discovering peer-to-peer content using metadata streams
US9350639B2 (en) * 2007-09-06 2016-05-24 Cisco Technology, Inc. Forwarding data in a data communications network
US9407693B2 (en) 2007-10-03 2016-08-02 Microsoft Technology Licensing, Llc Network routing of endpoints to content based on content swarms
US20090104978A1 (en) 2007-10-18 2009-04-23 Gabi Ben-Ami Wagering Method and System
US8406998B2 (en) 2008-02-12 2013-03-26 Cisco Technology, Inc. Traffic predictive directions
US7856506B2 (en) 2008-03-05 2010-12-21 Sony Computer Entertainment Inc. Traversal of symmetric network address translator for multiple simultaneous connections
US7430584B1 (en) 2008-03-12 2008-09-30 Gene Fein Data forwarding storage
US7636758B1 (en) 2008-07-10 2009-12-22 Gene Fein Advertisement forwarding storage and retrieval network
US7636759B1 (en) 2008-09-29 2009-12-22 Gene Fein Rotating encryption in data forwarding storage
US7631051B1 (en) 2008-09-29 2009-12-08 Gene Fein Geolocation assisted data forwarding storage
US8458285B2 (en) 2008-03-20 2013-06-04 Post Dahl Co. Limited Liability Company Redundant data forwarding storage
US7636761B1 (en) 2008-09-29 2009-12-22 Gene Fein Measurement in data forwarding storage
US9203928B2 (en) 2008-03-20 2015-12-01 Callahan Cellular L.L.C. Data storage and retrieval
US7673009B2 (en) 2008-07-10 2010-03-02 Gene Fein Media delivery in data forwarding storage network
US7636760B1 (en) 2008-09-29 2009-12-22 Gene Fein Selective data forwarding storage
US7599997B1 (en) 2008-08-01 2009-10-06 Gene Fein Multi-homed data forwarding storage
US7865586B2 (en) 2008-03-31 2011-01-04 Amazon Technologies, Inc. Configuring communications between computing nodes
US7877456B2 (en) 2008-04-08 2011-01-25 Post Dahl Co. Limited Liability Company Data file forwarding storage and search
US8386585B2 (en) 2008-04-25 2013-02-26 Tajitshu Transfer Limited Liability Company Real-time communications over data forwarding framework
US7668926B2 (en) 2008-04-25 2010-02-23 Gene Fein Real-time communications over data forwarding framework
US7668927B2 (en) 2008-05-07 2010-02-23 Gene Fein Deletion in data file forwarding framework
US8452844B2 (en) 2008-05-07 2013-05-28 Tajitshu Transfer Limited Liability Company Deletion in data file forwarding framework
US10372490B2 (en) 2008-05-30 2019-08-06 Red Hat, Inc. Migration of a virtual machine from a first cloud computing environment to a second cloud computing environment in response to a resource or services in the second cloud computing environment becoming available
US8370446B2 (en) 2008-07-10 2013-02-05 Tajitshu Transfer Limited Liability Company Advertisement forwarding storage and retrieval network
US8599678B2 (en) 2008-07-10 2013-12-03 Tajitshu Transfer Limited Liability Company Media delivery in data forwarding storage network
US8352635B2 (en) 2008-09-29 2013-01-08 Tajitshu Transfer Limited Liability Company Geolocation assisted data forwarding storage
US7636764B1 (en) 2008-09-29 2009-12-22 Gene Fein Cloud resource usage in data forwarding storage
US7636762B1 (en) 2008-09-29 2009-12-22 Gene Fein Disassembly/reassembly in data forwarding storage
US7636763B1 (en) 2008-09-29 2009-12-22 Gene Fein Mixed network architecture in data forwarding storage
US7685248B1 (en) 2008-09-29 2010-03-23 Gene Fein User interface in data forwarding network

Also Published As

Publication number Publication date
US20160150017A1 (en) 2016-05-26
US20130124336A1 (en) 2013-05-16
US9961144B2 (en) 2018-05-01
US20190037021A1 (en) 2019-01-31
US9203928B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US20200137164A1 (en) Data storage and retrieval
US7685248B1 (en) User interface in data forwarding network
US7636764B1 (en) Cloud resource usage in data forwarding storage
CA2738643C (en) Geolocation assisted data forwarding storage
EP2271995B1 (en) Real-time communications over data forwarding framework
US8386585B2 (en) Real-time communications over data forwarding framework
JPH11167585A (en) Searching method for wide area network service location
KR20120067953A (en) Custodian-based routing in content-centric networks
US7636758B1 (en) Advertisement forwarding storage and retrieval network
US8352635B2 (en) Geolocation assisted data forwarding storage
US11095580B2 (en) Instant message (IM) routing to a virtual user consisting of a group of possible sub-users associated with a common IM identity
EP2668740A2 (en) Site-aware distributed file system access from outside enterprise network
US20080195715A1 (en) System and method for asynchronous exchanging electronic messages
EP2707997A1 (en) Method for managing the infrastructure of a content distribution network service in an isp network and such an infrastructure
US8478823B2 (en) Selective data forwarding storage
US8370446B2 (en) Advertisement forwarding storage and retrieval network
EP2287800A1 (en) Systems and methods for advertisement and content distribution
Wang et al. NCDN: A Node-Failure Resilient CDN Solution with Reinforcement Learning Optimization
Sinha et al. Estimation of network distances using off-line measurements

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CALLAHAN CELLULAR L.L.C., DELAWARE

Free format text: MERGER;ASSIGNOR:TAJITSHU TRANSFER LIMITED LIABILITY COMPANY;REEL/FRAME:057156/0266

Effective date: 20150827

Owner name: TAJITSHU TRANSFER LIMITED LIABILITY COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENEDICS LLC;REEL/FRAME:057138/0784

Effective date: 20100721

Owner name: TAJITSHU TRANSFER LIMITED LIABILITY COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FEIN, GENE;REEL/FRAME:057138/0811

Effective date: 20100721

Owner name: TAJITSHU TRANSFER LIMITED LIABILITY COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERRITT, EDWARD;REEL/FRAME:057138/0830

Effective date: 20100722

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: INTELLECTUAL VENTURES ASSETS 168 LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALLAHAN CELLULAR L.L.C.;REEL/FRAME:057272/0877

Effective date: 20210810

AS Assignment

Owner name: DISTRIBUTED MEDIA SOLUTIONS, LLC, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTELLECTUAL VENTURES ASSETS 168 LLC;REEL/FRAME:058537/0471

Effective date: 20210825

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION