US20190390674A1 - Screw Compressor for a Utility Vehicle - Google Patents

Screw Compressor for a Utility Vehicle Download PDF

Info

Publication number
US20190390674A1
US20190390674A1 US16/333,162 US201716333162A US2019390674A1 US 20190390674 A1 US20190390674 A1 US 20190390674A1 US 201716333162 A US201716333162 A US 201716333162A US 2019390674 A1 US2019390674 A1 US 2019390674A1
Authority
US
United States
Prior art keywords
spring
screw compressor
oil
screw
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/333,162
Other languages
English (en)
Inventor
Gilles Hebrard
Jean-Baptiste Marescot
Joerg MELLAR
Thomas Weinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Assigned to KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH reassignment KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Marescot, Jean-Baptiste, HEBRARD, GILLES, MELLAR, JOERG, WEINHOLD, THOMAS
Publication of US20190390674A1 publication Critical patent/US20190390674A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1005Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification

Definitions

  • the present invention relates to a screw compressor for a utility vehicle, having at least one housing and one relief valve.
  • Screw compressors for utility vehicles are already known from the prior art. Such screw compressors are used to provide the compressed air required for the brake system of the utility vehicle, for example.
  • oil-filled compressors in particular also screw compressors
  • screw compressors in the case of which it is necessary to regulate the oil temperature.
  • an external oil cooler being provided which is connected to the oil-filled compressor and to the oil circuit via a thermostat valve.
  • the oil cooler is a heat exchanger which has two mutually separate circuits, wherein the first circuit is provided for the hot liquid, that is to say the compressor oil, and the second circuit is provided for the cooling liquid.
  • cooling liquid use may for example be made of air, water mixtures with an antifreeze, or another oil.
  • This oil cooler must then be connected to the compressor oil circuit by means of pipes or hoses, and the oil circuit must be safeguarded against leakage.
  • This external volume must furthermore be filled with oil, such that the total quantity of oil is also increased.
  • the system inertia is thus increased.
  • the oil cooler must be mechanically accommodated and fastened, either by means of brackets situated in the surroundings or by means of a separate bracket, which necessitates additional fastening means and also structural space.
  • DE 37 17 493 A1 discloses a screw compressor installation which is arranged in a compact housing and which has an oil cooler on the electric motor of the screw compressor.
  • a generic screw compressor is already known for example from DE 10 2004 060 417 B4.
  • a screw compressor for a utility vehicle equipped with at least one housing and one relief valve, wherein the relief valve has a spring-loaded closing mechanism with at least one spring and with at least one closure element.
  • the spring has a spring force configured such that said spring actuates the closure element when a predefined minimum pressure above atmospheric pressure is reached.
  • the invention is based on the underlying concept of the pressure dissipation process of the screw compressor being stopped before the internal pressure of the screw compressor has fallen to a pressure equal to or close to atmospheric pressure. It is hereby made possible for no bubble formation or oil foaming to occur in the interior of the housing of the screw compressor or in the oil sump of the screw compressor.
  • a spring-loaded closing mechanism in conjunction with the relief valve, it is made possible, relatively easily by means of a spring and at least one closure element, to find a setting means which makes it possible for the closing mechanism to close before atmospheric pressure is reached. In this way, it is possible to reliably prevent foaming from occurring in the oil in the interior of the housing.
  • the spring may be a helical spring. This permits simple and inexpensive production. Furthermore, the handling of a helical spring of said type is relatively straightforward. The configuration of such a standard component is also relatively easily possible.
  • the closure element may be a ball.
  • balls are relatively easily available and can also likewise be easily installed.
  • Spring-loading by means of a spring is likewise easy to realize in the case of a ball.
  • Corresponding surface adaptations are not necessary, because the dimensions of spring and ball can be selected such that these engage into one another and secure one another.
  • the spring-loaded closing mechanism may be arranged in the vicinity of the inlet connector of the screw compressor.
  • the spring-loaded closing mechanism is arranged in the ventilation line from the relief valve to the inlet connector of the screw compressor.
  • Simple and reliable installation in, for example, the housing of the screw compressor is possible in this region.
  • reliable access to the atmosphere is ensured via the air inlet of the screw compressor.
  • FIG. 1 shows a schematic sectional drawing through a screw compressor according to the invention
  • FIG. 2 shows a schematic sectional drawing of the spring-loaded closing mechanism of the relief valve for the screw compressor as per FIG. 1 .
  • FIG. 1 shows, in a schematic sectional illustration, a screw compressor 10 in the context of an exemplary embodiment of the present invention.
  • the screw compressor 10 has a fastening flange 12 for the mechanical fastening of the screw compressor 10 to an electric motor (not shown in any more detail here).
  • the screw 18 meshes with the screw 16 and is driven by means of the latter.
  • the screw compressor 10 has a housing 20 in which the main components of the screw compressor 10 are accommodated.
  • the housing 20 is filled with oil 22 .
  • an inlet connector 24 is provided on the housing 20 of the screw compressor 10 .
  • the inlet connector 24 is in this case designed such that an air filter 26 is arranged at said inlet connector.
  • an air inlet 28 is provided radially on the air inlet connector 24 .
  • a spring-loaded valve insert 30 which is designed here as an axial seal.
  • This valve insert 30 serves as a check valve.
  • an air feed channel 32 Downstream of the valve insert 30 , there is provided an air feed channel 32 which feeds the air to the two screws 16 , 18 .
  • an air outlet pipe 34 with a riser line 36 .
  • a temperature sensor 38 In the region of the end of the riser line 36 , there is provided a temperature sensor 38 by means of which the oil temperature can be monitored.
  • a holder 40 for an air deoiling element 42 is also provided in the air outlet region.
  • the holder 40 for the air deoiling element has the air deoiling element 42 in the region facing toward the base (as also shown in FIG. 1 ).
  • a corresponding filter screen or known filter and oil separating devices 44 is also provided, in the interior of the air deoiling element 42 , which will not be specified in any more detail.
  • the holder for the air deoiling element 42 has an air outlet opening 46 which leads to a check valve 48 and a minimum pressure valve 50 .
  • the check valve 48 and the minimum pressure valve 50 may also be formed in one common combined valve.
  • the air outlet 51 is provided downstream of the check valve 48 .
  • the air outlet 51 is generally connected to correspondingly known compressed-air consumers.
  • a riser line 52 is provided which has a filter and check valve 54 at the outlet of the holder 40 for the air deoiling element 42 at the transition into the housing 20 .
  • a nozzle 56 is provided, downstream of the filter and check valve 54 , in a housing bore.
  • the oil return line 58 leads back into approximately the central region of the screw 16 or of the screw 18 in order to feed oil 22 thereto again.
  • An oil drain screw 59 is provided in the base region, in the assembled state, of the housing 20 .
  • a corresponding oil outflow opening can be opened, via which the oil 22 can be drained.
  • the attachment piece 60 to which the oil filter 62 is fastened. Via an oil filter inlet channel 64 , which is arranged in the housing 20 , the oil 22 is conducted firstly to a thermostat valve 66 .
  • thermostat valve 66 it is possible for an open-loop and/or closed-loop control device to be provided by means of which the oil temperature of the oil 22 situated in the housing 20 can be monitored and set to a setpoint value.
  • the cooler 74 is connected to the attachment piece 60 , as will be discussed in more detail below in FIGS. 2 to 4 .
  • a safety valve 76 In the upper region of the housing 20 (in relation to the assembled state), there is situated a safety valve 76 , by means of which an excessively high pressure in the housing 20 can be dissipated.
  • a bypass line 78 which leads to a relief valve 80 .
  • a relief valve 80 which is activated by means of a connection to the air feed 32 , air can be returned into the region of the air inlet 28 .
  • a ventilation valve not shown in any more detail
  • a nozzle nozzle
  • an oil level sensor 82 may be provided in the outer wall of the housing 20 .
  • Said oil level sensor 82 may for example be an optical sensor, and may be designed and configured such that, on the basis of the sensor signal, it can be identified whether the oil level during operation is above the oil level sensor 82 or whether the oil level sensor 82 is exposed, and thus the oil level has correspondingly fallen.
  • an alarm unit which outputs or transmits a corresponding error message or warning message to the user of the system.
  • the function of the screw compressor 10 shown in FIG. 1 is as follows.
  • Air is fed via the air inlet 28 and passes via the check valve 30 to the screws 16 , 18 , where the air is compressed.
  • the compressed air-oil mixture which, having been compressed by a factor of between 5 and 16 downstream of the screws 16 and 18 , rises through the outlet line 34 via the riser pipe 36 , is blown directly onto the temperature sensor 38 .
  • the air which still partially carries oil particles, is then conducted via the holder 40 into the air deoiling element 42 and, if the corresponding minimum pressure is attained, passes into the air outlet line 51 .
  • the oil 22 situated in the housing 20 is kept at operating temperature via the oil filter 62 and possibly via the heat exchanger 74 .
  • the heat exchanger 74 is not used and is also not activated.
  • the corresponding activation is performed by means of the thermostat valve 66 .
  • oil is fed via the line 68 to the screw 18 or to the screw 16 , and also to the bearing 70 .
  • the screw 16 or the screw 18 is supplied with oil 22 via the return line 52 , 58 , and the purification of the oil 22 takes place here in the air deoiling element 42 .
  • the relief valve 80 (not shown in any more detail), it is ensured that the high pressure that prevails for example at the outlet side of the screws 16 , 18 in the operational state cannot be enclosed in the region of the feed line 32 , and that, instead, in particular during the start-up of the compressor, there is always a low inlet pressure, in particular atmospheric pressure, prevailing in the region of the feed line 32 . Otherwise, upon a start-up of the compressor, a very high pressure would initially be generated at the outlet side of the screws 16 and 18 , which would overload the drive motor.
  • FIG. 2 shows a schematic sectional drawing through a spring-loaded closing mechanism 100 for the relief valve 80 of the screw compressor 10 as per FIG. 1 .
  • the spring-loaded closing mechanism 100 has in this case a spring 102 and a closure element 104 .
  • the spring 102 is formed as a helical spring.
  • the closure element 104 is formed as a ball.
  • the spring-loaded closing mechanism 100 is arranged in the region of the air feed of the screw compressor 10 , specifically in this case in the ventilation line from the relief valve 80 to the inlet connector 24 .
  • the spring 102 is designed so as to exhibit a spring force configured such that said spring actuates the closure element 104 when a predefined minimum pressure above atmospheric pressure is reached.
  • This dissipation of pressure should however be stopped before atmospheric pressure is reached. This serves for preventing foaming in the oil 22 .
  • the setting of this limit pressure is realized through the setting and selection of the spring 102 and of its spring force.
  • the spring force is configured such that the ball 104 actuates the closing mechanism, and thus prevents a further dissipation of pressure, when the internal pressure in the housing 20 of the screw compressor 10 is no longer sufficient to push the closure element 104 open counter to the force of the spring 102 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
US16/333,162 2016-09-21 2017-09-19 Screw Compressor for a Utility Vehicle Abandoned US20190390674A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016011495.9 2016-09-21
DE102016011495.9A DE102016011495A1 (de) 2016-09-21 2016-09-21 Schraubenkompressor für ein Nutzfahrzeug
PCT/EP2017/073586 WO2018054883A1 (de) 2016-09-21 2017-09-19 Schraubenkompressor für ein nutzfahrzeug

Publications (1)

Publication Number Publication Date
US20190390674A1 true US20190390674A1 (en) 2019-12-26

Family

ID=59955552

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/333,162 Abandoned US20190390674A1 (en) 2016-09-21 2017-09-19 Screw Compressor for a Utility Vehicle

Country Status (8)

Country Link
US (1) US20190390674A1 (de)
EP (1) EP3516233A1 (de)
JP (1) JP6991222B2 (de)
KR (1) KR20190098950A (de)
CN (1) CN110268165A (de)
BR (1) BR112019005109A2 (de)
DE (1) DE102016011495A1 (de)
WO (1) WO2018054883A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085448B2 (en) * 2017-04-21 2021-08-10 Atlas Copco Airpower, Naamloze Vennootschap Oil circuit, oil-free compressor provided with such oil circuit and a method to control lubrication and/or cooling of such oil-free compressor via such oil circuit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212385A (en) * 1981-06-22 1982-12-27 Hitachi Ltd Capacity controlling apparatus for rotary compressor
JPS6070792U (ja) * 1983-10-24 1985-05-18 ダイキン工業株式会社 スクリユ−圧縮機の給油装置
US4748873A (en) 1986-05-23 1988-06-07 Raymond Engineering Inc. Power wrench
US4780061A (en) 1987-08-06 1988-10-25 American Standard Inc. Screw compressor with integral oil cooling
JPH08189489A (ja) * 1995-01-09 1996-07-23 Hitachi Ltd 油冷式圧縮機の油分離装置
JP2001027192A (ja) * 1999-07-14 2001-01-30 Hitachi Ltd 油冷式スクリュー圧縮機
JP2002227785A (ja) * 2001-02-02 2002-08-14 Nabco Ltd 回転式空気圧縮機
BE1015079A4 (nl) 2002-08-22 2004-09-07 Atlas Copco Airpower Nv Compressor met drukontlasting.
DE102004060417B4 (de) 2004-12-14 2006-10-26 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kompakter Schraubenkompressor zum mobilen Einsatz in einem Fahrzeug
DE102006016318B4 (de) 2006-04-06 2008-06-05 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Schraubenverdichter mit Entlastungsventil
US8272846B2 (en) * 2006-12-05 2012-09-25 Carrier Corporation Integral slide valve relief valve
JP5203754B2 (ja) * 2008-03-11 2013-06-05 株式会社日立産機システム インバータ圧縮機の制御方法及びインバータ圧縮機
DE102010015311B4 (de) * 2010-04-17 2014-12-31 Audi Ag Verfahren zum Betreiben eines Rotoren aufweisenden mechanischen Laders sowie Ansaugmodul
AT512724B1 (de) * 2013-07-12 2015-02-15 Avl List Gmbh Vorrichtung und Verfahren zur kontinuierlichen Messung des dynamischen Kraftstoffverbrauchs einer Brennkraftmaschine
JP6216204B2 (ja) 2013-10-10 2017-10-18 株式会社日立産機システム 給油式圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085448B2 (en) * 2017-04-21 2021-08-10 Atlas Copco Airpower, Naamloze Vennootschap Oil circuit, oil-free compressor provided with such oil circuit and a method to control lubrication and/or cooling of such oil-free compressor via such oil circuit

Also Published As

Publication number Publication date
EP3516233A1 (de) 2019-07-31
KR20190098950A (ko) 2019-08-23
JP6991222B2 (ja) 2022-01-12
WO2018054883A1 (de) 2018-03-29
JP2019529806A (ja) 2019-10-17
CN110268165A (zh) 2019-09-20
BR112019005109A2 (pt) 2019-06-04
DE102016011495A1 (de) 2018-03-22
WO2018054883A8 (de) 2019-05-23

Similar Documents

Publication Publication Date Title
US11181110B2 (en) Screw compressor for a utility vehicle
US20190211825A1 (en) Screw Compressor System for a Utility Vehicle
US20190338778A1 (en) Screw Compressor System for a Utility Vehicle
US20190390673A1 (en) Screw Compressor for a Utility Vehicle
US20190390674A1 (en) Screw Compressor for a Utility Vehicle
US20190203712A1 (en) System for an Utility Vehicle Comprising a Screw Compressor and an Electric Motor
US20190338777A1 (en) Screw Compressor for a Utility Vehicle
US20190376517A1 (en) Screw Compressor System for a Utility Vehicle
US11286938B2 (en) Oil separator and relief valve of a screw compressor for a utility vehicle
US11994129B2 (en) Screw compressor for a utility vehicle
US20190241169A1 (en) Assembly of Screws for a Screw Compressor for a Utility Vehicle
US20190211821A1 (en) Arrangement for a Screw Compressor of a Utility Vehicle
US11085447B2 (en) Screw compressor for a utility vehicle
US20190309747A1 (en) Screw Compressor for a Utility Vehicle
US11268513B2 (en) Screw-type compressor for a utility vehicle
US20190249665A1 (en) System for a Utility Vehicle Comprising a Compressor and an Electric Motor
US11578723B2 (en) Screw compressor for a utility vehicle
KR20190044682A (ko) 상용차용 스크류 압축기 시스템

Legal Events

Date Code Title Description
AS Assignment

Owner name: KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH, GERM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HEBRARD, GILLES;MARESCOT, JEAN-BAPTISTE;MELLAR, JOERG;AND OTHERS;SIGNING DATES FROM 20190702 TO 20190710;REEL/FRAME:050145/0268

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION