US20190375600A1 - Pallet Auto Box - Google Patents

Pallet Auto Box Download PDF

Info

Publication number
US20190375600A1
US20190375600A1 US16/550,525 US201916550525A US2019375600A1 US 20190375600 A1 US20190375600 A1 US 20190375600A1 US 201916550525 A US201916550525 A US 201916550525A US 2019375600 A1 US2019375600 A1 US 2019375600A1
Authority
US
United States
Prior art keywords
pallet
box
loaded
walls
items
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/550,525
Inventor
Wojciech Karpala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nova Packaging LLC
Original Assignee
Nova Packaging LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63915924&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190375600(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nova Packaging LLC filed Critical Nova Packaging LLC
Priority to US16/550,525 priority Critical patent/US20190375600A1/en
Assigned to NOVA PACKAGING, LLC reassignment NOVA PACKAGING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KARPALA, WOJCIECH
Publication of US20190375600A1 publication Critical patent/US20190375600A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/06Devices for feeding articles or materials to conveyors for feeding articles from a single group of articles arranged in orderly pattern, e.g. workpieces in magazines
    • B65G47/08Devices for feeding articles or materials to conveyors for feeding articles from a single group of articles arranged in orderly pattern, e.g. workpieces in magazines spacing or grouping the articles during feeding
    • B65G47/084Devices for feeding articles or materials to conveyors for feeding articles from a single group of articles arranged in orderly pattern, e.g. workpieces in magazines spacing or grouping the articles during feeding grouping articles in a predetermined 2-dimensional pattern
    • B65G47/086Devices for feeding articles or materials to conveyors for feeding articles from a single group of articles arranged in orderly pattern, e.g. workpieces in magazines spacing or grouping the articles during feeding grouping articles in a predetermined 2-dimensional pattern cubiform articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G57/00Stacking of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G57/00Stacking of articles
    • B65G57/02Stacking of articles by adding to the top of the stack
    • B65G57/03Stacking of articles by adding to the top of the stack from above
    • B65G57/035Stacking of articles by adding to the top of the stack from above with a stepwise downward movement of the stack
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G57/00Stacking of articles
    • B65G57/02Stacking of articles by adding to the top of the stack
    • B65G57/03Stacking of articles by adding to the top of the stack from above
    • B65G57/06Gates for releasing articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G57/00Stacking of articles
    • B65G57/02Stacking of articles by adding to the top of the stack
    • B65G57/16Stacking of articles of particular shape
    • B65G57/20Stacking of articles of particular shape three-dimensional, e.g. cubiform, cylindrical
    • B65G57/22Stacking of articles of particular shape three-dimensional, e.g. cubiform, cylindrical in layers each of predetermined arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B35/00Supplying, feeding, arranging or orientating articles to be packaged
    • B65B35/30Arranging and feeding articles in groups
    • B65B35/50Stacking one article, or group of articles, upon another before packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/10Filling containers or receptacles progressively or in stages by introducing successive articles, or layers of articles
    • B65B5/108Article support means temporarily arranged in the container

Definitions

  • stacking pallets can result in the bags being stacked lopsided on the pallet. This is particularly true when the bags (e.g., bags of mulch, or anything else sold in a bag) are stacked automatically by robot, because the robot simply drops the bags onto the pallet.
  • bags e.g., bags of mulch, or anything else sold in a bag
  • pallets In order to better shape the stacked bags, pallets have been provided in the form of a fixed box, and the bags are dropped into the box. These pallets are more expensive (i.e., the cardboard walls), or the pallet then has to be lifted up out of the box.
  • FIGS. 1A-F show an example pallet auto box shown with a robot palletizer as a robot arm is operated to load a bag onto a pallet.
  • FIGS. 2A-F show an example pallet auto box with robot palletizer as the walls release during exit of a pallet from the walls.
  • FIGS. 3 and 4 are perspective views of an example pallet auto box, wherein FIG. 3 is a front view showing an exit gate, and FIG. 4 is a rear view showing an entry side.
  • FIG. 5 is a perspective view of an example exit gate.
  • FIG. 6-7 are close-up perspective views of a proximity sensor to detect the position of the gate shown in FIG. 5 .
  • FIG. 8 is a close-up perspective view of a portion of an example side wall.
  • FIGS. 9A-B are close-up perspective views of a motor drive to raise and lower the walls.
  • a pallet auto box which may be implemented with a robot palletizer is disclosed.
  • the pallet auto box with robot palletizer enables stacking any type, size, and/or number of product or items (e.g., bags) by robot.
  • stacking is in a bag overlapping cycle on the empty pallet.
  • stacking is without a pallet lift.
  • the operations described herein enable maintaining the outside dimensions of the layer/full pallet, e.g., as defined by the size of the auto box.
  • the auto box has four side walls, and all walls have a mechanism to move the walls up/down (e.g., raise/lower) to adjust the height of the autobox during stacking to different layers and pallet height.
  • the pallet auto box maintains the items inside of the pallet perimeter during loading.
  • the items may be unconforming (e.g., not having flat sides such as boxes which can be readily loaded onto a pallet).
  • the items can be entirely palletized by a robot (or other loader), e.g., without any special instruction or programming, to ensure the items stay within the perimeter of the pallet during loading.
  • the pallet auto box has two side walls with a mechanism to open and close the walls like a door or gate, e.g., when a full pallet is exiting the auto box and a next pallet is being positioned via the conveyor into the loading area formed by the pallet auto box walls.
  • a main front wall is divided into two smaller walls, that enable operation as a gate or door.
  • the rear wall may also be similarly configured to enable the next pallet to be brought in by conveyor to the loading area.
  • Each of the smaller walls has a device to be able to open while a full pallet is exiting the auto box.
  • the pallet auto box can be installed directly on the floor (e.g., level) or can be install on the pallet conveyor frame.
  • the walls of the pallet box automatically adjust for different heights (e.g., going higher as the stack grows higher).
  • the auto box automatically readjusts itself (e.g., the walls are lowered) so that an empty pallet can enter the box loading area.
  • the auto box automatically discharges the full pallet and readjusts for the next cycle.
  • the pallet auto box enables stacking bags by a robot (or manually) with an overlapping pattern, to form a “perfect” pallet.
  • the pallet auto box can be installed on an existing conveyor frame, and makes the production line fully automatic and improves forklift driver operation.
  • the terms “includes” and “including” mean, but is not limited to, “includes” or “including” and “includes at least” or “including at least.”
  • the term “based on” means “based on” and “based at least in part on.”
  • FIGS. 1A-1F and 2A-2F illustrate example operations which may be implemented by the pallet auto box 10 as it may be implemented with a robot palletizer 12 .
  • the components and connections depicted in the figures may be used.
  • other configurations of the pallet auto box 10 with robot palletizer 12 may also be implemented.
  • the operations shown and described herein are provided to illustrate example implementations. It is noted that the operations are not limited to the ordering shown. Still other operations may also be implemented.
  • the pallet auto box 10 includes an auto box 18 having at least one wall, but preferably four walls 20 a - d .
  • the walls can be raised, e.g., wall segment 61 b is shown raised relative to wall segment 61 a in FIG. 1 b .
  • the walls can also be lowered, e.g., as shown in FIG. 1 a .
  • the wall segments e.g., 61 a and 61 b
  • the wall segments may slide relative to one another in a rail on each side of the wall segment.
  • the wall segments may include a gear wheel and mating gear rail.
  • the wall segments may be raised and lowered by pistons 21 .
  • the piston 21 is shown attached to the lower wall segment 61 a on one end, and to the upper wall segment 61 b on the opposite end. Hence, operating the piston 21 raises and lowers the walls segment 61 b relative to the lower wall segment 61 a .
  • the pistons 21 includes pneumatic cylinders (e.g., dry compressed air operating at 80 PSI). However, the pistons 21 may also be hydraulic. Other mechanisms for raising and lowering the wall segments are also contemplated, and further examples are discussed below.
  • the pallet auto box 10 with robot palletizer 12 includes a conveyor 14 to move a pallet 1 (see, e.g., FIGS. 2B-F ) into a loading area 16 adjacent a robot 12 having an arm 13 for loading bags 2 onto the pallet 1 .
  • a conveyor 14 to move a pallet 1 (see, e.g., FIGS. 2B-F ) into a loading area 16 adjacent a robot 12 having an arm 13 for loading bags 2 onto the pallet 1 .
  • At least one of the walls 20 a - d is raised as the robot 12 stacks bags 2 onto the pallet 1 .
  • the walls 20 a - d form and maintain a border around the edge of the pallet 1 for the bags 2 to be stacked on the pallet 1 .
  • At least one of the walls opens as a door or gate 22 after the pallet 1 has been loaded with bags 2 .
  • the wall 20 d is illustrated as it may be configured as a gate 22 having two doors which may be hinged on the far right and left so that the door open in the center away from each other, e.g., as can be seen in FIG. 2B .
  • the doors of the gate 22 may open so that the loaded pallet 1 can be moved out of the loading area 16 .
  • a next pallet 1 can then be moved into the loading area 16 for loading with bags 2 .
  • At least one of the walls 20 a - d may also be lowered again before stacking bags 2 onto the next pallet 1 .
  • the two side walls 20 a and 20 c may also expand or “angle out” at the top to provide more room for the stacked pallet to exit the loading area. That is, the side walls 20 a and 20 c may be hinged 17 on the lower portion as seen in the view of FIG. 4 , and be moved in and out near the upper portion, e.g., by piston 19 or other drive mechanism. It is noted that piston 19 may be air actuated, or hydraulic.
  • the pallet auto box 10 may be provided with a first conveyor 14 to move the pallet 1 into the loading area 16 .
  • a second conveyor 15 may move items (e.g., the bags 2 ) adjacent the loading area 16 to be picked up by the arm 13 of the robot 12 for loading onto the pallet 1 .
  • loading may be by robot 12 (or other robot), by chute (not shown) directly onto the pallet 1 , manual loading, or any other mechanism for moving items (e.g., bags 2 ) onto the pallet 1 within the walls 20 a - d of the auto box 10 .
  • the pallet auto box 10 includes a plurality of walls 20 a - d forming four sides of a box when raised around the loading area 16 .
  • the walls 20 a - d may include a first plurality of walls forming four sides of a box when raised to a first level 24 (e.g., illustrated in FIG. 1B ) around the loading area 16 .
  • the walls may also include a second plurality of walls forming four sides of a box when raised to a second level 26 (e.g., illustrated in FIG. 1B ) around the loading area 16 .
  • the first level of walls 24 may slidably engage with the second level of walls 26 .
  • the second plurality of walls raise higher than the first plurality of walls at the first level 24 , to form the second level 26 .
  • the gate 22 opens and the walls 20 a - d pull away from the loading area so that the pallet 1 can be moved out of the auto box 10 .
  • a new pallet 1 can then moved via the conveyor 14 into the loading area 16 of the auto box 10 .
  • the walls 12 a - d lower again before loading the next pallet 1 .
  • FIGS. 1A-F show an example pallet auto box 10 with robot palletizer 12 as a robot arm 13 is operated to load a bag 2 onto a pallet 1 .
  • FIG. 1A shows an example pallet auto box 10 with robot palletizer 12 as a robot arm 13 drops a bag 2 of mulch to be loaded onto a pallet 1 into a loading area 16 .
  • the robot arm 13 may grasp the bag 2 from another conveyor 15 , and then move into position over the loading area 16 .
  • the robot arm 13 is positioned to drop a bag 2 of mulch onto the pallet 1 in the auto box 10 .
  • the walls 20 a - d have started to move up from a first level 24 , to a second level 26 .
  • the walls may extend to any number of levels beyond the second level 26 .
  • the auto box may be formed by a first set of walls (or wall portions) extending to a first level 24 , a second set of walls (or wall portions) extending to a second level 26 , a third set of walls (not shown) extending to a third level (e.g., above the second level 26 ), and so on.
  • Multiple levels may enable the use of shorter wall segments and/or a taller autobox 10 .
  • FIGS. 1C-1D the robot arm 11 is shown retrieving another bag 2 from the conveyor 15 .
  • FIGS. 1E-1F the grip 13 of the robot arm 11 is again positioned to drop the bag 2 of mulch onto the pallet 1 in the auto box 10 .
  • the walls 20 a - d have been raised to the second level 26 , extending the height of the box formed around the pallet 1 , for loading the bags 2 on the pallet 1 .
  • the grip 13 of the robot arm 11 has released the bag 2 of mulch, and may return to the second conveyor 15 to pick up another bag 2 of mulch 1 . This process may repeat until the pallet 1 is full or stacked to the desired height.
  • FIGS. 2A-F show an example pallet auto box 10 with robot palletizer 12 as the walls 20 a - d release during exit of a pallet 1 from the walls 20 a - d after the pallet 1 is full (or loaded to the desired height) as shown in FIG. 2A .
  • FIG. 2B-C shows an example pallet auto box 10 as the gate 22 opens and the walls 20 a - d release during exit of a pallet 1 from a box formed in the loading area 16 by the walls 20 a - d .
  • the walls 20 a - d begin to move away from the stacked bags 2 of mulch and the pallet 1 of mulch exits on a conveyor 14 .
  • FIG. 2E the pallet 1 has fully exited the loading area.
  • FIG. 2F shows a pallet 1 stacked with bags 2 (e.g., bags of mulch).
  • FIGS. 1A-1F and FIGS. 2A-2F illustrate loading bags 2 of mulch onto a pallet 1
  • the auto box 10 can be implemented to stack any items onto a pallet 1 or other base or platform, in a controlled manner, forming a substantially even-perimeter about the pallet 1 , without the pallet 1 needing to have cardboard or other sidewalls provided on and around the perimeter of the pallet 1 .
  • FIGS. 3 and 4 are perspective views of an example pallet auto box 10 .
  • the pallet auto box 10 shown in FIGS. 3 and 4 includes at least one wall 20 a - d that raises and lowers adjacent a loading area 16 for a pallet 1 .
  • the pallet auto box 10 also includes a front-end gate 22 .
  • a back-end gate may also be provided.
  • the gate 22 may be formed by one of the walls (e.g., the wall 20 d over the conveyor).
  • the auto box 10 has four walls forming a square or rectangular box about the perimeter of a pallet 1 .
  • the wall(s) 20 a - d may be provided initially at, or may raise to, a first level 24 to receive items (e.g., bags 2 ) on the pallet 1 .
  • the wall(s) 20 a - d are raised during loading of the pallet to maintain a border around the loading area 16 for the items to be stacked within the loading area 16 on the pallet 1 .
  • the wall(s) 20 a - d may also raise to a second level 26 (and a third level, and so on) to receive more items stacked higher on the pallet 1 .
  • a second level 26 and a third level, and so on
  • the wall(s) 20 a - d may also raise to a second level 26 (and a third level, and so on) to receive more items stacked higher on the pallet 1 .
  • the arm 11 of the robot 12 does not need to be raised as high during loading of the lower portions of the pallet stack.
  • Gradually raising the walls also helps reduce the possibilities of whatever is being dropped onto the pallet 1 from breaking (e.g., a mulch bag breaking open).
  • Gradually raising the walls also helps with alignment of the bags 2 or other items being loaded onto the pallet 1 . That is, the bags 2 do not have as far to fall from the grip 13 of the robot 12 .
  • the gate 22 opens after the pallet 1 has been loaded so that the loaded pallet 1 can be moved out of the loading area 16 , and a next pallet 1 can be moved into the loading area 16 .
  • the rear wall 20 b is fixed or stationary.
  • An opening 23 is provided under the wall 20 b so that the next pallet can be fed into the loading area 16 on the conveyor 14 , e.g., as seen in FIG. 4 .
  • the walls 20 a - d may be lowered during and/or after the pallet 1 is removed from the loading area 16 for stacking bags 2 onto the next pallet 1 .
  • FIGS. 3 and 5 show a perspective view of an example gate 22 .
  • FIG. 4 is a rear view of the autobox 10 .
  • a pneumatic actuator 30 for the gate 22 This is illustrated as a front trunnion mounted air cylinder. When extended, the front trunnion mounted air cylinder raises the wall on the one of the door(s)/gate(s).
  • the mounting of the front trunnion mounted air cylinder is by tapped base pillow block bearings 32 .
  • This mounting 32 configuration enables some movement. This is to prevent the mechanism from binding.
  • a cylindrical shaped proximity sensor 34 mounted to the lower wall segment (e.g., at the first level 24 ).
  • the proximity sensor 34 is shown as it may have a wire coming out of the bottom.
  • the proximity sensor 34 detects if the upper wall segment is in a lowered position (e.g., at level 24 ), or a raised position (e.g., at level 26 ).
  • the actuator 36 opens the doors of the gate 22 .
  • the actuator 36 may be mounted and actuated using a similar mechanism as that which was described above for the actuator 30 that raises/lowers the wall segments.
  • FIG. 6-7 are close-up perspective views of the proximity sensor 36 to detect the position of the gate 22 (e.g., open or closed) shown in FIG. 5 .
  • FIG. 5 In the upper right of FIG. 5 is seen a part of the hinge 40 that guides the door(s)/gate(s).
  • the hexagonal shapes that travel along two vertical lines are bolts 42 that attach the linear guidance system to raise/lower the walls 20 a - d .
  • the top segments 44 of the walls 20 a - d are bent at an angle. This helps prevent the product (e.g., bags 2 ) from catching a sharp corner on the top of the walls 20 a - d.
  • FIG. 8 is a close-up perspective view of a portion of an example side wall (e.g., walls 20 a or 20 c ) and various pallet handling components.
  • an actuator 44 In the upper left of the drawing is an actuator 44 .
  • Actuator 44 moves the side wall in to squeeze the loaded pallet (e.g., as illustrated in FIG. 2A ).
  • Actuator 44 also moves the side wall away from the full pallet to pull the side wall away from the loaded pallet (e.g., as illustrated in FIGS. 2B-2E ).
  • side wall 20 a is shown pulling away toward the left at the top of the wall in the direction of arrow 46 a
  • side wall 20 c is shown pulling away to the right at the top of the wall in the direction of arrow 46 c .
  • the rear wall 20 b is station.
  • the rear wall 20 b may include one or more doors to form a gate, similar to the front exit gate 22 .
  • the rear wall 20 b may also pull away at the top of the wall, e.g., in the rearward direction illustrated by arrow 46 b.
  • a cylinder shaped proximity sensor 48 In the middle of the drawing figure is a cylinder shaped proximity sensor 48 .
  • Sensor 48 monitors the position of the side wall.
  • a plate with a cam roller 50 is provided to support the weight of the side wall.
  • the plate In this example, the plate is shown with the cam roller attached to the side wall near the bottom riding on the plate.
  • the photo eye and reflector system is mounted near the bottom of the pallet auto box 10 . This photo eye and reflector system 52 is provided to determine if an empty pallet 1 is in place before placing/dropping product (e.g., bags 2 ) onto the pallet 1 .
  • the reflector is visible, and the photo eye is not visible on the other side.
  • the conveyor 14 that is moving pallets 1 is seen inside and underneath the pallet auto box 10 .
  • the pallet 1 is guided to be centered by pallet guides 54 .
  • a separate pallet stop system 56 is seen in the bottom right of the drawing. The pallet stop system 56 allows the full pallet 1 to drive out on the running conveyor 14 , at the same time an empty pallet 1 is driven in place in the loading area 16 .
  • FIGS. 9A-B are close-up perspective views of a motor drive 60 to raise and lower the segments 62 a and 62 b of a wall (e.g., wall 20 a ).
  • the wall segment 62 b is shown in a lowered position, telescoping alongside wall segment 62 a .
  • the wall segment 62 b is shown in a raised position (e.g., to the second level 26 described above).
  • the pallet auto box 10 has walls 20 a - d that raise and lower for various pallet heights (e.g., level 24 and level 26 ).
  • the pallet autobox 10 has door(s) and/or gate(s) (e.g., gate 22 having two side doors) that open/close to enable full and empty pallets 1 to move in and out of the loading area 16 .
  • the side walls 20 a and 20 c move in and out to squeeze and release a full pallet.
  • the rear wall 20 b and/or front gate 22 may also move in and out to squeeze and release a full pallet.
  • a form of linear bearing guides the wall segments.
  • the motor rotates the shaft 64 with end gears on a gear rail (not shown) on either side of the shaft 64 (e.g., a rack and pinion mechanism) to raise and lower the walls.
  • a gear rail (not shown) on either side of the shaft 64 (e.g., a rack and pinion mechanism) to raise and lower the walls.
  • a rail with linear bearing blocks can be implemented.
  • a fixed axial bearing rail with cam follower bearings may also be implemented.
  • a telescoping feature works to guide the wall segments 62 a and 62 b up and down and into the desired position. In an example, this is accomplished by a smaller tube-like structure in a larger tube-like structure. For smoother operation a wear surface can be attached to one of the structures in between. For the side walls 20 a and 20 d , a pivot point is needed. In an example, a set of radial bearings is used to create a hinge.
  • a linear bearing may be provided, similar to the style used to raise and lower the walls.
  • a pivot point can be used for the door(s) and/or gate(s).
  • a sliding door(s) and/or gate(s) can also provided, e.g., with a linear bearing.
  • proximity sensors and/or photoeyes with reflectors, and/or lasers at various positions on the pallet auto box 10 may be implemented to detect various positions and/or status to control operation. Examples include, but are not limited to detection of the positions of pallet auto box features, and if an empty pallet is in position.
  • an actuator provides the force to move the part.
  • a pneumatic actuator (not shown) may be implemented to raise and lower the walls.
  • Pneumatic actuators can also be used as the actuators for the other aspects described herein for the pallet auto box 10 . Examples include pneumatic actuators for actuating the side walls and door(s) and/or gate(s).
  • the pneumatic actuator includes an air cylinder sized in bore diameter and stroke length. Solenoids extend and retract each air cylinder as needed. Pressure regulators and/or flow controls can be installed as needed.
  • a hydraulic system (not shown) may be implemented to raise and lower the walls.
  • the guides and sensors may be the same as those already described above.
  • a rack and pinion system (not shown) can be provided.
  • a motor with a gearbox turns a shaft that is mounted with radial bearings. This shaft turns the pinion and moves the rack. This raises/lowers the walls.
  • motors, gears, chains/belts all the features of the pallet auto box can be operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Stacking Of Articles And Auxiliary Devices (AREA)

Abstract

An example pallet auto box with robot palletizer includes a conveyor to move a pallet into a loading area adjacent a robot for loading bags onto the pallet. The example pallet auto box with robot palletizer also includes an auto box having at least one wall, and in an example four walls, that can be raised and lowered. The at least one wall is raised as the robot stacks bags onto the pallet to maintain a border around the edge of the pallet for the bags to be stacked on the pallet. At least one wall opens as a door or gate after the pallet has been loaded with bags so that the loaded pallet can be moved out of the loading area and a next pallet moved into the loading area. The at least one wall is lowered again for stacking bags onto the next pallet.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/875,739 filed Jan. 19, 2018 for “Pallet Auto Box,” which claims priority to U.S. Provisional Patent Application No. 62/490,459 filed Apr. 26, 2017 titled “Pallet Auto Box With Robot Bag Palletizer” of Karpala, each hereby incorporated by reference in its entirety as though fully set forth herein.
  • BACKGROUND
  • Due to the nature of bags (e.g., having non-square sides), stacking pallets can result in the bags being stacked lopsided on the pallet. This is particularly true when the bags (e.g., bags of mulch, or anything else sold in a bag) are stacked automatically by robot, because the robot simply drops the bags onto the pallet.
  • In order to better shape the stacked bags, pallets have been provided in the form of a fixed box, and the bags are dropped into the box. These pallets are more expensive (i.e., the cardboard walls), or the pallet then has to be lifted up out of the box.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-F show an example pallet auto box shown with a robot palletizer as a robot arm is operated to load a bag onto a pallet.
  • FIGS. 2A-F show an example pallet auto box with robot palletizer as the walls release during exit of a pallet from the walls.
  • FIGS. 3 and 4 are perspective views of an example pallet auto box, wherein FIG. 3 is a front view showing an exit gate, and FIG. 4 is a rear view showing an entry side.
  • FIG. 5 is a perspective view of an example exit gate.
  • FIG. 6-7 are close-up perspective views of a proximity sensor to detect the position of the gate shown in FIG. 5.
  • FIG. 8 is a close-up perspective view of a portion of an example side wall.
  • FIGS. 9A-B are close-up perspective views of a motor drive to raise and lower the walls.
  • DETAILED DESCRIPTION
  • A pallet auto box which may be implemented with a robot palletizer is disclosed. In an example, the pallet auto box with robot palletizer enables stacking any type, size, and/or number of product or items (e.g., bags) by robot. In an example, stacking is in a bag overlapping cycle on the empty pallet. In an example, stacking is without a pallet lift. The operations described herein enable maintaining the outside dimensions of the layer/full pallet, e.g., as defined by the size of the auto box.
  • In an example, the auto box has four side walls, and all walls have a mechanism to move the walls up/down (e.g., raise/lower) to adjust the height of the autobox during stacking to different layers and pallet height. As such, the pallet auto box maintains the items inside of the pallet perimeter during loading. The items may be unconforming (e.g., not having flat sides such as boxes which can be readily loaded onto a pallet). The items can be entirely palletized by a robot (or other loader), e.g., without any special instruction or programming, to ensure the items stay within the perimeter of the pallet during loading.
  • In an example, the pallet auto box has two side walls with a mechanism to open and close the walls like a door or gate, e.g., when a full pallet is exiting the auto box and a next pallet is being positioned via the conveyor into the loading area formed by the pallet auto box walls.
  • In an example, a main front wall is divided into two smaller walls, that enable operation as a gate or door. Likewise, the rear wall may also be similarly configured to enable the next pallet to be brought in by conveyor to the loading area. Each of the smaller walls has a device to be able to open while a full pallet is exiting the auto box.
  • In an example, the pallet auto box can be installed directly on the floor (e.g., level) or can be install on the pallet conveyor frame.
  • During operation, the walls of the pallet box automatically adjust for different heights (e.g., going higher as the stack grows higher).
  • During pallet change-over, the auto box automatically readjusts itself (e.g., the walls are lowered) so that an empty pallet can enter the box loading area. When the full pallet is completed, the auto box automatically discharges the full pallet and readjusts for the next cycle.
  • The pallet auto box enables stacking bags by a robot (or manually) with an overlapping pattern, to form a “perfect” pallet. The pallet auto box can be installed on an existing conveyor frame, and makes the production line fully automatic and improves forklift driver operation.
  • Before continuing, it is noted that as used herein, the terms “includes” and “including” mean, but is not limited to, “includes” or “including” and “includes at least” or “including at least.” The term “based on” means “based on” and “based at least in part on.”
  • It is also noted that the examples described above are provided for purposes of illustration, and are not intended to be limiting. Other devices and/or device configurations may be utilized to carry out the operations described herein.
  • FIGS. 1A-1F and 2A-2F illustrate example operations which may be implemented by the pallet auto box 10 as it may be implemented with a robot palletizer 12. In an example, the components and connections depicted in the figures may be used. However, other configurations of the pallet auto box 10 with robot palletizer 12 may also be implemented. The operations shown and described herein are provided to illustrate example implementations. It is noted that the operations are not limited to the ordering shown. Still other operations may also be implemented.
  • In an example, the pallet auto box 10 includes an auto box 18 having at least one wall, but preferably four walls 20 a-d. The walls can be raised, e.g., wall segment 61 b is shown raised relative to wall segment 61 a in FIG. 1b . The walls can also be lowered, e.g., as shown in FIG. 1a . In an example, the wall segments (e.g., 61 a and 61 b) slide relative to one another or “telescope”. For example, the wall segments may slide relative to one another in a rail on each side of the wall segment. In another example, the wall segments may include a gear wheel and mating gear rail.
  • In an example, the wall segments (e.g., 61 a and 61 b) may be raised and lowered by pistons 21. The piston 21 is shown attached to the lower wall segment 61 a on one end, and to the upper wall segment 61 b on the opposite end. Hence, operating the piston 21 raises and lowers the walls segment 61 b relative to the lower wall segment 61 a. In an example, the pistons 21 includes pneumatic cylinders (e.g., dry compressed air operating at 80 PSI). However, the pistons 21 may also be hydraulic. Other mechanisms for raising and lowering the wall segments are also contemplated, and further examples are discussed below.
  • In an example, the pallet auto box 10 with robot palletizer 12 includes a conveyor 14 to move a pallet 1 (see, e.g., FIGS. 2B-F) into a loading area 16 adjacent a robot 12 having an arm 13 for loading bags 2 onto the pallet 1. At least one of the walls 20 a-d is raised as the robot 12 stacks bags 2 onto the pallet 1. As such, the walls 20 a-d form and maintain a border around the edge of the pallet 1 for the bags 2 to be stacked on the pallet 1.
  • At least one of the walls (e.g., wall 20 d) opens as a door or gate 22 after the pallet 1 has been loaded with bags 2. In FIGS. 1A and 1B, the wall 20 d is illustrated as it may be configured as a gate 22 having two doors which may be hinged on the far right and left so that the door open in the center away from each other, e.g., as can be seen in FIG. 2B.
  • The doors of the gate 22 may open so that the loaded pallet 1 can be moved out of the loading area 16. A next pallet 1 can then be moved into the loading area 16 for loading with bags 2. At least one of the walls 20 a-d may also be lowered again before stacking bags 2 onto the next pallet 1.
  • In an example, the two side walls 20 a and 20 c may also expand or “angle out” at the top to provide more room for the stacked pallet to exit the loading area. That is, the side walls 20 a and 20 c may be hinged 17 on the lower portion as seen in the view of FIG. 4, and be moved in and out near the upper portion, e.g., by piston 19 or other drive mechanism. It is noted that piston 19 may be air actuated, or hydraulic.
  • The pallet auto box 10 may be provided with a first conveyor 14 to move the pallet 1 into the loading area 16. A second conveyor 15 (see, e.g., FIGS. 1C and 1D) may move items (e.g., the bags 2) adjacent the loading area 16 to be picked up by the arm 13 of the robot 12 for loading onto the pallet 1.
  • Although illustrated herein primarily with reference to the robot 12, it is noted that loading may be by robot 12 (or other robot), by chute (not shown) directly onto the pallet 1, manual loading, or any other mechanism for moving items (e.g., bags 2) onto the pallet 1 within the walls 20 a-d of the auto box 10.
  • The pallet auto box 10 includes a plurality of walls 20 a-d forming four sides of a box when raised around the loading area 16. In an example, the walls 20 a-d may include a first plurality of walls forming four sides of a box when raised to a first level 24 (e.g., illustrated in FIG. 1B) around the loading area 16. The walls may also include a second plurality of walls forming four sides of a box when raised to a second level 26 (e.g., illustrated in FIG. 1B) around the loading area 16. In an example, the first level of walls 24 may slidably engage with the second level of walls 26. The second plurality of walls raise higher than the first plurality of walls at the first level 24, to form the second level 26.
  • After loading, the gate 22 opens and the walls 20 a-d pull away from the loading area so that the pallet 1 can be moved out of the auto box 10. A new pallet 1 can then moved via the conveyor 14 into the loading area 16 of the auto box 10. The walls 12 a-d lower again before loading the next pallet 1.
  • FIGS. 1A-F show an example pallet auto box 10 with robot palletizer 12 as a robot arm 13 is operated to load a bag 2 onto a pallet 1. FIG. 1A shows an example pallet auto box 10 with robot palletizer 12 as a robot arm 13 drops a bag 2 of mulch to be loaded onto a pallet 1 into a loading area 16. The robot arm 13 may grasp the bag 2 from another conveyor 15, and then move into position over the loading area 16. In FIG. 1A, the robot arm 13 is positioned to drop a bag 2 of mulch onto the pallet 1 in the auto box 10. In FIG. 1B, the walls 20 a-d have started to move up from a first level 24, to a second level 26.
  • Although only two levels 24 and 26 are illustrated in the operations of FIGS. 1A-E, it is noted that the walls may extend to any number of levels beyond the second level 26. For example, the auto box may be formed by a first set of walls (or wall portions) extending to a first level 24, a second set of walls (or wall portions) extending to a second level 26, a third set of walls (not shown) extending to a third level (e.g., above the second level 26), and so on. Multiple levels may enable the use of shorter wall segments and/or a taller autobox 10.
  • In FIGS. 1C-1D, the robot arm 11 is shown retrieving another bag 2 from the conveyor 15. In FIGS. 1E-1F, the grip 13 of the robot arm 11 is again positioned to drop the bag 2 of mulch onto the pallet 1 in the auto box 10. This time, the walls 20 a-d have been raised to the second level 26, extending the height of the box formed around the pallet 1, for loading the bags 2 on the pallet 1. In FIG. 1E, the grip 13 of the robot arm 11 has released the bag 2 of mulch, and may return to the second conveyor 15 to pick up another bag 2 of mulch 1. This process may repeat until the pallet 1 is full or stacked to the desired height.
  • FIGS. 2A-F show an example pallet auto box 10 with robot palletizer 12 as the walls 20 a-d release during exit of a pallet 1 from the walls 20 a-d after the pallet 1 is full (or loaded to the desired height) as shown in FIG. 2A. FIG. 2B-C shows an example pallet auto box 10 as the gate 22 opens and the walls 20 a-d release during exit of a pallet 1 from a box formed in the loading area 16 by the walls 20 a-d. In FIG. 2D, the walls 20 a-d begin to move away from the stacked bags 2 of mulch and the pallet 1 of mulch exits on a conveyor 14. In FIG. 2E, the pallet 1 has fully exited the loading area. During and/or after exit of the pallet 1, the walls 20 a-d may move back down, e.g., to the first level 24. FIG. 2F shows a pallet 1 stacked with bags 2 (e.g., bags of mulch).
  • While the illustration in FIGS. 1A-1F and FIGS. 2A-2F illustrate loading bags 2 of mulch onto a pallet 1, it will be readily understood by those having ordinary skill in the art that the auto box 10 can be implemented to stack any items onto a pallet 1 or other base or platform, in a controlled manner, forming a substantially even-perimeter about the pallet 1, without the pallet 1 needing to have cardboard or other sidewalls provided on and around the perimeter of the pallet 1.
  • FIGS. 3 and 4 are perspective views of an example pallet auto box 10. The pallet auto box 10 shown in FIGS. 3 and 4 includes at least one wall 20 a-d that raises and lowers adjacent a loading area 16 for a pallet 1. The pallet auto box 10 also includes a front-end gate 22. A back-end gate, not illustrated in the drawings, may also be provided.
  • In an example, the gate 22 may be formed by one of the walls (e.g., the wall 20 d over the conveyor). In an example, the auto box 10 has four walls forming a square or rectangular box about the perimeter of a pallet 1. The wall(s) 20 a-d may be provided initially at, or may raise to, a first level 24 to receive items (e.g., bags 2) on the pallet 1. The wall(s) 20 a-d are raised during loading of the pallet to maintain a border around the loading area 16 for the items to be stacked within the loading area 16 on the pallet 1.
  • The wall(s) 20 a-d may also raise to a second level 26 (and a third level, and so on) to receive more items stacked higher on the pallet 1. By raising the walls 20 a-d gradually as the pallet 1 is loaded higher, the arm 11 of the robot 12 does not need to be raised as high during loading of the lower portions of the pallet stack. Gradually raising the walls also helps reduce the possibilities of whatever is being dropped onto the pallet 1 from breaking (e.g., a mulch bag breaking open). Gradually raising the walls also helps with alignment of the bags 2 or other items being loaded onto the pallet 1. That is, the bags 2 do not have as far to fall from the grip 13 of the robot 12.
  • The gate 22 opens after the pallet 1 has been loaded so that the loaded pallet 1 can be moved out of the loading area 16, and a next pallet 1 can be moved into the loading area 16. In an example, the rear wall 20 b is fixed or stationary. An opening 23 is provided under the wall 20 b so that the next pallet can be fed into the loading area 16 on the conveyor 14, e.g., as seen in FIG. 4. In addition, the walls 20 a-d may be lowered during and/or after the pallet 1 is removed from the loading area 16 for stacking bags 2 onto the next pallet 1.
  • FIGS. 3 and 5 show a perspective view of an example gate 22. FIG. 4 is a rear view of the autobox 10. In an example, there is a pneumatic actuator 30 for the gate 22. This is illustrated as a front trunnion mounted air cylinder. When extended, the front trunnion mounted air cylinder raises the wall on the one of the door(s)/gate(s).
  • In an example, the mounting of the front trunnion mounted air cylinder is by tapped base pillow block bearings 32. This mounting 32 configuration enables some movement. This is to prevent the mechanism from binding.
  • To the left side of the actuator 30 is a cylindrical shaped proximity sensor 34 mounted to the lower wall segment (e.g., at the first level 24). The proximity sensor 34 is shown as it may have a wire coming out of the bottom. The proximity sensor 34 detects if the upper wall segment is in a lowered position (e.g., at level 24), or a raised position (e.g., at level 26).
  • On the right side of the drawing figure is another actuator 36. The actuator 36 opens the doors of the gate 22. The actuator 36 may be mounted and actuated using a similar mechanism as that which was described above for the actuator 30 that raises/lowers the wall segments.
  • Near the actuator in the bottom right of FIG. 5 is a proximity sensor 38. Proximity sensor 38 detects a position of the door(s)/gate(s). FIG. 6-7 are close-up perspective views of the proximity sensor 36 to detect the position of the gate 22 (e.g., open or closed) shown in FIG. 5.
  • In the upper right of FIG. 5 is seen a part of the hinge 40 that guides the door(s)/gate(s). The hexagonal shapes that travel along two vertical lines are bolts 42 that attach the linear guidance system to raise/lower the walls 20 a-d. At the very top of FIG. 5, the top segments 44 of the walls 20 a-d are bent at an angle. This helps prevent the product (e.g., bags 2) from catching a sharp corner on the top of the walls 20 a-d.
  • FIG. 8 is a close-up perspective view of a portion of an example side wall (e.g., walls 20 a or 20 c) and various pallet handling components. In the upper left of the drawing is an actuator 44. Actuator 44 moves the side wall in to squeeze the loaded pallet (e.g., as illustrated in FIG. 2A).
  • Actuator 44 also moves the side wall away from the full pallet to pull the side wall away from the loaded pallet (e.g., as illustrated in FIGS. 2B-2E). For example, side wall 20 a is shown pulling away toward the left at the top of the wall in the direction of arrow 46 a, and side wall 20 c is shown pulling away to the right at the top of the wall in the direction of arrow 46 c. In an example, the rear wall 20 b is station. However, in another example, the rear wall 20 b may include one or more doors to form a gate, similar to the front exit gate 22. In another example, the rear wall 20 b may also pull away at the top of the wall, e.g., in the rearward direction illustrated by arrow 46 b.
  • In the middle of the drawing figure is a cylinder shaped proximity sensor 48. Sensor 48 monitors the position of the side wall. A plate with a cam roller 50 is provided to support the weight of the side wall. In this example, the plate is shown with the cam roller attached to the side wall near the bottom riding on the plate. The photo eye and reflector system is mounted near the bottom of the pallet auto box 10. This photo eye and reflector system 52 is provided to determine if an empty pallet 1 is in place before placing/dropping product (e.g., bags 2) onto the pallet 1. In FIG. 8, the reflector is visible, and the photo eye is not visible on the other side.
  • The conveyor 14 that is moving pallets 1 is seen inside and underneath the pallet auto box 10. As the pallet 1 is driven into the loading area 16 of the pallet auto box 10, the pallet 1 is guided to be centered by pallet guides 54. A separate pallet stop system 56 is seen in the bottom right of the drawing. The pallet stop system 56 allows the full pallet 1 to drive out on the running conveyor 14, at the same time an empty pallet 1 is driven in place in the loading area 16.
  • FIGS. 9A-B are close-up perspective views of a motor drive 60 to raise and lower the segments 62 a and 62 b of a wall (e.g., wall 20 a). In FIG. 9A, the wall segment 62 b is shown in a lowered position, telescoping alongside wall segment 62 a. In FIG. 9B, the wall segment 62 b is shown in a raised position (e.g., to the second level 26 described above).
  • As described above, the pallet auto box 10 has walls 20 a-d that raise and lower for various pallet heights (e.g., level 24 and level 26). The pallet autobox 10 has door(s) and/or gate(s) (e.g., gate 22 having two side doors) that open/close to enable full and empty pallets 1 to move in and out of the loading area 16. In an example, the side walls 20 a and 20 c move in and out to squeeze and release a full pallet. In another example, the rear wall 20 b and/or front gate 22 may also move in and out to squeeze and release a full pallet.
  • In an example, a form of linear bearing guides the wall segments. The motor rotates the shaft 64 with end gears on a gear rail (not shown) on either side of the shaft 64 (e.g., a rack and pinion mechanism) to raise and lower the walls. In an example, a rail with linear bearing blocks can be implemented. A fixed axial bearing rail with cam follower bearings may also be implemented.
  • In an example, a telescoping feature works to guide the wall segments 62 a and 62 b up and down and into the desired position. In an example, this is accomplished by a smaller tube-like structure in a larger tube-like structure. For smoother operation a wear surface can be attached to one of the structures in between. For the side walls 20 a and 20 d, a pivot point is needed. In an example, a set of radial bearings is used to create a hinge.
  • It is also possible that the side wall will need linear motion. In this case, a linear bearing may be provided, similar to the style used to raise and lower the walls. A pivot point can be used for the door(s) and/or gate(s). A sliding door(s) and/or gate(s) can also provided, e.g., with a linear bearing.
  • As described above, there are proximity sensors and/or photoeyes with reflectors, and/or lasers at various positions on the pallet auto box 10. These may be implemented to detect various positions and/or status to control operation. Examples include, but are not limited to detection of the positions of pallet auto box features, and if an empty pallet is in position. For each of these aspects, an actuator provides the force to move the part.
  • In another example, a pneumatic actuator (not shown) may be implemented to raise and lower the walls. Pneumatic actuators can also be used as the actuators for the other aspects described herein for the pallet auto box 10. Examples include pneumatic actuators for actuating the side walls and door(s) and/or gate(s).
  • In an example, the pneumatic actuator includes an air cylinder sized in bore diameter and stroke length. Solenoids extend and retract each air cylinder as needed. Pressure regulators and/or flow controls can be installed as needed.
  • In another example, a hydraulic system (not shown) may be implemented to raise and lower the walls. The guides and sensors may be the same as those already described above.
  • For some applications a hydraulic and/or pneumatic will not work. In this case a rack and pinion system (not shown) can be provided. In an example, a motor with a gearbox turns a shaft that is mounted with radial bearings. This shaft turns the pinion and moves the rack. This raises/lowers the walls. Using motors, gears, chains/belts all the features of the pallet auto box can be operated.
  • It is noted that the examples shown and described are provided for purposes of illustration and are not intended to be limiting. Still other examples are also contemplated.

Claims (20)

1. A pallet auto box, comprising:
a first side wall and a second side wall;
an end wall; and
a gate, the gate together with the first side wall, the second side wall, and the end wall forming a box on a conveyor;
wherein the end wall is raised above the conveyor to receive a pallet on the conveyor into the box for stacking items onto the pallet;
wherein the first side wall, the second side wall, the end wall, and the gate rise to maintain a border around the items during stacking on the pallet;
wherein the gate opens after the pallet is loaded so that the loaded pallet can be moved out of the box by the conveyor.
2. The pallet auto box of claim 1, wherein the first side wall, the second side wall, the end wall, and the gate can be lowered after the loaded pallet is moved out of the box by the conveyor.
3. The pallet auto box of claim 1, further comprising a robot arm to load the items onto the pallet.
4. The pallet auto box of claim 3, further comprising another conveyor to move the items into reach of the robot arm.
5. The pallet auto box of claim 1, wherein the items are bags.
6. The pallet auto box of claim 1, wherein the loaded pallet is wrapped prior to the loaded pallet being moved out of the box by the conveyor.
7. The pallet auto box of claim 1, further comprising a first plurality of walls forming four sides of a box when raised around the loading area.
8. The pallet auto box of claim 1, wherein the walls pull away from the loaded pallet prior to the loaded pallet being moved out of the box by the conveyor.
9. The pallet auto box of claim 1, wherein each of the first side wall, the second side wall, the end wall, and the gate are at least two parts, the second part rising above the first part to maintain the border as more items are loaded onto the pallet.
10. The pallet auto box of claim 9, wherein the second part lowers after the pallet is removed for loading a next pallet.
11. The pallet auto box of claim 10, wherein the second part slidably engage with the first part.
12. A pallet auto box with robot palletizer, comprising:
a loading area formed by four walls;
a conveyor to move a pallet into the loading area for loading items onto the pallet;
wherein the four walls rise during loading of the pallet to maintain a border around the edge of the pallet for the items to be stacked on the pallet; and
at least one of the four walls opening after the pallet has been loaded so that the loaded pallet can be moved out of the loading area.
13. The pallet auto box with robot palletizer of claim 12, wherein the four walls lower as the loaded pallet is moving out of the loading area.
14. The pallet auto box with robot palletizer of claim 12, wherein the four walls pull away from the loaded pallet.
15. The pallet auto box with robot palletizer of claim 12, wherein the loaded pallet is wrapped in the loading area.
16. A method of operating a pallet auto box, comprising:
moving a pallet on a conveyor into a loading area formed by four walls of the auto box so that the pallet is adjacent items to be loaded onto the pallet;
raising the four walls of the auto box as the items are stacked onto the pallet to maintain a border around the edge of the pallet for the items to be stacked on the pallet as a stack of the items goes higher on the pallet;
wrapping the items on the pallet in the loading area; and
opening the auto box after the pallet is loaded so that the loaded pallet can be moved out of the loading area.
17. The method of claim 16, further comprising raising the at least one wall of the autobox to a first level to load items onto the pallet, and then raising the at least one wall of the autobox to a second level to continue loading items onto the pallet.
18. The method of claim 16, further comprising lowering at least one wall of the auto box loading a next pallet moved into the loading area.
19. The method of claim 16, further comprising stacking the items on the pallet by a robot arm.
20. The method of claim 16, further comprising pulling the four walls away from the loaded pallet so that the loaded pallet can be moved out of the loading area.
US16/550,525 2017-04-26 2019-08-26 Pallet Auto Box Abandoned US20190375600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/550,525 US20190375600A1 (en) 2017-04-26 2019-08-26 Pallet Auto Box

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762490459P 2017-04-26 2017-04-26
US15/875,739 US10392199B2 (en) 2017-04-26 2018-01-19 Pallet auto box
US16/550,525 US20190375600A1 (en) 2017-04-26 2019-08-26 Pallet Auto Box

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/875,739 Continuation US10392199B2 (en) 2017-04-26 2018-01-19 Pallet auto box

Publications (1)

Publication Number Publication Date
US20190375600A1 true US20190375600A1 (en) 2019-12-12

Family

ID=63915924

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/875,739 Active 2038-03-19 US10392199B2 (en) 2017-04-26 2018-01-19 Pallet auto box
US16/550,525 Abandoned US20190375600A1 (en) 2017-04-26 2019-08-26 Pallet Auto Box

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/875,739 Active 2038-03-19 US10392199B2 (en) 2017-04-26 2018-01-19 Pallet auto box

Country Status (1)

Country Link
US (2) US10392199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365020B1 (en) * 2020-03-30 2022-06-21 Amazon Technologies, Inc. Defect prevention for flexible container sealing systems
US20220111986A1 (en) * 2020-10-09 2022-04-14 Westrock Shared Services, Llc Systems and methods for packaging stacked products

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493583A (en) * 1946-04-27 1950-01-03 Henry A Johnson Method of filling containers and apparatus therefor
US3000295A (en) * 1958-03-24 1961-09-19 Beacon Production Equipment Co Compression device
US3095678A (en) * 1959-05-18 1963-07-02 Link Belt Co Article stacking and strapping machine
US4294169A (en) * 1980-02-04 1981-10-13 Baird Charles D Cotton module compacter
US4450764A (en) * 1982-08-27 1984-05-29 Montgomery Preston D Hide press and method for shipping hides
US6312151B1 (en) * 1999-11-23 2001-11-06 Vac-U-Max Bulk bag pre-conditioner
US20040237810A1 (en) * 2003-02-28 2004-12-02 Logitec Plus B.V. Device and method for producing a bale of bulk goods
US8468781B2 (en) * 2008-11-21 2013-06-25 Dematic Corp. Stacking apparatus and method of multi-layer stacking of objects on a support
US20140246425A1 (en) * 2013-03-04 2014-09-04 Steven Janin Expandable and collapsable container
US20150210409A1 (en) * 2014-01-27 2015-07-30 Les Tourbieres Berger Ltee Double stacker system and method
US9253947B2 (en) * 2013-10-08 2016-02-09 Donald F. Hornung Combination cotton transport cart and module builder

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2015054A (en) * 1934-03-19 1935-09-17 Robert Elsenbast Convertible vehicle box and rack
US2841302A (en) * 1956-09-06 1958-07-01 Reisman Albert Industrial truck attachment
US3164080A (en) 1961-06-09 1965-01-05 Miller Engineering Corp Bag palletizer
US3270485A (en) * 1965-10-01 1966-09-06 Dale L Knepper Article loader
US3439605A (en) * 1966-03-16 1969-04-22 Hanley Co The Packaging jig
US3844422A (en) 1969-12-29 1974-10-29 I Smith Pallet loading machine
US3822795A (en) * 1972-12-08 1974-07-09 Hartman Metal Fabricators Inc Load squaring device for pallets
DE2601885A1 (en) * 1976-01-20 1977-07-28 Werner Cordes METHOD AND EQUIPMENT FOR PACKAGING SEVERAL COMPONENTS BY USING A SHRINK FILM
USRE31060E (en) * 1977-12-29 1982-10-19 Automatic Truckloading Systems, Inc. Article handling apparatus
US4546593A (en) * 1978-09-13 1985-10-15 Lasscock Ian M Packaging
US4260309A (en) 1979-08-20 1981-04-07 Precision Pneumatic Palletizer, Inc. Palletizer
US4500001A (en) * 1983-11-25 1985-02-19 Daniels Frank J Palletizing process and a product of that process
US5201427A (en) * 1992-02-06 1993-04-13 Mdr Cartage, Inc. Rack for stacking and maintaining stacked articles under compression
US5791865A (en) 1996-09-13 1998-08-11 Bublitz; Rod W. Bag palletizer
US5833431A (en) * 1997-03-04 1998-11-10 Rosse, Iii; Sammy A. Warehouse truck attachment and method for the transportation and storage of compressible items
US5951238A (en) 1997-08-05 1999-09-14 Duecker; Peter Auto pallet stacking/loading device
US6045324A (en) * 1998-02-13 2000-04-04 Redman; Paul W. Stacking clamp
US6220755B1 (en) * 1999-12-09 2001-04-24 B.A.G. Corp. Stackable flexible intermediate bulk container having corner supports
US7033130B2 (en) * 2002-01-22 2006-04-25 Rapistan Systems Advertising Corp. Depalletizer for a material handling system
US6581999B1 (en) * 2002-02-22 2003-06-24 Jeffrey L. Chapman Receptacle extension apparatus and method
US6983704B1 (en) * 2003-01-31 2006-01-10 Danny Ness Offshore cargo rack for use in transferring palletized loads between a marine vessel and an offshore platform
NL2002131C (en) * 2008-10-23 2010-04-26 Rsw Ip B V DEVICE FOR STACKING OBJECTS.
US8074431B1 (en) 2009-06-01 2011-12-13 Top Tier, Inc. Hybrid palletizer
CA2778306A1 (en) * 2012-05-25 2013-11-25 Flo-Dynamics Systems Inc. Telescopic frac water tank
WO2014111890A1 (en) * 2013-01-20 2014-07-24 Paul Redman Pallet-exchange machine including blade assembly to assist support of load
DE102014101268B4 (en) * 2014-02-03 2016-09-29 SSI Schäfer PEEM GmbH Packing procedure and pack workstation
US20170225812A1 (en) * 2016-02-09 2017-08-10 Johnsen Machine Company Limited Stacking apparatus and method for binding operations

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2493583A (en) * 1946-04-27 1950-01-03 Henry A Johnson Method of filling containers and apparatus therefor
US3000295A (en) * 1958-03-24 1961-09-19 Beacon Production Equipment Co Compression device
US3095678A (en) * 1959-05-18 1963-07-02 Link Belt Co Article stacking and strapping machine
US4294169A (en) * 1980-02-04 1981-10-13 Baird Charles D Cotton module compacter
US4450764A (en) * 1982-08-27 1984-05-29 Montgomery Preston D Hide press and method for shipping hides
US6312151B1 (en) * 1999-11-23 2001-11-06 Vac-U-Max Bulk bag pre-conditioner
US20040237810A1 (en) * 2003-02-28 2004-12-02 Logitec Plus B.V. Device and method for producing a bale of bulk goods
US8468781B2 (en) * 2008-11-21 2013-06-25 Dematic Corp. Stacking apparatus and method of multi-layer stacking of objects on a support
US20140246425A1 (en) * 2013-03-04 2014-09-04 Steven Janin Expandable and collapsable container
US9253947B2 (en) * 2013-10-08 2016-02-09 Donald F. Hornung Combination cotton transport cart and module builder
US20150210409A1 (en) * 2014-01-27 2015-07-30 Les Tourbieres Berger Ltee Double stacker system and method

Also Published As

Publication number Publication date
US20180312344A1 (en) 2018-11-01
US10392199B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
CN105253635B (en) Automatic unstacking, package stacking and loading all-in-one machine and working method thereof
NL2011789C2 (en) A palletizing installation and device.
US5630692A (en) Method and apparatus for picking up packaged sheet
US9610692B2 (en) Gripping head for groups of products
US5944479A (en) Stacking apparatus
US20190375600A1 (en) Pallet Auto Box
US10858204B2 (en) Sliding layer gripping device and relative layer transfer method
EP0960843B1 (en) Depalletizer collector belt assembly
CN106081635A (en) A kind of horizontal lifting stacking machine
CN114803532B (en) Gravity unstacking machine for bagged goods
CN104609196A (en) Automatic template loading and unloading device
CN110155729B (en) Automatic bag stacking equipment
CN213536599U (en) Loading pile up neatly device and pile up neatly machine of breaking a jam
US4030618A (en) Semi-automatic palletizer
US5102282A (en) Unit load transfer device and method
CN215249394U (en) Fork and transfer robot
CN112830287B (en) Automatic paperboard stacking device
CN204453841U (en) A kind of equipment of automatic pattern up and down on automatic production line
US11643311B2 (en) Pallet lift with unloader
CN109353829B (en) Stacking equipment
CN220563790U (en) Cotton bale stacking device for cotton processing
KR102383605B1 (en) Laminating eggbox panel separating apparatus
CN217971663U (en) Stacking freight robot
CN217377198U (en) Flying fork device
RU2813504C9 (en) Robotic palletiser

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVA PACKAGING, LLC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KARPALA, WOJCIECH;REEL/FRAME:050162/0865

Effective date: 20190823

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION