US20190218261A1 - Targeted enhanced dna demethylation - Google Patents
Targeted enhanced dna demethylation Download PDFInfo
- Publication number
- US20190218261A1 US20190218261A1 US16/333,137 US201716333137A US2019218261A1 US 20190218261 A1 US20190218261 A1 US 20190218261A1 US 201716333137 A US201716333137 A US 201716333137A US 2019218261 A1 US2019218261 A1 US 2019218261A1
- Authority
- US
- United States
- Prior art keywords
- domain
- sequence
- demethylation
- complex
- puf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035131 DNA demethylation Effects 0.000 title description 5
- 238000010520 demethylation reaction Methods 0.000 claims abstract description 464
- 230000017858 demethylation Effects 0.000 claims abstract description 460
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 300
- 238000000034 method Methods 0.000 claims abstract description 123
- 210000004962 mammalian cell Anatomy 0.000 claims abstract description 48
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 46
- 230000001105 regulatory effect Effects 0.000 claims abstract description 9
- 102000040430 polynucleotide Human genes 0.000 claims description 290
- 108091033319 polynucleotide Proteins 0.000 claims description 290
- 239000002157 polynucleotide Substances 0.000 claims description 290
- 102000004169 proteins and genes Human genes 0.000 claims description 233
- 230000027455 binding Effects 0.000 claims description 191
- 239000003623 enhancer Substances 0.000 claims description 189
- 210000004027 cell Anatomy 0.000 claims description 167
- 101710163270 Nuclease Proteins 0.000 claims description 136
- 230000002950 deficient Effects 0.000 claims description 135
- 150000007523 nucleic acids Chemical group 0.000 claims description 128
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 105
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 105
- 239000002773 nucleotide Substances 0.000 claims description 98
- 125000003729 nucleotide group Chemical group 0.000 claims description 98
- 102000039446 nucleic acids Human genes 0.000 claims description 93
- 108020004707 nucleic acids Proteins 0.000 claims description 93
- 239000013598 vector Substances 0.000 claims description 75
- 101000653360 Homo sapiens Methylcytosine dioxygenase TET1 Proteins 0.000 claims description 59
- 102100030819 Methylcytosine dioxygenase TET1 Human genes 0.000 claims description 59
- 206010028980 Neoplasm Diseases 0.000 claims description 59
- 102000004389 Ribonucleoproteins Human genes 0.000 claims description 58
- 108010081734 Ribonucleoproteins Proteins 0.000 claims description 58
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 58
- 201000011510 cancer Diseases 0.000 claims description 50
- 230000000295 complement effect Effects 0.000 claims description 49
- 102100028779 Endonuclease 8-like 2 Human genes 0.000 claims description 45
- 101001123823 Homo sapiens Endonuclease 8-like 2 Proteins 0.000 claims description 45
- 101001066158 Homo sapiens Growth arrest and DNA damage-inducible protein GADD45 alpha Proteins 0.000 claims description 37
- 102100031150 Growth arrest and DNA damage-inducible protein GADD45 alpha Human genes 0.000 claims description 31
- 238000001890 transfection Methods 0.000 claims description 21
- 102100030803 Methylcytosine dioxygenase TET2 Human genes 0.000 claims description 18
- 101000653374 Homo sapiens Methylcytosine dioxygenase TET2 Proteins 0.000 claims description 17
- 101000653369 Homo sapiens Methylcytosine dioxygenase TET3 Proteins 0.000 claims description 17
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 17
- 102100030812 Methylcytosine dioxygenase TET3 Human genes 0.000 claims description 16
- 230000001335 demethylating effect Effects 0.000 claims description 13
- 230000002103 transcriptional effect Effects 0.000 claims description 13
- 102000054184 GADD45 Human genes 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 230000003584 silencer Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 91
- 239000000203 mixture Substances 0.000 abstract description 40
- 235000018102 proteins Nutrition 0.000 description 212
- 108091033409 CRISPR Proteins 0.000 description 118
- 108020004414 DNA Proteins 0.000 description 75
- 235000001014 amino acid Nutrition 0.000 description 60
- 229940024606 amino acid Drugs 0.000 description 54
- 150000001413 amino acids Chemical class 0.000 description 53
- 238000007069 methylation reaction Methods 0.000 description 51
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 48
- 230000004927 fusion Effects 0.000 description 48
- 230000011987 methylation Effects 0.000 description 45
- 108090000765 processed proteins & peptides Proteins 0.000 description 45
- 201000010099 disease Diseases 0.000 description 42
- 108020005004 Guide RNA Proteins 0.000 description 41
- 239000012636 effector Substances 0.000 description 41
- 238000013518 transcription Methods 0.000 description 41
- 230000035897 transcription Effects 0.000 description 41
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 39
- 102000004196 processed proteins & peptides Human genes 0.000 description 37
- 229920001184 polypeptide Polymers 0.000 description 34
- 230000035772 mutation Effects 0.000 description 30
- 230000003197 catalytic effect Effects 0.000 description 28
- 102000004190 Enzymes Human genes 0.000 description 25
- 108090000790 Enzymes Proteins 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 24
- 230000014509 gene expression Effects 0.000 description 23
- 208000024891 symptom Diseases 0.000 description 22
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 18
- 102000004533 Endonucleases Human genes 0.000 description 17
- 108010042407 Endonucleases Proteins 0.000 description 17
- 108020004999 messenger RNA Proteins 0.000 description 17
- 239000000126 substance Substances 0.000 description 17
- 230000006870 function Effects 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 108091026890 Coding region Proteins 0.000 description 14
- 102100028773 Endonuclease 8-like 3 Human genes 0.000 description 14
- 101001123819 Homo sapiens Endonuclease 8-like 3 Proteins 0.000 description 14
- 230000008859 change Effects 0.000 description 14
- 230000004913 activation Effects 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 12
- 230000004568 DNA-binding Effects 0.000 description 12
- 241000282414 Homo sapiens Species 0.000 description 12
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 12
- 206010025323 Lymphomas Diseases 0.000 description 12
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 12
- 238000004422 calculation algorithm Methods 0.000 description 12
- 108020001507 fusion proteins Proteins 0.000 description 12
- 102000037865 fusion proteins Human genes 0.000 description 12
- 108010038320 lysylphenylalanine Proteins 0.000 description 12
- 230000001404 mediated effect Effects 0.000 description 12
- 230000008685 targeting Effects 0.000 description 12
- 230000007067 DNA methylation Effects 0.000 description 11
- FFYYUUWROYYKFY-IHRRRGAJSA-N His-Val-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O FFYYUUWROYYKFY-IHRRRGAJSA-N 0.000 description 11
- -1 RNAseP Proteins 0.000 description 11
- 108010005233 alanylglutamic acid Proteins 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 11
- 108010054624 red fluorescent protein Proteins 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- UFAQGGZUXVLONR-AVGNSLFASA-N Asp-Gln-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N)O UFAQGGZUXVLONR-AVGNSLFASA-N 0.000 description 10
- ATTWDCRXQNKRII-GUBZILKMSA-N Gln-Lys-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)N)N ATTWDCRXQNKRII-GUBZILKMSA-N 0.000 description 10
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical group NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 10
- 238000009472 formulation Methods 0.000 description 10
- 206010009944 Colon cancer Diseases 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000009467 reduction Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 108010077544 Chromatin Proteins 0.000 description 8
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 8
- 102100024812 DNA (cytosine-5)-methyltransferase 3A Human genes 0.000 description 8
- 108050002829 DNA (cytosine-5)-methyltransferase 3A Proteins 0.000 description 8
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 8
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 8
- 208000005718 Stomach Neoplasms Diseases 0.000 description 8
- 108091027544 Subgenomic mRNA Proteins 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 230000004071 biological effect Effects 0.000 description 8
- 239000002775 capsule Substances 0.000 description 8
- 210000003483 chromatin Anatomy 0.000 description 8
- 239000002552 dosage form Substances 0.000 description 8
- 206010017758 gastric cancer Diseases 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 208000032839 leukemia Diseases 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 201000011549 stomach cancer Diseases 0.000 description 8
- 239000003826 tablet Substances 0.000 description 8
- 108020004705 Codon Proteins 0.000 description 7
- 102100028778 Endonuclease 8-like 1 Human genes 0.000 description 7
- 101001123824 Homo sapiens Endonuclease 8-like 1 Proteins 0.000 description 7
- LKACSKJPTFSBHR-MNXVOIDGSA-N Ile-Gln-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N LKACSKJPTFSBHR-MNXVOIDGSA-N 0.000 description 7
- HIIZIQUUHIXUJY-GUBZILKMSA-N Lys-Asp-Gln Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O HIIZIQUUHIXUJY-GUBZILKMSA-N 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- 108030004080 Methylcytosine dioxygenases Proteins 0.000 description 7
- 206010060862 Prostate cancer Diseases 0.000 description 7
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 7
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 7
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 7
- 239000012190 activator Substances 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 108010036413 histidylglycine Proteins 0.000 description 7
- 201000001441 melanoma Diseases 0.000 description 7
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000012743 protein tagging Effects 0.000 description 7
- 229920002477 rna polymer Polymers 0.000 description 7
- BTBUEVAGZCKULD-XPUUQOCRSA-N Ala-Gly-His Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC1=CN=CN1 BTBUEVAGZCKULD-XPUUQOCRSA-N 0.000 description 6
- SUMYEVXWCAYLLJ-GUBZILKMSA-N Ala-Leu-Gln Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O SUMYEVXWCAYLLJ-GUBZILKMSA-N 0.000 description 6
- CCDFBRZVTDDJNM-GUBZILKMSA-N Ala-Leu-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O CCDFBRZVTDDJNM-GUBZILKMSA-N 0.000 description 6
- SOBIAADAMRHGKH-CIUDSAMLSA-N Ala-Leu-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O SOBIAADAMRHGKH-CIUDSAMLSA-N 0.000 description 6
- VJVQKGYHIZPSNS-FXQIFTODSA-N Ala-Ser-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCN=C(N)N VJVQKGYHIZPSNS-FXQIFTODSA-N 0.000 description 6
- OHYQKYUTLIPFOX-ZPFDUUQYSA-N Arg-Glu-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O OHYQKYUTLIPFOX-ZPFDUUQYSA-N 0.000 description 6
- NVUIWHJLPSZZQC-CYDGBPFRSA-N Arg-Ile-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O NVUIWHJLPSZZQC-CYDGBPFRSA-N 0.000 description 6
- OOIMKQRCPJBGPD-XUXIUFHCSA-N Arg-Ile-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O OOIMKQRCPJBGPD-XUXIUFHCSA-N 0.000 description 6
- HAJWYALLJIATCX-FXQIFTODSA-N Asn-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CC(=O)N)N)CN=C(N)N HAJWYALLJIATCX-FXQIFTODSA-N 0.000 description 6
- XSGBIBGAMKTHMY-WHFBIAKZSA-N Asn-Asp-Gly Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O XSGBIBGAMKTHMY-WHFBIAKZSA-N 0.000 description 6
- DXVMJJNAOVECBA-WHFBIAKZSA-N Asn-Gly-Asn Chemical compound NC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O DXVMJJNAOVECBA-WHFBIAKZSA-N 0.000 description 6
- WQAOZCVOOYUWKG-LSJOCFKGSA-N Asn-Val-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CC(=O)N)N WQAOZCVOOYUWKG-LSJOCFKGSA-N 0.000 description 6
- YBMUFUWSMIKJQA-GUBZILKMSA-N Asp-Gln-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N YBMUFUWSMIKJQA-GUBZILKMSA-N 0.000 description 6
- LIJXJYGRSRWLCJ-IHRRRGAJSA-N Asp-Phe-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O LIJXJYGRSRWLCJ-IHRRRGAJSA-N 0.000 description 6
- 238000010453 CRISPR/Cas method Methods 0.000 description 6
- 102220605874 Cytosolic arginine sensor for mTORC1 subunit 2_D10A_mutation Human genes 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- YJIUYQKQBBQYHZ-ACZMJKKPSA-N Gln-Ala-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O YJIUYQKQBBQYHZ-ACZMJKKPSA-N 0.000 description 6
- PHZYLYASFWHLHJ-FXQIFTODSA-N Gln-Asn-Glu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O PHZYLYASFWHLHJ-FXQIFTODSA-N 0.000 description 6
- NNXIQPMZGZUFJJ-AVGNSLFASA-N Gln-His-Lys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)N)N NNXIQPMZGZUFJJ-AVGNSLFASA-N 0.000 description 6
- WHVLABLIJYGVEK-QEWYBTABSA-N Gln-Phe-Ile Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WHVLABLIJYGVEK-QEWYBTABSA-N 0.000 description 6
- LPIKVBWNNVFHCQ-GUBZILKMSA-N Gln-Ser-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O LPIKVBWNNVFHCQ-GUBZILKMSA-N 0.000 description 6
- ZMXZGYLINVNTKH-DZKIICNBSA-N Gln-Val-Phe Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ZMXZGYLINVNTKH-DZKIICNBSA-N 0.000 description 6
- AVZHGSCDKIQZPQ-CIUDSAMLSA-N Glu-Arg-Ala Chemical compound C[C@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCC(O)=O)C(O)=O AVZHGSCDKIQZPQ-CIUDSAMLSA-N 0.000 description 6
- RCCDHXSRMWCOOY-GUBZILKMSA-N Glu-Arg-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O RCCDHXSRMWCOOY-GUBZILKMSA-N 0.000 description 6
- COSBSYQVPSODFX-GUBZILKMSA-N Glu-His-Cys Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)O)N COSBSYQVPSODFX-GUBZILKMSA-N 0.000 description 6
- QXDXIXFSFHUYAX-MNXVOIDGSA-N Glu-Ile-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCC(O)=O QXDXIXFSFHUYAX-MNXVOIDGSA-N 0.000 description 6
- KKBWDNZXYLGJEY-UHFFFAOYSA-N Gly-Arg-Pro Natural products NCC(=O)NC(CCNC(=N)N)C(=O)N1CCCC1C(=O)O KKBWDNZXYLGJEY-UHFFFAOYSA-N 0.000 description 6
- GWCRIHNSVMOBEQ-BQBZGAKWSA-N Gly-Arg-Ser Chemical compound [H]NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O GWCRIHNSVMOBEQ-BQBZGAKWSA-N 0.000 description 6
- ALOBJFDJTMQQPW-ONGXEEELSA-N Gly-His-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)CN ALOBJFDJTMQQPW-ONGXEEELSA-N 0.000 description 6
- DRKZDEFADVYTLU-AVGNSLFASA-N His-Val-Val Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O DRKZDEFADVYTLU-AVGNSLFASA-N 0.000 description 6
- 101000909250 Homo sapiens DNA (cytosine-5)-methyltransferase 3-like Proteins 0.000 description 6
- DMHGKBGOUAJRHU-UHFFFAOYSA-N Ile-Arg-Pro Natural products CCC(C)C(N)C(=O)NC(CCCN=C(N)N)C(=O)N1CCCC1C(O)=O DMHGKBGOUAJRHU-UHFFFAOYSA-N 0.000 description 6
- RPZFUIQVAPZLRH-GHCJXIJMSA-N Ile-Asp-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](C)C(=O)O)N RPZFUIQVAPZLRH-GHCJXIJMSA-N 0.000 description 6
- QRTVJGKXFSYJGW-KBIXCLLPSA-N Ile-Glu-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CS)C(=O)O)N QRTVJGKXFSYJGW-KBIXCLLPSA-N 0.000 description 6
- RCMNUBZKIIJCOI-ZPFDUUQYSA-N Ile-Met-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N RCMNUBZKIIJCOI-ZPFDUUQYSA-N 0.000 description 6
- CQQGCWPXDHTTNF-GUBZILKMSA-N Leu-Ala-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCC(O)=O CQQGCWPXDHTTNF-GUBZILKMSA-N 0.000 description 6
- ULXYQAJWJGLCNR-YUMQZZPRSA-N Leu-Asp-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O ULXYQAJWJGLCNR-YUMQZZPRSA-N 0.000 description 6
- LOLUPZNNADDTAA-AVGNSLFASA-N Leu-Gln-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O LOLUPZNNADDTAA-AVGNSLFASA-N 0.000 description 6
- KVMULWOHPPMHHE-DCAQKATOSA-N Leu-Glu-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(O)=O KVMULWOHPPMHHE-DCAQKATOSA-N 0.000 description 6
- QNBVTHNJGCOVFA-AVGNSLFASA-N Leu-Leu-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O QNBVTHNJGCOVFA-AVGNSLFASA-N 0.000 description 6
- BGZCJDGBBUUBHA-KKUMJFAQSA-N Leu-Lys-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O BGZCJDGBBUUBHA-KKUMJFAQSA-N 0.000 description 6
- BMVFXOQHDQZAQU-DCAQKATOSA-N Leu-Pro-Asp Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(=O)O)C(=O)O)N BMVFXOQHDQZAQU-DCAQKATOSA-N 0.000 description 6
- XOWMDXHFSBCAKQ-SRVKXCTJSA-N Leu-Ser-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC(C)C XOWMDXHFSBCAKQ-SRVKXCTJSA-N 0.000 description 6
- BGGTYDNTOYRTTR-MEYUZBJRSA-N Leu-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC(C)C)N)O BGGTYDNTOYRTTR-MEYUZBJRSA-N 0.000 description 6
- OPTCSTACHGNULU-DCAQKATOSA-N Lys-Cys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCCN OPTCSTACHGNULU-DCAQKATOSA-N 0.000 description 6
- WAIHHELKYSFIQN-XUXIUFHCSA-N Lys-Ile-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O WAIHHELKYSFIQN-XUXIUFHCSA-N 0.000 description 6
- MYZMQWHPDAYKIE-SRVKXCTJSA-N Lys-Leu-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O MYZMQWHPDAYKIE-SRVKXCTJSA-N 0.000 description 6
- CULGJGUDIJATIP-STQMWFEESA-N Met-Tyr-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=C(O)C=C1 CULGJGUDIJATIP-STQMWFEESA-N 0.000 description 6
- OVTOTTGZBWXLFU-QXEWZRGKSA-N Met-Val-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(O)=O OVTOTTGZBWXLFU-QXEWZRGKSA-N 0.000 description 6
- 108060004795 Methyltransferase Proteins 0.000 description 6
- 102000016397 Methyltransferase Human genes 0.000 description 6
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- 206010061535 Ovarian neoplasm Diseases 0.000 description 6
- BIYWZVCPZIFGPY-QWRGUYRKSA-N Phe-Gly-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CO)C(O)=O BIYWZVCPZIFGPY-QWRGUYRKSA-N 0.000 description 6
- ONORAGIFHNAADN-LLLHUVSDSA-N Phe-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N ONORAGIFHNAADN-LLLHUVSDSA-N 0.000 description 6
- AUJWXNGCAQWLEI-KBPBESRZSA-N Phe-Lys-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O AUJWXNGCAQWLEI-KBPBESRZSA-N 0.000 description 6
- RYQWALWYQWBUKN-FHWLQOOXSA-N Phe-Phe-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(O)=O)C(O)=O RYQWALWYQWBUKN-FHWLQOOXSA-N 0.000 description 6
- HBXAOEBRGLCLIW-AVGNSLFASA-N Phe-Ser-Gln Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N HBXAOEBRGLCLIW-AVGNSLFASA-N 0.000 description 6
- AQSMZTIEJMZQEC-DCAQKATOSA-N Pro-His-Ser Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC2=CN=CN2)C(=O)N[C@@H](CO)C(=O)O AQSMZTIEJMZQEC-DCAQKATOSA-N 0.000 description 6
- VAIZFHMTBFYJIA-ACZMJKKPSA-N Ser-Asp-Gln Chemical compound OC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCC(N)=O VAIZFHMTBFYJIA-ACZMJKKPSA-N 0.000 description 6
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 6
- 241000193996 Streptococcus pyogenes Species 0.000 description 6
- FHDLKMFZKRUQCE-HJGDQZAQSA-N Thr-Glu-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FHDLKMFZKRUQCE-HJGDQZAQSA-N 0.000 description 6
- YUOCMLNTUZAGNF-KLHWPWHYSA-N Thr-His-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N2CCC[C@@H]2C(=O)O)N)O YUOCMLNTUZAGNF-KLHWPWHYSA-N 0.000 description 6
- WTMPKZWHRCMMMT-KZVJFYERSA-N Thr-Pro-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O WTMPKZWHRCMMMT-KZVJFYERSA-N 0.000 description 6
- TWAVEIJGFCBWCG-JYJNAYRXSA-N Tyr-Gln-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC1=CC=C(C=C1)O)N TWAVEIJGFCBWCG-JYJNAYRXSA-N 0.000 description 6
- PYJKETPLFITNKS-IHRRRGAJSA-N Tyr-Pro-Asn Chemical compound N[C@@H](Cc1ccc(O)cc1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O PYJKETPLFITNKS-IHRRRGAJSA-N 0.000 description 6
- KKHRWGYHBZORMQ-NHCYSSNCSA-N Val-Arg-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N KKHRWGYHBZORMQ-NHCYSSNCSA-N 0.000 description 6
- AGKDVLSDNSTLFA-UMNHJUIQSA-N Val-Gln-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N1CCC[C@@H]1C(=O)O)N AGKDVLSDNSTLFA-UMNHJUIQSA-N 0.000 description 6
- VXDSPJJQUQDCKH-UKJIMTQDSA-N Val-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N VXDSPJJQUQDCKH-UKJIMTQDSA-N 0.000 description 6
- DAVNYIUELQBTAP-XUXIUFHCSA-N Val-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)N DAVNYIUELQBTAP-XUXIUFHCSA-N 0.000 description 6
- BTWMICVCQLKKNR-DCAQKATOSA-N Val-Leu-Ser Chemical compound CC(C)[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C([O-])=O BTWMICVCQLKKNR-DCAQKATOSA-N 0.000 description 6
- NZGOVKLVQNOEKP-YDHLFZDLSA-N Val-Phe-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(=O)N)C(=O)O)N NZGOVKLVQNOEKP-YDHLFZDLSA-N 0.000 description 6
- CKTMJBPRVQWPHU-JSGCOSHPSA-N Val-Phe-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)O)N CKTMJBPRVQWPHU-JSGCOSHPSA-N 0.000 description 6
- TVGWMCTYUFBXAP-QTKMDUPCSA-N Val-Thr-His Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](C(C)C)N)O TVGWMCTYUFBXAP-QTKMDUPCSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000001973 epigenetic effect Effects 0.000 description 6
- 108010079547 glutamylmethionine Proteins 0.000 description 6
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 6
- 108010040030 histidinoalanine Proteins 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 108010034529 leucyl-lysine Proteins 0.000 description 6
- 108010091871 leucylmethionine Proteins 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 108010024607 phenylalanylalanine Proteins 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 108010031719 prolyl-serine Proteins 0.000 description 6
- 108020001580 protein domains Proteins 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 6
- 108010073969 valyllysine Proteins 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- GGNHBHYDMUDXQB-KBIXCLLPSA-N Ala-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)N GGNHBHYDMUDXQB-KBIXCLLPSA-N 0.000 description 5
- XSPKAHFVDKRGRL-DCAQKATOSA-N Arg-Pro-Glu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O XSPKAHFVDKRGRL-DCAQKATOSA-N 0.000 description 5
- STHNZYKCJHWULY-AVGNSLFASA-N Arg-Pro-His Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CCCN=C(N)N)N)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O STHNZYKCJHWULY-AVGNSLFASA-N 0.000 description 5
- DPNWSMBUYCLEDG-CIUDSAMLSA-N Asp-Lys-Ser Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O DPNWSMBUYCLEDG-CIUDSAMLSA-N 0.000 description 5
- XWKBWZXGNXTDKY-ZKWXMUAHSA-N Asp-Val-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CC(O)=O XWKBWZXGNXTDKY-ZKWXMUAHSA-N 0.000 description 5
- 206010006187 Breast cancer Diseases 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 5
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- JFOKLAPFYCTNHW-SRVKXCTJSA-N Gln-Arg-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCC(=O)N)N JFOKLAPFYCTNHW-SRVKXCTJSA-N 0.000 description 5
- NHMRJKKAVMENKJ-WDCWCFNPSA-N Gln-Thr-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O NHMRJKKAVMENKJ-WDCWCFNPSA-N 0.000 description 5
- MUSGDMDGNGXULI-DCAQKATOSA-N Glu-Glu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCC(O)=O MUSGDMDGNGXULI-DCAQKATOSA-N 0.000 description 5
- XIKYNVKEUINBGL-IUCAKERBSA-N Glu-His-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)NCC(O)=O XIKYNVKEUINBGL-IUCAKERBSA-N 0.000 description 5
- CQAHWYDHKUWYIX-YUMQZZPRSA-N Glu-Pro-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O CQAHWYDHKUWYIX-YUMQZZPRSA-N 0.000 description 5
- IUKIDFVOUHZRAK-QWRGUYRKSA-N Gly-Lys-His Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 IUKIDFVOUHZRAK-QWRGUYRKSA-N 0.000 description 5
- LCNNHVQNFNJLGK-AVGNSLFASA-N His-Gln-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N LCNNHVQNFNJLGK-AVGNSLFASA-N 0.000 description 5
- LDFWDDVELNOGII-MXAVVETBSA-N His-Lys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC1=CN=CN1)N LDFWDDVELNOGII-MXAVVETBSA-N 0.000 description 5
- 101000616974 Homo sapiens Pumilio homolog 1 Proteins 0.000 description 5
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 5
- CYHYBSGMHMHKOA-CIQUZCHMSA-N Ile-Ala-Thr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)O)N CYHYBSGMHMHKOA-CIQUZCHMSA-N 0.000 description 5
- DFJJAVZIHDFOGQ-MNXVOIDGSA-N Ile-Glu-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N DFJJAVZIHDFOGQ-MNXVOIDGSA-N 0.000 description 5
- KLBVGHCGHUNHEA-BJDJZHNGSA-N Ile-Leu-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)O)N KLBVGHCGHUNHEA-BJDJZHNGSA-N 0.000 description 5
- ZSESFIFAYQEKRD-CYDGBPFRSA-N Ile-Val-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCSC)C(=O)O)N ZSESFIFAYQEKRD-CYDGBPFRSA-N 0.000 description 5
- YOZCKMXHBYKOMQ-IHRRRGAJSA-N Leu-Arg-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCCN)C(=O)O)N YOZCKMXHBYKOMQ-IHRRRGAJSA-N 0.000 description 5
- MVJRBCJCRYGCKV-GVXVVHGQSA-N Leu-Val-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O MVJRBCJCRYGCKV-GVXVVHGQSA-N 0.000 description 5
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 5
- SKRGVGLIRUGANF-AVGNSLFASA-N Lys-Leu-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O SKRGVGLIRUGANF-AVGNSLFASA-N 0.000 description 5
- WWEWGPOLIJXGNX-XUXIUFHCSA-N Lys-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)N WWEWGPOLIJXGNX-XUXIUFHCSA-N 0.000 description 5
- FPQMQEOVSKMVMA-ACRUOGEOSA-N Lys-Tyr-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O)NC(=O)[C@H](CCCCN)N)O FPQMQEOVSKMVMA-ACRUOGEOSA-N 0.000 description 5
- CRVSHEPROQHVQT-AVGNSLFASA-N Met-Met-Lys Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)O)N CRVSHEPROQHVQT-AVGNSLFASA-N 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 102000013609 MutL Protein Homolog 1 Human genes 0.000 description 5
- 108010026664 MutL Protein Homolog 1 Proteins 0.000 description 5
- 206010029260 Neuroblastoma Diseases 0.000 description 5
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 5
- 206010035226 Plasma cell myeloma Diseases 0.000 description 5
- VZKBJNBZMZHKRC-XUXIUFHCSA-N Pro-Ile-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O VZKBJNBZMZHKRC-XUXIUFHCSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- GKWNLDNXMMLRMC-GLLZPBPUSA-N Thr-Glu-Gln Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N)O GKWNLDNXMMLRMC-GLLZPBPUSA-N 0.000 description 5
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 5
- GAKBTSMAPGLQFA-JNPHEJMOSA-N Tyr-Thr-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=C(O)C=C1 GAKBTSMAPGLQFA-JNPHEJMOSA-N 0.000 description 5
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 5
- WNZSAUMKZQXHNC-UKJIMTQDSA-N Val-Ile-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N WNZSAUMKZQXHNC-UKJIMTQDSA-N 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 201000004101 esophageal cancer Diseases 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 230000006607 hypermethylation Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 108010057821 leucylproline Proteins 0.000 description 5
- 239000007937 lozenge Substances 0.000 description 5
- 201000005202 lung cancer Diseases 0.000 description 5
- 208000020816 lung neoplasm Diseases 0.000 description 5
- 108010003700 lysyl aspartic acid Proteins 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 201000005112 urinary bladder cancer Diseases 0.000 description 5
- 108010027345 wheylin-1 peptide Proteins 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- PNIGSVZJNVUVJA-BQBZGAKWSA-N Arg-Gly-Asn Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O PNIGSVZJNVUVJA-BQBZGAKWSA-N 0.000 description 4
- YDJVIBMKAMQPPP-LAEOZQHASA-N Asp-Glu-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O YDJVIBMKAMQPPP-LAEOZQHASA-N 0.000 description 4
- 206010005003 Bladder cancer Diseases 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 206010008342 Cervix carcinoma Diseases 0.000 description 4
- GFAPBMCRSMSGDZ-XGEHTFHBSA-N Cys-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CS)N)O GFAPBMCRSMSGDZ-XGEHTFHBSA-N 0.000 description 4
- 108010031325 Cytidine deaminase Proteins 0.000 description 4
- 102100024811 DNA (cytosine-5)-methyltransferase 3-like Human genes 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 108010028143 Dioxygenases Proteins 0.000 description 4
- 102000016680 Dioxygenases Human genes 0.000 description 4
- YOBGUCWZPXJHTN-BQBZGAKWSA-N Gly-Ser-Arg Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YOBGUCWZPXJHTN-BQBZGAKWSA-N 0.000 description 4
- FKYQEVBRZSFAMJ-QWRGUYRKSA-N Gly-Ser-Tyr Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 FKYQEVBRZSFAMJ-QWRGUYRKSA-N 0.000 description 4
- 208000017095 Hereditary nonpolyposis colon cancer Diseases 0.000 description 4
- 208000008839 Kidney Neoplasms Diseases 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical group CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 208000034578 Multiple myelomas Diseases 0.000 description 4
- 102000011931 Nucleoproteins Human genes 0.000 description 4
- 108010061100 Nucleoproteins Proteins 0.000 description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 4
- MIICYIIBVYQNKE-QEWYBTABSA-N Phe-Ile-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N MIICYIIBVYQNKE-QEWYBTABSA-N 0.000 description 4
- 230000004570 RNA-binding Effects 0.000 description 4
- 206010038389 Renal cancer Diseases 0.000 description 4
- 206010039491 Sarcoma Diseases 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 208000024313 Testicular Neoplasms Diseases 0.000 description 4
- 206010057644 Testis cancer Diseases 0.000 description 4
- 108700019146 Transgenes Proteins 0.000 description 4
- LTSIAOZUVISRAQ-QWRGUYRKSA-N Tyr-Gly-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)NCC(=O)N[C@@H](CS)C(=O)O)N)O LTSIAOZUVISRAQ-QWRGUYRKSA-N 0.000 description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 4
- VVIZITNVZUAEMI-DLOVCJGASA-N Val-Val-Gln Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(N)=O VVIZITNVZUAEMI-DLOVCJGASA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 201000010881 cervical cancer Diseases 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 201000010536 head and neck cancer Diseases 0.000 description 4
- 208000014829 head and neck neoplasm Diseases 0.000 description 4
- 102000043353 human PUM1 Human genes 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 201000010982 kidney cancer Diseases 0.000 description 4
- 201000007270 liver cancer Diseases 0.000 description 4
- 208000014018 liver neoplasm Diseases 0.000 description 4
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229930182817 methionine Chemical group 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 201000002528 pancreatic cancer Diseases 0.000 description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 description 4
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical class OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000001603 reducing effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 201000003120 testicular cancer Diseases 0.000 description 4
- 230000005030 transcription termination Effects 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 239000013603 viral vector Substances 0.000 description 4
- BLQMCTXZEMGOJM-UHFFFAOYSA-N 5-carboxycytosine Chemical compound NC=1NC(=O)N=CC=1C(O)=O BLQMCTXZEMGOJM-UHFFFAOYSA-N 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 3
- XQJAFSDFQZPYCU-UWJYBYFXSA-N Ala-Asn-Tyr Chemical compound C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N XQJAFSDFQZPYCU-UWJYBYFXSA-N 0.000 description 3
- DPSUVAPLRQDWAO-YDHLFZDLSA-N Asn-Tyr-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC(=O)N)N DPSUVAPLRQDWAO-YDHLFZDLSA-N 0.000 description 3
- 208000003950 B-cell lymphoma Diseases 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 3
- XGIAHEUULGOZHH-GUBZILKMSA-N Cys-Arg-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N XGIAHEUULGOZHH-GUBZILKMSA-N 0.000 description 3
- 102100026846 Cytidine deaminase Human genes 0.000 description 3
- 108010024491 DNA Methyltransferase 3A Proteins 0.000 description 3
- 108700034637 EC 3.2.-.- Proteins 0.000 description 3
- 102100026406 G/T mismatch-specific thymine DNA glycosylase Human genes 0.000 description 3
- DNVDEMWIYLVIQU-RCOVLWMOSA-N Gly-Val-Asp Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O DNVDEMWIYLVIQU-RCOVLWMOSA-N 0.000 description 3
- 208000008051 Hereditary Nonpolyposis Colorectal Neoplasms Diseases 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 201000005027 Lynch syndrome Diseases 0.000 description 3
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 3
- JCMMNFZUKMMECJ-DCAQKATOSA-N Met-Lys-Asn Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O JCMMNFZUKMMECJ-DCAQKATOSA-N 0.000 description 3
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 108091028664 Ribonucleotide Proteins 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- HBOABDXGTMMDSE-GUBZILKMSA-N Ser-Arg-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(O)=O HBOABDXGTMMDSE-GUBZILKMSA-N 0.000 description 3
- 208000000453 Skin Neoplasms Diseases 0.000 description 3
- 108010035344 Thymine DNA Glycosylase Proteins 0.000 description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 3
- 229940104302 cytosine Drugs 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 108091006047 fluorescent proteins Proteins 0.000 description 3
- 102000034287 fluorescent proteins Human genes 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 208000005017 glioblastoma Diseases 0.000 description 3
- 108010050848 glycylleucine Proteins 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 201000008968 osteosarcoma Diseases 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 150000004713 phosphodiesters Chemical class 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000001236 prokaryotic cell Anatomy 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 230000007115 recruitment Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 239000002336 ribonucleotide Substances 0.000 description 3
- 125000002652 ribonucleotide group Chemical group 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 201000000849 skin cancer Diseases 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 210000002437 synoviocyte Anatomy 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- HWPZZUQOWRWFDB-UHFFFAOYSA-N 1-methylcytosine Chemical compound CN1C=CC(N)=NC1=O HWPZZUQOWRWFDB-UHFFFAOYSA-N 0.000 description 2
- FHSISDGOVSHJRW-UHFFFAOYSA-N 5-formylcytosine Chemical compound NC1=NC(=O)NC=C1C=O FHSISDGOVSHJRW-UHFFFAOYSA-N 0.000 description 2
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 2
- CBHVAFXKOYAHOY-NHCYSSNCSA-N Asn-Val-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O CBHVAFXKOYAHOY-NHCYSSNCSA-N 0.000 description 2
- RATOMFTUDRYMKX-ACZMJKKPSA-N Asp-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N RATOMFTUDRYMKX-ACZMJKKPSA-N 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 238000010354 CRISPR gene editing Methods 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 241000700199 Cavia porcellus Species 0.000 description 2
- 108091029523 CpG island Proteins 0.000 description 2
- 230000030933 DNA methylation on cytosine Effects 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 208000006402 Ductal Carcinoma Diseases 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 241000589601 Francisella Species 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- OHWJUIXZHVIXJJ-GUBZILKMSA-N Glu-Lys-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)O)N OHWJUIXZHVIXJJ-GUBZILKMSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000270322 Lepidosauria Species 0.000 description 2
- 208000000265 Lobular Carcinoma Diseases 0.000 description 2
- 208000032818 Microsatellite Instability Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 208000012902 Nervous system disease Diseases 0.000 description 2
- 208000025966 Neurological disease Diseases 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- WSXKXSBOJXEZDV-DLOVCJGASA-N Phe-Ala-Asn Chemical compound NC(=O)C[C@@H](C([O-])=O)NC(=O)[C@H](C)NC(=O)[C@@H]([NH3+])CC1=CC=CC=C1 WSXKXSBOJXEZDV-DLOVCJGASA-N 0.000 description 2
- MDHZEOMXGNBSIL-DLOVCJGASA-N Phe-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N MDHZEOMXGNBSIL-DLOVCJGASA-N 0.000 description 2
- UHRNIXJAGGLKHP-DLOVCJGASA-N Phe-Ala-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O UHRNIXJAGGLKHP-DLOVCJGASA-N 0.000 description 2
- KRYSMKKRRRWOCZ-QEWYBTABSA-N Phe-Ile-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(O)=O KRYSMKKRRRWOCZ-QEWYBTABSA-N 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 241000605861 Prevotella Species 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- HAYADTTXNZFUDM-IHRRRGAJSA-N Ser-Tyr-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(O)=O HAYADTTXNZFUDM-IHRRRGAJSA-N 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 108010003165 Small Nuclear Ribonucleoproteins Proteins 0.000 description 2
- 102000004598 Small Nuclear Ribonucleoproteins Human genes 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- AZGZDDNKFFUDEH-QWRGUYRKSA-N Tyr-Gly-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AZGZDDNKFFUDEH-QWRGUYRKSA-N 0.000 description 2
- USXYVSTVPHELAF-RCWTZXSCSA-N Val-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](C(C)C)N)O USXYVSTVPHELAF-RCWTZXSCSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 108010062796 arginyllysine Proteins 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000033590 base-excision repair Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 201000003714 breast lobular carcinoma Diseases 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 208000002458 carcinoid tumor Diseases 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 238000002487 chromatin immunoprecipitation Methods 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000004049 epigenetic modification Effects 0.000 description 2
- 230000008029 eradication Effects 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 235000011475 lollipops Nutrition 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000000394 mitotic effect Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000011275 oncology therapy Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 244000045947 parasite Species 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 125000001151 peptidyl group Chemical group 0.000 description 2
- XUYJLQHKOGNDPB-UHFFFAOYSA-N phosphonoacetic acid Chemical compound OC(=O)CP(O)(O)=O XUYJLQHKOGNDPB-UHFFFAOYSA-N 0.000 description 2
- 125000005642 phosphothioate group Chemical group 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000002511 suppository base Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 201000002510 thyroid cancer Diseases 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- GEBBCNXOYOVGQS-BNHYGAARSA-N 4-amino-1-[(2r,3r,4s,5s)-3,4-dihydroxy-5-(hydroxyamino)oxolan-2-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](NO)O1 GEBBCNXOYOVGQS-BNHYGAARSA-N 0.000 description 1
- 239000013607 AAV vector Substances 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- YEELWQSXYBJVSV-UWJYBYFXSA-N Ala-Cys-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O YEELWQSXYBJVSV-UWJYBYFXSA-N 0.000 description 1
- VBRDBGCROKWTPV-XHNCKOQMSA-N Ala-Glu-Pro Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N1CCC[C@@H]1C(=O)O)N VBRDBGCROKWTPV-XHNCKOQMSA-N 0.000 description 1
- PMQXMXAASGFUDX-SRVKXCTJSA-N Ala-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CCCCN PMQXMXAASGFUDX-SRVKXCTJSA-N 0.000 description 1
- SYIFFFHSXBNPMC-UWJYBYFXSA-N Ala-Ser-Tyr Chemical compound C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N SYIFFFHSXBNPMC-UWJYBYFXSA-N 0.000 description 1
- 101000935845 Aliivibrio fischeri Blue fluorescence protein Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 101000760456 Anguilla japonica Bilirubin-inducible fluorescent protein UnaG Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- JEPNYDRDYNSFIU-QXEWZRGKSA-N Asn-Arg-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(N)=O)C(O)=O JEPNYDRDYNSFIU-QXEWZRGKSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108091005950 Azurite Proteins 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 241001536303 Botryococcus braunii Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 101100257359 Caenorhabditis elegans sox-2 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 108091005944 Cerulean Proteins 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000195597 Chlamydomonas reinhardtii Species 0.000 description 1
- 244000249214 Chlorella pyrenoidosa Species 0.000 description 1
- 235000007091 Chlorella pyrenoidosa Nutrition 0.000 description 1
- 108091005960 Citrine Proteins 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 108091005943 CyPet Proteins 0.000 description 1
- 102000005381 Cytidine Deaminase Human genes 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108090001056 DNA (cytosine-5-)-methyltransferases Proteins 0.000 description 1
- 102000004863 DNA (cytosine-5-)-methyltransferases Human genes 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 108700040192 Drosophila pum Proteins 0.000 description 1
- 108091005941 EBFP Proteins 0.000 description 1
- 108091005947 EBFP2 Proteins 0.000 description 1
- 108091005942 ECFP Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000258955 Echinodermata Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 108010093099 Endoribonucleases Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101000935842 Escherichia coli O127:H6 (strain E2348/69 / EPEC) Major structural subunit of bundle-forming pilus Proteins 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108700007032 GADD45 Proteins 0.000 description 1
- RKAQZCDMSUQTSS-FXQIFTODSA-N Gln-Asp-Gln Chemical compound C(CC(=O)N)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N RKAQZCDMSUQTSS-FXQIFTODSA-N 0.000 description 1
- XWIBVSAEUCAAKF-GVXVVHGQSA-N Gln-His-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CCC(=O)N)N XWIBVSAEUCAAKF-GVXVVHGQSA-N 0.000 description 1
- IOFDDSNZJDIGPB-GVXVVHGQSA-N Gln-Leu-Val Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O IOFDDSNZJDIGPB-GVXVVHGQSA-N 0.000 description 1
- HJIFPJUEOGZWRI-GUBZILKMSA-N Glu-Asp-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCC(=O)O)N HJIFPJUEOGZWRI-GUBZILKMSA-N 0.000 description 1
- ZGEJRLJEAMPEDV-SRVKXCTJSA-N Glu-Lys-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(=O)O)N ZGEJRLJEAMPEDV-SRVKXCTJSA-N 0.000 description 1
- AQNYKMCFCCZEEL-JYJNAYRXSA-N Glu-Lys-Tyr Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 AQNYKMCFCCZEEL-JYJNAYRXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- VXKCPBPQEKKERH-IUCAKERBSA-N Gly-Arg-Pro Chemical compound NC(N)=NCCC[C@H](NC(=O)CN)C(=O)N1CCC[C@H]1C(O)=O VXKCPBPQEKKERH-IUCAKERBSA-N 0.000 description 1
- DWUKOTKSTDWGAE-BQBZGAKWSA-N Gly-Asn-Arg Chemical compound NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N DWUKOTKSTDWGAE-BQBZGAKWSA-N 0.000 description 1
- LURCIJSJAKFCRO-QWRGUYRKSA-N Gly-Asn-Tyr Chemical compound [H]NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O LURCIJSJAKFCRO-QWRGUYRKSA-N 0.000 description 1
- YZACQYVWLCQWBT-BQBZGAKWSA-N Gly-Cys-Arg Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YZACQYVWLCQWBT-BQBZGAKWSA-N 0.000 description 1
- DTRUBYPMMVPQPD-YUMQZZPRSA-N Gly-Gln-Arg Chemical compound [H]NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O DTRUBYPMMVPQPD-YUMQZZPRSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 108010034145 Helminth Proteins Proteins 0.000 description 1
- 108010019372 Heterogeneous-Nuclear Ribonucleoproteins Proteins 0.000 description 1
- 102000006479 Heterogeneous-Nuclear Ribonucleoproteins Human genes 0.000 description 1
- FSOXZQBMPBQKGJ-QSFUFRPTSA-N His-Ile-Ala Chemical compound [O-]C(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]([NH3+])CC1=CN=CN1 FSOXZQBMPBQKGJ-QSFUFRPTSA-N 0.000 description 1
- MPXGJGBXCRQQJE-MXAVVETBSA-N His-Ile-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O MPXGJGBXCRQQJE-MXAVVETBSA-N 0.000 description 1
- DQZCEKQPSOBNMJ-NKIYYHGXSA-N His-Thr-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O DQZCEKQPSOBNMJ-NKIYYHGXSA-N 0.000 description 1
- 102100022823 Histone RNA hairpin-binding protein Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000825762 Homo sapiens Histone RNA hairpin-binding protein Proteins 0.000 description 1
- 101000741544 Homo sapiens Properdin Proteins 0.000 description 1
- 101001082138 Homo sapiens Pumilio homolog 2 Proteins 0.000 description 1
- 101001079872 Homo sapiens RING finger protein 112 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- QLRMMMQNCWBNPQ-QXEWZRGKSA-N Ile-Arg-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(=O)O)N QLRMMMQNCWBNPQ-QXEWZRGKSA-N 0.000 description 1
- DMHGKBGOUAJRHU-RVMXOQNASA-N Ile-Arg-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(=O)O)N DMHGKBGOUAJRHU-RVMXOQNASA-N 0.000 description 1
- LLZLRXBTOOFODM-QSFUFRPTSA-N Ile-Asp-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](C(C)C)C(=O)O)N LLZLRXBTOOFODM-QSFUFRPTSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical group C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Chemical group CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- WIDZHJTYKYBLSR-DCAQKATOSA-N Leu-Glu-Glu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WIDZHJTYKYBLSR-DCAQKATOSA-N 0.000 description 1
- IWTBYNQNAPECCS-AVGNSLFASA-N Leu-Glu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 IWTBYNQNAPECCS-AVGNSLFASA-N 0.000 description 1
- BKTXKJMNTSMJDQ-AVGNSLFASA-N Leu-His-Gln Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N BKTXKJMNTSMJDQ-AVGNSLFASA-N 0.000 description 1
- YUTNOGOMBNYPFH-XUXIUFHCSA-N Leu-Pro-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O YUTNOGOMBNYPFH-XUXIUFHCSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241000186805 Listeria innocua Species 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- PPNCMJARTHYNEC-MEYUZBJRSA-N Lys-Tyr-Thr Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H]([C@H](O)C)C(O)=O)CC1=CC=C(O)C=C1 PPNCMJARTHYNEC-MEYUZBJRSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101150110531 MLH1 gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000009018 Medullary thyroid cancer Diseases 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- DYTWOWJWJCBFLE-IHRRRGAJSA-N Met-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CCSC)CC1=CNC=N1 DYTWOWJWJCBFLE-IHRRRGAJSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 101710158461 Methylcytosine dioxygenase TET1 Proteins 0.000 description 1
- 101710158562 Methylcytosine dioxygenase TET2 Proteins 0.000 description 1
- 101710158471 Methylcytosine dioxygenase tet3 Proteins 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 101100257363 Mus musculus Sox2 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 241001250129 Nannochloropsis gaditana Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- OOOAJTSFQOBKEI-UHFFFAOYSA-N OS(O)=O.CC1=CNC(=O)NC1=O Chemical compound OS(O)=O.CC1=CNC(=O)NC1=O OOOAJTSFQOBKEI-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- LYNKVJADAPZJIK-UHFFFAOYSA-H P([O-])([O-])=O.[B+3].P([O-])([O-])=O.P([O-])([O-])=O.[B+3] Chemical compound P([O-])([O-])=O.[B+3].P([O-])([O-])=O.P([O-])([O-])=O.[B+3] LYNKVJADAPZJIK-UHFFFAOYSA-H 0.000 description 1
- 208000025618 Paget disease of nipple Diseases 0.000 description 1
- 208000024024 Paget disease of the nipple Diseases 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 206010033701 Papillary thyroid cancer Diseases 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 208000002163 Phyllodes Tumor Diseases 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102100021672 Pumilio homolog 1 Human genes 0.000 description 1
- 102000017742 Pumilio homology domains Human genes 0.000 description 1
- 108050005947 Pumilio homology domains Proteins 0.000 description 1
- 102000044126 RNA-Binding Proteins Human genes 0.000 description 1
- 108700020471 RNA-Binding Proteins Proteins 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000593524 Sargassum patens Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- LRWBCWGEUCKDTN-BJDJZHNGSA-N Ser-Lys-Ile Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O LRWBCWGEUCKDTN-BJDJZHNGSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- 101150037203 Sox2 gene Proteins 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000194020 Streptococcus thermophilus Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 102000043123 TET family Human genes 0.000 description 1
- 108091084976 TET family Proteins 0.000 description 1
- 108010017842 Telomerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AMXMBCAXAZUCFA-RHYQMDGZSA-N Thr-Leu-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O AMXMBCAXAZUCFA-RHYQMDGZSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 230000010632 Transcription Factor Activity Effects 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 1
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 description 1
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 description 1
- LGEYOIQBBIPHQN-UWJYBYFXSA-N Tyr-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 LGEYOIQBBIPHQN-UWJYBYFXSA-N 0.000 description 1
- CDHQEOXPWBDFPL-QWRGUYRKSA-N Tyr-Gly-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 CDHQEOXPWBDFPL-QWRGUYRKSA-N 0.000 description 1
- JKUZFODWJGEQAP-KBPBESRZSA-N Tyr-Gly-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)O)N)O JKUZFODWJGEQAP-KBPBESRZSA-N 0.000 description 1
- VKYDVKAKGDNZED-STECZYCISA-N Tyr-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC1=CC=C(C=C1)O)N VKYDVKAKGDNZED-STECZYCISA-N 0.000 description 1
- DJIJBQYBDKGDIS-JYJNAYRXSA-N Tyr-Val-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)Cc1ccc(O)cc1)C(C)C)C(O)=O DJIJBQYBDKGDIS-JYJNAYRXSA-N 0.000 description 1
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 1
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 1
- YFOCMOVJBQDBCE-NRPADANISA-N Val-Ala-Glu Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N YFOCMOVJBQDBCE-NRPADANISA-N 0.000 description 1
- NLNCNKIVJPEFBC-DLOVCJGASA-N Val-Val-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O NLNCNKIVJPEFBC-DLOVCJGASA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000545067 Venus Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 108091006088 activator proteins Proteins 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 230000006154 adenylylation Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000002622 anti-tumorigenesis Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003855 balanced salt solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 239000011035 citrine Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006114 demyristoylation Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008995 epigenetic change Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000010228 ex vivo assay Methods 0.000 description 1
- 210000003020 exocrine pancreas Anatomy 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 101150014310 fem-3 gene Proteins 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 229960005102 foscarnet Drugs 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 244000000013 helminth Species 0.000 description 1
- 210000004024 hepatic stellate cell Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 150000002431 hydrogen Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 239000003022 immunostimulating agent Substances 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 108010078274 isoleucylvaline Proteins 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 210000005067 joint tissue Anatomy 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 201000009546 lung large cell carcinoma Diseases 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 108091005949 mKalama1 Proteins 0.000 description 1
- 108091005958 mTurquoise2 Proteins 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 108010085203 methionylmethionine Proteins 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 101150049514 mutL gene Proteins 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 201000002120 neuroendocrine carcinoma Diseases 0.000 description 1
- 201000011519 neuroendocrine tumor Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000025308 nuclear transport Effects 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000002705 pancreatic stellate cell Anatomy 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 210000002568 pbsc Anatomy 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 108010094020 polyglycine Proteins 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000001718 repressive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 150000003290 ribose derivatives Chemical group 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 102220235118 rs1131691530 Human genes 0.000 description 1
- 102220086243 rs864622700 Human genes 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 108020003113 steroid hormone receptors Proteins 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000005222 synovial tissue Anatomy 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 238000010399 three-hybrid screening Methods 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 208000030045 thyroid gland papillary carcinoma Diseases 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- GWBUNZLLLLDXMD-UHFFFAOYSA-H tricopper;dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Cu+2].[Cu+2].[Cu+2].[O-]C([O-])=O.[O-]C([O-])=O GWBUNZLLLLDXMD-UHFFFAOYSA-H 0.000 description 1
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 1
- 238000010396 two-hybrid screening Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 108010079202 tyrosyl-alanyl-cysteine Proteins 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/315—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
- C12N15/902—Stable introduction of foreign DNA into chromosome using homologous recombination
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0026—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
- C12N9/0032—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2497—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/11—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/02—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
- C12Y302/02029—Thymine-DNA glycosylase (3.2.2.29)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/09—Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/85—Fusion polypeptide containing an RNA binding domain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/90—Fusion polypeptide containing a motif for post-translational modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y113/00—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
- C12Y113/11—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
- C12Y113/1102—Cysteine dioxygenase (1.13.11.20)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/21—Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
- C12Y301/21001—Deoxyribonuclease I (3.1.21.1)
Definitions
- Cas9 protein and sgRNA constitute a sufficient two-component DNA endonuclease whose specificity is provided by target-matching sequence on the sgRNA while endonuclease activity resides on the Cas9 protein.
- Nuclease-defective or nuclease-deficient Cas9 protein e.g., dCas9 with mutations on its nuclease domains retains DNA binding activity when complexed with sgRNA.
- dCas9 protein can tether and localize effector domains or protein tags by means of protein fusions to sites matched by sgRNA, thus constituting an RNA-guided DNA binding enzyme.
- dCas9 can be fused to transcriptional activation domain (e.g., VP64) or repressor domain (e.g., KRAB), and be guided by sgRNA to activate or repress target genes, respectively.
- transcriptional activation domain e.g., VP64
- repressor domain e.g., KRAB
- dCas9 can also be fused with fluorescent proteins and achieve live-cell fluorescent labeling of chromosomal regions.
- Cas9-effector fusion is possible because sgRNA:Cas9 pairing is exclusive.
- multimerization of effector or protein tags by direct fusion with dCas9 protein is technically limited, by constraints such as difficulty in delivering the large DNA encoding such fusions, or difficulty in translating or translocating such large proteins into the nucleus due to protein size.
- Methylcytosine is an epigenetic mark generated via a process that covalently adds a methyl group at position 5 of the cytosine ring of a CpG DNA sequence.
- formation of 5-methylcytosine (5mC) is catalyzed and maintained by DNA methyltransferases.
- Demethylation pathways which remove the methyl group to restore unmethylated DNA, involve the ten-eleven translocation (TET) family of proteins. These are TET methylcytosine dioxygenases that catalyze the initial and critical step leading to replacing 5mC with unmethylated cytosine.
- CpG methylation is part of the multifaceted epigenetic modifications of chromatin that shape cellular differentiation, gene expression, and maintenance of cellular homeostasis.
- DNA methylation is a major mechanism in imprinting, tuning allelic expression of genes. Aberrant DNA methylation is implicated in various diseases including but not limited to cancer, imprinting disorders and neurological diseases (Robertson, K. D., DNA methylation and human disease . Nat Rev Genet, 2005. 6(8): p. 597-610).
- a demethylation complex in one aspect, includes:
- a method of demethylating a target nucleic acid sequence in a mammalian cell includes:
- a demethylation complex in one aspect, includes:
- a method of demethylating a target nucleic acid sequence in a mammalian cell includes:
- a demethylation complex in one aspect, includes:
- a method of demethylating a target nucleic acid sequence in a mammalian cell includes:
- kits in another aspect, includes:
- kits in another aspect, includes:
- a cell including a demethylation complex as provided herein including embodiments thereof is provided.
- FIGS. 1A-1D show that insertion of PUF binding site (PBS) sequences to sgRNA 3′-end did not substantially impact dCas9/sgRNA function, and that independent recruitment and multimerization of activators can be achieved using the subject 3-component CRISPR/Cas complex/system.
- FIG. 1A is a schematic drawing showing the subject 3-component CRISPR/Cas complex/system (upper right), which improves the conventional two-hybrid dCas9 fusion design (upper left) by splitting it into a three-hybrid system, in which sgRNA-PBS bridges the DNA binding activity of dCas9/sgRNA with the effector function provided by a PUF fusion.
- the middle panels represent the structure of a representative PUF (i.e., Pumilio /FBF) domain, showing the 8 repeats in the C to N direction and the corresponding interaction with the 8-mer target RNA in the 5′ to 3′ direction.
- PUF RNA recognition code table shows exemplary di-residues and the corresponding RNA base recognized.
- PBS PUF binding sites
- 1B upper panel, is a schematic for the experiment to test the ability of dCas9-VP64 to bind and activate a tdTomato transgene after inserting varying number of PBS at the 3′ end of the sgRNA, e.g., experimental set up for testing the effect of sgRNA-PBS (with 0, 5, 15, 25, or 47 PBS) on the ability of the dCas9::VP64 construct to activate a TetO::tdTomato transgene.
- the lower panel is column plot showing the mean fold changes ( ⁇ S.E.M.) in tdTomato fluorescence (relative to the dCas9-VP64/sgCtl-0 ⁇ PBSa control), as measured by fluorescence activated cell sorting (FACS), of cells transfected with the different constructs indicated in the legend below the plot.
- the legend describes the sgRNA used in three parameters: sgRNA match refers to the DNA target recognized by the sgRNA; #PBS and PBS Type indicate the number and the types of PBS, respectively, appended to the end of the sgRNA.
- FIG. 1C upper panel, is a schematic describing the experiment to test activation of a TetO::tdTomato transgene by the subject activator with different numbers of appended PBS.
- the lower panel is a column plot showing the fold changes ( ⁇ S.E.M.) of tdTomato fluorescence (relative to control dCas9/PUFb-VP64/sgCtl-0 ⁇ PBSb) of cells transfected with the different constructs indicated in the legend blow the plot.
- the legend describes the PUF isotype (PUF-VP64) used and the sgRNA-PBS used in terms of the number and type of PBS as well as the DNA target recognized by sgRNA indicated by shaded boxes.
- 1D upper panel, is a schematic illustrating the experiment to test the independency of the subject activator isotypes in activating a TetO::tdTomato transgene.
- the lower panel is a column plot showing the mean fold changes ( ⁇ S.E.M.) of tdTomato fluorescence (relative to the respective controls dCas9/PUFx-VP64/sgCtl-5 ⁇ PBSx for PUF/PBS isotype x) of cells transfected with the different constructs indicated in the legend below the plot.
- PUF-VP64 the PUF isotype used (PUF-VP64), the PBS isotype (5 ⁇ PBS; “-” indicates sgRNA without PBS) and DNA target indicated by shaded boxes (sgRNA Match). All plots show results of three replicate measurements.
- FIGS. 2A-2C relate to the assembly of the subject 3-component CRISPR/Cas complex/system comprising VP64 and P65-HSF1.
- FIG. 2A is a schematic of the experiment testing the assembly of PUF(3-2)::VP64 and PUF(6-2/7-2)::P65-HSF1 via recruitment by sgRNA containing both PBS32 and PBS6272. The activity was measured by the tdTomato fluorescent reporter activity.
- FIG. 2A is a schematic of the experiment testing the assembly of PUF(3-2)::VP64 and PUF(6-2/7-2)::P65-HSF1 via recruitment by sgRNA containing both PBS32 and PBS6272. The activity was measured by the tdTomato fluorescent reporter activity.
- FIG. 2B is a column chart showing the relative mean tdTomato fluorescence resulting from transfecting the activator protein(s) with non-targeting (sgControl) and Tet-targeting (sgTetO) sgRNAs with 4 ⁇ [PBS32-PBS6272] heterodimer sites.
- FIG. 2C shows comparison of the subject 3-component system activator using VP64 (PUFa::VP64) versus p65HSF1 (PUFa::p65HSF1) as the activation domain in conjunction with Control sgRNA with 5 ⁇ PBSa or TetO-targeting sgRNA with 0, 1, 5, 15, or 25 copies of PBSa.
- FIGS. 3A-3C The figures show Casilio-ME outperforms dCas9-direct tethering system in delivering TET1(CD) to genomic loci and mediating gene activation.
- FIG. 3A is a schematic representation of the hMLH1 promoter with regions of CpG hypermethylation shown by lollipops. Numbering of nucleotide is according to previous study reporting a strong association of hypermethylation in region C with hMLH1 silencing (Deng, G., et al., Methylation of CpG in a small region of the hMLH 1 promoter invariably correlates with the absence of gene expression . Cancer Res, 1999. 59(9): p. 2029-33).
- FIG. 3B shows relative change in hMLH1 mRNA levels in cells transfected with Casilio components PUFa-TET1(CD), TET1(CD)-PUFa or PUFa-p65HSF1 and the combination of sgRNAs indicated by shaded boxes under the graph.
- Drawings depict the Casilio system showing the effector modules used in each set of experiments and data were plotted that reflect the respective effector in application.
- 3C shows relative change in hMLH1 mRNA levels in cells transfected with dCas9-tethered effectors dCas9-TET1(CD)C-terminal fusion, TET1(CD)-dCas9 N-terminal fusion or dCas9-p65HSF1 and the combination of sgRNAs indicated by shaded boxes under the graph.
- Drawings depict the dCas9 fusion used for each set of experiments and data were plotted to reflect the respective effector used.
- N i.e., N-terminus
- C i.e., C-terminus
- FIGS. 4A-4C The figures show that Casilio-ME mediates robust demethylation of methylcytosine via targeting TET1 activity to hMLH1 promoter region.
- FIG. 4A is a time course of relative change in hMLH1 mRNA levels in cells transfected with Casilio components PUFa-TET1(CD) and the combination of sgRNAs indicated by shaded boxes under the graph. Drawing over the plot depicts the Casilio-ME system showing the carboxyterminal-TET1(CD) fusion module used and relative changes in hMLH1 mRNA levels were plotted against post-transfection time in which cells were harvested for analyses. Error bars indicate s.e.m derived from triplicate experiments.
- FIG. 4A is a time course of relative change in hMLH1 mRNA levels in cells transfected with Casilio components PUFa-TET1(CD) and the combination of sgRNAs indicated by shaded boxes under the graph. Drawing over the plot depicts the Ca
- FIG. 4B is Western blot analysis of protein extracted from indicated cell samples using anti-hMLH1 or anti-3 Actin monoclonal antibodies as shown. Proteins extracted form untransfected cells HEK293T (untreated) or treated with 2.5 ⁇ M 5′-Azacytidine (AzaC), HEK293 cells (293), and transfected HEK293T cells in the presence of a non-targeting control guide RNA (NTC) were analyzed in parallel with extracts from time course samples that were transfected with Casilio-Me components targeting the hMLH1 promoter region.
- FIG. 4C shows frequency of cytosine to thymine bisulfite-mediated conversion of individual CpGs of the hMLH1 promoter region.
- FIGS. 5A-5C The figures show that different configurations of Casilio-ME Dnmt effectors were tested.
- FIG. 5A shows a direct fusions of C-terminal regions of (i) Dnmt3a, (ii) Dnmt3L, and (iii) Dnmt3a-3L (hybrid) to N-terminus of dCas9; (iv) Dnmt3a, (v) Dnmt3L, and (vi) Dnmt3a-3L hybrid to C-terminus of dCas9.
- FIG. 5A shows a direct fusions of C-terminal regions of (i) Dnmt3a, (ii) Dnmt3L, and (iii) Dnmt3a-3L (hybrid) to N-terminus of dCas9; (iv) Dnmt3a, (v) Dnmt3L, and (vi) Dnmt3
- FIG. 5B shows PUF effector fusion of C-terminal regions of (i) Dnmt3a, (ii) Dnmt3L, and (iii) Dnmt3a-3L to N-terminus of PUF domain; (iv) Dnmt3a, (v) Dnmt3L and (vi) Dnmt3a-3L to C-terminus of PUF domain.
- FIG. 5C shows Casilio can potentially recruit different Dnmt effectors fused to different PUF domains via a guide containing the corresponding PBS.
- FIGS. 6A-6B show SOX2 gene expression changes induced by targeting of Casilio-ME Dnmt modules to SOX2 promoter.
- FIG. 6A shows relative SOX2 expression level in cells transfected with different dCas9-Dnmt enzymes and control guides or guides targeting SOX2 promoter.
- FIG. 6B shows relative SOX2 expression level in cells transfected with different dCas9-Dnmt enzymes and control guides or guides targeting SOX2 promoter.
- FIGS. 7A-7E show that GADD45A boosts Casilio-ME capability to impart TET1-mediated activation to methylation-silenced gene.
- FIG. 7A depicts the Casilio and Casilio-ME platforms to show the various combinations of effector modules used in each set of experiment. Engineered protein fusions are shown with amino-termini and carboxyl-termini located at the left and right sides of each drawing respectively. The scaffold of the gRNA was altered to include 5 copies of PUFa or PUFa and PUFc binding sites.
- FIG. 7B is a schematic representation of the hMLH1 promoter with regions of CpG hypermethylation shown by lollipops. Numbering of nucleotide is based on a strong association of hypermethylation in region C with hMLH1 silencing (Deng, Cancer Res. 59(9):2029-2033, 1999). sgRNAs designed around the hypermethylated region B and C are shown by numbers over short lines.
- FIG. 7B is a schematic representation of the hMLH1 promoter with regions of CpG hypermethylation shown by lollipops. Numbering of nucleotide is based on a strong association of hypermethylation in region C with hMLH1 silencing (Deng, Cancer Res. 59(9):2029-2033, 1999). sgRNAs designed around the hypermethylated region B and C are shown by numbers over short lines.
- FIG. 7C shows relative change in hMLH1 mRNA levels in HEK293T cells transfected with Casilio-ME components as indicated. Shaded boxes in the matrix under the graph indicate effectors and sgRNAs used in each experiment. Error bars indicate s.e.m derived from triplicate experiments.
- FIG. 7D shows results of Western blot analysis of whole cell extracts from HEK293T cells transfected with the indicated Casilio-ME effector modules.
- Lane 1-untransfected cells Lane 2-PUFa-GADD45A-TET1(CD); Lane 3-PUFa-GADDA45A-TET1(CD) with a slight variation in the Glycine-Serine linker; Lane 4-GADD45A-PUFa-TET1(CD); and Lane 5-PUFa-TET1(CD). 50 ⁇ g of protein were separated on 10% SDS-PAGE and immunoblotted with the indicated antibodies. Size marker in kDa is shown.
- FIG. 7E shows relative change in hMLH1 mRNA levels in HEK293T cells transfected with Casilio-ME components as indicated.
- FIG. 8A-8D NEIL2, but not NEIL1, NEIL3 or TDG, enhances Casilio-ME efficiency to deliver TET1-mediated activation to methylation-silenced gene.
- FIG. 8A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL-based effector modules used in each experiment. For simplicity, NEIL1, NEIL2 and NEIL3 were depicted as NEIL. Engineered protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown gRNA scaffold was altered to include 5 copies of PUFa-binding sites (5 ⁇ PBSa).
- Shapes are arbitrary drawn not to scale with NEIL1, NEIL2, and NEIL3 (NEIL), TET1(CD) (Ten eleven methylcytosine dioxygenase catalytic domain (1418 to 2136)), and PUFa are shown.
- FIG. 8B Relative change in hMLH1 mRNA levels in HEK293T cells transfected with Casilio-ME components as indicated. Column shadings reflect different group of indicated PUFa fusions. Error bars indicate S.E.M derived from triplicate experiments.
- FIG. 8C Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) and TDG-based PUFa fusions effectors used in each experiment.
- Protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively.
- the shown gRNA scaffold was altered to include 5 copies of PUFa-binding sites (5 ⁇ PBSa). Shapes are arbitrary drawn not to scale with TDG, TET1(CD) (Ten eleven methylcytosine dioxygenase catalytic domain (1418 to 2136)), and PUFa are shown.
- FIG. 8D Relative change in hMLH1 mRNA levels in HEK293T cells transfected with Casilio-ME components as indicated. Column shadings reflect indicated PUFa fusions. Error bars indicate S.E.M. derived from triplicate experiments.
- FIG. 9A-9B NEIL2 two-in-one effector enhances Casilio-ME efficiency to deliver TET1-mediated activation to methylation-silenced MLH1 gene.
- FIG. 9A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL2-based effector modules used in each experiment. Protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown gRNA scaffold was altered to include 5 copies of PUFa-binding sites (5 ⁇ PBSa). Shapes are arbitrary drawn not to scale with NEIL2, TET1(CD), and PUFa are shown.
- FIG. 9A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL2-based effector modules used in each experiment. Protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown gRNA scaffold was altered to include
- FIG. 10A-10B Co-targeting of NEIL2 and TET1 effector modules robustly enhances TET1 mediated MLH1 activation.
- FIG. 10A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL2 effector modules used in each experiment. Engineered protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown gRNA scaffold was altered to include 5 copies of PUFa and PUFc-binding sites (5 ⁇ PBSa and 5 ⁇ PBSc). Shapes are arbitrary drawn not to scale with NEIL2, TET1(CD), PUFa, and PUFc are shown.
- FIG. 10A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL2 effector modules used in each experiment. Engineered protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown
- FIG. 11A-11B TET1 mediated MLH1 activation without NEIL2 recruitment to target site.
- FIG. 11A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL2 effector modules used in each experiment. Protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown gRNA scaffold was altered to include 5 copies of PUFa-binding sites (5 ⁇ PBSa) with no PUFc-binding site. Shapes are arbitrary drawn not to scale with NEIL2, TET1(CD), PUFa, and PUFc are shown.
- FIG. 11A Drawings depict the Casilio-ME platform to show the PUFa-TET1(CD) effector and NEIL2 effector modules used in each experiment. Protein fusions are shown with amino and carboxyl termini located at the left and right sides of each drawing respectively. The shown gRNA scaffold was altered to include 5 copies of PUFa-binding sites
- compositions and methods provided herein including embodiments thereof provide a methylation-editing (ME) platform allowing for targeted delivery of enhanced demethylation activity by delivering a TET demethylation domain (e.g., TET catalytic domain) or functional fragment thereof together with a demethylation enhancer domain (e.g., a GADD45A domain, a NEIL2 domain), to specific genomic loci, such as CpG islands, and thereby inducing enhanced demethylation DNA of said loci relative to the absence of said enhancer domain.
- a TET demethylation domain e.g., TET catalytic domain
- a demethylation enhancer domain e.g., a GADD45A domain, a NEIL2 domain
- demethylation domains and demethylation enhancer domains provided herein may be delivered to a specific site in the genome of a mammalian cell by using a complex which includes a polynucleotide (e.g., guide RNA) bound to a nuclease-deficient DNA endonuclease (e.g., dCas9) and protein conjugates including a PUF domain, a demethylation domain (e.g., TET1 catalytic domain) and a demethylation enhancer domain (e.g., a GADD45A domain or a NEIL2 domain).
- a polynucleotide e.g., guide RNA
- a nuclease-deficient DNA endonuclease e.g., dCas9
- protein conjugates including a PUF domain, a demethylation domain (e.g., TET1 catalytic domain) and a demethylation enhancer domain (e.g.,
- the demethylation protein conjugate includes: (i) a PUF domain having a C-terminus and a N-terminus; (ii) a TET demethylation domain operably linked to the C-terminus of the PUF domain; and (iii) a demethylation enhancer domain operably linked to the N-terminus of the PUF domain, to form a protein conjugate, and the demethylation protein conjugate binds to the ribonucleoprotein complex via the PUF domain binding to the one or more PBS sequences to form a demethylation complex.
- the demethylation protein conjugate includes (i) a PUF domain having a C-terminus; (ii) a demethylation enhancer domain, having a N-terminus and a C-terminus, wherein the N-terminus of the demethylation enhancer domain is operably linked to the C-terminus of the PUF domain; and (iii) a TET demethylation domain operably linked to the C-terminus of said demethylation enhancer domain; and the demethylation protein conjugate binds to the ribonucleoprotein complex via the PUF domain binding to the one or more PBS sequences to form a demethylation complex.
- a demethylation protein conjugate includes (i) a first PUF domain having a C-terminus, and (ii) a TET demethylation domain operably linked to the C-terminus of the first PUF domain, wherein the demethylation protein conjugate binds to the ribonucleoprotein complex via the first PUF domain binding to the first PBS sequence; and a demethylation enhancer conjugate including (i) a second PUF domain; and (ii) a demethylation enhancer domain operably linked to the second PUF domain, wherein the demethylation enhancer conjugate binds to the ribonucleoprotein complex via the second PUF domain binding to the second PBS sequence to form a demethylation complex.
- the demethylation enhancer domain may be linked to the same PUF domain as the demethylation domain (demethylation protein conjugate).
- the demethylation enhancer domain may be connected to the guide RNA through a separate PUF domain (demethylation enhancer conjugate).
- the demethylation complexes provided herein including embodiments thereof are based on a three-component hybrid system that includes CRISPR/Cas9 and Pumilio proteins.
- the three-component hybrid system that includes CRISPR/Cas9 and Pumilio proteins may also be referred to interchangeably as the Casilio system, and the methylation-editing (ME) platform based on the Casilio system is sometimes referred to as Casilio-ME.
- the demethylation domain e.g., TET demethylase
- PAF domains Pumilio proteins or functional fragments thereof
- compositions and methods provided herein including embodiments thereof are advantageous over the past attempts to modulate methylation status of a target gene by introducing a DNA demethylase into a target cell, in that the present invention allows for increased demethylation of the targeted gene locus by delivering a demethylation enzyme together with an enhancer of said demethylation enzyme.
- Such system provides a superior demethylation activity to a target gene to alter the methylation status.
- the demethylation efficiency of complexes including a TET demethylation domain can be significantly increased by including demethylation enhancers in the complex.
- the present inventors discovered that the increase in demethylation efficiency upon inclusion of an enhancer domain depends on: (i) the type of enhancer protein present; (ii) the orientation in which the enhancer domain is linked to the PUF domain of the demethylation protein conjugate and (iii) the manner in which the demethylation enhancer domain is linked to the PUF domain and connected to the demethylation domain (e.g., from N- to C-terminus the conjugate may include a PUF domain linked to a demethylation enhancer domain linked to a demethylation domain, or a PUF domain linked to a demethylation domain linked to a demethylation enhancer domain).
- Applicants have found that complexes where the demethylation domain (e.g., TET1 catalytic domain) is linked to the C-terminus of the PUF domain are significantly more effective relative to complexes with the demethylation domain (e.g., TET1 catalytic domain) linked to the N-terminus of the PUF domain.
- C-terminal linked TET activity demethylation activity of TET1, TET2, or TET3
- specific demethylation enhancers e.g., GADD45A, NEIL2
- the enhancer is a NEIL glycosylase (e.g., NEIL1, NEIL2, or NEIL3)
- NEIL1 NEIL2
- NEIL3 NEIL3 glycosylase
- a demethylation domain as referred to herein is a protein domain capable of demethylating a target nucleic acid.
- the demethylation domain includes the catalytic domain of a demethylation enzyme (e.g., the catalytic domain of TET1).
- the demethylation domain is the catalytic domain of a demethylation enzyme.
- a “demethylation enhancer domain”, “demethylation enhancer protein” or “demethylation enhancer enzyme” as provided herein refers to a protein, protein domain or protein moiety capable of positively affecting (e.g. increasing) the activity or function of a demethylation enzyme or demethylation domain, relative to the activity or function of the demethylation enzyme or demethylation domain in the absence of the activator (e.g. demethylation enhancer domain described herein).
- the demethylation enhancer domain may, at least in part, partially or totally increase stimulation, increase or enable activation, or activate the demethylation enzyme.
- the amount of increase in activity may be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more in comparison to a control in the absence of the demethylation enhancer domain.
- the activity is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more than the activity in the absence of the demethylation enhancer domain.
- the demethylation enhancer domain increases demethylation of the TET demethylation domain by 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, or 20-fold.
- the demethylation enhancer domain increases demethylation of the TET demethylation domain at least by 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, or 20-fold.
- demethylation protein conjugates and demethylation enhancer conjugates useful for demethylating target loci in a cell.
- the demethylation protein conjugates include a PUF domain described herein, a TET demethylation domain (e.g., a TET1 domain, a TET1 catalytic domain) linked to the C-terminus of the PUF domain and a demethylation enhancer domain (e.g., a NEIL2 domain or a GADD45A domain).
- the demethylation enhancer domain may be linked to the N-terminus or the C-terminus of the PUF domain.
- the demethylation enhancer domain is linked to the N-terminus of the PUF domain the TET demethylation domain and the demethylation enhancer domain are not directly linked, but connected through the PUF domain.
- the demethylation enhancer domain is linked to the C-terminus of the PUF domain it connects the PUF domain to the TET demethylation domain.
- the C-terminus of the PUF domain is linked to the demethylation enhancer domain and the C-terminus of the demethylation enhancer domain is linked to the TET demethylation domain.
- the complexes provided herein may include a demethylation protein conjugate including a first PUF domain and a demethylation domain (e.g., a TET1 domain), wherein the TET demethylation domain is linked to the C-terminus of the PUF domain, and a demethylation enhancer conjugate including a second PUF domain and a demethylation enhancer domain (e.g., a NEIL2 domain or a GADD45A domain).
- a demethylation protein conjugate including a first PUF domain and a demethylation domain (e.g., a TET1 domain), wherein the TET demethylation domain is linked to the C-terminus of the PUF domain
- a demethylation enhancer conjugate including a second PUF domain and a demethylation enhancer domain (e.g., a NEIL2 domain or a GADD45A domain).
- the demethylation enhancer domain is operably linked to the N-terminus of the PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the C-terminus of the PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the N-terminus of the second PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the C-terminus of the second PUF domain.
- the demethylation enhancer domain is a Growth Arrest and DNA-Damage-inducible Alpha (GADD45A) domain.
- the GADD45 domain has the amino acid sequence of SEQ ID NO:85.
- the demethylation enhancer domain is a NEIL2 domain.
- the NEIL2 domain has the amino acid sequence of SEQ ID NO:86.
- the demethylation enhancer domain is not a NEIL1 domain. In certain embodiments, the demethylation enhancer domain is not a NEIL3 domain.
- demethylation conjugates e.g., demethylation protein conjugate, demethylation enhancer conjugate
- demethylation conjugates including (i) a PUF domain operably linked to a demethylation domain and a demethylation enhancer domain (demethylation protein conjugate), (ii) a first PUF domain operably linked to a demethylation domain (demethylation protein conjugate) or (iii) a second PUF domain operably linked to a demethylation enhancer domain, respectively (demethylation enhancer conjugate).
- a demethylation protein conjugate as provided herein includes (i) a PUF domain linked to demethylation domain and a demethylation enhancer domain or (ii) a first PUF domain linked to a demethylation domain.
- a demethylation enhancer domain includes a second PUF domain linked to a demethylation enhancer domain.
- the demethylation domain is operably linked to the C-terminus of the PUF domain to form a protein conjugate.
- the demethylation enhancer domain may be linked to the C-terminus of the PUF domain, to the N-terminus of the PUF domain, or the demethylation enhancer domain may bind the polynucleotide (e.g., gRNA) linked to a separate PUF domain (i.e., a PUF domain not linked to the demethylation domain).
- the demethylation domain forms part of a demethylation protein conjugate and is linked to a first PUF domain
- the demethylation enhancer domain forms part of a demethylation enhancer protein conjugate and is linked to a second PUF domain.
- the demethylation protein conjugate binds the polynucleotide through binding of the first PUF domain to the first PBS sequence and the demethylation enhancer protein conjugate binds the polynucleotide through binding of the second PUF domain to the second PBS sequence.
- a demethylation complex includes:
- a demethylation complex in one aspect, includes:
- a demethylation complex in one aspect, includes:
- the TET demethylation domain is a TET1 domain (i.e., TET1 catalytic domain), a TET2 domain (i.e., TET2 catalytic domain) or a TET3 domain (i.e., TET3 catalytic domain).
- the TET demethylation domain is a TET1 domain.
- the TET demethylation domain is a TET2 domain.
- the TET demethylation domain is a TET3 domain.
- the TET demethylation domain is a TET1 catalytic domain.
- the TET demethylation domain is a TET2 catalytic domain.
- the TET demethylation domain is a TET3 catalytic domain. In certain embodiments, the TET1 domain has the sequence of SEQ ID NO:51. In certain embodiments, the demethylation enhancer domain is a Growth Arrest and DNA-Damage-inducible Alpha (GADD45A) domain. In certain embodiments, the GADD45 domain has the amino acid sequence of SEQ ID NO:85. In certain embodiments, the demethylation enhancer domain is a NEIL2 domain. In certain embodiments, the NEIL2 domain has the amino acid sequence of SEQ ID NO:86.
- a “ribonucleoprotein complex” as provided herein refers to a complex including a nucleoprotein and a ribonucleic acid.
- a “nucleoprotein” as provided herein refers to a protein capable of binding a nucleic acid (e.g., RNA, DNA). Where the nucleoprotein binds a ribonucleic acid it is referred to as “ribonucleoprotein.”
- the interaction between the ribonucleoprotein and the ribonucleic acid may be direct, e.g., by covalent bond, or indirect, e.g., by non-covalent bond (e.g. electrostatic interactions (e.g.
- the ribonucleoprotein includes an RNA-binding motif non-covalently bound to the ribonucleic acid.
- positively charged aromatic amino acid residues e.g., lysine residues
- the RNA-binding motif may form electrostatic interactions with the negative nucleic acid phosphate backbones of the RNA, thereby forming a ribonucleoprotein complex.
- Non-limiting examples of ribonucleoproteins include ribosomes, telomerase, RNAseP, hnRNP, CRISPR associated protein 9 (Cas9) and small nuclear RNPs (snRNPs).
- the ribonucleoprotein may be an enzyme.
- the ribonucleoprotein is an endonuclease.
- the ribonucleoprotein is a nuclease-deficient RNA-guided DNA endonuclease enzyme.
- the ribonucleoprotein complex includes an nuclease-deficient RNA-guided DNA endonuclease enzyme and a ribonucleic acid.
- the nuclease-deficient RNA-guided DNA endonuclease enzyme includes a nuclear localization signal (NLS).
- the nuclear localization signal (NLS) provided herein provides for nuclear transport of the protein domain or protein, for example the nuclease-deficient RNA-guided DNA endonuclease enzyme, the NLS is linked to.
- the nuclease-deficient RNA-guided DNA endonuclease enzyme is nuclease-deficient CRISPR associated protein 9 (dCas9). In certain embodiments, the nuclease-deficient RNA-guided DNA endonuclease enzyme is nuclease-deficient Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpfl).
- the polynucleotide provided herein includes (1) a DNA-targeting sequence that is complementary to a target polynucleotide sequence, (2) a binding sequence for the nuclease-deficient RNA-guided DNA endonuclease enzyme (e.g., dCas9), and (3) one or more PUF binding site (PBS) sequences (e.g., a first (3) and a second (4) PBS sequence).
- the complex includes dCas9 bound to the polynucleotide thereby forming a ribonucleoprotein complex.
- the polynucleotide is a ribonucleic acid.
- the polynucleotide is a guide RNA.
- a “guide RNA” or “gRNA” as provided herein refers to a ribonucleotide sequence capable of binding a nucleoprotein, thereby forming ribonucleoprotein complex.
- the polynucleotide (e.g., gRNA) is a single-stranded ribonucleic acid. In certain embodiments, the polynucleotide (e.g., gRNA) is 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more nucleic acid residues in length. In certain embodiments, the polynucleotide (e.g., gRNA) is from 10 to 30 nucleic acid residues in length. In certain embodiments, the polynucleotide (e.g., gRNA) is 20 nucleic acid residues in length.
- the length of the polynucleotide can be at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 or more nucleic acid residues or sugar residues in length.
- the polynucleotide (e.g., gRNA) is from 5 to 50, 10 to 50, 15 to 50, 20 to 50, 25 to 50, 30 to 50, 35 to 50, 40 to 50, 45 to 50, 5 to 75, 10 to 75, 15 to 75, 20 to 75, 25 to 75, 30 to 75, 35 to 75, 40 to 75, 45 to 75, 50 to 75, 55 to 75, 60 to 75, 65 to 75, 70 to 75, 5 to 100, 10 to 100, 15 to 100, 20 to 100, 25 to 100, 30 to 100, 35 to 100, 40 to 100, 45 to 100, 50 to 100, 55 to 100, 60 to 100, 65 to 100, 70 to 100, 75 to 100, 80 to 100, 85 to 100, 90 to 100, 95 to 100, or more residues in length.
- the polynucleotide (e.g., gRNA) is from 10 to 15, 10 to 20, 10 to 30, 10 to 40, or 10 to 50 residues in length.
- transcription of the polynucleotide is under the control of a constitutive promoter, such as a CMV promoter or a Ubc promoter, or an inducible promoter, such as a tetracycline-responsive promoter or a steroid-responsive promoter.
- a constitutive promoter such as a CMV promoter or a Ubc promoter
- an inducible promoter such as a tetracycline-responsive promoter or a steroid-responsive promoter.
- the polynucleotide is a vector.
- the vector encoding the polynucleotide (for use in the methods of the invention) is active in a cell from a mammal (a human; a non-human primate; a non-human mammal; a rodent such as a mouse, a rat, a hamster, a guinea pig; a livestock mammal such as a pig, a sheep, a goat, a horse, a camel, cattle; or a pet mammal such as a cat or a dog); a bird, a fish, an insect, a worm, a yeast, or a bacterium.
- a mammal a human; a non-human primate; a non-human mammal; a rodent such as a mouse, a rat, a hamster, a guinea pig; a livestock mammal such as a pig, a sheep, a goat, a horse, a camel, cattle; or
- the vector is a plasmid, a viral vector (such as adenoviral, retroviral, or lentiviral vector, or AAV vector), or a transposon (such as piggyBac transposon).
- the vector can be transiently transfected into a host cell, or be integrated into a host genome by infection or transposition.
- the polynucleotide includes a nucleotide sequence complementary to a target site (e.g., target polynucleotide sequence), which is referred to herein as “DNA-targeting sequence.”
- the DNA-targeting sequence may mediate binding of the ribonucleoprotein complex to a complementary target polynucleotide sequence thereby providing the sequence specificity of the ribonucleoprotein complex.
- the polynucleotide e.g., gRNA
- the polynucleotide e.g., gRNA
- the polynucleotide binds a target polynucleotide sequence.
- the complement of the polynucleotide has a sequence identity of 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% to the target polynucleotide sequence.
- the complement of the DNA-targeting sequence has a sequence identity of 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% to the target polynucleotide sequence.
- the DNA-targeting sequence may or may not be 100% complementary to the target polynucleotide sequence.
- the DNA-targeting sequence is complementary to the target polynucleotide sequence over 8-25 nucleotides (nts), 12-22 nucleotides, 14-20 nts, 16-20 nts, 18-20 nts, or 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nts.
- the complementary region comprises a continuous stretch of 12-22 nts, preferably at the 3′ end of the DNA-targeting sequence.
- the 5′ end of the DNA-targeting sequence has up to 8 nucleotide mismatches with the target polynucleotide sequence.
- the DNA-binding sequence is 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100% complementary to the target polynucleotide sequence.
- nuclease-deficient RNA-guided DNA endonuclease in the complex is a nuclease-deficient wildtype Cas9 protein (nuclease-deficient wt Cas9 protein) which, under the circumstance, binds but does not cut a target DNA (e.g., dCas9 protein).
- the nuclease-deficient RNA-guided DNA endonuclease is a nuclease-deficient Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpfl).
- the DNA-targeting sequence is functionally similar or equivalent to the crRNA or guide RNA or gRNA of the CRISPR/Cas complex/system.
- the DNA-targeting sequence may not originate from any particular crRNA or gRNA, but can be arbitrarily designed based on the sequence of the target polynucleotide sequence.
- the DNA-targeting sequence includes a nucleotide sequence that is complementary to a specific sequence within a target DNA (or the complementary strand of the target DNA).
- the DNA-targeting sequence interacts with a target polynucleotide sequence of the target DNA in a sequence-specific manner via hybridization (i.e., base pairing).
- the nucleotide sequence of the DNA-targeting sequence may vary, and it determines the location within the target DNA that the subject polynucleotide and the target DNA will interact.
- the DNA-targeting sequence can be modified or designed (e.g., by genetic engineering) to hybridize to any desired sequence within the target DNA.
- the target polynucleotide sequence is immediately 3′ to a PAM (protospacer adjacent motif) sequence of the complementary strand, which can be 5′-CCN-3′, wherein N is any DNA nucleotide. That is, in this embodiment, the complementary strand of the target polynucleotide sequence is immediately 5′ to a PAM sequence that is 5′-NGG-3′, wherein N is any DNA nucleotide.
- the PAM sequence of the complementary strand matches the nuclease-deficient wt Cas9 protein or dCas9.
- the DNA-targeting sequence can have a length of from 12 nucleotides to 100 nucleotides.
- the DNA-targeting sequence can have a length of from 12 nucleotides (nt) to 80 nt, from 12 nt to 50 nt, from 12 nt to 40 nt, from 12 nt to 30 nt, from 12 nt to 25 nt, from 12 nt to 20 nt, or from 12 nt to 19 nt.
- the DNA-targeting sequence can have a length of from 19 nt to 20 nt, from 19 nt to 25 nt, from 19 nt to 30 nt, from 19 nt to 35 nt, from 19 nt to 40 nt, from 19 nt to 45 nt, from 19 nt to 50 nt, from 19 nt to 60 nt, from 19 nt to 70 nt, from 19 nt to 80 nt, from 19 nt to 90 nt, from 19 nt to 100 nt, from 20 nt to 25 nt, from 20 nt to 30 nt, from 20 nt to 35 nt, from 20 nt to 40 nt, from 20 nt to 45 nt, from 20 nt to 50 nt, from 20 nt to 60 nt, from 20 nt to 70 nt, from 20 nt to 80 nt, from 20 nt to 90 n, from
- the nucleotide sequence of the DNA-targeting sequence that is complementary to a target polynucleotide sequence of the target DNA can have a length of at least 12 nt.
- the DNA-targeting sequence that is complementary to a target polynucleotide sequence of the target DNA can have a length at least 12 nt, at least 15 nt, at least 18 nt, at least 19 nt, at least 20 nt, at least 25 nt, at least 30 nt, at least 35 nt or at least 40 nt.
- the DNA-targeting sequence that is complementary to a target polynucleotide sequence of a target DNA can have a length of from 12 nucleotides (nt) to 80 nt, from 12 nt to 50 nt, from 12 nt to 45 nt, from 12 nt to 40 nt, from 12 nt to 35 nt, from 12 nt to 30 nt, from 12 nt to 25 nt, from 12 nt to 20 nt, from 12 nt to 19 nt, from 19 nt to 20 nt, from 19 nt to 25 nt, from 19 nt to 30 nt, from 19 nt to 35 nt, from 19 nt to 40 nt, from 19 nt to 45 nt, from 19 nt to 50 nt, from 19 nt to 60 nt, from 20 nt to 25 nt, from 20 nt to 30 nt, from 20 nt, from
- the DNA-targeting sequence that is complementary to a target polynucleotide sequence of the target DNA is 20 nucleotides in length. In some cases, the DNA-targeting sequence that is complementary to a target polynucleotide sequence of the target DNA is 19 nucleotides in length.
- the percent complementarity between the DNA-targeting sequence and the target polynucleotide sequence of the target DNA can be at 50% (e.g., at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97%, at least 98%, at least 99%, or 100%). In some cases, the percent complementarity between the DNA-targeting sequence and the target polynucleotide sequence is 100% over the seven or eight contiguous 5′-most nucleotides of the target polynucleotide sequence.
- the percent complementarity between the DNA-targeting sequence and the target polynucleotide sequence is at least 60% over 20 contiguous nucleotides. In some cases, the percent complementarity between the DNA-targeting sequence and the target polynucleotide sequence is 100% over the 7, 8, 9, 10, 11, 12, 13, or 14 contiguous 5′-most nucleotides of the target polynucleotide sequence (i.e., the 7, 8, 9, 10, 11, 12, 13, or 14 contiguous 3′-most nucleotides of the DNA-targeting sequence), and as low as 0% over the remainder. In such a case, the DNA-targeting sequence can be considered to be 7, 8, 9, 10, 11, 12, 13, or 14 nucleotides in length, respectively.
- a “target polynucleotide sequence” as provided herein is a nucleic acid sequence expressed by a cell.
- the target polynucleotide sequence is an exogenous nucleic acid sequence.
- the target polynucleotide sequence is an endogenous nucleic acid sequence.
- the target polynucleotide sequence forms part of a cellular gene.
- the target polynucleotide sequence is part of a gene.
- the target polynucleotide sequence is part of a Sox gene.
- the target polynucleotide sequence is part of a transcriptional regulatory sequence.
- the target polynucleotide sequence is part of a promoter, enhancer or silencer. In certain embodiments, the target polynucleotide sequence is a hypermethylated nucleic acid sequence. In certain embodiments, the target polynucleotide sequence is a hypermethylated CpG sequence. In certain embodiments, the target polynucleotide sequence is part of an hMLH1 promoter.
- the target sequence is an RNA.
- the target sequence is a DNA.
- the first segment is generally referred to as the “DNA-targeting sequence” when the target sequence is a DNA (such as a genomic DNA).
- the description herein below applies generally as well except that the reference to “DNA-targeting sequence” is replaced with “RNA-targeting sequence,” in order to avoid redundancy. That is, the polynucleotide includes a nucleotide sequence complementary to the target polynucleotide sequence (DNA or RNA).
- the three segments (1)-(3) are arranged, in that order, from 5′ to 3′. In certain embodiments, the three segments (1)-(4) are arranged, in that order, from 5′ to 3′.
- the polynucleotide of the invention can be a single RNA molecule (single RNA polynucleotide), which may include a “single-guide RNA,” or “sgRNA.”
- the polynucleotide of the invention includes two RNA molecules (e.g., joined together via hybridization at the binding sequence (e.g., nuclease-deficient wt Cas9 protein- or dCas9-binding sequence)).
- the subject polynucleotide is inclusive, referring both to two-molecule polynucleotides and to single-molecule polynucleotides (e.g., sgRNAs).
- the target polynucleotide sequence is at, near, or within a promoter sequence. In certain embodiments, the target polynucleotide sequence is within a CpG island. In certain embodiments, the target polynucleotide sequence is known to be associated with a disease or condition characterized by DNA hypo- or hyper-methylation. In certain embodiments, the target polynucleotide sequence is within a tumor suppressor gene or an oncogene, such as within a transcriptional regulatory sequence/element of the tumor suppressor gene or oncogene.
- the target polynucleotide sequence is immediately 3′ to a PAM (protospacer adjacent motif) sequence of the target polynucleotide sequence.
- the PAM sequence of the target polynucleotide sequence is 5′-CCN-3′, wherein N is any DNA nucleotide.
- the PAM sequence of the target polynucleotide sequence matches the specific nuclease-deficient wt Cas9 protein or dCas9 protein or homologs or orthologs to be used.
- the target polynucleotide sequence in the genomic DNA must be complementary to the guide RNA sequence and must be immediately followed by the correct protospacer adjacent motif or PAM sequence.
- the PAM sequence is present in the target polynucleotide sequence but not in the guide RNA sequence. Any DNA sequence with the correct target polynucleotide sequence followed by the PAM sequence will be bound by nuclease-deficient wt Cas9 protein or dCas9 protein.
- the PAM sequence is any of the PAM sequences disclosed in international application PCT/US2016/021491 and published as WO2016148994 A8, which is hereby incorporated by reference and for all purposes.
- the polynucleotide (e.g., gRNA) is 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% to the target polynucleotide sequence.
- the polynucleotide (e.g., gRNA) is 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% complementary to the sequence of a cellular gene.
- the polynucleotide (e.g., gRNA) binds a cellular gene sequence.
- the complex includes dCas9 bound to the polynucleotide through binding a binding sequence of the polynucleotide and thereby forming a ribonucleoprotein complex.
- the binding sequence forms a hairpin structure.
- the binding sequence is 30-100 nt, 35-50 nt, 37-47 nt, or 42 nt in length.
- An exemplary binding sequence is the sequence of SEQ ID NO:6 GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTA.
- Another exemplary binding sequence is the sequence of SEQ ID NO:7 GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTTTAAATAAGGCTA.
- the binding sequence includes the sequence of SEQ ID NO: 6. In certain embodiments, the binding sequence includes the sequence of SEQ ID NO: 7. In certain embodiments, the binding sequence is the sequence of SEQ ID NO: 6. In certain embodiments, the binding sequence is the sequence of SEQ ID NO: 7.
- the binding sequence (protein-binding segment or protein-binding sequence) of the subject polynucleotide binds to a modified dCas9 protein (e.g., nuclease-deficient nickase or dCas9) which has reduced endonuclease activity, or lacks endonuclease activity.
- a modified dCas9 protein e.g., nuclease-deficient nickase or dCas9
- the binding sequence (protein-binding segment or protein-binding sequence) which may bind to modified Cas9 proteins (e.g., dCas9 protein) may simply be referred to as “Cas9-binding sequence” or “binding sequence” herein.
- the binding sequence (Cas9-binding sequence) of the invention binds to a dCas9, it is not prevented from binding to a wt Cas9 or a Cas9 nickase.
- the binding sequence (Cas9-binding sequence) of the invention binds to dCas9 as well as wt Cas9 and/or Cas9 nickase.
- the binding sequence interacts with or binds to a Cas9 protein (e.g., nuclease-deficient wt Cas9 protein, or dCas9 protein), and together they bind to the target polynucleotide sequence recognized by the DNA-targeting sequence.
- the binding sequence includes two complementary stretches of nucleotides that hybridize to one another to form a double stranded RNA duplex (a dsRNA duplex).
- nucleotides may be covalently linked by intervening nucleotides known as linkers or linker nucleotides (e.g., in the case of a single-molecule polynucleotide), and hybridize to form the double stranded RNA duplex (dsRNA duplex, or “Cas9-binding hairpin”) of the binding sequence (Cas9-binding sequence), thus resulting in a stem-loop structure.
- linkers or linker nucleotides e.g., in the case of a single-molecule polynucleotide
- Cas9-binding hairpin double stranded RNA duplex
- the two complementary stretches of nucleotides may not be covalently linked, but instead are held together by hybridization between complementary sequences (e.g., in the case of a two-molecule polynucleotide of the invention).
- the binding sequence can have a length of from 10 nucleotides to 100 nucleotides, e.g., from 10 nucleotides (nt) to 20 nt, from 20 nt to 30 nt, from 30 nt to 40 nt, from 40 nt to 50 nt, from 50 nt to 60 nt, from 60 nt to 70 nt, from 70 nt to 80 nt, from 80 nt to 90 nt, or from 90 nt to 100 nt.
- 10 nucleotides (nt) to 20 nt from 20 nt to 30 nt, from 30 nt to 40 nt, from 40 nt to 50 nt, from 50 nt to 60 nt, from 60 nt to 70 nt, from 70 nt to 80 nt, from 80 nt to 90 nt, or from 90 nt to 100 nt.
- the Cas9-binding sequence can have a length of from 15 nucleotides (nt) to 80 nt, from 15 nt to 50 nt, from 15 nt to 40 nt, from 15 nt to 30 nt, from 37 nt to 47 nt (e.g., 42 nt), or from 15 nt to 25 nt.
- the dsRNA duplex of the binding sequence can have a length from 6 base pairs (bp) to 50 bp.
- the dsRNA duplex of the binding sequence can have a length from 6 bp to 40 bp, from 6 bp to 30 bp, from 6 bp to 25 bp, from 6 bp to 20 bp, from 6 bp to 15 bp, from 8 bp to 40 bp, from 8 bp to 30 bp, from 8 bp to 25 bp, from 8 bp to 20 bp or from 8 bp to 15 bp.
- the dsRNA duplex of the binding sequence can have a length from 8 bp to 10 bp, from 10 bp to 15 bp, from 15 bp to 18 bp, from 18 bp to 20 bp, from 20 bp to 25 bp, from 25 bp to 30 bp, from 30 bp to 35 bp, from 35 bp to 40 bp, or from 40 bp to 50 bp.
- the dsRNA duplex of the binding sequence (Cas9-binding sequence) has a length of 36 base pairs.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the binding sequence can be at least 60%.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the binding sequence can be at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99%.
- the percent complementarity between the nucleotide sequences that hybridize to form the dsRNA duplex of the binding sequence is 100%.
- the polynucleotide further includes a linker sequence linking the DNA-targeting sequence to the binding sequence (Cas9-binding sequence).
- the linker can have a length of from 3 nucleotides to 100 nucleotides.
- the linker can have a length of 3 nucleotides (nt) to 90 nt, from 3 nucleotides (nt) to 80 nt, from 3 nucleotides (nt) to 70 nt, from 3 nucleotides (nt) to 60 nt, from 3 nucleotides (nt) to 50 nt, from 3 nucleotides (nt) to 40 nt, from 3 nucleotides (nt) to 30 nt, from 3 nucleotides (nt) to 20 nt or from 3 nucleotides (nt) to 10 nt.
- the linker can have a length of from 3 nt to 5 nt, from 5 nt to 10 nt, from 10 nt to 15 nt, from 15 nt to 20 nt, from 20 nt to 25 nt, from 25 nt to 30 nt, from 30 nt to 35 nt, from 35 nt to 40 nt, from 40 nt to 50 nt, from 50 nt to 60 nt, from 60 nt to 70 nt, from 70 nt to 80 nt, from 80 nt to 90 nt, or from 90 nt to 100 nt.
- the linker is 4 nt.
- Non-limiting examples of nucleotide sequences that can be included in a suitable binding sequence are set forth in SEQ ID NOs: 563-682 of WO 2013/176772 (see, for examples, FIGS. 8 and 9 of WO 2013/176772), which is hereby incorporated by reference in its entirety and for all purposes.
- a suitable binding sequence includes a nucleotide sequence that differs by 1, 2, 3, 4, or 5 nucleotides from any one of the above-listed sequences.
- PBS Pumilio /fem-3 mRNA binding factor
- a PUF binding site may form part of a guide RNA and provide for the binding of a PUF protein or PUF domain as provided herein (e.g., PUFa, PUFb, PUFc or functional fragments thereof) to said guide RNA.
- the PUF binding site includes a nucleic acid sequence (i.e., a PBS sequence or PUF binding site sequence) which is characteristic of the PBS and may be bound directly by the PUF protein.
- the polynucleotide (e.g., gRNA) provided herein further includes one or more PUF binding site (PBS) sequences.
- the demethylation complex includes the demethylation enhancer domain linked to a different PUF domain than the demethylation domain. Therefore, the demethylation domain may be bound to the polynucleotide through a first PUF domain binding a first PBS sequence and the demethylation enhancer domain may be bound to the polynucleotide through a second PUF domain bound to a second PBS sequence.
- the first and the second PBS sequence may be different or may be the same.
- the one or more PBS sequences (e.g., first or second PBS sequence) contain 8 nucleotides in length.
- the one or more PBS sequences are identical.
- the polynucleotide includes 1 to 50 PBS sequences.
- one or more PBS sequences (e.g., first or second PBS sequence) comprise the nucleotide sequence of SEQ ID NO: 1. Any one of the PBS sequences (e.g., first or second PBS sequence) disclosed in international application PCT/US2016/021491 and published as WO2016148994 A8, which is hereby incorporated by reference in its entirety and for all purposes, are contemplated for the compositions and methods provided herein.
- each of the one or more PBS sequences has 8 nucleotides.
- One exemplary PBS sequence may have a sequence of SEQ ID NO:8 (5′-UGUAUGUA-3′), which can be bound by the PUF domain PUF(3-2).
- Another exemplary PBS may have a sequence of SEQ ID NO:9 (5′-UUGAUAUA-3′), which can be bound by the PUF domain PUF(6-2/7-2). Additional PBS sequences and the corresponding PUF domains are described in international application PCT/US2016/021491 and published as WO2016148994 A8, which is hereby incorporated by reference in its entirety and for all purposes.
- the polynucleotide of the invention may have more than one copy of the PBS sequences.
- the polynucleotide comprises 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 46, 47, 48, 49, or 50 copies of PBS sequences, such as 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 copies of PBS sequences.
- the range of the PBS sequence copy number is L to H, wherein L is any one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, or 40, and wherein H is any one of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, or 100, so long as H is greater than L.
- L is any one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, or 40
- H is any one of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 90, or 100, so long as H is greater than L.
- Each PBS sequence may be the same or different.
- the polynucleotide includes 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 46, 47, 48, 49, or 50 copies, or 1-50, 2-45, 3-40, 5-35, 5-10, 10-20 copies of identical or different PBS sequences.
- the polynucleotide includes 5-15 copies of PBS sequences, or 5-14 copies, 5-13 copies, 5-12 copies, 5-11 copies, 5-10 copies, or 5-9 copies of PBS sequences.
- the amount of the gRNA-PBS sequences and/or the amount of the protein conjugate (methylation or demethylation protein conjugate) transfected or expressed is adjusted to maximize PBS/PUF domain binding. For example, this can be achieved by increasing the expression of the PUF domain by a stronger promoter or using an inducible promoter, such as a Dox-inducible promoter.
- the spacing between PBS sequences and/or spacer sequences are optimized to improve system efficiency.
- spacing optimization can be subject to particular protein conjugates (methylation or demethylation protein conjugates), and can be different between protein conjugates (methylation or demethylation protein conjugate) that work as individual proteins and those protein conjugates (methylation or demethylation protein conjugate) that may need to be positioned close enough to function (e.g., protein complexes).
- one or more spacer region(s) separate two adjacent PBS sequences.
- the spacer regions may have a length of from 3 nucleotides to 100 nucleotides.
- the spacer can have a length of from 3 nucleotides (nt) to 90 nt, from 3 nucleotides (nt) to 80 nt, from 3 nucleotides (nt) to 70 nt, from 3 nucleotides (nt) to 60 nt, from 3 nucleotides (nt) to 50 nt, from 3 nucleotides (nt) to 40 nt, from 3 nucleotides (nt) to 30 nt, from 3 nucleotides (nt) to 20 nt or from 3 nucleotides (nt) to 10 nt.
- the spacer can have a length of from 3 nt to 5 nt, from 5 nt to 10 nt, from 10 nt to 15 nt, from 15 nt to 20 nt, from 20 nt to 25 nt, from 25 nt to 30 nt, from 30 nt to 35 nt, from 35 nt to 40 nt, from 40 nt to 50 nt, from 50 nt to 60 nt, from 60 nt to 70 nt, from 70 nt to 80 nt, from 80 nt to 90 nt, or from 90 nt to 100 nt.
- the spacer is 4 nt.
- the PBS sequence includes the sequence of SEQ ID NO: 1, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, or SEQ ID NO:27.
- the PBS sequence is the sequence of SEQ ID NO: 1, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, or SEQ ID NO:27.
- the first or the second PBS sequence contains 8 nucleotides in length. In certain embodiments, the first or the second PBS sequences includes the nucleotide sequence of SEQ ID NO:1.
- PUF proteins (named after Drosophila Pumilio and C. elegans fern-3 binding factor) are known to be involved in mediating mRNA stability and translation. These proteins contain a unique RNA-binding domain known as the PUF domain.
- the RNA-binding PUF domain such as that of the human Pumilio 1 protein (referred here also as PUM), contains 8 repeats (each repeat called a PUF motif or a PUF repeat) that bind consecutive bases in an anti-parallel fashion, with each repeat recognizing a single base—i.e., PUF repeats R1 to R8 recognize nucleotides N8 to Ni, respectively.
- PUM is composed of eight tandem repeats, each repeat consisting of 34 amino acids that folds into tightly packed domains composed of alpha helices.
- the complexes provided herein including embodiments thereof include demethylation protein conjugates (e.g., demethylation protein conjugate, demethylation enhancer conjugate) including (i) a PUF domain operably linked to a demethylation domain and a demethylation enhancer domain or (ii) a first PUF domain operably linked to a demethylation domain and a second PUF domain operably linked to a demethylation enhancer domain, respectively.
- demethylation protein conjugates e.g., demethylation protein conjugate, demethylation enhancer conjugate
- the protein conjugate is a demethylation conjugate
- the demethylation domain is operably linked to the C-terminus of the PUF domain to form a protein conjugate.
- the demethylation enhancer domain may be linked to the C-terminus of the PUF domain, to the N-terminus of the PUF domain, or the demethylation enhancer domain may bind the polynucleotide (e.g., gRNA) linked to a separate PUF domain (i.e., a PUF domain not linked to the demethylation domain).
- the demethylation enhancer domain and the demethylation domain bind the polynucleotide separately, the demethylation domain forms part of a demethylation protein conjugate and is linked to a first PUF domain, and the demethylation enhancer domain forms part of a demethylation enhancer protein conjugate and is linked to a second PUF domain.
- the demethylation protein conjugate binds the polynucleotide through binding of the first PUF domain to the first PBS sequence and the demethylation enhancer protein conjugate binds the polynucleotide through binding of the second PUF domain to the second PBS sequence.
- the term “PUF domain” refers to a wildtype or naturally existing PUF domain, as well as a PUF homologue domain that is based on/derived from a natural or existing PUF domain, such as the prototype human Pumilio 1 PUF domain.
- the PUF domain of the invention specifically binds to an RNA sequence (e.g., an 8-mer RNA sequence), wherein the overall binding specificity between the PUF domain and the RNA sequence is defined by sequence specific binding between each PUF motif/PUF repeat within the PUF domain and the corresponding single RNA nucleotide.
- the term “functional variant” as used herein refers to a PUF domain having substantial or significant sequence identity or similarity to a parent PUF domain, which functional variant retains the biological activity of the PUF domain of which it is a variant—e.g., one that retains the ability to recognize target RNA to a similar extent, the same extent, or to a higher extent in terms of binding affinity, and/or with substantially the same or identical binding specificity, as the parent PUF domain.
- the functional variant PUF domain can, for instance, be at least 30%, 50%, 75%, 80%, 90%, 98% or more identical in amino acid sequence to the parent PUF domain.
- the functional variant can, for example, comprise the amino acid sequence of the parent PUF domain with at least one conservative amino acid substitution, for example, conservative amino acid substitutions in the scaffold of the PUF domain (i.e., amino acids that do not interact with the RNA).
- the functional variants can comprise the amino acid sequence of the parent PUF domain with at least one non-conservative amino acid substitution. In this case, it is preferable for the non-conservative amino acid substitution to not interfere with or inhibit the biological activity of the functional variant.
- the non-conservative amino acid substitution may enhance the biological activity of the functional variant, such that the biological activity of the functional variant is increased as compared to the parent PUF domain, or may alter the stability of the PUF domain to a desired level (e.g., due to substitution of amino acids in the scaffold).
- the PUF domain can consist essentially of the specified amino acid sequence or sequences described herein, such that other components, e.g., other amino acids, do not materially change the biological activity of the functional variant.
- the PUF domain is a Pumilio homology domain (PU-HUD).
- the PU-HUD is a human Pumilio 1 domain.
- the PUF domain has the sequence of any one of the PUF domains disclosed in international application PCT/US2016/021491, published as WO2016148994 A8, in international application PCT/US2011/040933, published as WO 2011/160052A2, and Spassov & Jurecic (“Cloning and comparative sequence analysis of PUM1 and PUM2 genes, human members of the Pumilio family of RNA-binding proteins,” Gene, 299:195-204, October 2002), which are hereby incorporated by reference in their entirety and for all purposes.
- the PUF domain includes a PUFa domain, a PUFb domain, a PUFc domain, or a PUFw domain.
- the PUFa domain has the amino acid sequence of SEQ ID NO:2.
- the PUFb domain has the amino acid sequence of SEQ ID NO:3.
- the PUFc domain has the amino acid sequence of SEQ ID NO:4.
- the PUFw domain has the amino acid sequence of SEQ ID NO:5.
- the first PUF domain is a PUFa domain.
- the PUFa domain has the sequence of SEQ ID NO:2.
- the second PUF domain is a PUFc domain.
- the PUFc domain has the sequence of SEQ ID NO:4.
- the first or the second PUF domain includes a PUFa domain, a PUFb domain, a PUFc domain, or a PUFw domain.
- the first or the second PUFa domain has the amino acid sequence of SEQ ID NO:2.
- the first or the second PUFb domain has the amino acid sequence of SEQ ID NO:3.
- the first or the second PUFc domain has the amino acid sequence of SEQ ID NO:4.
- the first or the second PUFw domain has the amino acid sequence of SEQ ID NO:5.
- the subject polynucleotide includes one or more tandem sequences, each of which can be specifically recognized and bound by a specific PUF domain (infra). Since a PUF domain can be engineered to bind virtually any PBS sequence based on the nucleotide-specific interaction between the individual PUF motifs of PUF domain and the single RNA nucleotide they recognize, the PBS sequences can be any designed sequence that bind their corresponding PUF domain.
- a PBS of the invention has a nucleotide length of 8-mer. In other embodiments, a PBS of the invention has 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or more RNA nucleotides. In certain embodiments, the PBS of the invention has the sequence of SEQ ID NO:10 (5′-UGUAUAUA-3′), and binds the wt human Pumilio 1 PUF domain.
- the PBS sequence of the invention has the sequence of SEQ ID NO:8 (5′-UGUAUGUA-3′), and binds the PUF domain PUF(3-2).
- the PBS sequence of the invention has the sequence of SEQ ID NO:9 (5′-UUGAUAUA-3′), and binds the PUF domain PUF(6-2/7-2).
- the PBS sequence of the invention has the sequence of SEQ ID NO:11 (5′-UGGAUAUA-3′), and binds the PUF domain PUF(6-2).
- the PBS sequence of the invention has the sequence of SEQ ID NO:12 (5′-UUUAUAUA-3′), and binds the PUF domain PUF(7-2).
- the PBS sequence of the invention has the sequence of SEQ ID NO:13 (5′-UGUGUGUG-3′), and binds the PUF domain PUF 531 .
- the PBS sequence of the invention has the sequence of SEQ ID NO:14 (5′-UGUAUAUG-3′), and binds the PUF domain PUF(1-1).
- the PBS sequence of the invention has the sequence of SEQ ID NO:12 (5′-UUUAUAUA-3′) or sequence of SEQ ID NO:15 (5′-UAUAUAUA-3′), and binds the PUF domain PUF(7-1).
- the PBS sequence of the invention has the sequence of SEQ ID NO:16 (5′-UGUAUUUA-3′), and binds the PUF domain PUF(3-1).
- the PBS sequence of the invention has the sequence of SEQ ID NO:17 (5′-UUUAUUUA-3′), and binds the PUF domain PUF(7-2/3-1).
- the PUF domain PUF(3-2) has the sequence of SEQ ID NO:18.
- the PUF domain PUF(6-2/7-2) has the sequence of SEQ ID NO: 19.
- the PUF domain PUF 531 has the sequence of SEQ ID NO:22.
- the PUF domain includes the sequence of SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30 or SEQ ID NO:31.
- the PUF domain is the sequence of SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30 or SEQ ID NO:31.
- Applicant has created 65,536 8-mer PBS sequence and their corresponding PUF domain sequences (see below) that can bind the specific PBS sequence. Applicant has also created a python script to retrieve any of the 65,536 individual PUF domain sequences that binds a given 8-mer PBS sequence. For example, for the 8-mer UUGAUGUA (SEQ ID NO:27), one possible PUF domain sequence can be SEQ ID NO:28:
- PUF(3-2) (SEQ ID NO:18) has two point mutations (C935S/Q939E) in the PUF repeat 3, and recognizes a cognate RNA with a mutation at position 6 of the NRE (A6G; SEQ ID NO:27 (5′-UGUAUGUA-3′)).
- PUF (6-2/7-2) (SEQ ID NO:19) has double point mutations (N1043S/Q1047E and S1079N/E1083Q) in repeats 6 and 7, respectively, and recognizes a cognate RNA sequence with two mutations at positions 2 and 3 of the NRE (GU/UG; SEQ ID NO:9 (5′-UUGAUAUA-3′)).
- a related PUF (6-2) has point mutations (N1043S/Q1047E) in repeats 6, and recognizes a cognate RNA sequence with a mutation at position 3 of the NRE (SEQ ID NO: 11 (5′-UGGAUAUA-3′)).
- Another related PUF (7-2) has point mutations (S1079N/E1083Q) in repeats 7, and recognizes a cognate RNA sequence with a mutation at position 2 of the NRE (SEQ ID NO: 12 (5′-UUUAUAUA-3′)).
- the PUF domain PUF 531 (SEQ ID NO:22) has mutations (Q867E/Q939E/C935S/Q1011E/C1007S) in wild type PUF repeats 1, 3 and 5, and recognizes the sequence of SEQ ID NO:13 (5′-UGUGUGUG-3′).
- the PUF 531 can recognize its new target sequence with very high affinity, compared to the wild type PUF RNA.
- Another modified PUF domain PUF(1-1) has one point mutation (Q867E) in the PUF repeat 1, and recognizes a cognate RNA with a mutation at position 8 of the NRE (A8G; SEQ ID NO:14 (5′-UGUAUAUG-3′)).
- Yet another modified PUF domain PUF(7-1) has one point mutation (E1083Q) in the PUF repeat 7, and recognizes a cognate RNA with a mutation at position 2 of the NRE (G2U; SEQ ID NO:12 (5′-UUUAUAUA-3′); or G2A; SEQ ID NO:15 (5′-UAUAUAUA-3′)).
- Still another modified PUF domain PUF(3-1) has one point mutation (C935N) in the PUF repeat 3, and recognizes a cognate RNA with a mutation at position 6 of the NRE (A6U; SEQ ID NO:16 (5′-UGUAUUUA-3′)).
- a further modified PUF (7-2/3-1) has point mutations (C935N/S1079N/E1083Q) in repeats 7 and 3, and recognizes a cognate RNA sequence with mutations at positions 2 and 6 of the NRE (SEQ ID NO:17 (5′-UUUAUUUA-3′)).
- the PUF domain has a sequence of SEQ ID NO:29.
- the demethylation domain (e.g., TET1 domain), or methylation domain (e.g., Dnmt3a domain) or demethylation enhancer domain (e.g., NEIL2 domain, GADD45A domain) provided herein may be linked to a PUF domain as provided herein including embodiments thereof.
- the demethylation domain e.g., TET1 domain
- methylation domain e.g., Dnmt3a domain
- demethylation enhancer domain e.g., NEIL2 domain, GADD45A domain
- dCas9 nuclease-deficient RNA-guided DNA endonuclease
- a chemical linker may link the demethylation domain or methylation domain to the nuclease-deficient RNA-guided DNA endonuclease.
- the chemical linker is a peptide linker.
- the chemical linker is a poly-glycine linker.
- the demethylation domain or demethylation enhancer domain is linked to the C-terminus of the nuclease-deficient RNA-guided DNA endonuclease (e.g., dCas9). In certain embodiments, the demethylation domain or demethylation enhancer domain is linked to the N-terminus of the nuclease-deficient RNA-guided DNA endonuclease (e.g., dCas9).
- the demethylation domain or demethylation enhancer domain provided herein is directly linked (fused) to the nuclease-deficient RNA-guided DNA endonuclease (e.g., dCas9)
- the demethylation domain or demethylation enhancer domain and the nuclease-deficient RNA-guided DNA endonuclease (e.g., dCas9) form a dCas9-demethylation domain conjugate or a dCas9-demethylation enhancer domain conjugate.
- the dCas9-demethylation domain (e.g., TET1 domain) conjugate has the sequence of SEQ ID NO:52.
- the dCas9-demethylation domain conjugate has the sequence of SEQ ID NO:53. In certain embodiments, the dCas9-methylation (e.g., Dnmt3a) domain conjugate has the sequence of SEQ ID NO:59. In certain embodiments, the dCas9-methylation domain conjugate has the sequence of SEQ ID NO:60. In certain embodiments, the dCas9-methylation domain conjugate has the sequence of SEQ ID NO:61. In certain embodiments, the dCas9-methylation domain conjugate has the sequence of SEQ ID NO:62. In certain embodiments, the dCas9-methylation domain conjugate has the sequence of SEQ ID NO:63. In certain embodiments, the dCas9-methylation domain conjugate has the sequence of SEQ ID NO:64.
- the complexes provided herein may include an additional bioactive domain operably linked to the PUF domain or the nuclease-deficient RNA-guided DNA endonuclease (e. g., dCas9 protein).
- a heterologous polypeptide also referred to as a “fusion partner” can be fused to the PUF domain of the demethylation or demethylation enhancer protein conjugate provided herein including embodiments thereof, that binds to at least one of the PBS on the subject polynucleotide.
- the same or different fusion partner can also optionally be fused to the nuclease-deficient RNA-guided DNA endonuclease (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein).
- nuclease-deficient RNA-guided DNA endonuclease e.g., nuclease-deficient wt Cas9 protein or dCas9 protein.
- any of the fusion partners are intended to be fused to the PUF domain of the demethylation or demethylation enhancer protein conjugate provided herein including embodiments thereof, and optionally also fused to the nuclease-deficient RNA-guided DNA endonuclease (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein).
- the fusion partner fused to the PUF domain can be the same or different from the optional fusion partner fused to the nuclease-deficient RNA-guided DNA endonuclease (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein) (infra).
- the fusion partner is a bioactive moiety.
- the fusion partner is a detectable moiety or a therapeutic moiety.
- the fusion partner may exhibit an activity (e.g., enzymatic activity).
- Suitable fusion partners include, but are not limited to, a polypeptide that provides for methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, or demyristoylation activity, any of which can be directed at modifying the DNA directly (e.g., methylation of DNA) or at modifying a DNA-associated polypeptide (e.g., a histone or DNA binding protein).
- a DNA-associated polypeptide e.g., a histone or DNA binding protein
- Additional fusion partners may include the various fluorescent protein, polypeptides, variants, or functional domains thereof, such as GFP, Superfolder GFP, EGFP, BFP, EBFP, EBFP2, Azurite, mKalama1, CFP, ECFP, Cerulean, CyPet, mTurquoise2, YFP, Citrine, Venus, Ypet, BFPms1, roGFP, and bilirubin-inducible fluorescent proteins such as UnaG, dsRed, eqFP611, Dronpa, TagRFPs, KFP, EosFP, Dendra, IrisFP, etc.
- the fusion partner is a demethylation domain. In certain embodiments, the fusion partner is a demethylation enahncer domain.
- any of the subject PUF domain can be made using, for example, a Golden Gate Assembly kit (see Abil et al., Journal of Biological Engineering 8:7, 2014), which is available at Addgene (Kit #1000000051).
- demethylation protein conjugates and demethylation enhancer conjugates useful for demethylating target loci in a cell.
- the demethylation protein conjugates include a PUF domain described herein, a TET demethylation domain (e.g., a TET1 domain) and a demethylation enhancer domain (e.g., a NEIL2 domain or a GADD45A domain).
- the complexes provided herein include a demethylation protein conjugate including a first PUF domain and a demethylation domain (e.g., a TET1 domain) and a demethylation enhancer conjugate including a second PUF domain and a demethylation enhancer domain (e.g., a NEIL2 domain or a GADD45A domain).
- a demethylation protein conjugate including a first PUF domain and a demethylation domain (e.g., a TET1 domain) and a demethylation enhancer conjugate including a second PUF domain and a demethylation enhancer domain (e.g., a NEIL2 domain or a GADD45A domain).
- the demethylation enhancer domain is operably linked to the N-terminus of the PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the C-terminus of the PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the N-terminus of the second PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the C-terminus of the second PUF domain.
- the demethylation enhancer domain is a Growth Arrest and DNA-Damage-inducible Alpha (GADD45A) domain.
- the GADD45 domain has the amino acid sequence of SEQ ID NO:85.
- the demethylation enhancer domain is a NEIL2 domain.
- the NEIL2 domain has the amino acid sequence of SEQ ID NO:86.
- the demethylation enhancer domain is not a NEIL1 domain. In certain embodiments, the demethylation enhancer domain is not a NEIL3 domain.
- a “demethylation enhancer domain”, “demethylation enhancer protein” or “demethylation enhancer enzyme” as provided herein refers to a protein, protein domain or protein moiety capable of positively affecting (e.g. increasing) the activity or function of a demethylation enzyme or demethylation domain, relative to the activity or function of the demethylation enzyme or demethylation domain in the absence of the activator (e.g. demethylation enhancer domain described herein).
- the demethylation enhancer domain may, at least in part, partially or totally increase stimulation, increase or enable activation, or activate the demethylation enzyme.
- the amount of increase in activity may be 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more in comparison to a control in the absence of the demethylation enhancer domain.
- the activity is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more than the activity in the absence of the demethylation enhancer domain.
- the DNA demethylation domain may include a Ten-Eleven translocation 1 (TET1) domain.
- the DNA demethylation domain includes a Ten-Eleven translocation 2 (TET2) domain.
- the DNA demethylation domain includes a Ten-Eleven translocation 3 (TET3) domain.
- the TET1 domain includes the sequence of SEQ ID NO:51. In certain embodiments, the TET1 domain is the sequence of SEQ ID NO:51.
- the TET protein is a TET methylcytosine dioxygenase.
- TET methylcytosine dioxygenase catalyzes the initial and critical step leading to replacing 5mC with unmethylated cytosine.
- the demethylation protein conjugate includes a TET1 functional domain fused to the C-terminus of the PUF domain.
- the PUF domain is PUFa.
- transcription of the target gene is increased by more than 10-fold, 15-fold, 20-fold, 25-fold, 30-fold, 50-fold, 75-fold, 100-fold, 125-fold, 135-fold, 150-fold, 200-fold or more.
- the target gene is SOX.
- the target gene comprises two or more target polynucleotide sequences. In certain embodiments, at least two of said same or different PUF domains are fused to a demethylase domain or a demethylase enhancer domain.
- the demethylation protein conjugate includes the sequence of SEQ ID NO:54 or SEQ ID NO:55. In certain embodiments, the demethylation protein conjugate is the sequence of SEQ ID NO:54 or SEQ ID NO:55.
- demethylation protein conjugate includes the sequence of SEQ ID NO: 104. In certain embodiments, demethylation protein conjugate is the sequence of SEQ ID NO: 104. In certain embodiments, demethylation protein conjugate includes the sequence of SEQ ID NO: 105. In certain embodiments, demethylation protein conjugate is the sequence of SEQ ID NO: 105.
- demethylation enhancer conjugate includes the sequence of SEQ ID NO: 106. In certain embodiments, demethylation enhancer conjugate is the sequence of SEQ ID NO: 106. In certain embodiments, demethylation enhancer conjugate includes the sequence of SEQ ID NO: 107. In certain embodiments, demethylation enhancer conjugate is the sequence of SEQ ID NO:107.
- demethylation enhancer conjugate includes the sequence of SEQ ID NO: 108. In certain embodiments, demethylation enhancer conjugate is the sequence of SEQ ID NO: 108. In certain embodiments, demethylation enhancer conjugate includes the sequence of SEQ ID NO: 109. In certain embodiments, demethylation enhancer conjugate is the sequence of SEQ ID NO:109.
- Another aspect of the invention provides a complex comprising any one of the polynucleotide of the invention, and the modified Cas9 protein, e.g., nuclease-deficient wt Cas9 protein or dCas9 protein.
- the complex comprises a nuclease-deficient wt Cas9 protein.
- the complex may further comprise one or more PUF domain or fusion thereof bound to the one or more PBS(s).
- each of the PUF domain is fused to an effector domain.
- at least two of the PUF domains are fused to different effector domains.
- the nuclease-deficient wt Cas9 protein e.g., nuclease-deficient wt Cas9 protein or dCas9 protein
- the PUF domain, and/or the effector domain further comprises a nuclear localization signal (NLS).
- NLS nuclear localization signal
- the complex is bound to the target polynucleotide sequence through the DNA-targeting sequence of the polynucleotide.
- the effector domain is a TET (Ten-Eleven Translocation) protein, or a fragment thereof that retains demethylase catalytic activity.
- the TET protein may be a TET methylcytosine dioxygenase.
- the PUF domain fusion protein comprises a TET1 functional domain fused to the C-terminus of the PUF domain (e.g., PUFa).
- the PUF domain fusion protein comprises a Dnmt functional domain fused to the N-terminus of the PUF domain (e.g., PUFa).
- a cell including a demethylation complex as provided herein including embodiments thereof is provided.
- the cell is a mammalian cell.
- the cell is a cancer cell.
- the cell is a cancer cell, and/or the target gene is hMLH1 with a hypermethylated promoter region.
- the target polynucleotide sequence may be within the hypermethylated promoter region of hMLH1, and methylation of the target polynucleotide sequence is associated with down-regulation of hMLH1 in cancer cells.
- the cancer cell is from a stomach cancer, esophageal cancer, head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), and colorectal cancer (such as HNPCC).
- the stomach cancer may include foveolar type tumors, and stomach cancer in high-incidence Kashmir Valley.
- Another aspect of the invention provides a host cell including any one of the subject vector, polynucleotide, and complex.
- the host cell further includes a second vector encoding the nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein).
- the second vector further encodes a demethylation (effector) domain fused to the nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein).
- the expression of the Cas9 protein e.g., wt, nickase, or dCas9 protein
- the host cell may further include a third vector encoding the one or more PUF domains, each fused to demethylation (effector) domain.
- the expression of the one or more PUF domains can be independently under the control of a constitutive promoter or an inducible promoter.
- the second vector may further encode a nuclear localization signal (NLS) fused to the nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein) or the methylation or demethylation (effector) domain
- the third vector may further encode a nuclear localization signal (NLS) fused to the PUF domain or the methylation or demethylation (effector) domain.
- sequences that can be encoded by different vectors may be on the same vector.
- the second vector may be the same as the vector
- the third vector may be the same as the vector or the second vector.
- the host cell may be in a live animal, or may be a cultured cell.
- demethylation protein conjugates including a demethylation domain and a demethylation enhancer domain (e.g., demethylation enzymes and demethylation enhancers or functional fragments thereof) or a combination of a demethylation protein conjugate and a demethylation enhancer conjugate, may be delivered to a cell sequentially or concomitantly. Delivery of a demethylation protein conjugate provided herein or a combination of a demethylation protein conjugate and a demethylation enhancer conjugate to a cell, allows for fine tuning the methylation status of a targeted gene locus.
- a demethylation enhancer domain e.g., demethylation enzymes and demethylation enhancers or functional fragments thereof
- a combination of a demethylation protein conjugate and a demethylation enhancer conjugate may be delivered to a cell sequentially or concomitantly. Delivery of a demethylation protein conjugate provided herein or a combination of a demethylation protein conjugate and a demethylation enhancer conjugate to
- the invention further provides for the delivery of a plurality of demethylation protein conjugates, wherein the conjugates may be the same or different.
- the conjugates may form part of a plurality of conjugates, each linked to a PUF domain, and/or they may be directly fused to the nuclease-deficient RNA-guided DNA endonuclease enzyme (e.g., dCas9).
- the present invention allows for the delivery of enhanced demethylation activities to different target sites in a cell at the same time.
- demethylation domains e.g., TET1 domain
- enhancer proteins e.g., GADD45A or NEIL2
- demethylation using the complexes provided herein is more efficient compared to, for example, demethylation in the absence of the enhancer domain or compared to directly linking demethylation activities to the nuclease-deficient RNA-guided DNA endonuclease enzyme (e.g., dCas9).
- the method includes delivering a first polynucleotide encoding a nuclease-deficient RNA-guided DNA endonuclease enzyme as provided herein including embodiments thereof (e.g., dCas9).
- the method may include delivering a second polynucleotide, which is the polynucleotide described herein including embodiments thereof and which encodes a DNA-targeting sequence, a binding sequence and one or more PUF binding site (PBS) sequences provided herein.
- PBS PUF binding site
- a method of demethylating a target nucleic acid sequence in a mammalian cell includes:
- a demethylation complex in one aspect, includes:
- a method of demethylating a target nucleic acid sequence in a mammalian cell includes:
- the demethylation protein conjugate binds to the ribonucleoprotein complex via the PUF domain binding to the one or more PBS sequences to form a demethylation complex.
- the first polynucleotide is contained within a first vector.
- the second polynucleotide is contained within a second vector.
- the third polynucleotide is contained within a third vector.
- the first, second or third vector is the same.
- the delivering is performed by transfection.
- the demethylation protein conjugate binds to the ribonucleoprotein complex via the first PUF domain binding to the first PBS sequence. In certain embodiments, the demethylation enhancer conjugate binds to the ribonucleoprotein complex via the second PUF domain binding to the second PBS sequence. In certain embodiments, the demethylation enhancer domain is operably linked to the N-terminus of the second PUF domain. In certain embodiments, the demethylation enhancer domain is operably linked to the C-terminus of the second PUF domain. In certain embodiments, the first polynucleotide is contained within a first vector. In certain embodiments, the second polynucleotide is contained within a second vector.
- the third polynucleotide is contained within a third vector.
- the fourth polynucleotide is contained within a fourth vector.
- either the first, second, third or fourth vector is the same.
- the delivering is performed by transfection.
- the method of the invention utilizes a plurality or a library of the vectors, each encoding a polynucleotide of the invention, wherein two of the vectors differ in the encoded polynucleotides in their respective DNA-targeting sequences, Cas9-binding sequences, and/or the copy number, identity (sequence, binding specificity, etc.), or relative order of the PBS.
- non-vector coding sequences are used instead of using vectors.
- the method further comprises introducing into the cell a plurality of any one of the subject vectors, wherein two of the vectors differ in the encoded polynucleotides in their respective DNA-targeting sequences, Cas9-binding sequences, and/or the copy number, identity, or relative order of the PBS.
- non-vector coding sequences are used instead of using vectors.
- the methods of enhanced demethylating a target nucleic acid in a cell may be used, inter alia, for the treatment of diseases related to or caused by abnormal DNA methylation (e.g., cancer).
- diseases related to or caused by abnormal DNA methylation e.g., cancer
- a role for both epigenetic (DNA methylation) and genetic (mutations) actions of cytidine deaminases in cancer has been proposed, and a possible role in demethylation which is widespread.
- the present invention has practical application in ameliorating/treating the cancer disease process by altering the demethylation or demethylation status within the cancer cell.
- methylated genes can be targeted for demethylation in vivo, which may lead to their expression (methylation being a repressive modification most of the time).
- Targeting of cytidine deaminase activity to genes of interest in cancer can include, for example, fusion of the cytidine deaminase to a tumor suppressor DNA binding domain, (such as the zinc finger DNA core binding region of the p53 protein). It is believed that in many cancers, mutation of the DNA binding domain of p53 can contribute to transformation. In addition, the promoter regions of many tumor suppressor genes, including p53 targets, are methylated in cancer cells.
- the molecules and pharmaceutical compositions of the present invention can be assessed for their anti-cancer/anti-tumorigenic effects by utilizing in vitro and ex vivo assays.
- a nucleic acid vector that expresses a molecule of the invention is transfected into a cancer cell.
- Appropriate controls are established comprising the cancer cell line transfected with vector backbone only, or vector plus a molecule of the invention in which the cytidine deaminase domain is rendered non-functional described in more detail below.
- Induced apoptosis in the cancer cell line transfected with the molecules of the invention but not in the control cells would be indicative of an anti-cancer effect for the molecule of the invention.
- a method of treating cancer in a subject in need thereof includes, administering to a subject a therapeutically effective amount of a demethylation complex or methylation complex as provided herein including embodiments thereof, thereby treating cancer in the subject.
- the method includes administering to a subject a therapeutically effective amount of a demethylation complex as provided herein.
- composition in another aspect, includes therapeutically effective amount of a demethylation complex as provided herein including embodiments thereof and a pharmaceutically acceptable excipient.
- Additional applications for the methods and compositions provided herein include modulating gene expression during development.
- the presence of a site specific DNA binding domain allows for targeted demethylation of specific subsets of genes activated at particular times in development or during the cell cycle.
- the DNA binding domains of the (e.g., Oct4 or SOX-2) proteins when fused to a PUF domain could provide for a demethylation activity that is directed towards genes that are involved in cell fate decisions relating to promotion of a pluripotent or stem cell-like phenotype.
- the demethylation domain may be linked via a linker to PUF binding domain.
- DNA binding domains that could optionally be utilized include those from T-box transcription factors or steroid hormone receptor DNA binding domains such as the RAR and RXR DNA binding domains. Nevertheless, the present demethylation protein conjugate may be sufficient to demethylate the promoters of a pluripotent gene and alter the methylation status of a cell during differentiation.
- Another aspect of the invention provides a method of modulating transcription and/or methylation state of a target gene in a cancer cell according to any method of the invention, wherein the cancer cell is associated with or characterized by abonormal DNA methylation.
- a related aspect of the invention provides a method of modulating transcription and/or methylation state of a target gene in a cancer cell in a patient according to any method of the invention, wherein the cancer cell is associated with or characterized by abonormal DNA methylation.
- Another related aspect of the invention provides a method for treating a patient in need of treatment a disease or condition associated with abnormal DNA methylation, such as CpG methylation, of a target gene, the method comprising allowing the formation of the complex of the invention near or at the target gene to modulate transcription and/or methylation state of the target gene in the patient.
- a disease or condition associated with abnormal DNA methylation such as CpG methylation
- Another related aspect of the invention provides a method for treating a patient in need of treatment a disease or condition associated with abnormal DNA methylation (such as CpG methylation) of a target gene, the method comprising modulating transcription and/or methylation state of the target gene in the patient according to any of the subject methods.
- a disease or condition associated with abnormal DNA methylation such as CpG methylation
- Another related aspect of the invention provides a method for treating a patient in need of treatment a disease or condition associated with abnormal DNA methylation (such as CpG methylation) of a target gene, the method comprising allowing the formation of the complex of the invention near or at the target gene to modulate transcription and/or methylation state of the target gene in the patient.
- a disease or condition associated with abnormal DNA methylation such as CpG methylation
- the invention provides a method of treating cancer in a patient in need of treatment, wherein said cancer is associated with or characterized by abnormal DNA methylation of hMLH1, the method comprising modulating transcription and/or methylation state of hMLH1 in the patient according to any one of the methods of the invention.
- the PUF domain fusion protein may comprise a TET1 functional domain fused to the C-terminus of the PUF domain such as PUFa.
- the methylation level of the hypermethylated promoter region of hMLH1 is decreased.
- transcription/translation of hMLH1 is increased.
- the target gene is hMLH1.
- the disease is a cancer. In certain embodiments, the disease is an imprinting disorder. In certain embodiments, the disease is a neurological disease.
- the cancer is associated with or characterized by hyper- or hypomethylation of a tumor suppressor gene or an oncogene, respectively.
- the cancer is a stomach cancer (including foveolar type tumors, and stomach cancer in high-incidence Kashmir Valley), esophageal cancer, head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), and colorectal cancer (such as HNPCC).
- stomach cancer including foveolar type tumors, and stomach cancer in high-incidence Kashmir Valley
- esophageal cancer head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), and colorectal cancer (such as HNPCC).
- HNSCC head and neck squamous cell carcinoma
- NSCLC non-small cell lung cancer
- colorectal cancer such as HNPCC
- Yet another aspect of the invention provides a method of assembling the complex of the invention at the target polynucleotide sequence, the method comprising contacting or bringing to the vicinity of the target polynucleotide sequence: (1) any one of the subject polynucleotide, or any one of the subject vector, or the plurality of vectors; (2) the nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein), or any one of the subject second vector encoding the nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein); and, (3) one or more of the PUF domains, each fused to an effector domain, or any one of the third vector encoding the PUF domain fusions.
- the fusion is with a DNA methyltransferase or a demethylas
- the complex is assembled inside a cell
- the target polynucleotide sequence is a part of the genomic DNA of the cell
- the subject vector, second vector, and third vector are introduced into the cell.
- a related aspect of the invention provides a method of modulating transcription of a plurality of target genes in a cell, the method comprising: introducing into the cell the subject plurality of the vectors, a coding sequence for a dCas9 protein, and a coding sequence for one or more PUF domain fusions, wherein each of the target genes comprises a target polynucleotide sequence that permits (1) the assembly, at the target polynucleotide sequence, of a tripartite complex of a polynucleotide encoded by one of the plurality of the vector, the dCas9 protein, and a PUF domain fusion; and (2) transcription modulation of the target gene comprising the target polynucleotide sequence.
- the invention also provides a method of epigenetic modulation (e.g., modulating the epigenetic states of chromatin not directly related to transcriptional activity), at a plurality of target genes in a cell, the method comprising: introducing into the cell the subject plurality of the vectors, a coding sequence for a nuclease-deficient wt Cas9 protein, and a coding sequence for one or more PUF domain fusions, wherein each of the target genes comprises a target polynucleotide sequence that permits (1) the assembly, at the target polynucleotide sequence, of a tripartite complex of a polynucleotide encoded by one of the plurality of the vector, the wt Cas9 protein or the Cas9 nickase, and a PUF domain fusion; and (2) epigenetic modulation of the target gene comprising the target polynucleotide sequence.
- epigenetic modulation e.g., modulating the epigenetic states of chromatin
- the method can be useful, for example, to change epigenetic state (e.g., opening up the chromatin) at the same time to gain access/stability of nuclease-deficient wt Cas9 protein (e.g., dCas9) binding to closed chromatin sites (e.g., to increase cut and genome editing at those sites).
- epigenetic state e.g., opening up the chromatin
- nuclease-deficient wt Cas9 protein e.g., dCas9 protein binding to closed chromatin sites (e.g., to increase cut and genome editing at those sites).
- the transcription of at least one target gene is enhanced/stimulated, while the transcription of at least another target gene is inhibited.
- the method comprises:
- the coding sequence for a PUF domain fusion protein can be introduced into the cell together (e.g., by including all coding sequences on the same vector, by co-transfecting different vectors encoding different coding sequences, etc.), or separately, in any order or sequence as desired.
- the coding sequence for a PUF domain fusion protein, the coding sequence for a nuclease-deficient RNA-guided DNA endonuclease (dCas9 protein), and the polynucleotide (or a vector encoding the polynucleotide) are co-introduced into the cell.
- the target polynucleotide sequence can be any DNA sequence.
- the target polynucleotide sequence comprises, or is adjacent to, one or more transcription regulatory element(s).
- the transcription regulatory element(s) comprises one or more of: a core promoter, a proximal promoter element, an enhancer, a silencer, an insulator, and a locus control region.
- kits in another aspect, includes:
- kits in another aspect, includes:
- a subject kit may include: a) a polynucleotide of the present invention, or a nucleic acid (e.g., vector) including a nucleotide sequence encoding the same; optionally, b) a subject nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein), or a vector encoding the same (including an expressible mRNA encoding the same); and optionally, c) one or more subject demethylation or methylation protein conjugate (PUF domain fusion) each including a PUF domain fused to a demethylation or methylation domain (effector domain) that may be the same or different among the different demethylation or methylation protein conjugates (PUF domain fusions), or a vector encoding the same (including an expressible mRNA encoding the same).
- one or more of a)-c) may be encoded by the same vector.
- the kit also comprises one or more buffers or reagents that facilitate the introduction of any one of a)-c) into a host cell, such as reagents for transformation, transfection, or infection.
- a subject kit can further include one or more additional reagents, where such additional reagents can be selected from: a buffer; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the nuclease-deficient wt Cas9 protein or dCas9 or PUF domain fusion from DNA; and the like.
- additional reagents can be selected from: a buffer; a wash buffer; a control reagent; a control expression vector or RNA polynucleotide; a reagent for in vitro production of the nuclease-deficient wt Cas9 protein or dCas9 or PUF domain fusion from DNA; and the like.
- Components of a subject kit can be in separate containers; or can be combined in a single container.
- a subject kit can further include instructions for using the components of the kit to practice the subject methods.
- the instructions for practicing the subject methods are generally recorded on a suitable recording medium.
- the instructions may be printed on a substrate, such as paper or plastic, etc.
- the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging) etc.
- the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, flash drive, etc.
- the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided.
- An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate.
- Nucleic acid refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single-, double- or multiple-stranded form, or complements thereof.
- polynucleotide refers to a linear sequence of nucleotides.
- nucleotide typically refers to a single unit of a polynucleotide, i.e., a monomer. Nucleotides can be ribonucleotides, deoxyribonucleotides, or modified versions thereof.
- nucleic acids can be linear or branched.
- nucleic acids can be a linear chain of nucleotides or the nucleic acids can be branched, e.g., such that the nucleic acids comprise one or more arms or branches of nucleotides.
- the branched nucleic acids are repetitively branched to form higher ordered structures such as dendrimers and the like.
- Nucleic acids, including nucleic acids with a phosphothioate backbone can include one or more reactive moieties.
- the term reactive moiety includes any group capable of reacting with another molecule, e.g., a nucleic acid or polypeptide through covalent, non-covalent or other interactions.
- the nucleic acid can include an amino acid reactive moiety that reacts with an amio acid on a protein or polypeptide through a covalent, non-covalent or other interaction.
- nucleic acids containing known nucleotide analogs or modified backbone residues or linkages which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides.
- Examples of such analogs include, without limitation, phosphodiester derivatives including, e.g., phosphoramidate, phosphorodiamidate, phosphorothioate (also known as phosphothioate), phosphorodithioate, phosphonocarboxylic acids, phosphonocarboxylates, phosphonoacetic acid, phosphonoformic acid, methyl phosphonate, boron phosphonate, or O-methylphosphoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages.
- phosphodiester derivatives including, e.g., phosphoramidate, phosphorodiamidate, phosphorothioate (also known as phosphothioate), phosphorodithioate, phosphonocarboxylic acids, phosphonocarboxylates, phosphonoacetic acid, phosphonoformic acid, methyl phospho
- nucleic acids include those with positive backbones; non-ionic backbones, modified sugars, and non-ribose backbones (e.g. phosphorodiamidate morpholino oligos or locked nucleic acids (LNA)), including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580 , Carbohydrate Modifications in Antisense Research , Sanghui & Cook, eds. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids.
- LNA locked nucleic acids
- Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip.
- Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.
- the internucleotide linkages in DNA are phosphodiester, phosphodiester derivatives, or a combination of both.
- the range of values provided includes the specified value. As recognized by a person of ordinary skill in the art such specified value would reasonably include a standard deviation using measurements generally acceptable in the art. In certain embodiments, the standard deviation includes a range extending to +/ ⁇ 10% of the specified value.
- polypeptide refers to a polymer of amino acid residues, wherein the polymer may be conjugated to a moiety that does not consist of amino acids.
- the terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers.
- the terms apply to macrocyclic peptides, peptides that have been modified with non-peptide functionality, peptidomimetics, polyamides, and macrolactams.
- a “fusion protein” refers to a chimeric protein encoding two or more separate protein sequences that are recombinantly expressed as a single moiety.
- peptidyl and “peptidyl moiety” means a monovalent peptide.
- amino acid refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids.
- Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, ⁇ -carboxyglutamate, and O-phosphoserine.
- Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid.
- Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.
- the terms “non-naturally occurring amino acid” and “unnatural amino acid” refer to amino acid analogs, synthetic amino acids, and amino acid mimetics which are not found in nature.
- Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.
- amino acid or nucleotide base “position” is denoted by a number that sequentially identifies each amino acid (or nucleotide base) in the reference sequence based on its position relative to the N-terminus (or 5′-end). Due to deletions, insertions, truncations, fusions, and the like that must be taken into account when determining an optimal alignment, in general the amino acid residue number in a test sequence determined by simply counting from the N-terminus will not necessarily be the same as the number of its corresponding position in the reference sequence. For example, in a case where a variant has a deletion relative to an aligned reference sequence, there will be no amino acid in the variant that corresponds to a position in the reference sequence at the site of deletion.
- numbered with reference to or “corresponding to,” when used in the context of the numbering of a given amino acid or polynucleotide sequence refers to the numbering of the residues of a specified reference sequence when the given amino acid or polynucleotide sequence is compared to the reference sequence.
- “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide.
- nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid.
- each codon in a nucleic acid except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan
- TGG which is ordinarily the only codon for tryptophan
- amino acid sequences one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.
- the following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M).
- Percentage of sequence identity is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
- nucleic acids or polypeptide sequences refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., 60% identity, optionally 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identity over a specified region, e.g., of the entire polypeptide sequences of the invention or individual domains of the polypeptides of the invention), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection.
- sequences are then said to be “substantially identical.”
- This definition also refers to the complement of a test sequence.
- the identity exists over a region that is at least 50 nucleotides in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides in length.
- sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
- test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
- sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
- a “comparison window”, as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of, e.g., a full length sequence or from 20 to 600, 50 to 200, or 100 to 150 amino acids or nucleotides in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
- Methods of alignment of sequences for comparison are well known in the art.
- Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1970) Adv. Appl. Math. 2:482c, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol.
- HSPs high scoring sequence pairs
- T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always ⁇ 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score.
- Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
- the BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment.
- the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787).
- One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance.
- P(N) the smallest sum probability
- a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than 0.2, more preferably less than 0.01, and most preferably less than 0.001.
- nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross-reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below.
- a polypeptide is typically substantially identical to a second polypeptide, for example, where the two peptides differ only by conservative substitutions.
- Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below.
- Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequence.
- a “label” or a “detectable moiety” is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means.
- useful labels include 32 P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into a peptide or antibody specifically reactive with a target peptide. Any appropriate method known in the art for conjugating an antibody to the label may be employed, e.g., using methods described in Hermanson, Bioconjugate Techniques 1996, Academic Press, Inc., San Diego.
- a “bioactive moiety” as provided herein refers to a moiety that upon administration to a cell, tissue or organism has a detectable effect on the biological function of said cell, tissue or organism.
- the detectable effect is a biological effect.
- the detectable effect is a therapeutic effect.
- the detectable effect is a diagnostic effect.
- a “labeled protein or polypeptide” is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the labeled protein or polypeptide may be detected by detecting the presence of the label bound to the labeled protein or polypeptide.
- methods using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.
- Bio sample refers to materials obtained from or derived from a subject or patient.
- a biological sample includes sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histological purposes.
- samples include bodily fluids such as blood and blood fractions or products (e.g., serum, plasma, platelets, red blood cells, and the like), sputum, tissue, cultured cells (e.g., primary cultures, explants, and transformed cells) stool, urine, synovial fluid, joint tissue, synovial tissue, synoviocytes, fibroblast-like synoviocytes, macrophage-like synoviocytes, immune cells, hematopoietic cells, fibroblasts, macrophages, T cells, etc.
- blood and blood fractions or products e.g., serum, plasma, platelets, red blood cells, and the like
- sputum tissue
- cultured cells e.g., primary cultures, explants, and transformed cells
- a biological sample is typically obtained from a eukaryotic organism, such as a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.
- a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.
- a cell can be identified by well-known methods in the art including, for example, presence of an intact membrane, staining by a particular dye, ability to produce progeny or, in the case of a gamete, ability to combine with a second gamete to produce a viable offspring.
- Cells may include prokaryotic and eukaryotic cells.
- Prokaryotic cells include but are not limited to bacteria.
- Eukaryotic cells include but are not limited to yeast cells and cells derived from plants and animals, for example mammalian, insect (e.g., spodoptera ) and human cells.
- the word “expression” or “expressed” as used herein in reference to a gene means the transcriptional and/or translational product of that gene.
- the level of expression of a DNA molecule in a cell may be determined on the basis of either the amount of corresponding mRNA that is present within the cell or the amount of protein encoded by that DNA produced by the cell (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 18.1-18.88).
- transfected gene expression of a transfected gene can occur transiently or stably in a cell.
- transient expression the transfected gene is not transferred to the daughter cell during cell division. Since its expression is restricted to the transfected cell, expression of the gene is lost over time.
- stable expression of a transfected gene can occur when the gene is co-transfected with another gene that confers a selection advantage to the transfected cell.
- selection advantage may be a resistance towards a certain toxin that is presented to the cell.
- exogenous refers to a molecule or substance (e.g., nucleic acid or protein) that originates from outside a given cell or organism.
- endogenous refers to a molecule or substance that is native to, or originates within, a given cell or organism.
- transfection can be used interchangeably and are defined as a process of introducing a nucleic acid molecule and/or a protein to a cell.
- Nucleic acids may be introduced to a cell using non-viral or viral-based methods.
- the nucleic acid molecule can be a sequence encoding complete proteins or functional portions thereof.
- a nucleic acid vector comprising the elements necessary for protein expression (e.g., a promoter, transcription start site, etc.).
- Non-viral methods of transfection include any appropriate method that does not use viral DNA or viral particles as a delivery system to introduce the nucleic acid molecule into the cell.
- Exemplary non-viral transfection methods include calcium phosphate transfection, liposomal transfection, nucleofection, sonoporation, transfection through heat shock, magnetifection and electroporation.
- any useful viral vector can be used in the methods described herein.
- examples of viral vectors include, but are not limited to retroviral, adenoviral, lentiviral and adeno-associated viral vectors.
- the nucleic acid molecules are introduced into a cell using a retroviral vector following standard procedures well known in the art.
- the terms “transfection” or “transduction” also refer to introducing proteins into a cell from the external environment.
- transduction or transfection of a protein relies on attachment of a peptide or protein capable of crossing the cell membrane to the protein of interest. See, e.g., Ford et al. (2001) Gene Therapy 8:1-4 and Prochiantz (2007) Nat. Methods 4:119-20.
- a nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
- a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- “operably linked” means that the DNA sequences being linked are near each other, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.
- gene means the segment of DNA involved in producing a protein; it includes regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).
- the leader, the trailer as well as the introns include regulatory elements that are necessary during the transcription and the translation of a gene.
- a “protein gene product” is a protein expressed from a particular gene.
- the named protein includes any of the protein's naturally occurring forms, or variants or homologs that maintain the protein transcription factor activity (e.g., within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to the native protein).
- variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g. a 50, 100, 150 or 200 continuous amino acid portion) compared to a naturally occurring form.
- the protein is the protein as identified by its NCBI sequence reference.
- the protein is the protein as identified by its NCBI sequence reference or functional fragment or homolog thereof.
- a “methylcytosine dioxygenase TET1” or “TET1” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the TET1 dioxygenase or variants or homologs thereof that maintain TET1 dioxygenase enzyme activity (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to TET1).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the TET1 protein is substantially identical to the protein identified by the UniProt reference number Q8NFU7 or a variant or homolog having substantial identity thereto.
- a “methylcytosine dioxygenase TET2” or “TET2” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the TET2 dioxygenase or variants or homologs thereof that maintain TET2 dioxygenase enzyme activity (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to TET2).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the TET2 protein is substantially identical to the protein identified by the UniProt reference number Q6N021 or a variant or homolog having substantial identity thereto.
- a “methylcytosine dioxygenase TET3” or “TET3” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the TET3 dioxygenase or variants or homologs thereof that maintain TET3 dioxygenase enzyme activity (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to TET3).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the TET3 protein is substantially identical to the protein identified by the UniProt reference number 043151 or a variant or homolog having substantial identity thereto.
- TET1 The TET family of enzymes (e.g., TET1, TET2, TET3) catalyze the conversion of 5mC to 5hmC as well as its further oxidation into 5-formylcytosine (5fC) and 5 carboxylcytosine (5caC) (Ito et al., 2010).
- TET dioxygenases oxidize the methyl group at C5 to yield 5-hydroxymethyl-(hmC) (Kriaucionis and Heintz, 2009), 5-formyl-(fC) (Maiti and Drohat, 2011) and 5-carboxylcytosine (caC) (He et al., 2011).
- a “Growth Arrest and DNA-Damage-inducible Alpha” or “GADD45A” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the GADD45A protein or variants or homologs thereof that maintain GADD45A protein activity/function (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to GADD45A).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the GADD45A protein is substantially identical to the protein identified by the UniProt reference number P24522 or a variant or homolog having substantial identity thereto.
- GADD45A forms part of the regulatory protein family in NER- and BER-based DNA demethylation (e.g., Growth Arrest and DNA Damage Protein 45a,-b,-g). GADD45 proteins are devoid of any obvious enzymatic activity and act as adapters between demethylation target genes and the DNA repair machinery. Without being bound to any particular theory, it is generally believed that GADD45a and TET1 directly bind each other.
- NEIL2 glycosylase or “NEIL2” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the NEIL2 glycosylase or variants or homologs thereof that maintain NEIL2 glycosylase enzyme activity (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to NEIL2).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the NEIL2 glycosylase is substantially identical to the protein identified by the UniProt reference number Q969S2 or a variant or homolog having substantial identity thereto.
- NEIL glycosylases are capable of excising formylated and carboxylated cytosine in chromatins. NEIL glycosylases can also initiate BER after TET-mediated cytosine oxidation. NEIL glycosylases may therefore constitute an alternative pathway for active demethylation and reactivation of epigenetically silenced genes.
- a “DNMT3a”, “DNA (cytosine-5)-methyltransferase 3A” or “DNA methyltransferase 3a” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the DNMT3a enzyme or variants or homologs thereof that maintain DNMT3a enzyme activity (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to DNMT3a).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the DNMT3a protein is substantially identical to the protein identified by the UniProt reference number Q9Y6K1 or a variant or homolog having substantial identity thereto.
- a “DNMT3L”, “DNA (cytosine-5)-methyltransferase 3L” or “DNA methyltransferase 3L” protein as referred to herein includes any of the recombinant or naturally-occurring forms of the DNMT3L enzyme or variants or homologs thereof that maintain DNMT3L enzyme activity (e.g. within at least 50%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% activity compared to DNMT3L).
- the variants or homologs have at least 90%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity across the whole sequence or a portion of the sequence (e.g.
- the DNMT3L protein is substantially identical to the protein identified by the UniProt reference number Q9UJW3 or a variant or homolog having substantial identity thereto.
- MLH1 (MutL homolog 1) is a human homolog of the E. coli DNA mismatch repair gene, mutL, which mediates protein-protein interactions during mismatch recognition, strand discrimination, and strand removal.
- the human gene, hMLH1 is located on Chromosome 3. Defects in hMLH1 are commonly associated with the microsatellite instability (MSI) observed in hereditary nonpolyposis colorectal cancer (HNPCC).
- hMLH1 deficient expression of the hMLH1 has been observed in many cancers, including stomach cancer (including foveolar type tumors, and stomach cancer in high-incidence Kashmir Valley), esophageal cancer, head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), and colorectal cancer (such as HNPCC).
- stomach cancer including foveolar type tumors, and stomach cancer in high-incidence Kashmir Valley
- esophageal cancer head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), and colorectal cancer (such as HNPCC).
- HNSCC head and neck squamous cell carcinoma
- NSCLC non-small cell lung cancer
- colorectal cancer colorectal cancer
- Cas9 protein as referred to herein includes a nuclease-deficient wt Cas9 protein in which one of the two catalytic sites for endonuclease activity (RuvC and HNH) is defective or lacks activity, and a dCas9 protein in which both catalytic sites for endonuclease activity are defective or lack activity.
- the Cas9 protein is a nuclease-deficient wt Cas9 protein.
- the Cas9 protein lacks nuclease activity or is nuclease-deficient.
- the Cas9 protein is a nickase (e.g., for example, the nickase can be a Cas9 Nickase with a mutation at a position corresponding to D10A of S. pyogenes Cas9; or the nickase can be a Cas9 Nickase with a mutation at a position corresponding to H840A of S. pyogenes Cas9).
- the Cas9 protein is a dCas9 (e.g., a dCas9 with mutations at positions corresponding to D10A and H840A of S. pyogenes Cas9).
- a “modified Cas9 protein” refers to a Cas9 that is not a wt Cas9 protein.
- the modified Cas9 protein is a dCas9.
- the modified Cas9 protein is a nickase.
- the modified Cas9 protein (nickase or dCas9) may have reduced nuclease activity, or lacks nuclease activity at one or both endonuclease catalytic sites.
- the dCas9 protein lacks endonuclease activity due to point mutations at both endonuclease catalytic sites (RuvC and HNH) of wild type Cas9.
- the point mutations may be D10A and H840A, respectively, in the S. pyogenes Cas9, or in the corresponding residues in species other than S. pyogenes .
- the modified Cas9 protein lacks endonuclease catalytic activity at one but not both sites of wt Cas9, and is able to create a nick on a dsDNA target (Cas9 nickase).
- the Cas9 nickase protein lacks endonuclease activity due to point mutations at one endonuclease catalytic sites (RuvC and HNH) of wild type Cas9.
- the point mutations can be D10A or H840A.
- the dCas9 protein is nuclease-deficient but retains DNA-binding ability when complexed with the polynucleotide.
- the dCas9 protein lacks endonuclease activity due to point mutations at both endonuclease catalytic sites (RuvC and HNH) of wild type Cas9.
- the point mutations can be D10A and H840A.
- the modified Cas9 protein has reduced or lacks endonuclease (e.g., endodeoxyribonuclease) activity.
- a modified Cas9 suitable for use in a method of the present invention may be a Cas9 nickase, or exhibits less than 20%, less than 15%, less than 10%, less than 5%, less than 1%, or less than 0.1%, of the endonuclease (e.g., endodeoxyribonuclease) activity of a wild-type Cas9 polypeptide, e.g., a wild-type Cas9 polypeptide comprising an amino acid sequence as depicted in FIG.
- the dCas9 has substantially no detectable endonuclease (e.g., endodeoxyribonuclease) activity.
- a dCas9 has reduced catalytic activity
- a Cas9 protein has a D10, G12, G17, E762, H840, N854, N863, H982, H983, A984, D986, and/or a A987 mutation, e.g., D10A, G12A, G17A, E762A, H840A, N854A, N863A, H982A, H983A, A984A, and/or D986A
- the polypeptide can still bind to target DNA in a site-specific manner, because it is still guided to a target polynucleotide sequence by a DNA-targeting sequence of the subject polynucleotide, as long as it retains the ability to interact with the Cas9-binding sequence of the subject polynucleotide.
- the nuclease-deficient wt Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein) is optionally a fusion polypeptide including: i) a Cas9 protein (e.g., nuclease-deficient wt Cas9 protein or dCas9 protein) a covalently linked heterologous polypeptide (also referred to as a “fusion partner”), which can be the same or different from the fusion partner fused to the PUF domains (infra).
- a Cas9 protein e.g., nuclease-deficient wt Cas9 protein or dCas9 protein
- a covalently linked heterologous polypeptide also referred to as a “fusion partner”
- “Patient” or “subject in need thereof” refers to a living organism suffering from or prone to a disease or condition that can be treated by administration of a composition or pharmaceutical composition as provided herein.
- Non-limiting examples include humans, other mammals, bovines, rats, mice, dogs, monkeys, goat, sheep, cows, deer, and other non-mammalian animals.
- a patient is human.
- the terms “disease” or “condition” refer to a state of being or health status of a patient or subject capable of being treated with a compound, pharmaceutical composition, or method provided herein.
- the disease is cancer (e.g. lung cancer, ovarian cancer, osteosarcoma, bladder cancer, cervical cancer, liver cancer, kidney cancer, skin cancer (e.g., Merkel cell carcinoma), testicular cancer, leukemia, lymphoma (Mantel cell lymphoma), head and neck cancer, colorectal cancer, prostate cancer, pancreatic cancer, melanoma, breast cancer, neuroblastoma).
- cancer e.g. lung cancer, ovarian cancer, osteosarcoma, bladder cancer, cervical cancer, liver cancer, kidney cancer, skin cancer (e.g., Merkel cell carcinoma), testicular cancer, leukemia, lymphoma (Mantel cell lymphoma), head and neck cancer, colorectal cancer, prostate cancer, pancreatic cancer, melanoma, breast cancer, neuroblastoma).
- cancer refers to all types of cancer, neoplasm or malignant tumors found in mammals, including leukemias, lymphomas, melanomas, neuroendocrine tumors, carcinomas and sarcomas.
- Exemplary cancers that may be treated with a compound, pharmaceutical composition, or method provided herein include lymphoma (e.g., Mantel cell lymphoma, follicular lymphoma, diffuse large B-cell lymphoma, marginal zona lymphoma, Burkitt's lymphoma), sarcoma, bladder cancer, bone cancer, brain tumor, cervical cancer, colon cancer, esophageal cancer, gastric cancer, head and neck cancer, kidney cancer, myeloma, thyroid cancer, leukemia, prostate cancer, breast cancer (e.g., lymphoma (e.g., Mantel cell lymphoma, follicular lymphoma, diffuse large B-cell lymphoma, marginal zona lymphoma, Burkitt's lymphoma), sarcoma, bladder cancer, bone cancer, brain tumor, cervical cancer, colon cancer, esophageal cancer, gastric cancer, head and neck cancer, kidney cancer, myeloma, thyroid cancer, leukemia, prostate cancer
- ER positive triple negative
- ER negative chemotherapy resistant
- herceptin resistant HER2 positive
- doxorubicin resistant tamoxifen resistant
- ductal carcinoma lobular carcinoma, primary, metastatic
- ovarian cancer pancreatic cancer
- liver cancer e.g., hepatocellular carcinoma
- lung cancer e.g.
- non-small cell lung carcinoma squamous cell lung carcinoma, adenocarcinoma, large cell lung carcinoma, small cell lung carcinoma, carcinoid, sarcoma), glioblastoma multiforme, glioma, melanoma, prostate cancer, castration-resistant prostate cancer, breast cancer, triple negative breast cancer, glioblastoma, ovarian cancer, lung cancer, squamous cell carcinoma (e.g., head, neck, or esophagus), colorectal cancer, leukemia (e.g., lymphoblastic leukemia, chronic lymphocytic leukemia, hairy cell leukemia), acute myeloid leukemia, lymphoma, B cell lymphoma, or multiple myeloma.
- leukemia e.g., lymphoblastic leukemia, chronic lymphocytic leukemia, hairy cell leukemia
- acute myeloid leukemia lymphoma, B cell lymphoma, or multiple
- Additional examples include, cancer of the thyroid, endocrine system, brain, breast, cervix, colon, head & neck, esophagus, liver, kidney, lung, non-small cell lung, melanoma, mesothelioma, ovary, sarcoma, stomach, uterus or Medulloblastoma, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, neuroblastoma, glioma, glioblastoma multiforme, ovarian cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, primary brain tumors, cancer, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, endometrial
- a disease e.g., cancer (e.g. leukemia, lymphoma, B cell lymphoma, or multiple myeloma)
- cancer e.g. leukemia, lymphoma, B cell lymphoma, or multiple myeloma
- the disease e.g. cancer, (e.g. leukemia, lymphoma, B cell lymphoma, or multiple myeloma)
- a symptom of the disease is caused by (in whole or in part) the substance or substance activity or function.
- treatment or “treating,” or “palliating” or “ameliorating” are used interchangeably herein. These terms refer to an approach for obtaining beneficial or desired results including but not limited to therapeutic benefit and/or a prophylactic benefit.
- therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated.
- a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient may still be afflicted with the underlying disorder.
- the compositions may be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
- Treatment includes preventing the disease, that is, causing the clinical symptoms of the disease not to develop by administration of a protective composition prior to the induction of the disease; suppressing the disease, that is, causing the clinical symptoms of the disease not to develop by administration of a protective composition after the inductive event but prior to the clinical appearance or reappearance of the disease; inhibiting the disease, that is, arresting the development of clinical symptoms by administration of a protective composition after their initial appearance; preventing re-occurring of the disease and/or relieving the disease, that is, causing the regression of clinical symptoms by administration of a protective composition after their initial appearance.
- certain methods herein treat cancer (e.g. lung cancer, ovarian cancer, osteosarcoma, bladder cancer, cervical cancer, liver cancer, kidney cancer, skin cancer (e.g., Merkel cell carcinoma), testicular cancer, leukemia, lymphoma, head and neck cancer, colorectal cancer, prostate cancer, pancreatic cancer, melanoma, breast cancer, neuroblastoma).
- cancer e.g. lung cancer, ovarian cancer, osteosarcoma, bladder cancer, cervical cancer, liver cancer, kidney cancer, skin cancer (e.g., Merkel cell carcinoma), testicular cancer, leukemia, lymphoma, head and neck cancer, colorectal cancer, prostate cancer, pancreatic cancer, melanoma, breast cancer, neuroblastoma.
- cancer e.g. lung cancer, ovarian cancer, osteosarcoma, bladder cancer, cervical cancer, liver cancer, kidney cancer, skin cancer (e.g., Merkel cell carcinoma), testicular cancer, leukemia, lymphoma, head and neck
- lung cancer ovarian cancer, osteosarcoma, bladder cancer, cervical cancer, liver cancer, kidney cancer, skin cancer (e.g., Merkel cell carcinoma), testicular cancer, leukemia, lymphoma, head and neck cancer, colorectal cancer, prostate cancer, pancreatic cancer, melanoma, breast cancer, neuroblastoma) would be known or may be determined by a person of ordinary skill in the art.
- skin cancer e.g., Merkel cell carcinoma
- testicular cancer e.g., leukemia, lymphoma, head and neck cancer, colorectal cancer, prostate cancer, pancreatic cancer, melanoma, breast cancer, neuroblastoma
- treatment refers to a method of reducing the effects of one or more symptoms of a disease or condition characterized by expression of the protease or symptom of the disease or condition characterized by expression of the protease.
- treatment can refer to a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% reduction in the severity of an established disease, condition, or symptom of the disease or condition.
- a method for treating a disease is considered to be a treatment if there is a 10% reduction in one or more symptoms of the disease in a subject as compared to a control.
- the reduction can be a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or any percent reduction in between 10% and 100% as compared to native or control levels. It is understood that treatment does not necessarily refer to a cure or complete ablation of the disease, condition, or symptoms of the disease or condition. Further, as used herein, references to decreasing, reducing, or inhibiting include a change of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater as compared to a control level and such terms can include but do not necessarily include complete elimination.
- an “effective amount” is an amount sufficient to accomplish a stated purpose (e.g. achieve the effect for which it is administered, treat a disease, reduce enzyme activity, reduce one or more symptoms of a disease or condition).
- An example of an “effective amount” is an amount sufficient to contribute to the treatment, prevention, or reduction of a symptom or symptoms of a disease, which could also be referred to as a “therapeutically effective amount.”
- a “reduction” of a symptom or symptoms means decreasing of the severity or frequency of the symptom(s), or elimination of the symptom(s).
- a “prophylactically effective amount” of a drug is an amount of a drug that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing or delaying the onset (or reoccurrence) of an injury, disease, pathology or condition, or reducing the likelihood of the onset (or reoccurrence) of an injury, disease, pathology, or condition, or their symptoms.
- the full prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
- a prophylactically effective amount may be administered in one or more administrations.
- An “activity decreasing amount,” as used herein, refers to an amount of antagonist required to decrease the activity of an enzyme or protein relative to the absence of the antagonist.
- a “function disrupting amount,” as used herein, refers to the amount of antagonist required to disrupt the function of an enzyme or protein relative to the absence of the antagonist.
- Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products. For example, for the given parameter, an effective amount will show an increase or decrease of at least 5%, 10%, 15%, 20%, 25%, 40%, 50%, 60%, 75%, 80%, 90%, or at least 100%. Efficacy can also be expressed as “-fold” increase or decrease. For example, a therapeutically effective amount can have at least a 1.2-fold, 1.5-fold, 2-fold, 5-fold, or more effect over a control.
- administering means oral administration, administration as a suppository, topical contact, intravenous, intraperitoneal, intramuscular, intralesional, intrathecal, intranasal or subcutaneous administration, or the implantation of a slow-release device, e.g., a mini-osmotic pump, to a subject.
- Administration is by any route, including parenteral and transmucosal (e.g., buccal, sublingual, palatal, gingival, nasal, vaginal, rectal, or transdermal).
- Parenteral administration includes, e.g., intravenous, intramuscular, intra-arteriole, intradermal, subcutaneous, intraperitoneal, intraventricular, and intracranial.
- compositions described herein are administered at the same time, just prior to, or just after the administration of one or more additional therapies, for example cancer therapies such as chemotherapy, hormonal therapy, radiotherapy, or immunotherapy.
- additional therapies such as chemotherapy, hormonal therapy, radiotherapy, or immunotherapy.
- the compounds of the invention can be administered alone or can be co-administered to the patient.
- Co-administration is meant to include simultaneous or sequential administration of the compounds individually or in combination (more than one compound).
- the preparations can also be combined, when desired, with other active substances (e.g. to reduce metabolic degradation).
- compositions of the present invention can be delivered by transdermally, by a topical route, formulated as applicator sticks, solutions, suspensions, emulsions, gels, creams, ointments, pastes, jellies, paints, powders, and aerosols.
- Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the complexes provided herein suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
- Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers.
- Lozenge forms can comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- a flavor e.g., sucrose
- an inert base such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.
- compositions can also include large, slowly metabolized macromolecules such as proteins, polysaccharides such as chitosan, polylactic acids, polyglycolic acids and copolymers (such as latex functionalized SepharoseTM, agarose, cellulose, and the like), polymeric amino acids, amino acid copolymers, and lipid aggregates (such as oil droplets or liposomes). Additionally, these carriers can function as immunostimulating agents (i.e., adjuvants).
- Suitable formulations for rectal administration include, for example, suppositories, which consist of the packaged nucleic acid with a suppository base.
- Suitable suppository bases include natural or synthetic triglycerides or paraffin hydrocarbons.
- gelatin rectal capsules which consist of a combination of the compound of choice with a base, including, for example, liquid triglycerides, polyethylene glycols, and paraffin hydrocarbons.
- Formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
- compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally.
- Parenteral administration, oral administration, and intravenous administration are the preferred methods of administration.
- the formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.
- Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
- Cells transduced by nucleic acids for ex vivo therapy can also be administered intravenously or parenterally as described above.
- the pharmaceutical preparation is preferably in unit dosage form.
- the preparation is subdivided into unit doses containing appropriate quantities of the active component.
- the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
- the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- the composition can, if desired, also contain other compatible therapeutic agents.
- the combined administration contemplates co-administration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.
- Effective doses of the compositions provided herein vary depending upon many different factors, including means of administration, target site, physiological state of the patient, whether the patient is human or an animal, other medications administered, and whether treatment is prophylactic or therapeutic. However, a person of ordinary skill in the art would immediately recognize appropriate and/or equivalent doses looking at dosages of approved compositions for treating and preventing cancer for guidance.
- “Pharmaceutically acceptable excipient” and “pharmaceutically acceptable carrier” refer to a substance that aids the administration of an active agent to and absorption by a subject and can be included in the compositions of the present invention without causing a significant adverse toxicological effect on the patient.
- Non-limiting examples of pharmaceutically acceptable excipients include water, NaCl, normal saline solutions, lactated Ringer's, normal sucrose, normal glucose, binders, fillers, disintegrants, lubricants, coatings, sweeteners, flavors, salt solutions (such as Ringer's solution), alcohols, oils, gelatins, carbohydrates such as lactose, amylose or starch, fatty acid esters, hydroxymethycellulose, polyvinyl pyrrolidine, and colors, and the like.
- Such preparations can be sterilized and, if desired, mixed with auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances, and the like, that do not deleteriously react with the compounds of the invention.
- auxiliary agents such as lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, and/or aromatic substances, and the like.
- pharmaceutically acceptable salt refers to salts derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
- preparation is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component with or without other carriers, is surrounded by a carrier, which is thus in association with it.
- carrier providing a capsule in which the active component with or without other carriers, is surrounded by a carrier, which is thus in association with it.
- cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.
- the pharmaceutical preparation is optionally in unit dosage form.
- the preparation is subdivided into unit doses containing appropriate quantities of the active component.
- the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
- the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
- the unit dosage form can be of a frozen dispersion.
- compositions of the present invention may additionally include components to provide sustained release and/or comfort.
- Such components include high molecular weight, anionic mucomimetic polymers, gelling polysaccharides and finely-divided drug carrier substrates. These components are discussed in greater detail in U.S. Pat. Nos. 4,911,920; 5,403,841; 5,212,162; and 4,861,760. The entire contents of these patents are incorporated herein by reference in their entirety for all purposes.
- the compositions of the present invention can also be delivered as microspheres for slow release in the body.
- microspheres can be administered via intradermal injection of drug-containing microspheres, which slowly release subcutaneously (see Rao, J. Biomater Sci. Polym . Ed.
- the formulations of the compositions of the present invention can be delivered by the use of liposomes which fuse with the cellular membrane or are endocytosed, i.e., by employing receptor ligands attached to the liposome, that bind to surface membrane protein receptors of the cell resulting in endocytosis.
- compositions of the present invention can focus the delivery of the compositions of the present invention into the target cells in vivo.
- the compositions of the present invention can also be delivered as nanoparticles.
- the polynucleotides may include a stability control sequence (e.g., transcriptional terminator segment) which influences the stability of the respective polynucleotide it forms part of (e.g., an RNA (e.g., a subject polynucleotide).
- a stability control sequence e.g., transcriptional terminator segment
- transcriptional terminator segment i.e., a transcription termination sequence
- a transcriptional terminator segment of a subject polynucleotide can have a total length of from 10 nucleotides to 100 nucleotides, e.g., from 10 nucleotides (nt) to 20 nt, from 20 nt to 30 nt, from 30 nt to 40 nt, from 40 nt to 50 nt, from 50 nt to 60 nt, from 60 nt to 70 nt, from 70 nt to 80 nt, from 80 nt to 90 nt, or from 90 nt to 100 nt.
- 10 nucleotides (nt) to 20 nt from 20 nt to 30 nt, from 30 nt to 40 nt, from 40 nt to 50 nt, from 50 nt to 60 nt, from 60 nt to 70 nt, from 70 nt to 80 nt, from 80 nt to 90 nt, or from 90 nt to 100
- the transcriptional terminator segment can have a length of from 15 nucleotides (nt) to 80 nt, from 15 nt to 50 nt, from 15 nt to 40 nt, from 15 nt to 30 nt or from 15 nt to 25 nt.
- the transcription termination sequence is one that is functional in a eukaryotic cell. In some cases, the transcription termination sequence is one that is functional in a prokaryotic cell.
- a stability control sequence e.g., transcriptional termination segment, or in any segment of the DNA-targeting RNA to provide for increased stability
- nucleotide sequences that can be included in a stability control sequence include sequences set forth in SEQ ID NO: 683-696 of WO 2013/176772 (incorporated herein by reference in its entirety and for all purposes), see, for example, SEQ ID NO: 795 of WO 2013/176772, a Rho-independent transcription termination site.
- the demethylation of methylation protein conjugates provided herein are targeted by the DNA-targeting sequence of the subject polynucleotide to a specific location (i.e., target polynucleotide sequence) in the target DNA, and exert locus-specific modification of the target DNA (e.g., modifying the local chromatin status).
- the changes are transient (e.g., transcription repression or activation).
- the changes are inheritable (e.g., when epigenetic modifications are made to the target DNA or to proteins associated with the target DNA, e.g., nucleosomal histones).
- the biological effects of a method using the complexes provided herein including embodiments thereof can be detected by any convenient method (e.g., gene expression assays; chromatin-based assays, e.g., Chromatin immunoPrecipitation (ChiP), Chromatin in vivo Assay (CiA), etc.; and the like).
- any convenient method e.g., gene expression assays; chromatin-based assays, e.g., Chromatin immunoPrecipitation (ChiP), Chromatin in vivo Assay (CiA), etc.; and the like).
- a transcription modulation method of the present invention provides for selective modulation (e.g., reduction or increase) of a target nucleic acid in a host cell.
- selective modulation e.g., reduction or increase
- “selective” reduction of transcription of a target nucleic acid reduces transcription of the target nucleic acid by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or greater than 90%, compared to the level of transcription of the target nucleic acid in the absence of a DNA-targeting sequence/modified Cas9 polypeptide/PUF domain-fusion complex.
- Selective reduction of transcription of a target nucleic acid reduces transcription of the target nucleic acid, but does not substantially reduce transcription of a non-target nucleic acid, e.g., transcription of a non-target nucleic acid is reduced, if at all, by less than 10% compared to the level of transcription of the non-target nucleic acid in the absence of the DNA-targeting sequence/modified Cas9 polypeptide/PUF domain-fusion complex.
- “selective” increased transcription of a target DNA can increase transcription of the target DNA by at least 1.1 fold (e.g., at least 1.2 fold, at least 1.3 fold, at least 1.4 fold, at least 1.5 fold, at least 1.6 fold, at least 1.7 fold, at least 1.8 fold, at least 1.9 fold, at least 2 fold, at least 2.5 fold, at least 3 fold, at least 3.5 fold, at least 4 fold, at least 4.5 fold, at least 5 fold, at least 6 fold, at least 7 fold, at least 8 fold, at least 9 fold, at least 10 fold, at least 12 fold, at least 15 fold, or at least 20-fold) compared to the level of transcription of the target DNA in the absence of the complexes provided herein including embodiments thereof (e.g., DNA-targeting sequence/modified Cas9 polypeptide/PUF domain-fusion complex).
- Selective increase of transcription of a target DNA increases transcription of the target DNA, but does not substantially increase transcription of a non-target DNA, e.g., transcription of a non-target DNA is increased, if at all, by less than 5-fold (e.g., less than 4-fold, less than 3-fold, less than 2-fold, less than 1.8-fold, less than 1.6-fold, less than 1.4-fold, less than 1.2-fold, or less than 1.1-fold) compared to the level of transcription of the non-targeted DNA in the absence of the complexes provided herein including embodiments thereof (e.g., DNA-targeting sequence/modified Cas9 polypeptide/PUF domain-fusion complex).
- multiple subject polynucleotides are used simultaneously in the same cell to simultaneously modulate transcription at different locations on the same target DNA or on different target DNAs.
- two or more subject polynucleotides target the same gene or transcript or locus.
- two or more subject polynucleotides target different unrelated loci.
- two or more subject polynucleotides target different, but related loci.
- the subject polynucleotides are small and robust, they can be simultaneously present on the same expression vector and can even be under the same transcriptional control if so desired.
- two or more (e.g., 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, 35 or more, 40 or more, 45 or more, or 50 or more) subject polynucleotides are simultaneously expressed in a target cell, from the same or different vectors.
- the expressed subject polynucleotides can be differently recognized by orthogonal nuclease-deficient RNA-guided DNA endonucleases (dCas9 proteins) from different bacteria, such as S. pyogenes, S. thermophilus, L. innocua , and N. meningitidis.
- dCas9 proteins orthogonal nuclease-deficient RNA-guided DNA endonucleases
- RNA processing system mediated by the Csy4 endoribonuclease described in international application PCT/US2016/021491 and published as WO2016148994 A8, which is hereby incorporated by reference and for all purposes, may be used for the invention provided herein.
- a method of the present invention to modulate transcription may be employed to induce transcriptional modulation in mitotic or post-mitotic cells in vivo and/or ex vivo and/or in vitro.
- a mitotic and/or post-mitotic cell can be any of a variety of host cell, where suitable host cells include, but are not limited to, a bacterial cell; an archaeal cell; a single-celled eukaryotic organism; a plant cell; an algal cell, e.g., Botryococcus braunii, Chlamydomonas reinhardtii, Nannochloropsis gaditana, Chlorella pyrenoidosa, Sargassum patens, C.
- a fungal cell e.g., an insect, a cnidarian, an echinoderm, a nematode, etc.
- a eukaryotic parasite e.g., a malarial parasite, e.g., Plasmodium falciparum ; a helminth; etc.
- a cell from a vertebrate animal e.g., fish, amphibian, reptile, bird, mammal
- a mammalian cell e.g., a rodent cell, a human cell, a non-human primate cell, etc.
- Suitable host cells include naturally-occurring cells; genetically modified cells (e.g., cells genetically modified in a laboratory, e.g., by the “hand of man”); and cells manipulated in vitro in any way. In some cases, a host cell is isolated or cultured.
- a stem cell e.g. an embryonic stem (ES) cell, an induced pluripotent stem (iPS) cell, a germ cell; a somatic cell, e.g. a fibroblast, a hematopoietic cell, a neuron, a muscle cell, a bone cell, a hepatocyte, a pancreatic cell; an in vitro or in vivo embryonic cell of an embryo at any stage, e.g., a 1-cell, 2-cell, 4-cell, 8-cell, etc. stage zebrafish embryo; etc.).
- ES embryonic stem
- iPS induced pluripotent stem
- a germ cell e.g. a somatic cell, e.g. a fibroblast, a hematopoietic cell, a neuron, a muscle cell, a bone cell, a hepatocyte, a pancreatic cell
- an in vitro or in vivo embryonic cell of an embryo at any stage e
- Cells may be from established cell lines or they may be primary cells, where “primary cells,” “primary cell lines,” and “primary cultures” are used interchangeably herein to refer to cells and cells cultures that have been derived from a subject and allowed to grow in vitro for a limited number of passages, i.e. splittings, of the culture.
- primary cultures include cultures that may have been passaged 0 times, 1 time, 2 times, 4 times, 5 times, 10 times, or 15 times, but not enough times go through the crisis stage.
- Primary cell lines can be are maintained for fewer than 10 passages in vitro.
- Target cells are in many embodiments unicellular organisms, or are grown in culture.
- the cells may be harvest from an individual by any convenient method.
- leukocytes may be conveniently harvested by apheresis, leukocytapheresis, density gradient separation, etc., while cells from tissues such as skin, muscle, bone marrow, spleen, liver, pancreas, lung, intestine, stomach, etc. are most conveniently harvested by biopsy.
- An appropriate solution may be used for dispersion or suspension of the harvested cells.
- Such solution will generally be a balanced salt solution, e.g.
- fetal calf serum or other naturally occurring factors, in conjunction with an acceptable buffer at low concentration, e.g., from 5-25 mM.
- Convenient buffers include HEPES, phosphate buffers, lactate buffers, etc.
- the cells may be used immediately, or they may be stored, frozen, for long periods of time, being thawed and capable of being reused.
- the cells will usually be frozen in 10% dimethyl sulfoxide (DMSO), 50% serum, 40% buffered medium, or other solutions commonly used in the art to preserve cells at such freezing temperatures, and thawed in a manner as commonly known in the art for thawing frozen cultured cells.
- DMSO dimethyl sulfoxide
- a subject polynucleotide, a nucleic acid comprising a nucleotide sequence encoding same, or a nucleic acid comprising a nucleotide sequence encoding the subject nuclease-deficient RNA-guided DNA endonuclease (dCas9 protein) or demethylation or methylation protein conjugate (PUF domain fusion), can be introduced into a host cell by any of a variety of well-known methods.
- nucleic acid e.g., vector or expression construct
- Suitable methods include, include e.g., viral or bacteriophage infection, transfection, conjugation, protoplast fusion, lipofection, electroporation, calcium phosphate precipitation, polyethyleneimine (PEI)-mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, nanoparticle-mediated nucleic acid delivery (see, e.g., Panyam et al., Adv. Drug Deliv. Rev., pii: S 0169-409 ⁇ (12)00283-9.doi:10.1016/j.addr.2012.09.023), and the like.
- PKI polyethyleneimine
- a subject nucleic acid also comprises a nucleotide sequence encoding a nuclease-deficient RNA-guided DNA endonuclease (dCas9 protein) and/or a demethylation or methylation protein conjugate (PUF domain fusion).
- dCas9 protein nuclease-deficient RNA-guided DNA endonuclease
- PEF domain fusion a demethylation or methylation protein conjugate
- a subject method involves introducing into a host cell (or a population of host cells) one or more nucleic acids (e.g., vectors) comprising nucleotide sequences encoding a subject polynucleotide and/or a nuclease-deficient RNA-guided DNA endonuclease (dCas9 protein) and/or a demethylation or methylation protein conjugate (PUF domain fusion).
- a host cell comprising a target DNA is in vitro.
- a host cell comprising a target DNA is in vivo.
- Suitable nucleic acids comprising nucleotide sequences encoding a subject polynucleotide and/or a nuclease-deficient RNA-guided DNA endonuclease (dCas9 protein) and/or a subject demethylation or methylation protein conjugate (PUF domain fusion) include expression vectors, where the expression vectors may be recombinant expression vector.
- dCas9 protein nuclease-deficient RNA-guided DNA endonuclease
- PEF domain fusion a subject demethylation or methylation protein conjugate
- the recombinant expression vector is a viral construct, e.g., a recombinant adeno-associated virus construct (see, e.g., U.S. Pat. No. 7,078,387), a recombinant adenoviral construct, a recombinant lentiviral construct, a recombinant retroviral construct, etc.
- a viral construct e.g., a recombinant adeno-associated virus construct (see, e.g., U.S. Pat. No. 7,078,387), a recombinant adenoviral construct, a recombinant lentiviral construct, a recombinant retroviral construct, etc.
- Suitable expression vectors include, but are not limited to, viral vectors (e.g. viral vectors based on vaccinia virus; poliovirus; adenovirus (see, e.g., Li et al., Invest Opthalmol. Vis. Sci., 35:2543-2549, 1994; Borras et al., Gene Ther., 6:515-524, 1999; Li and Davidson, Proc. Natl. Acad. Sci. USA, 92:7700-7704, 1995; Sakamoto et al., Hum.
- viral vectors e.g. viral vectors based on vaccinia virus; poliovirus; adenovirus (see, e.g., Li et al., Invest Opthalmol. Vis. Sci., 35:2543-2549, 1994; Borras et al., Gene Ther., 6:515-524, 1999; Li and Davidson, Proc. Natl. Acad. Sci. USA,
- a retroviral vector e.g., Murine Leukemia Virus, spleen necrosis virus, and vectors derived from retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, a lentivirus, HIV virus, myeloproliferative sarcoma virus, and mammary tumor virus; and the like.
- Suitable expression vectors are known to those skilled in the art, and many are commercially available.
- the following vectors are provided by way of example; for eukaryotic host cells: pXT1, pSGS (Stratagene), pSVK3, pBPV, pMSG, and pSVLSV40 (Pharmacia).
- any other vector may be used so long as it is compatible with the host cell.
- a method for modulating transcription according to the present invention finds use in a variety of applications, including research applications; diagnostic applications; industrial applications; and treatment applications.
- Research applications may include, e.g., determining the effect of reducing or increasing transcription of a target nucleic acid on, e.g., development, metabolism, expression of a downstream gene, and the like.
- High through-put genomic analysis can be carried out using a subject transcription modulation method, in which only the DNA-targeting sequence of the subject polynucleotide needs to be varied, while the binding sequence (Cas9-binding sequence) and the PBS sequence can (in some cases) be held constant.
- a library e.g., a subject library
- comprising a plurality of nucleic acids used in the genomic analysis would include: a promoter operably linked to a subject polynucleotide-encoding nucleotide sequence, where each nucleic acid would include a different DNA-targeting sequence, a common binding sequence (Cas9-binding sequence), and a common PBS sequence.
- a chip could contain over 5 ⁇ 10 4 unique polynucleotide of the invention.
- a subject transcription modulation method can also be used for drug discovery and target validation as described in international application PCT/US2016/021491 and published as WO2016148994 A8, which is hereby incorporated by reference and for all purposes.
- Example 1 sgRNA Scaffold Remains Functional with Insertion of 47 Copies of Engineered Pumilio Binding Sites
- the subject 3-component CRISPR/Cas complex/system can have at least 47 copies of the engineered 8-mer Pumilio homologue domain-binding sequences (PBSs) at the 3′ end of sgRNA, without substantially affecting the function of the dCas9/sgRNA complex.
- PBSs Pumilio homologue domain-binding sequences
- FIG. 1B Cells were transfected with dCas9-VP64 with the different sgRNA scaffolds, and were analyzed by fluorescent-activated cell sorting (FACS) two days after transfection ( FIG. 1B ). All the control non-targeting sgRNAs did not activate tdTomato expression. Meanwhile, all the Tet-targeting sgRNAs with different number of PBS could direct dCas9-VP64 to activate tdTomato expression, showing that insertion of at least 47 copies of 8-mer sites do not substantially impact the activity of sgRNA in directing dCas9-VP64 to its targets ( FIG. 1C ).
- Example 2 The Subject 3-Component CRISPR/Cas Complexes/Systems are Orthogonal to Each Other Due to the Specificity of the Engineered Pumilio with the Cognate 8-Mer Binding Sites
- PUF::VP64 can activate tdTomato expression only when the sgRNA with the cognate binding sites were provided.
- PBSa and PBSw binding sites only differ by one nucleotide, their gene activation remains target-specific, demonstrating the high specificity of the subject 3-component CRISPR/Cas complex/system.
- Example 3 The Subject 3-Component CRISPR/Cas Complex/System Allows Assembly of Protein Complex at Target Loci
- p65-HSF1 has recently been shown to be a potent activator domain.
- Co-transfection of both PUF(3-2)::VP64 and PUF(6-2/7-2)::p65-HSF1 induced a tdTomato fluorescence, with an intensity the sum of the fluorescent intensity resulting from transfecting the single activators alone. This indicates that sgRNA with binding sites for both PUF(3-2) and PUF(6-2/7-2) allows both fusion proteins of both types to assemble on the targeted genomic locus.
- PUFa [PUF(3-2)] and PUFb [PUF(6-2/7-2)] with N-terminal NLS were amplified from constructs containing these coding sequences with primers containing SgrAI and PacI sites and were used to replace SgrAI-dCas9-FseI from pAC164:pmax-dCas9Master_VP64 to create pAC1355:pmax-NLSPUFa_VP64 and pAC1356:pmax-NLSPUFb_VP64.
- a fusion PCR with 5′ fragment up to repeat 4 of NLSPUFb and 3′ fragment from repeat 5 to the end of NLSPUFa was used to create pAC1357:pmax-NLSPUFw_VP64.
- a fusion PCR of 5′ fragment of NLSPUFa with 3′ fragment of NLSPUb was used to create pAC1358:pmax-NLSPUFc_VP64.
- p65HSF1 activator ORF was amplified from MS2-P65-HSF1_GFP (Addgene: 61423) with FseI PacI sites to replace VP64 fragment in pAC164 to create pAC1410:pmax-dCas9_p65HSF1, and replace VP64 in pAC1355 and pAC1358 to create pAC1393: pmax-NLSPUFa_p65HSF1 and pAC1411:pmax-NLSPUFc_p65HSF1, respectively.
- the FseI-p65HSF1-PacI fragment was released from pAC1393 and ligated with SgrAI-NLSPUMb fragment released from pAC1356 and pAC1360 digested with SgrAI-PacI as vector to create pAC1413: PB3-neo(-)-pmax-NLSPUFb_p65HSF1.
- the BFPKRAB fragment was amplified from pHR-SFFV-dCas9-BFP-KRAB (Addgene #46911) and was used to replace Clover fragment from pAC1360 to create pAC1414: PB3-neo(-)-pmax-BFPKRAB_NLSPUFa.
- an NheI-CAGGS-NLSPUFb_p65HSF1-NheI fragment was amplified from pAC1413 and inserted into pAC1414 digested with NheI to create a dual expression vector for BFPKRAB-NLSPUFa and NLSPUFb-p65HSF1 (pAC1414: PB3-NLSPUFb_p65HSF1(-)neo(-)-BFPKRAB2_NLSPUFa).
- HAT sequence was amplified with another pair of primers containing SgrAI-AclI site and cloned into SgrAI-ClaI site of pAC1405 to create pAC1416: pCR8-CBPHAT_4 ⁇ NLSPUFa_2 ⁇ NLS.
- pAC1415 and pAC1416 were recombined into pAC90:pmax-DEST (Addgene #48222) to create expression vectors pAC1417: pmax-4 ⁇ NLSPUFa_2 ⁇ NLS_CBPHAT and pAC1418: pmax-CBPHAT_4 ⁇ NLSPUFa_2 ⁇ NLS, respectively.
- FseI-mCherry-PacI fragment was amplified from a plasmid containing mCherry sequence and ligated with SgrAI-dCas9-FseI to PB3-neo(-)-pmax to generate pAC1419: PB3-neo(-)-pmax-dCas9Master_mCherry.
- Expression vectors for sgRNA-PBS were constructed as follows: First, a sgRNA scaffold based on sgF+E with BbsI for oligo cloning of guide sequence and with 3′ BsaI (right upstream of the terminator) for insertion of PBS were ordered as a gBlock (IDT), and were cloned into pX330 (Addgene #42230) replacing the AflIII-NotI region to create vector pAC1394: pX-sgFE-BsaI(AGAT).
- oligos encoding 5 ⁇ PBSa sites each separated by ggc-spacer flanked by 5′-AGAT-3′ overhangs on one side and 5′-ATCT-3′ on the other side were treated with T4PNK and annealed and ligated into pAC1394 digested with BsaI (to create compatible overhangs).
- Clones were then screened for 1 copy (5 ⁇ PBS), 2 copies (10 ⁇ PBS), etc of the oligo insertions for the different number of PBS.
- 1 ⁇ PBS and 2 ⁇ PBS vectors they were constructed using oligo containing one PBS site. Guide sequence for each target were then cloned onto the sgRNA-PBS expression vectors via BbsI site as previously described.
- sgRNA expression vectors with GFP expression markers they were constructed by transferring the sgRNA-PBS expression cassette from the pX vectors onto a PB-GFP vector via AscI site.
- the different sgRNA expression constructs are listed in Table S1.
- HEK293T cells were cultivated in Dulbecco's modified Eagle's medium (DMEM)(Sigma) with 10% fetal bovine serum (FBS)(Lonza), 4% Glutamax (Gibco), 1% Sodium Pyruvate (Gibco) and penicillin-streptomycin (Gibco). Incubator conditions were 37° C. and 5% CO 2 .
- DMEM Dulbecco's modified Eagle's medium
- FBS fetal bovine serum
- Gibco fetal bovine serum
- Gibco fetal bovine serum
- 1% Sodium Pyruvate Gibco
- penicillin-streptomycin Gabco
- Incubator conditions were 37° C. and 5% CO 2 .
- cells were seeded into 12-well plates at 100,000 cells per well the day before being transfected with 200 ng of dCas9 construct, 100 ng of modified sgRNA and 100 ng of
- RNA extraction After transfection, cells were grown for 48 hrs and harvested for either RNA extraction or fluorescent-activated cell sorting (FACS). For dual activation-repression experiments, transfection remained the same, however cells were seeded into 12-well plates at 150,000 cells per well and were grown for 72 hrs before being harvested for FACS. For experiments with OCT4 and SOX2 dual activation-repression, cells were triple-sorted by BFP (for the activator-repressor module PUFb-p65HSF1/BFPKRAB-PUFa), mCherry (for dCas9mCherry) and GFP (for the sgRNA-PBS on vectors co-expressing EGFP) before RNA extraction.
- BFP for the activator-repressor module PUFb-p65HSF1/BFPKRAB-PUFa
- mCherry for dCas9mCherry
- GFP for the sgRNA-PBS on vectors co-expressing EGFP
- cells were seeded into 6-well plates with 22 ⁇ 22 ⁇ 1 microscope cover glass at 300,000 cells per well the day before being transfected with 50 ng of dCas9 construct, 500 ng of modified sgRNA, and 50 ng of a PUF-fluorescent fusion with Attractene transfection reagent. After transfection, cells were grown for 48 hrs then immunostained.
- a cDNA library was made using Applied Biosystems High Capacity RNA-to-cDNA kit with 1 ⁇ g of RNA.
- TaqMan Gene expression assays were designed using GAPDH (Hs03929097, VIC) as endogenous control and OCT4 (Hs00999632, FAM) and SOX2 (Hs01053049, FAM) as targets.
- Fluorescent-Activated Cell Sorting Cells were trypisinized and fixed for 10 min with 2% paraformaldehyde. Afterwards, the cells were centrifuged at 125 g for 5 min and resuspended in dPBS. Samples were analyzed on a FACScalibur flow cytometer using CellQuest Pro software (BD Bioscience). thousands events were collected in each run.
- NLS PUFa VP64 SEQ ID NO: 32 MGILPPKKKRKVSRGRSRLLEDFRNNRYPNLQLREIAGHIMEFSQDQHGS RFIQLKLERATPAERQLVFNEILQAAYQLMVDVFGNYVIQKFFEFGSLEQ KLALAERIRGHVLSLALQMYGSRVIEKALEFIPSDQQNEMVRELDGHVLK CVKDQNGNHVVQKCIECVQPQFIIDAFKGQVFALSTHPYGCRVIQRI LEHCLPDQTLPILEELHQHTEQLVQDQYGNYVIQHVLEHGRPEDKSKIVA EIRGNVLVLSQHKFASNVVEKCVTHASRTERAVLIDEVCTMNDGPHSALY TMMKDQYANYVVQKMIDVAEPGQRKIVMHKIRPHIATLRKYTYGKHILAK LEKYYMKNGVDLGGPAGSGR ADALDDFDLD
- NLS sequence is residues 6-12
- PUFa SEQ ID NO:2
- VP64 is residues 371-421.
- NLS PUFb VP64 SEQ ID NO: 33 MGILPPKKKRKVSRGRSRLLEDFRNNRYPNLQLREIAGHIMEFSQDQHGS RFIQLKLERATPAERQLVFNEILQAAYQLMVDVFGNYVIQKFFEFGSLEQ KLALAERIRGHVLSLALQMYGCRVIQKALEFIPSDQQNEMVRELDGHVLK CVKDQNGNHVVQKCIECVQPQFIIDAFKGQVFALSTHPYGCRVIQRI LEHCLPDQTLPILEELHQHTEQLVQDQYGSYVIEHVLEHGRPEDKSKIVA EIRGNVLVLSQHKFANNVVQKCVTHASRTERAVLIDEVCTMNDGPHSALY TMMKDQYANYVVQKMIDVAEPGQRKIVMHKIRPHIATLRKYTYGKHILAK LEKYYMKNGVDLGGPAGSGR ADALDDFD
- NLS sequence is residues 6-12
- PUFb SEQ ID NO:3
- VP64 is residues 371-421.
- NLS PUFw VP64 SEQ ID NO: 34 MGILPPKKKRKVSRGRSRLLEDFRNNRYPNLQLREIAGHIMEFSQDQHGS RFIQLKLERATPAERQLVFNEILQAAYQLMVDVFGNYVIQKFFEFGSLEQ KLALAERIRGHVLSLALQMYGCRVIQKALEFIPSDQQNEMVRELDGHVLK CVKDQNGNHVVQKCIECVQPQSLQFIIDAFKGQVFALSTHPYGCRVIQRI LEHCLPDQTLPILEELHQHTEQLVQDQYGNYVIQHVLEHGRPEDKSKIVA EIRGNVLVLSQHKFASNVVEKCVTHASRTERAVLIDEVCTMNDGPHSALY TMMKDQYANYVVQKMIDVAEPGQRKIVMHKIRPHIATLRKYTYGKHILAK LEKYYMKNGVDLGGPAGSGR ADALDDFDLD
- NLS sequence is residues 6-12
- PUFw SEQ ID NO:5
- VP64 is residues 371-421.
- NLS PUFc VP64 SEQ ID NO: 35 MGILPPKKKRKVSRGRSRLLEDFRNNRYPNLQLREIAGHIMEFSQDQHGS RFIQLKLERATPAERQLVFNEILQAAYQLMVDVFGNYVIQKFFEFGSLEQ KLALAERIRGHVLSLALQMYGSRVIEKALEFIPSDQQNEMVRELDGHVLK CVKDQNGNHVVQKCIECVQPQFIIDAFKGQVFALSTHPYGCRVIQRI LEHCLPDQTLPILEELHQHTEQLVQDQYGSYVIEHVLEHGRPEDKSKIVA EIRGNVLVLSQHKFANNVVQKCVTHASRTERAVLIDEVCTMNDGPHSALY TMMKDQYANYVVQKMIDVAEPGQRKIVMHKIRPHIATLRKYTYGKHILAK LEKYYMKNGVDLGGPAGSGR ADALDDFD
- NLS sequence is residues 6-12
- PUFc SEQ ID NO:4
- VP64 is residues 371-421.
- Example 4 Targeted DNA Demethylation and Methylation Using the Subject 3-Component CRISPR/Cas Complex/System (Casilio) and dCas9-Tethered Enzymes
- CRISPR/Cas Complex/System may also be referred to as “Casilio” herein.
- the Example demonstrated a robust activation of hMLH1 transcription, a gene that is epigenetically silenced in HEK293T cells and other cancer cells due to hypermethylation in the promoter regions. Reactivation of hMLH1 transcription leads to (restoration of) expression of MLH1 protein.
- the Example showed that Casilio-ME-mediated delivery of TET1 activity to hMLH1 promoter region induced a robust cytosine demethylation within the targeted CpG island, providing a proof-of-principal that Casilio-ME is a robust platform to editing methylcytosine mark of the epigenome.
- dCas9 nuclease-deficient dCas9, modified sgRNAs containing sites for Pumilio (PUF) RNA binding domain (sgRNA-PBS) and an effector module made of Pumilio RNA binding domain fused to an effector protein.
- dCas9 binds DNA when complexed with sgRNA without producing double-stranded breaks, serving as a RNA-programmable DNA binding protein whose specificity is determined by a sequence in the sgRNA component of the system.
- PUF domains can be programmed to bind to any 8-mer RNA sequences (PBS) appended in multiple copies to the 3′ end of the sgRNA without interfering with the sgRNA-mediated DNA binding of dCas9 (Cheng, A. W., et al., Casilio: a versatile CRISPR - Cas 9- Pumilio hybrid for gene regulation and genomic labeling . Cell Res, 2016. 26(2): p. 254-7).
- PBS 8-mer RNA sequences
- TET1-effector modules were constructed as N-terminal or C-terminal fusions of PUFa to TET1 catalytic domain that includes residues 1418 to 2136 (TET1(CD)).
- the promoter region of hMLH1 whose hypermethylation is known to induce silencing of hMLH1 expression (Deng, G., et al., Methylation of CpG in a small region of the hMLH 1 promoter invariably correlates with the absence of gene expression . Cancer Res, 1999. 59(9): p. 2029-33), was chosen as the target for this study.
- MLH1 protein is a component of the methyl directed mismatch repair system of the cell.
- hMLH1 is in fact silenced in HEK293T cells as is in other cancer cells, and therefore represents a good cellular model to test TET1-effectors in their ability to induce demethylation-mediated gene activation.
- Nine sgRNAs were designed around the promoter region whose methylation is associated with down-regulation of hMLH1 in cancer cells ( FIG. 3A ) (Deng, G., et al., Methylation of CpG in a small region of the hMLH 1 promoter invariably correlates with the absence of gene expression . Cancer Res, 1999. 59(9): p. 2029-33).
- HEK293T cells were transfected with Casilio-ME components including Ct or Nt-fusion TET1-effector and a combination of 3 or 2 sgRNAs.
- Relative levels of hMLH1 mRNA were determined in TaqMan assays by using RNA extracted from cells 60 hours post-transfection and GAPDH as endogenous control for normalization of qRT-PCR measurements. This showed that PUFa-TET1(CD)C-terminal fusion effector restored a robust hMLH1 expression that reached 135 fold over background in the presence sgRNAs 3+7 ( FIG. 3B ).
- TET1(CD)-PUFa N-terminal effector fusion showed a much weaker activation (20 fold at best) in the presence of the same sgRNA combo, presumably due to steric hindrance as TET1(CD) is natively located at the C-terminus of TET1 full length protein.
- Casilio-mediated delivery of demethylation enzymes to specific genomic locus enables robust alteration of gene expression.
- TET1-mediated activation of hMLH1 expression was replaced by p65HSF1-effector.
- this showed higher activation that reached 200-fold over the background ( FIG. 3B ).
- Casilio-ME-mediated activation of hMLH1 expression can achieve about 70% of the activation obtained by a strong transcription activator module such as p65HSF1, indicating that Casilio-ME is an efficient tool enabling efficient targeting and delivery of demethylation enzymes to alter methylation state of the genome and the associated silencing activities.
- dCas9-TET1(CD) direct fusion to activate hMLH1 expression in HEK293T cells in comparison to Casilio-ME
- N-terminal and C-terminal fusions of dCas9 to TET1(CD) were constructed.
- the dCas9-TET1(CD)C-terminal fusion showed a relatively weak activation of hMLH1, as indicated by the relative change in mRNA levels ( FIG. 3C ).
- dCas9-TET1(CD)-induced activation represents at best about 14% of the obtained activation using the Casilio-ME with the same sgRNAs combination in parallel experiment (19-vs 135-fold change in mRNA levels).
- TET1(CD)-dCas9 fusion showed a much weaker activation than its respective C-terminal fusion, indicating a possible steric hindrance affecting TET1 activity when N-terminally fused to either dCas9 or PUFa proteins ( FIGS. 3B & 3C ).
- HEK293T cells were transfected with dCas9-p65HSF1 along with the same sgRNA combination. Analysis of mRNA levels showed that dCas9-TET1 activation of hMLH1 was at best twice the activity obtained with transcription activator dCas9 fusion ( FIG. 3C ), therefore indicating that TET1 targeting to specific locus can activate gene, presumably via alteration of epigenetic DNA methylation at the target site.
- Casilio-mediated delivery of demethylation enzymes alters methylation state of targeted genomic locus.
- Evidence that the shown Casilio-ME-induced activation of hMLH1 transcription is a result of TET1-mediated cytosine demethylation within the targeted promoter region came from DNA sequencing of hMLH1 promoter after bisulfite conversion.
- Bisulfite treatment of genomic DNA deaminates unmethylated cytosines to produce uracils that are subsequently replicated as thymine.
- methylated cytosines are protected from conversion to uracils, thus allowing one to determine cytosine methylation states at single-nucleotide resolution by direct sequencing.
- HEK293T were transfected with Casilio-ME components that includes Ct-fusion PUFa-TET1 effector and a combination of 2 sgRNAs (RNA guides 3 and 7).
- TaqMan assays showed that the activation of hMLH1 transcription was maintained during the course of these transient transfections ( FIG. 4A ), thus showing a sustained change of hMLH1 mRNA levels during the 6 days of the experiment.
- Casilio-mediated delivery of methyltranferases silent gene expression Programmable methyltranferases were constructed by either direct fusions of catalytic domains of Dnmt3a, Dnmt3L, or a hybrid Dnmt3a-3L to N-terminus or C-terminus of dCas9 ( FIG. 5A ). N- or C-terminal fusions of these effectors to PUFa were also constructed, for use with dCas9 and sgRNA-PBS (Casilio-ME with Dnmt effectors; FIG. 5B ).
- Casilio-ME with a Dnmt3a-PUF achieved more robust repression of SOX2 gene expression compared to direct fusions, demonstrating superior activity using Casilio-ME for directed DNA methylation ( FIGS. 6A and 6B ).
- HEK293T cells were cultivated in Dulbecco's modified Eagle's medium (DMEM)(Sigma) with 10% fetal bovine serum (FBS)(Lonza), 4% Glutamax (Gibco), 1% Sodium Pyruvate (Gibco) and penicillin-streptomycin (Gibco) in an incubator set to 37° C. and 5% CO 2 .
- DMEM Dulbecco's modified Eagle's medium
- FBS fetal bovine serum
- Gibco fetal bovine serum
- Gibco fetal bovine serum
- Gibco fetal bovine serum
- 1% Sodium Pyruvate Gibco
- penicillin-streptomycin Gibco
- dCas9-direct fusion experiments cells were transfected with 200 ng dCas9-fusion constructs and 200 ng of modified sgRNA constructs. Transfected cells were harvested 60 hours after transfection, or otherwise indicated, and cell pellets were used for extractions of RNA, genomic DNA and protein.
- GAPDH Hs03929097, VIC
- hMLH1 Hs00179866, FAM
- Genomic DNAs were extracted using all AllPrep DNA/RNA/Protein Mini Kit according the manufacturer's instructions (Qiagen). The kit allows extraction of genomic DNA as well as RNA and total protein from the same cellular pellet for parallel downstream analyses. Bisulfite conversion experiments were performed by using EpiTect Fast DNA Bisulfite Kit and extracted genomic DNAs according to manufacturer's instructions (Qiagen). Bisulfite treated DNAs served then as templates to PCR amplify two DNA fragments of 350-400 bp long that cover the whole hMLH1 promoter region using ZymoTaq PreMix according to manufacturer's instructions (Zymo Research).
- PCR fragments were then cloned by SLIC into EcoRI-linearized PUC19 plasmid using T4 DNA polymerize (Jeong, J. Y., et al., One - step sequence - and ligation - independent cloning as a rapid and versatile cloning method for functional genomics studies . Appl Environ Microbiol, 2012. 78(15): p. 5440-3).
- Six independent positive clones for each sample were then subjected to Singer sequencing for determination of the frequency of cytosine to thymine conversion at individual CpG of the hMLH1 promoter region.
- dCas9-expressing cell line The day prior to transfection, Lenti -X 293T cells were seeded into 6-well plates at 1.2 million cells per well. The cells were transfected with the supercoiled packaging plasmids (pLP1 (gag/pol), pLP2 (rev), and VSV-G (envelope)) and a dCas9 lentiviral expression plasmid through Lipofectamine 3000 reagent (Invitrogen). At 6 h posttransfection, medium was exchanged for fresh. At 24 h posttransfection, 2 ml of medium containing the lentivirus were collected and centrifuged for 10 minutes at 2,000 rpm to remove cellular debris.
- HEK293T cells seeded into a 12-well plate at 150,000 cells per well, were transduced with 500 ⁇ l of the dCas9 lentivirus in culture medium supplemented with 5 ⁇ g/ml polybrene for 12 hours, and subsequently selected with Blasticidin antibiotics on the third day post transduction.
- HEK293T, and HEK293T/dCas9 cell lines were seeded into 12-well plates at 150,000 cells per well.
- Cells were transfected with 200 ng of the Dnmt effector constructs and 200 ng of the sgRNA-PBS with Attractene transfection reagent (Qiagen).
- Attractene transfection reagent Qiagen.
- the cells were sorted for GFP (sgRNA expression constructs are marked by GFP) with fluorescence-activated cell sorting (FACS) and re-plated into 12 or 24-well plates.
- GFP sgRNA expression constructs are marked by GFP
- FACS fluorescence-activated cell sorting
- sgRNA-PBS sequence sgSOX2-1-5xPBSa GCATGTGACGGGGGCTGTCAgtttAagagctaTGCTGGAAACAGCAta SEQ ID NO: 70 gcaagttTaaataaggctagtccgttatcaacttgaaaaagtggcacc gagtcggtgcCAATTGggtctccagatTGTATGTAGCCTGTATGTAGC CTGTATGTAGCCTGTATGTAGCCTGTATGTAagatCTTTTTTTTT sgSOX2-2-5xPBSa GCTGCCGGGTTTTGCATGAAgtttAagagctaTGCTGGAAACAGCAta SEQ ID NO: 71 gcaagttTaaataggctagtccgttatcaacttgaaaaagtggcacc gagtcggtgcCAATTGggtctccagatTGTATGTAGCCTGTATGTAGC CTGT
- mC methylcytosine
- TET1 TET1 mediated iterative mC oxidation
- BER base-excision repair
- NER nucleotide-excision repair
- GADD45A protein Crowth Arrest and DNA-Damage-inducible Alpha
- GADD45A protein Crowth Arrest and DNA-Damage-inducible Alpha
- mC demethylation efficiency appears to be enhanced by GADD45A protein (Growth Arrest and DNA-Damage-inducible Alpha), a multi-faceted nuclear factor involved in maintenance of genomic stability, DNA repair and suppression of cell growth (Niehrs and Schafer, Trends Cell Biol 22(4): 220-227, 2012; Barreto et al., Nature 445(7128):671-675, 2007; Schuermann et al., DNA Repair ( Amst ) 44:92-102, 2016).
- GADD45A was also found to interact with TET1 and with the BER enzyme Thymine DNA Glycosylase TDG (Kienhofer et al., Differentiation 90(1-3):59-68, 2015; Li et al., Nucleic Acids Res 43(8):3986-3997, 2015).
- Another way to dually target the two components GADD45A and TET1(CD) to a genomic site to alter its methylation state and associated gene expression is to fuse the proteins to two independent PUFs, for example, PUFa for TET1(CD) and PUFc for GADD45A, and use a modified gRNA scaffold that comprises the corresponding PUF binding sites (PBS) ( FIG. 7A ).
- PUFa-TET1(CD) and PUFc-GADD45A in the presence of corresponding gRNAs-PBSac showed significant stimulation of the TET1(CD) mediated hMLH1 activation, with GADD45A-PUFc showing higher activity compared to PUFc-GADD45A fusions ( FIG.
- Methylcytosine is an epigenetic mark made by a process that covalently adds a methyl group at position 5 of cytosine ring of a CpG DNA sequence.
- formation of 5-methylcytosine (5mC) mark is catalyzed and maintained by DNA methyltransferases.
- Demethylation pathways which remove the methyl group to restore unmethylated DNA, involve the ten-eleven translocation (TET) family of proteins.
- TET methylcytosine dioxygenases catalyze iterative oxidations of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) intermediates.
- the two latter intermediates, 5fC and 5caC seem to serve as substrates for the base-excision repair (BER) machinery which cleaves off the oxidized base and replaces it with unmethylated cytosines.
- BER base-excision repair
- DNA glycosylases catalyze the initial and important step that excise the damaged base and generate an apurinic/apyrimidinic site (AP site) substrate that is subsequently processed by the BER machinery to restore the base.
- Thymine DNA glycosylase (TDG) based BER pathways have been functionally linked to TET1-mediated active demethylation as they have been shown to specifically act on 5fC and 5caC and that NEIL1 and NEIL2 glycosylase/AP-lyase activities facilitate the restoration of unmethylated cytosine by displacing TDG from AP site to create a single strand DNA break substrate for downstream processing of BER machinery.
- NEIL2 to enhance TET1-mediated gene activation required targeting of NEIL2 effector to promoter regions.
- Coupling TET1 oxidative activities with NEIL2 glycosylase/AP-lyase activities using a simple and programmable Casilio platform enables robust demethylation-mediated transcription activation of methylation-silenced gene, providing thus a proof-of-principal that Casilio platform allows an unprecedented feature to harnessing players of independent pathways to synergize their association activities. This finding augments the capability of our Casilio-ME platform and paves the way to developing new applications to study important biological processes and to developing new therapies for methylation associated diseases.
- gRNA non-targeting guide RNA
- Dual expression of PUFa-TET1(CD) and PUFc-NEIL2 in the presence of gRNAs with both PBSa/c showed significant stimulation of the TET1(CD) mediated hMLH1 activation ( FIG. 10B ).
- NEIL2 when fused to either ends of PUFc, showed 7-fold increase in hMLH1 expression as indicated by RT-quantitative PCR ( FIG. 10B ).
- Evidence that NEIL2-mediated stimulation requires co-targeting of the effectors came from experiments where NEIL2 and TET1(CD) PUF-fusions were expressed in the presence of gRNA scaffold that comprised PBSa but lacked PBSc ( FIG. 11A ).
- HEK293T cells were cultivated in Dulbecco's modified Eagle's medium (DMEM) (Sigma) with 10% fetal bovine serum (FBS) (Lonza), 4% Glutamax (Gibco), 1% Sodium Pyruvate (Gibco) and penicillin-streptomycin (Gibco) in an incubator set to 37° C. and 5% CO2.
- DMEM Dulbecco's modified Eagle's medium
- FBS fetal bovine serum
- Gibco fetal bovine serum
- Gibco fetal bovine serum
- penicillin-streptomycin Gibco
- Cells were seeded into 12-well plates at 150,000 cells per well the day before being transfected with 100 ng of dCas9 construct, 100 ng of modified sgRNA construct and 200 ng of PUF-fusion with Attractene transfection reagent according to manufacturer's instructions (Qiagen). Transfected cells were harvested 3 days after trans
- GAPDH Hs03929097, VIC
- hMLH1 Hs00179866, FAM
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mycology (AREA)
- Toxicology (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/333,137 US20190218261A1 (en) | 2016-09-13 | 2017-09-13 | Targeted enhanced dna demethylation |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662393944P | 2016-09-13 | 2016-09-13 | |
US201762485210P | 2017-04-13 | 2017-04-13 | |
US201762535113P | 2017-07-20 | 2017-07-20 | |
PCT/US2017/051411 WO2018053037A1 (fr) | 2016-09-13 | 2017-09-13 | Déméthylation d'adn améliorée ciblée |
US16/333,137 US20190218261A1 (en) | 2016-09-13 | 2017-09-13 | Targeted enhanced dna demethylation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190218261A1 true US20190218261A1 (en) | 2019-07-18 |
Family
ID=61619233
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/333,134 Active 2040-09-13 US11780895B2 (en) | 2016-09-13 | 2017-09-13 | Targeted DNA demethylation and methylation |
US16/333,137 Pending US20190218261A1 (en) | 2016-09-13 | 2017-09-13 | Targeted enhanced dna demethylation |
US18/454,192 Pending US20240132557A1 (en) | 2016-09-13 | 2023-08-23 | Targeted dna demethylation and methylation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/333,134 Active 2040-09-13 US11780895B2 (en) | 2016-09-13 | 2017-09-13 | Targeted DNA demethylation and methylation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/454,192 Pending US20240132557A1 (en) | 2016-09-13 | 2023-08-23 | Targeted dna demethylation and methylation |
Country Status (7)
Country | Link |
---|---|
US (3) | US11780895B2 (fr) |
EP (2) | EP3512535A4 (fr) |
JP (1) | JP7063885B2 (fr) |
CN (1) | CN109982710B (fr) |
AU (1) | AU2017327384B2 (fr) |
CA (1) | CA3036695A1 (fr) |
WO (2) | WO2018053035A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11434484B2 (en) * | 2015-03-13 | 2022-09-06 | The Jackson Laboratory | Three-component CRISPR/Cas complex system and uses thereof |
US11434491B2 (en) | 2018-04-19 | 2022-09-06 | The Regents Of The University Of California | Compositions and methods for gene editing |
US11780895B2 (en) | 2016-09-13 | 2023-10-10 | The Jackson Laboratory | Targeted DNA demethylation and methylation |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3047011A1 (fr) | 2017-01-26 | 2018-08-02 | The Regents Of The University Of California | Demethylation ciblee de genes dans des plantes |
CN113454216A (zh) * | 2018-11-29 | 2021-09-28 | 旗舰先锋创新V股份有限公司 | 调节rna的方法 |
US20220333172A1 (en) * | 2019-08-16 | 2022-10-20 | The Jackson Laboratory | Live cell imaging of non-repetitive genomic loci |
CN111755072B (zh) * | 2020-08-04 | 2021-02-02 | 深圳吉因加医学检验实验室 | 一种同时检测甲基化水平、基因组变异和插入片段的方法及装置 |
CN114835816B (zh) * | 2021-01-14 | 2023-12-22 | 中国科学院遗传与发育生物学研究所 | 一种调控植物基因组dna特定区域甲基化水平的方法 |
IT202200006287A1 (it) * | 2022-03-30 | 2023-09-30 | Fondazione St Italiano Tecnologia | Molecole di acido nucleico funzionali per regolazione epigenetica |
WO2023247789A1 (fr) | 2022-06-24 | 2023-12-28 | European Molecular Biology Laboratory | Outil modulaire basé sur une crispr pour l'introduction spécifique de modifications épigénétiques sur des loci cibles |
WO2024173896A1 (fr) * | 2023-02-17 | 2024-08-22 | Whitehead Institute For Biomedical Research | Compositions et procédés pour effectuer des modifications épigénétiques |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140315985A1 (en) * | 2013-03-14 | 2014-10-23 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4911920A (en) | 1986-07-30 | 1990-03-27 | Alcon Laboratories, Inc. | Sustained release, comfort formulation for glaucoma therapy |
US5235033A (en) | 1985-03-15 | 1993-08-10 | Anti-Gene Development Group | Alpha-morpholino ribonucleoside derivatives and polymers thereof |
US5034506A (en) | 1985-03-15 | 1991-07-23 | Anti-Gene Development Group | Uncharged morpholino-based polymers having achiral intersubunit linkages |
FR2588189B1 (fr) | 1985-10-03 | 1988-12-02 | Merck Sharp & Dohme | Composition pharmaceutique de type a transition de phase liquide-gel |
US5585362A (en) | 1989-08-22 | 1996-12-17 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy |
EP0495421B1 (fr) | 1991-01-15 | 1996-08-21 | Alcon Laboratories, Inc. | Utilisation de carragheenane dans des compositions ophthalmologiques topiques |
US5212162A (en) | 1991-03-27 | 1993-05-18 | Alcon Laboratories, Inc. | Use of combinations gelling polysaccharides and finely divided drug carrier substrates in topical ophthalmic compositions |
DE69233013T2 (de) | 1991-08-20 | 2004-03-04 | The Government Of The United States Of America As Represented By The Secretary Of National Institute Of Health, Office Of Technology Transfer | Adenovirus vermittelter gentransfer in den gastrointestinaltrakt |
US5252479A (en) | 1991-11-08 | 1993-10-12 | Research Corporation Technologies, Inc. | Safe vector for gene therapy |
FR2688514A1 (fr) | 1992-03-16 | 1993-09-17 | Centre Nat Rech Scient | Adenovirus recombinants defectifs exprimant des cytokines et medicaments antitumoraux les contenant. |
WO1994012649A2 (fr) | 1992-12-03 | 1994-06-09 | Genzyme Corporation | Therapie genique de la fibrose kystique |
CA2166118C (fr) | 1993-06-24 | 2007-04-17 | Frank L. Graham | Vecteurs d'adenovirus pour therapie genique |
PT797676E (pt) | 1993-10-25 | 2006-05-31 | Canji Inc | Vector adenoviral recombinante e metodos de utilizacao |
US7078387B1 (en) | 1998-12-28 | 2006-07-18 | Arch Development Corp. | Efficient and stable in vivo gene transfer to cardiomyocytes using recombinant adeno-associated virus vectors |
US6613318B1 (en) * | 1999-03-25 | 2003-09-02 | The United States Of America As Represented By The Department Of Health And Human Services | Methods for identifying inhibitors of GADD45 polypeptide activity, and inhibitors of such activity |
KR101234281B1 (ko) * | 2004-04-09 | 2013-02-18 | 가부시키가이샤 진케어켄큐쇼 | 염색체 안정화에 관한 유전자를 표적으로 하는 암세포 특이적 아포토시스 유도제 |
WO2010075303A1 (fr) * | 2008-12-23 | 2010-07-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Facteurs d'épissage avec un domaine de liaison à l'arn de protéine puf et domaine effecteur d'épissage et leurs utilisations |
WO2010074758A2 (fr) * | 2008-12-24 | 2010-07-01 | The Johns Hopkins University | Compositions favorisant la déméthylation de l'adn épigénétique et leurs méthodes d'application |
US8889394B2 (en) * | 2009-09-07 | 2014-11-18 | Empire Technology Development Llc | Multiple domain proteins |
US9499805B2 (en) | 2010-06-18 | 2016-11-22 | The University Of North Carolina At Chapel Hill | Methods and compositions for synthetic RNA endonucleases |
DE102010026500A1 (de) | 2010-07-07 | 2012-01-12 | Arthrogen Gmbh | Verfahren zur Herstellung von autologen Proteinen |
DK2800811T3 (en) | 2012-05-25 | 2017-07-17 | Univ Vienna | METHODS AND COMPOSITIONS FOR RNA DIRECTIVE TARGET DNA MODIFICATION AND FOR RNA DIRECTIVE MODULATION OF TRANSCRIPTION |
US9890364B2 (en) * | 2012-05-29 | 2018-02-13 | The General Hospital Corporation | TAL-Tet1 fusion proteins and methods of use thereof |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10330674B2 (en) * | 2015-01-13 | 2019-06-25 | Massachusetts Institute Of Technology | Pumilio domain-based modular protein architecture for RNA binding |
EP3268472B1 (fr) * | 2015-03-13 | 2021-05-05 | The Jackson Laboratory | Système de complexe cas/crispr à trois constituants et utilisations de ce dernier |
EP3500675A4 (fr) * | 2016-08-19 | 2020-01-29 | Whitehead Institute for Biomedical Research | Méthodes d'édition de la méthylation de l'adn |
EP3512535A4 (fr) | 2016-09-13 | 2020-05-06 | The Jackson Laboratory | Déméthylation d'adn améliorée ciblée |
-
2017
- 2017-09-13 EP EP17851477.4A patent/EP3512535A4/fr active Pending
- 2017-09-13 WO PCT/US2017/051409 patent/WO2018053035A1/fr unknown
- 2017-09-13 CA CA3036695A patent/CA3036695A1/fr active Pending
- 2017-09-13 CN CN201780069216.5A patent/CN109982710B/zh active Active
- 2017-09-13 US US16/333,134 patent/US11780895B2/en active Active
- 2017-09-13 JP JP2019513954A patent/JP7063885B2/ja active Active
- 2017-09-13 WO PCT/US2017/051411 patent/WO2018053037A1/fr unknown
- 2017-09-13 US US16/333,137 patent/US20190218261A1/en active Pending
- 2017-09-13 AU AU2017327384A patent/AU2017327384B2/en active Active
- 2017-09-13 EP EP17851475.8A patent/EP3512565A4/fr active Pending
-
2023
- 2023-08-23 US US18/454,192 patent/US20240132557A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140315985A1 (en) * | 2013-03-14 | 2014-10-23 | Caribou Biosciences, Inc. | Compositions and methods of nucleic acid-targeting nucleic acids |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11434484B2 (en) * | 2015-03-13 | 2022-09-06 | The Jackson Laboratory | Three-component CRISPR/Cas complex system and uses thereof |
US11780895B2 (en) | 2016-09-13 | 2023-10-10 | The Jackson Laboratory | Targeted DNA demethylation and methylation |
US11434491B2 (en) | 2018-04-19 | 2022-09-06 | The Regents Of The University Of California | Compositions and methods for gene editing |
Also Published As
Publication number | Publication date |
---|---|
CN109982710B (zh) | 2024-09-10 |
US20200071369A1 (en) | 2020-03-05 |
US11780895B2 (en) | 2023-10-10 |
WO2018053035A1 (fr) | 2018-03-22 |
EP3512565A1 (fr) | 2019-07-24 |
JP7063885B2 (ja) | 2022-05-09 |
WO2018053037A1 (fr) | 2018-03-22 |
AU2017327384A1 (en) | 2019-04-11 |
EP3512535A1 (fr) | 2019-07-24 |
CA3036695A1 (fr) | 2018-03-22 |
AU2017327384B2 (en) | 2021-05-20 |
JP2019528718A (ja) | 2019-10-17 |
EP3512565A4 (fr) | 2020-05-06 |
CN109982710A (zh) | 2019-07-05 |
EP3512535A4 (fr) | 2020-05-06 |
US20240132557A1 (en) | 2024-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240132557A1 (en) | Targeted dna demethylation and methylation | |
US10793842B2 (en) | Cas9 variants and methods of use thereof | |
US11118194B2 (en) | Modified site-directed modifying polypeptides and methods of use thereof | |
US11008555B2 (en) | Variant Cas9 polypeptides comprising internal insertions | |
US11208638B2 (en) | Heterodimeric Cas9 and methods of use thereof | |
JP7044373B2 (ja) | ヌクレアーゼ非依存的な標的化遺伝子編集プラットフォームおよびその用途 | |
ES2960803T3 (es) | Métodos y composiciones para la modificación de ADN diana dirigida por RNA y para la modulación de la transcripción dirigida por RNA | |
US20180320202A1 (en) | Compositions and methods for modifying a target nucleic acid | |
KR20230169449A (ko) | Rna-가이드된 핵산 변형 효소 및 이의 사용 방법 | |
US20220315914A1 (en) | Variant type v crispr/cas effector polypeptides and methods of use thereof | |
US20200291369A1 (en) | Improved CRISPR-Cas9 Genome Editing Tool | |
KR20220019794A (ko) | 표적화된 유전자 편집 작제물 및 이의 사용 방법 | |
KR20180102025A (ko) | C2c1 엔도뉴클레아제를 포함하는 유전체 교정용 조성물 및 이를 이용한 유전체 교정 방법 | |
US9816077B2 (en) | Use of integrase for targeted gene expression | |
WO2024124237A2 (fr) | Endonucléases de modification génique | |
WO2024124238A1 (fr) | Endonucléases de modification génique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: THE JACKSON LABORATORY, MAINE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHENG, ALBERT;TAGHBALOUT, AZIZ;JILLETTE, NATHANIEL;REEL/FRAME:058487/0844 Effective date: 20210813 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |