US20190025311A1 - Methods for detection of plasma cell dyscrasia - Google Patents

Methods for detection of plasma cell dyscrasia Download PDF

Info

Publication number
US20190025311A1
US20190025311A1 US16/039,041 US201816039041A US2019025311A1 US 20190025311 A1 US20190025311 A1 US 20190025311A1 US 201816039041 A US201816039041 A US 201816039041A US 2019025311 A1 US2019025311 A1 US 2019025311A1
Authority
US
United States
Prior art keywords
splice variants
expression level
subject
biomarkers
plasma cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/039,041
Other languages
English (en)
Inventor
Irvin Mark Modlin
Mark Kidd
Ignat Drozdov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liquid Biopsy Research LLC
Original Assignee
Liquid Biopsy Research LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liquid Biopsy Research LLC filed Critical Liquid Biopsy Research LLC
Priority to US16/039,041 priority Critical patent/US20190025311A1/en
Assigned to Liquid Biopsy Research LLC reassignment Liquid Biopsy Research LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DROZDOV, IGNAT, KIDD, MARK, MODLIN, Irvin Mark
Publication of US20190025311A1 publication Critical patent/US20190025311A1/en
Priority to US17/501,168 priority patent/US20230022417A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57426Specifically defined cancers leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6818Sequencing of polypeptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • G01N33/6857Antibody fragments
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/54Determining the risk of relapse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids

Definitions

  • the present invention relates to plasma cell dyscrasia detection.
  • myeloma is an incurable hematological malignancy of end-stage B-lineage or plasma cells.
  • This clonal plasma cell malignancy accounts for ⁇ 2% of all cancer cases and approximately 10% of hematologic malignancies.
  • myelomas typically progress from asymptomatic precursor stages (monoclonal gammopathy of undetermined significance: MGUS) and smoldering multiple myeloma (SMM) to frank disease. Some exhibit rapid progression to MM, whilst others have life-long indolent disease.
  • MGUS monoclonal gammopathy of undetermined significance
  • SMM multiple myeloma
  • the heterogeneity and genomic complexity of the disease, and particularly intraclonal heterogeneity underpins the heterogeneous evolution of disease, responses to therapy as well as progression after “successful” treatment.
  • Chr Chromosome
  • a MYC translocations either alone, or in conjunction with Chr1q amplification identifies a poor prognostic subtype in hyperdiploid myeloma. While useful, cytogenetic approaches become problematic when two markers predicting opposing outcomes coexist in the same patient. They are also only of modest assistance in indicating appropriate therapeutic strategies and none of them provide predictive information.
  • Standard blood-based biomarkers e.g., lactate dehydrogenase, albumin or (32 microglobulin (prognostic markers) or serum free light chain (FLC) assays (for disease monitoring) while important in diagnosis and management, are affected by numerous factors including renal failure and other comorbidities or by the cytogenetic profile of an individual disease. They do not measure or encompass the biologic determinants of multiple myeloma.
  • a number of gene expression assays have been developed from isolated plasma cells. These have involved isolating transformed B-cells from bone marrow aspirates or capturing CD138-positive cells from blood and then undertaking transcriptome-based arrays. These studies have identified gene expression profiles in MM cells that identify high risk patients.
  • GEP70 (70 genes, 30% located at the prognostic Chr1 loci) is a prognostic; CTNI is a multigene centromere amplification-associated prognostic signature; IFM15 includes 15 genes linked to control of the cell cycle (prognostic); HZDC (97 genes—linked to cell death)—prognostic; the PI signature (50 proliferation-associated genes)—prognostic; a signature derived from myeloma cell lines (HMCL—248 genes—“high risk signature”); EMC92 is a 92-gene prognostic signature; CINGEC—a measure of chromosome instability (160 genes—prognostic) and a 17 gene set that may identify patients at risk of early relapse.
  • the complex nature of cancer and therapeutic responsiveness comprises a series of “hallmarks”, that include canonical pathways, e.g., RAS and NF ⁇ B pathway activation, as well as other features e.g., response to immunotherapy etc.
  • canonical pathways e.g., RAS and NF ⁇ B pathway activation
  • other features e.g., response to immunotherapy etc.
  • the mutational landscape of newly diagnosed multiple myeloma is dominated by mutations in the RAS (43%) and NF ⁇ B (17%) pathways.
  • RAS 43%)
  • NF ⁇ B NF ⁇ B
  • the NETest has been developed for tumors with a neuroendocrine phenotype.
  • This blood-based 51-specific mRNA target assay does not require isolation of a specific population of target cells.
  • Gene expression measurements in whole blood correlates with tissue levels and therefore provide direct information about the tumor, its pathophysiology and its state of evolution from stability to progression. This functions as a diagnostic tool and as a surrogate marker of neuroendocrine tumor behavior. Expression of all genes is prognostic; while a subset of genes, those involved in metabolism and the RAS/RAF pathway, predict the response to peptide receptor radiotherapy for this tumor type.
  • a 32-gene expression tool for plasma cell dyscrasias like MGUS and myeloma can have high sensitivity and specificity (>95%) for the detection of a plasma cell dyscrasia and can differentiate minimal residual disease from progressive, active disease. In addition, it can detect patients who are no longer responding to a therapy. Patient clinical status (newly diagnosed, stable/remission or relapsed/refractory) can be predicted with an overall accuracy of >90%.
  • One aspect of the present disclosure relates to a method for detecting a plasma cell dyscrasia in a subject in need thereof, comprising: (a) determining the expression level of at least 32 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the at least 32 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, PJAS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene; (b) normalizing the expression
  • the method further comprises treating the subject identified as having a plasma cell dyscrasia with drug therapy.
  • the first predetermined cutoff value is derived from a plurality of reference samples obtained from subjects free of a neoplastic disease.
  • the reference sample can be blood, serum, plasma, or a non-neoplastic tissue.
  • Another aspect of the present disclosure relates to a method for determining whether a plasma cell dyscrasia in a subject is stable or progressive, comprising: (a) determining the expression level of at least 32 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the at least 32 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ(2 splice variants), NR4A1(2 splice variants), PDE4B, P1AS2, PRKAA1(2 splice variants), SCYL2(2 splice variants), SMARCD2, SP1(2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene;
  • Another aspect of the present disclosure relates to a method for determining a risk of disease relapse in a subject having a plasma cell dyscrasia, comprising: (a) determining the expression level of at least 32 biomarkers from a test sample from the subject after treatment by contacting the test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the at least 32 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene
  • Yet another aspect of the present disclosure relates to a method for determining a response by a subject having a plasma cell dyscrasia to a therapy, comprising: (a) determining a first expression level of at least 31 biomarkers from a first test sample from the subject at a first time point by contacting the first test sample with a plurality of agents specific to detect the expression of the at least 31 biomarkers, wherein the at least 31 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ(2 splice variants), NR4A1(2 splice variants), PDE4B, PJAS2, PRKAA1(2 splice variants), SCYL2(2 splice variants), SMARCD2, SP 1(2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D
  • the first time point is prior to the administration of the therapy to the subject. In some embodiments, the first time point is after the administration of the therapy to the subject. In some embodiments, the therapy comprises a targeted therapy (e.g., a proteasome inhibitor).
  • a targeted therapy e.g., a proteasome inhibitor
  • the plasma cell dyscrasia is MGUS or myeloma.
  • the at least one housekeeping gene is selected from the group consisting of ALG9, SEPN, YWHAQ, VPS37A, PRRC2B, DOPEY2, NDUFB11, ND4, MRPL19, PSMC4, SF3A1, PUM1, ACTB, GAPD, GUSB, RPLP0, TFRC, MORF4L1, 18S, PPIA, PGK1, RPL13A, B2M, YWHAZ, SDHA, HPRT1, TOX4, and TPT1.
  • the method can have a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. In some embodiments of any one of the above aspects, the method has a sensitivity of greater than 90%. In some embodiments of any one of the above aspects, the method has a specificity of greater than 90%.
  • At least one of the at least 32 biomarkers is RNA, cDNA, or protein.
  • the biomarker is RNA
  • the RNA can be reverse transcribed to produce cDNA, and the produced cDNA expression level is detected.
  • the expression level of the biomarker is detected by forming a complex between the biomarker and a labeled probe or primer.
  • the biomarker is RNA or cDNA
  • the RNA or cDNA can be detected by forming a complex between the RNA or cDNA and a labeled nucleic acid probe or primer.
  • the biomarker is protein
  • the protein can be detected by forming a complex between the protein and a labeled antibody.
  • the label can be a fluorescent label.
  • the test sample is blood, serum, plasma, or a neoplastic tissue.
  • the reference sample is blood, serum, plasma, or a non-neoplastic tissue.
  • the subject in need thereof is a subject diagnosed with a plasma cell dyscrasia, a subject having at least one plasma cell dyscrasia symptom, or a subject have a predisposition or familial history for developing a plasma cell dyscrasia.
  • the subject is a human.
  • the algorithm is XGB, RF, glmnet, cforest, CART, treebag, knn, nnet, SVM-radial, SVM-linear, NB, NNET, mlp, or logistic regression modelling.
  • FIG. 1 is a graph showing interactive and functional analyses of the normalized 31 target transcripts (26 genes, 5 splice variants) markers of myeloma.
  • Gene transcripts were significantly functionally linked at an interactome level consistent with a common pattern of regulatory activity.
  • Two trancripts, MCL1 and COPA were linked with Chromosome 1q, an area known to exhibit amplification in myeloma.
  • the markers identified captured a series of biological processes including angiogenesis, apoptosis, immune responsiveness, phenotype definition, protein processing (secretion), proliferation, RNA processing and survival.
  • a number of the transcripts encoded genes that were either potential drug targets or markers for drug target efficacy.
  • FIGS. 2A-2B are graphs showing the receiver operator cuver analysis and metrics for MelanomX (normalized expression of the 26 genes and 5 splice variants) in Test Set I.
  • FIG. 2B is a graph showing that the metrics for MelanomX as a diagnostic has sensitivity >95%, specificity 100%, PPV 100%, NPV 88.5%. The overall accuracy was 96% in Test Set I.
  • FIG. 3B is a graph showing that the AUC for differentiating MGUS from controls was 0.97 ⁇ 0.01 (p ⁇ 0.0001).
  • FIGS. 4A-4B are graphs showing MyelomX scores in different multiple myeloma sub-groups.
  • FIG. 4B is a graph showing that the AUC for differentiating stable from refractory disease was 0.97 ⁇ 0.03 (p ⁇ 0.0001).
  • FIGS. 5A-5C are graphs showing MyelomX scores in Test Set II.
  • FIG. 5B is a graph showing that the AUC was 0.97 ⁇ 0.01 (p ⁇ 0.0001) for differentiating between myeloma and controls.
  • FIG. 5C is a graph showing that the metrics for MelanomX as a diagnostic (using 20 as a cut-off) has sensitivity 97.5%, specificity 93.6%, PPV 88.8%, NPV 98.6%. The overall accuracy was 94% in Test Set II.
  • FIG. 6 is a graph showing the effect of therapy on MelanomX. Therapy significantly (p ⁇ 0.0001) decreased the score from 59 ⁇ 14 (pre-therapy) to 35 ⁇ 12 in 40 patients. Ten patients all with high scores ( ⁇ 40) relapsed at an early time point (within one year).
  • FIGS. 8A-8B are a set of graphs showing MyelomX score in 3 different myeloma cell lines.
  • FIG. 8A identifies the cell lines demonstrate elevated expression—MyelomX score ranging from 60 (MM-1R) to 86 (RPMI-8226).
  • FIG. 8B identifies that spiking these cells into blood from a subject that does not have a myeloma or other plasma cell dyscrasia, resulted in detectable gene expression and scores. A minimum of 1 cell/ml of blood could be consistently identified.
  • FIGS. 9A-9B are a set of graphs showing the MyelomX score in different FAC-sorted (CD138+) and matched whole blood samples from 3 different multiple myeloma patients.
  • FIG. 9A identifies the scores from FACS samples and whole bloods and identifies the scores are positive and identical.
  • FIG. 9B identifies that gene expression in FACS samples compared to matched blood samples is highly concordant (correlation ⁇ 0.90) consistent with the assay detecting circulating multiple myeloma cells.
  • Plasma cell dyscrasias are a spectrum of progressively more severe monoclonal gammopathies in which a clone or multiple clones of pre-malignant or malignant plasma cells over-produce and secrete into the blood stream a myeloma protein, i.e., an abnormal monoclonal antibody or portion thereof.
  • a plasma cell dyscrasia can develop in different stages.
  • the MGUS stage can be non-IgM MGUS, IgM MGUS, light chain MGUS, or monoclonal gammopathy of renal significance.
  • the smoldering multiple myeloma (SMM) stage can be non-IgM SMM, smoldering Waldenström's macroglobulinemia, or light chain SMM.
  • the malignant sgate can be solitary plasmacytoma, non-secretory multiple myeloma, plasma cell myeloma with concomitant chronic lymphocytic leukemia/monoclonal B-Cell lymphocytosis, Waldenstrom's macroglobulinemia, multiple myeloma, light chain multiple myeloma, or plasma cell leukemia.
  • the plasma cell dyscrasia is MGUS. In some embodiments, the plasma cell dyscrasia is myeloma.
  • Symptoms can include, but are not limited to, bone pain, anemia, kidney failure, infection, and neurological symptoms (e.g., weakness, confusion, fatigue, headache, visual changes, retinopathy, radicular pain, loss of bowel, bladder control, or carpal tunnel syndrome).
  • neurological symptoms e.g., weakness, confusion, fatigue, headache, visual changes, retinopathy, radicular pain, loss of bowel, bladder control, or carpal tunnel syndrome.
  • myelomas can be diagnosed through a bood test or urine test.
  • Myeloma cells produce M proteins and beta-2 microglobulin, which can be detected by a blood test. M proteins can also be detected by urine tests.
  • Myelomas can be diagnosed through examination of the bone marrow. Specifically, a sample of bone marrow is removed, and the sample is examined for myeloma cells. Specialized tests, such as fluorescence in situ hybridization (FISH) can analyze myeloma cells to understand their chromosome abnormalities. Tests are also done to measure the rate at which the myeloma cells are dividing. Imaging tests can also be performed to detect bone problems associated with multiple myeloma. Tests may include X-ray, MRI, CT or positron emission tomography (PET).
  • FISH fluorescence in situ hybridization
  • the present disclosure provides a MyelomX score that can be used for, inter alia, identifying active disease, providing an assessment of treatment responses, predicting risk of relapse, or identifying minimal residual in conjunction with standard clinical assessment and imaging.
  • Targeted gene expression profile of RNA can be isolated from the biological samples (e.g., peripheral blood) of patients with plasma cell dyscrasias. This expression profile can be evaluated in an algorithm and converted to an output (prediction).
  • the present disclosure relates to a method for detecting a plasma cell dyscrasia in a subject in need thereof, comprising: (a) determining the expression level of at least 32 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the at least 32 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2I1, and at least one housekeeping gene; (b) normalizing the expression
  • the provided methods are those that are able to classify or detect a plasma cell dyscrasia such as MGUS and myeloma.
  • the provided methods can identify or classify a plasma cell dyscrasia in a human biological sample.
  • the biological sample is a blood, serum, plasma, or a neoplastic tissue.
  • the methods can provide such information with a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.
  • the agents can be any agents for detection of the biomarkers, and typically are isolated polynucleotides or isolated polypeptides or proteins, such as antibodies, for example, those that specifically hybridize to or bind to the at least 32 biomarkers.
  • the biomarker can be RNA, cDNA, or protein.
  • the RNA can be reverse transcribed to produce cDNA (such as by RT-PCR), and the produced cDNA expression level is detected.
  • the expression level of the biomarker can be detected by forming a complex between the biomarker and a labeled probe or primer.
  • the biomarker is RNA or cDNA
  • the RNA or cDNA can be detected by forming a complex between the RNA or cDNA and a labeled nucleic acid probe or primer.
  • the complex between the RNA or cDNA and the labeled nucleic acid probe or primer can be a hybridization complex.
  • the protein can be detected by forming a complex between the protein and a labeled antibody.
  • the label can be any label, for example a fluorescent label, chemiluminescence label, radioactive label, etc.
  • the protein level can be measured by methods including, but not limited to, immunoprecipitation, ELISA, Western blot analysis, or immunohistochemistry using an agent, e.g., an antibody, that specifically detects the protein encoded by the gene.
  • the methods are performed by contacting the test sample with one of the provided agents, more typically with a plurality of the provided agents, for example, a set of polynucleotides that specifically bind to the at least 32 biomarkers.
  • the set of polynucleotides includes DNA, RNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.
  • the methods include the step of isolating RNA from the test sample prior to detection, such as by RT-PCR, e.g., QPCR.
  • detection of the biomarkers, such as expression levels thereof includes detecting the presence, absence, or amount of RNA.
  • the RNA is detected by PCR or by hybridization.
  • the polynucleotides include sense and antisense primers, such as a pair of primers that is specific to each of the at least 32 biomarkers.
  • the detection of the at least 32 biomarkers is carried out by PCR, typically quantitative or real-time PCR.
  • detection is carried out by producing cDNA from the test sample by reverse transcription; then amplifying the cDNA using the pairs of sense and antisense primers that specifically hybridize to the panel of at least 32 biomarkers, and detecting products of the amplification.
  • test sample can be any biological fluid obtained from the subject.
  • the test sample is blood, serum, plasma, or a neoplastic tissue.
  • the test sample is a blood sample.
  • the first predetermined cutoff value can be derived from a plurality of reference samples obtained from subjects free of a neoplastic disease.
  • the reference sample is blood, serum, plasma, or non-neoplastic tissue.
  • the subject in need thereof can be a subject diagnosed with a plasma cell dyscrasia, a subject having at least one plasma cell dyscrasia symptom, or a subject have a predisposition or familial history for developing a plasma cell dyscrasia.
  • the subject can be any mammal.
  • the subject is human.
  • the terms “subject” and “patient” are used interchangeably herein.
  • the method can further include determining a mathematically-derived expression level score of the at least 32 biomarkers in the test sample.
  • This is the MyelomX score, which has a scale of 0 to 100.
  • the MyelomX score is the product of a classifier built from a predictive classification algorithm, e.g., XGB, RF, glmnet, cforest, CART, treebag, knn, nnet, SVM-radial, SVM-linear, NB, mlp, or logistic regression modelling.
  • the predictive classification algorithm used is XGB.
  • the method can further include treating the subject identified as having a plasma cell dyscrasia with targeted therapy, biological therapy, chemotherapy, corticosteroids, stem cell transplantation, radiation therapy, or a combination thereof.
  • Targeted therapy can include the use of proteasome inhibitors.
  • the targeted therapy can include bortezomib and/or carfilzomib.
  • Biological therapy can include immunomodulators.
  • the biological therapy can include thalidomide, lenalidomide, and/or pomalidomide.
  • Chemotherapy can include any known chemotherapeutic drugs.
  • Corticosteroids can be prednisone or dexamethasone.
  • the present disclosure also provides a method for determining whether a plasma cell dyscrasia in a subject is stable or progressive, comprising: (a) determining the expression level of at least 32 biomarkers from a test sample from the subject by contacting the test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the at least 32 biomarkers comprise ASXL 1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene; (b) normalizing the expression level of
  • the second predetermined cutoff value can be derived from a plurality of reference samples obtained from subjects whose plasma cell dyscrasias are demonstrating disease progression.
  • the present disclosure also provides a method for determining a risk of disease relapse in a subject having a plasma cell dyscrasia, comprising: (a) determining the expression level of at least 32 biomarkers from a test sample from the subject after treatment by contacting the test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the at least 32 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene; (b)
  • the third predetermined cutoff value can be derived from a plurality of reference samples obtained from subjects whose plasma cell dyscrasias are being adequately controlled by therapies.
  • the present disclosure also provides a method for determining a response by a subject having a plasma cell dyscrasia to a therapy, comprising: (a) determining a first expression level of at least 31 biomarkers from a first test sample from the subject at a first time point by contacting the first test sample with a plurality of agents specific to detect the expression of the at least 31 biomarkers, wherein the at least 31 biomarkers comprise ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, and UBE2J1; (b
  • the methods can predict treatment responsiveness to, or determine whether a patient has become clinically stable following, or is responsive or non-responsive to, a plasma cell dyscrasia treatment, such as a drug therapy (for example, an immunotherapy or targeted therapy).
  • a plasma cell dyscrasia treatment such as a drug therapy (for example, an immunotherapy or targeted therapy).
  • the methods can do so with a specificity, sensitivity, and/or accuracy of at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.
  • the first and second test samples can be of the same type. In some embodiments, the first and second test samples can be of different types.
  • the therapy can be a drug therapy.
  • the drug therapy can be an immunotherapy, a targeted therapy, a chemotherapy, or a combination thereof
  • the therapy can be a radiation therapy.
  • the first time point is prior to the administration of the therapy to the subject. In some embodiments, the first time point is after the administration of the therapy to the subject.
  • the second time point can be a few days, a few weeks, or a few months after the first time point. For example, the second time point can be at least 1 day, at least 7 days, at least 14 days, at least 30 days, at least 60 days, or at least 90 days after the first time point.
  • the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 10% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 20% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 25% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 30% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 40% less than the first expression level.
  • the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 50% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 60% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 70% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 80% less than the first expression level. In some embodiments, the second expression level is significantly decreased as compared to the first expression level when the second expression level is at least 90% less than the first expression level.
  • the method further comprises determining a third expression level of the at least 32 biomarkers from a third test sample from the subject at a third time point by contacting the third test sample with a plurality of agents specific to detect the expression of the at least 32 biomarkers, wherein the third time point is after the second time point.
  • the method can further comprise creating a plot showing the trend of the expression level change.
  • the present disclosure also provides an assay comprising: (a) determining the expression level of biomarkers consisting essentially of the following 32 biomarkers from a test sample from a patient diagnosed of a plasma cell dyscrasia or a subject suspected of having a plasma cell dyscrasia: ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene; (b) normalizing the expression level of each of ASXL1, BHLHE40, BTG2, COPA, FBXW7,
  • the present disclosure also provides an assay comprising: (a) determining the expression level of biomarkers consisting of the following 32 biomarkers from a test sample from patient diagnosed of a plasma cell dyscrasia or a subject suspected of having a plasma cell dyscrasia: ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, UBE2J1, and at least one housekeeping gene; (b) normalizing the expression level of each of ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13,
  • the at least one housekeeping gene is selected from the group consisting of ALG9, SEPN, YWHAQ, VPS37A, PRRC2B, DOPEY2, NDUFB11, ND4, MRPL19, PSMC4, SF3A1, PUM1, ACTB, GAPD, GUSB, RPLP0, TFRC, MORF4L1, 18S, PPIA, PGK1, RPL13A, B2M, YWHAZ, SDHA, HPRT1, TOX4, and TPT1.
  • the housekeeping gene is TPT1.
  • two or more housekeeping genes can be used in normalizing the expression levels.
  • the method can comprise: (1) normalizing the expression level of each of ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1, MBNL1, MCL1, NFKBIZ (2 splice variants), NR4A1 (2 splice variants), PDE4B, P1AS2, PRKAA 1 (2 splice variants), SCYL2 (2 splice variants), SMARCD2, SP1 (2 splice variants), SRSF5, TAGAP, TANK, TLE4, TSC22D3, and UBE2J1 to the expression level of a first housekeeping gene; (2) normalizing the expression level of each of ASXL1, BHLHE40, BTG2, COPA, FBXW7, GNA13, IL8, JMJD1C, LARS2, MALAT1,
  • the sequence information of the plasma cell dyscrasia biomarkers and housekeepers is shown in Table 1.
  • an element means one element or more than one element.
  • nucleic acid molecule As used herein, the terms “polynucleotide” and “nucleic acid molecule” are used interchangeably to mean a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA.
  • a nucleic acid molecule or nucleic acid sequence that serves as a probe in a microarray analysis preferably comprises a chain of nucleotides, more preferably DNA and/or RNA.
  • nucleic acid molecule or nucleic acid sequence comprises other kinds of nucleic acid structures such as for instance a DNA/RNA helix, peptide nucleic acid (PNA), locked nucleic acid (LNA) and/or a ribozyme.
  • PNA peptide nucleic acid
  • LNA locked nucleic acid
  • nucleic acid molecule also encompasses a chain comprising non-natural nucleotides, modified nucleotides and/or non-nucleotide building blocks which exhibit the same function as natural nucleotides.
  • hybridize As used herein, the terms “hybridize,” “hybridizing”, “hybridizes,” and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, such as hybridization in 50% formamide/6 ⁇ SSC/0.1% SDS/100 ⁇ g/ml ssDNA, in which temperatures for hybridization are above 37 degrees centigrade and temperatures for washing in 0.1 ⁇ SSC/0.1% SDS are above 55 degrees C., and preferably to stringent hybridization conditions.
  • normalization refers to the expression of a differential value in terms of a standard value to adjust for effects which arise from technical variation due to sample handling, sample preparation, and measurement methods rather than biological variation of biomarker concentration in a sample.
  • the absolute value for the expression of the protein can be expressed in terms of an absolute value for the expression of a standard protein that is substantially constant in expression.
  • normalizing the expression level of a gene to the expression level of a housekeeping gene means dividing the expression level of the gene by the expression level of the housekeeping gene.
  • diagnosis also encompass the terms “prognosis” and “prognostics”, respectively, as well as the applications of such procedures over two or more time points to monitor the diagnosis and/or prognosis over time, and statistical modeling based thereupon.
  • diagnosis includes: a. prediction (determining if a patient will likely develop aggressive disease (hyperproliferative/invasive)), b. prognosis (predicting whether a patient will likely have a better or worse outcome at a pre-selected time in the future), c. therapy selection, d. therapeutic drug monitoring, and e. relapse monitoring.
  • providing refers to directly or indirectly obtaining the biological sample from a subject.
  • “providing” may refer to the act of directly obtaining the biological sample from a subject (e.g., by a blood draw, tissue biopsy, lavage and the like).
  • “providing” may refer to the act of indirectly obtaining the biological sample.
  • providing may refer to the act of a laboratory receiving the sample from the party that directly obtained the sample, or to the act of obtaining the sample from an archive.
  • “Accuracy” refers to the degree of conformity of a measured or calculated quantity (a test reported value) to its actual (or true) value. Clinical accuracy relates to the proportion of true outcomes (true positives (TP) or true negatives (TN) versus misclassified outcomes (false positives (FP) or false negatives (FN)), and may be stated as a sensitivity, specificity, positive predictive values (PPV) or negative predictive values (NPV), or as a likelihood, odds ratio, among other measures.
  • biological sample refers to any sample of biological origin potentially containing one or more biomarkers.
  • biological samples include tissue, organs, or bodily fluids such as whole blood, plasma, serum, tissue, lavage or any other specimen used for detection of disease.
  • subject refers to a mammal, preferably a human.
  • Treating” or “treatment” as used herein with regard to a condition may refer to preventing the condition, slowing the onset or rate of development of the condition, reducing the risk of developing the condition, preventing or delaying the development of symptoms associated with the condition, reducing or ending symptoms associated with the condition, generating a complete or partial regression of the condition, or some combination thereof.
  • Biomarker levels may change due to treatment of the disease.
  • the changes in biomarker levels may be measured by the present disclosure. Changes in biomarker levels may be used to monitor the progression of disease or therapy.
  • “Altered”, “changed” or “significantly different” refer to a detectable change or difference from a reasonably comparable state, profile, measurement, or the like. Such changes may be all or none. They may be incremental and need not be linear. They may be by orders of magnitude. A change may be an increase or decrease by 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%, or more, or any value in between 0% and 100%. Alternatively, the change may be 1-fold, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold or more, or any values in between 1-fold and five-fold. The change may be statistically significant with a p value of 0.1, 0.05, 0.001, or 0.0001.
  • stable disease refers to a diagnosis for the presence of a plasma cell dyscrasia, however the myeloma has been treated and remains in a stable condition, i.e. one that that is not progressive, as determined by imaging data and/or best clinical judgment.
  • progressive disease refers to a diagnosis for the presence of a highly active state of a plasma cell dyscrasia, i.e. one has not been treated and is not stable or has been treated and has not responded to therapy, or has been treated and active disease remains, as determined by imaging data and/or best clinical judgment.
  • XGB produced probability scores that predicted the sample.
  • Each probability score reflects the “certainty” of an algorithm that an unknown sample belongs to either “Stable Disease” or “Progressive” class.
  • the receiver operator cuver analysis and metrics are included in FIG. 2B .
  • the score exhibited an area under the curve (AUC) of 0.99.
  • the metrics are: sensitivity >95%, specificity 100%, PPV 100%, NPV 88.5%.
  • the overall accuracy is 96%.
  • the tool can therefore differentiate between controls and aggressive and stable myeloma disease.
  • test set 2 The test was evaluated in a second test set (test set 2) that included 155 healthy controls and 81 myeloma patients, the majority of whom exhibited stable disease including those with MRD.
  • the mean MyelomX score in this myeloma group was 47 ⁇ 14 versus 12 ⁇ 8 in the control group ( FIG. 5A ).
  • the receiver operator cuver analysis demonstrated the score exhibited an area under the curve (AUC) of 0.97 ( FIG. 5B ) and the metrics were 89-99% ( FIG. 5C ).
  • Effective therapy decreased the score from 59 ⁇ 14 to 35 ⁇ 12 which was associated with complete remissions ( FIG. 6 ).
  • Evaluation of the MRD group identified ten patients all with high scores ( ⁇ 40) who relapsed at an early time point (within one year). The MyelomX score can therefore biochemically define MRD and identify those who have progressive disease and will relapse at an early time-point.
  • a confusion matrix identifying the accuracy of the MyelomX score in both data sets is included in Table 4.
  • the score is 97% accurate for identifying active disease.
  • MRD it is overall 75% accurate, but is 100% accurate for those who do not recur within one year.
  • the score is 87% accurate for identifying responders and 97% for those who are failing therapy or are refractory.
  • myeloma was the source for the blood-based gene expression assay by evaluating expression in different myeloma cell lines and in FAC-sorted multiple myeloma tumors form patients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
US16/039,041 2017-07-21 2018-07-18 Methods for detection of plasma cell dyscrasia Abandoned US20190025311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/039,041 US20190025311A1 (en) 2017-07-21 2018-07-18 Methods for detection of plasma cell dyscrasia
US17/501,168 US20230022417A1 (en) 2017-07-21 2021-10-14 Chemical compositions and methods of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762535419P 2017-07-21 2017-07-21
US16/039,041 US20190025311A1 (en) 2017-07-21 2018-07-18 Methods for detection of plasma cell dyscrasia

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/501,168 Continuation US20230022417A1 (en) 2017-07-21 2021-10-14 Chemical compositions and methods of use

Publications (1)

Publication Number Publication Date
US20190025311A1 true US20190025311A1 (en) 2019-01-24

Family

ID=63244986

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/039,041 Abandoned US20190025311A1 (en) 2017-07-21 2018-07-18 Methods for detection of plasma cell dyscrasia
US17/501,168 Pending US20230022417A1 (en) 2017-07-21 2021-10-14 Chemical compositions and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/501,168 Pending US20230022417A1 (en) 2017-07-21 2021-10-14 Chemical compositions and methods of use

Country Status (14)

Country Link
US (2) US20190025311A1 (da)
EP (1) EP3655553B1 (da)
JP (1) JP7223741B2 (da)
KR (1) KR20200029528A (da)
CN (1) CN111194356B (da)
AU (1) AU2018304242B2 (da)
BR (1) BR112020000791A2 (da)
CA (1) CA3067730A1 (da)
DK (1) DK3655553T3 (da)
ES (1) ES2916450T3 (da)
IL (1) IL271465B2 (da)
MX (1) MX2020000785A (da)
PL (1) PL3655553T3 (da)
WO (1) WO2019018540A1 (da)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021072035A1 (en) 2019-10-10 2021-04-15 Liquid Biopsy Research LLC Compositions, methods and kits for biological sample and rna stabilization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349705A (zh) * 2020-03-18 2020-06-30 昆明医科大学 circASXL1作为肺癌诊断标志物及其运用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512557A (ja) * 2001-11-07 2005-05-12 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ アーカンソー 遺伝子発現プロファイリングに基づく多発性骨髄腫の診断、予後、および治療標的候補の同定
JP2004313167A (ja) * 2003-02-24 2004-11-11 Joji Inasawa 薬剤耐性マーカーおよびその利用
CA3002661C (en) * 2004-05-21 2022-03-15 The Board Of Trustees Of The University Of Arkansas Use of gene expression profiling to predict survival in cancer patient
WO2006133420A2 (en) * 2005-06-08 2006-12-14 Millennium Pharmaceuticals, Inc. Treatment of patients with cancer therapy
EP2382329A4 (en) * 2009-01-02 2012-11-28 Univ Arkansas USES OF BORTÉZOMIB TO PREDICT THE SURVIVAL OF PATIENTS WITH MULTIPLE MYELOMA
WO2011152884A2 (en) * 2010-06-04 2011-12-08 Board Of Trustees Of The University Of Arkansas 14 gene signature distinguishes between multiple myeloma subtypes
WO2013155048A1 (en) * 2012-04-10 2013-10-17 University Of Utah Research Foundation Compositions and methods for diagnosing and classifying multiple myeloma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021072035A1 (en) 2019-10-10 2021-04-15 Liquid Biopsy Research LLC Compositions, methods and kits for biological sample and rna stabilization

Also Published As

Publication number Publication date
JP2020528274A (ja) 2020-09-24
EP3655553A1 (en) 2020-05-27
BR112020000791A2 (pt) 2020-07-21
PL3655553T3 (pl) 2022-09-26
IL271465B1 (en) 2023-04-01
WO2019018540A1 (en) 2019-01-24
CN111194356B (zh) 2024-04-23
DK3655553T3 (da) 2022-06-20
CN111194356A (zh) 2020-05-22
IL271465B2 (en) 2023-08-01
EP3655553B1 (en) 2022-03-23
US20230022417A1 (en) 2023-01-26
AU2018304242A1 (en) 2020-01-16
IL271465A (en) 2020-01-30
ES2916450T3 (es) 2022-07-01
AU2018304242B2 (en) 2023-04-27
CA3067730A1 (en) 2019-01-24
KR20200029528A (ko) 2020-03-18
MX2020000785A (es) 2020-11-06
JP7223741B2 (ja) 2023-02-16

Similar Documents

Publication Publication Date Title
RU2721130C2 (ru) Оценка активности путей клеточной сигнализации с помощью линейной комбинации(ий) экспрессий генов-мишеней
RU2719194C2 (ru) Оценка активности клеточных сигнальных путей с применением вероятностного моделирования экспрессии целевых генов
KR102114412B1 (ko) 위장관췌장 신경내분비 신생물 (GEP-NENs)의 예측 방법
KR101421326B1 (ko) 유방암 예후 예측을 위한 조성물 및 이를 포함하는 키트
US20090305284A1 (en) Methods for Identifying Risk of Breast Cancer and Treatments Thereof
WO2003042661A2 (en) Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
CN101258249A (zh) 检测黑素瘤的方法和试剂
CN101687050A (zh) 用于鉴别原发起源不明的癌的起源的方法和材料
KR20140140069A (ko) 전반적 발달장애의 진단 및 치료용 조성물 및 그 진단 및 치료 방법
KR20060045950A (ko) 혈액학적 악성종양에 대한 예후
US20230022417A1 (en) Chemical compositions and methods of use
JP2003259877A (ja) 肝線維症疾患マーカーおよびその利用
KR20100037637A (ko) Egfr 억제제 치료에 대한 예측 마커
US20230022236A1 (en) Chemical compositions and methods of use
KR102001153B1 (ko) 유방암 예후 예측용 조성물 및 방법
KR20190126812A (ko) 질환 진단용 바이오마커
EP1497454A2 (en) Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
KR101804678B1 (ko) Bis 억제제 스크리닝용 마커, 이를 포함하는 스크리닝 키트 및 이를 이용한 bis 억제제 스크리닝 방법
KR20240042611A (ko) 알파-n-아세틸갈락토사미나이드 알파-2,6-시알릴전이효소 5 (st6galnac5) 억제제를 이용한 인지 장애 치료
CN101827948A (zh) 检测鳞状细胞癌和腺癌及其高级别癌前病变的新分子标记
KR20190032068A (ko) 이차성 급성골수성백혈병으로의 이행 여부 판별용 바이오마커 조성물 및 그 검출 방법
KR20130024134A (ko) Gcps 증후군 진단용 마이크로어레이 및 키트

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIQUID BIOPSY RESEARCH LLC, SAINT KITTS AND NEVIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MODLIN, IRVIN MARK;KIDD, MARK;DROZDOV, IGNAT;SIGNING DATES FROM 20180802 TO 20181009;REEL/FRAME:047164/0300

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION