US20180374949A1 - Method for fabricating ldmos with self-aligned body - Google Patents
Method for fabricating ldmos with self-aligned body Download PDFInfo
- Publication number
- US20180374949A1 US20180374949A1 US16/116,843 US201816116843A US2018374949A1 US 20180374949 A1 US20180374949 A1 US 20180374949A1 US 201816116843 A US201816116843 A US 201816116843A US 2018374949 A1 US2018374949 A1 US 2018374949A1
- Authority
- US
- United States
- Prior art keywords
- region
- semiconductor substrate
- ldmos
- body region
- doping type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title abstract description 22
- 210000000746 body region Anatomy 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims abstract description 33
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 39
- 229920005591 polysilicon Polymers 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 29
- 238000005530 etching Methods 0.000 abstract description 7
- 239000002019 doping agent Substances 0.000 abstract description 5
- 238000000059 patterning Methods 0.000 abstract description 2
- 239000007943 implant Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 9
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- -1 oxynitrides Chemical class 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41766—Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66681—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66681—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/66689—Lateral DMOS transistors, i.e. LDMOS transistors with a step of forming an insulating sidewall spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
Definitions
- the present invention generally relates to semiconductor devices, and more particularly but not exclusively relates to methods for fabricating Laterally Diffused Metal Oxide Semiconductor (LDMOS) devices.
- LDMOS Laterally Diffused Metal Oxide Semiconductor
- threshold voltage of the LDMOS will increase by an amount dependant on the overlap.
- the deep body mask opening must be spaced inside the source opening by an amount larger than the side-diffusion of the deep implants plus the maximum misalignment between the masks. This increases the minimum size of the source/body region.
- the embodiments of the present invention are directed to a method for fabricating an LDMOS device, comprising: forming a semiconductor substrate; forming a dielectric layer atop the semiconductor substrate; forming an electric conducting layer on the dielectric layer; forming a first photoresist layer on the electric conducting layer; patterning the first photoresist layer through a first mask to form a first opening; etching the electric conducting layer through the first opening; implanting dopants of a first doping type into the semiconductor substrate through the first opening, to form a first body region adjacent to the surface of the semiconductor substrate, and a second body region located beneath the first body region; removing the first photoresist layer; etching the electric conducting layer using a second photoresist layer and a second mask.
- the gate polysilicon etch, the shallow body implants and the deep body implants in the LDMOS 300 are all defined by the same mask, thus the gate polysilicon region 312 , shallow body region 316 and deep body region 317 are “self-aligned”. By doing so, the LDMOS 300 provides a roughly vertical body/drain junction below the edges of the gate polysilicon region 312 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 15/279,190 filed on Sep. 28, 2016, which is incorporated herein in its entirety.
- The present invention generally relates to semiconductor devices, and more particularly but not exclusively relates to methods for fabricating Laterally Diffused Metal Oxide Semiconductor (LDMOS) devices.
- In the fabrication of LDMOS power transistors as part of an integrated circuit manufacturing process, for performance and cost reasons, it is desirable for power transistors to be as small as possible. For cost reasons, it is also desirable to minimize the number of photomasking steps in the manufacturing process.
- A prior art integrated LDMOS transistor is shown in cross-section in
FIG. 1 . Power LDMOS transistors are usually laid out in stripes with very large width with source and drain stripes alternating. The active area of the LDMOS is the product of the total width and the Halfpitch, which, the Halfpitch as shown inFIG. 1 , is the distance between the center of the source stripe and the center of the drain stripe. - Heavily doped N+ and P+ regions are fabricated in the source stripes to contact the source and body, respectively. Under the N+ and P+ regions, there is a p-type shallow body region. The side-diffusion of this region under the gate polysilicon defines the channel of the LDMOS. The implants forming this region are shallow enough that the gate polysilicon could form an effective implant blocker, meaning that the shallow body region can be self-aligned to the polysilicon edge.
- There also needs to be a p-type deep body region within the source stripe. This deep body region increases the radius of curvature of the body to drain junction and reduces the electrical resistance of the body region under the N+ source, thereby prevents the turn-on of a parasitic NPN transistor under high drain voltage conditions, which could cause device destruction.
- Since the deep body implants must have a projected range of up to approximately 0.5 um, the gate polysilicon of the LDMOS, which is typically 0.1-0.3 um thick, is not enough to block the deep implants. Therefore the deep body region must be defined by its own photomasking step, using a photoresist layer at least 0.8 um thick. This photomasking step can be done either before the poly gate definition (as in the simplified process flow of
FIG. 2a ) or after poly gate definition (as inFIG. 2b ). Either way, since the deep body and gate polysilicon are defined by two different masks, there will be a misalignment between them which varies from wafer to wafer and site to site on the same wafer. If the deep body implants overlap the poly gate, threshold voltage of the LDMOS will increase by an amount dependant on the overlap. To avoid large variation of threshold voltage, the deep body mask opening must be spaced inside the source opening by an amount larger than the side-diffusion of the deep implants plus the maximum misalignment between the masks. This increases the minimum size of the source/body region. - Another way to produce a device with acceptably low threshold voltage variation would be to overlap the deep body implants and the poly gate by an amount much larger than the maximum misalignment. This has the disadvantage of increasing the channel length and halfpitch of the device.
- From the foregoing discussion it can be concluded that an invention which reduces the area of the source/body region (and hence the LDMOS) while not increasing the total number of photomasking steps would be useful to a manufacturer of power integrated circuits.
- The embodiments of the present invention are directed to a method for fabricating an LDMOS device, comprising: forming a semiconductor substrate; forming a dielectric layer atop the semiconductor substrate; forming an electric conducting layer on the dielectric layer; forming a first photoresist layer on the electric conducting layer; patterning the first photoresist layer through a first mask to form a first opening; etching the electric conducting layer through the first opening; implanting dopants of a first doping type into the semiconductor substrate through the first opening, to form a first body region adjacent to the surface of the semiconductor substrate, and a second body region located beneath the first body region; removing the first photoresist layer; etching the electric conducting layer using a second photoresist layer and a second mask.
- The embodiments of the present invention are also directed to an LDMOS device fabricated in a semiconductor substrate. The LDMOS device comprises: a gate oxide region formed atop the semiconductor substrate; a gate polysilicon region formed on the gate oxide region; a first body region of a first doping type formed in the semiconductor substrate, wherein the first body region is located at a first side of the gate polysilicon region and adjacent to the surface of the semiconductor substrate; a second body region of the first doping type formed beneath the first body region; a source region of a second doping type formed in the first body region; a drain region of the second doping type formed in the semiconductor substrate and at a second side of the gate polysilicon region; wherein the gate polysilicon region, the first body region and the second body region are defined by the same mask and are self-aligned.
- The embodiments of the present invention are further directed to a method for fabricating an LDMOS device, comprising: forming a semiconductor substrate; forming a gate oxide layer atop the semiconductor substrate; forming a gate polysilicon layer on the gate oxide layer; etching the gate polysilicon layer using a first mask; implanting dopants of a first doping type into the semiconductor substrate using the first mask, to form a first body region adjacent to the surface of the semiconductor substrate, and a second body region located beneath the first region; etching the gate polysilicon layer using a second mask to form a gate region of the LDMOS; forming a source region of a second doping type in the first body region which is located at one side of the gate region; and forming a drain region of the second doping type in the semiconductor substrate at the other side of the gate region.
- The present invention can be further understood with reference to the following detailed description and the appended drawings, wherein like elements are provided with like reference numerals. The drawings are only for illustration purpose, thus may only show part of the devices and are not necessarily drawn to scale.
-
FIG. 1 shows a prior art LDMOS. -
FIGS. 2a and 2b are simplified process flowcharts outlining two possible manufacturing processes that could be used to fabricate the device ofFIG. 1 . -
FIG. 3 illustrates a sectional view of an LDMOS 300 with self-aligned body in accordance with an embodiment of the present invention. -
FIG. 4 is a simplified process flowchart outlining a method for fabricating LDMOS in accordance with an embodiment of the present invention. -
FIGS. 5a-5i illustrate the LDMOS at various stages of fabrication using the fabricating method shown inFIG. 4 . -
FIG. 6 illustrates a sectional view of anLDMOS 600 in accordance with another embodiment of the present invention. -
FIG. 7 illustrates a sectional view of anLDMOS 700 with trench source contact in accordance with yet another embodiment of the present invention. - Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
- The terms “left,” right,” “in,” “out,” “front,” “back,” “up,” “down, “top,” “atop”, “bottom,” “over,” “under,” “beneath,” “above,” “below” and the like in the description and the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that embodiments of the technology described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
- In prior generations of LDMOS transistors as shown in
FIG. 1 , the gate polysilicon and the deep p-type body implants in the center of the source/body region are defined by two different masks. To ensure acceptably small variation of threshold voltage and on-resistance, the gate polysilicon and the deep p-type body implants must either be spaced apart or overlap by a distance greater than the maximum misalignment between the masking layers. These solutions have a penalty of large source opening, long poly width, or high on-resistance. LDMOS devices according to embodiments of the present invention use the same mask for poly etch and deep body implants, therefore reduce minimum source opening size and variation in threshold voltage and on-resistance. -
FIG. 3 shows an LDMOS 300 in accordance with an embodiment of the present invention. The LDMOS 300 is formed in a semiconductor substrate consisting of a P typeoriginal substrate 320, an N+ Buried Layer (NBL) 319 and an N-well 318. The semiconductor substrate may have other circuits or devices, such as BJT and CMOS, integrated in it. In some embodiments, the semiconductor substrate may have other configurations. For example, the N+ Buried Layer is optional and could be omitted. And instead of being formed directly in theoriginal substrate 320, the N-well 318 may be formed in an N type epitaxial layer which is deposited on theoriginal substrate 320. Furthermore, there could further be a p-type “Resurf” layer under the N-well 318. - The
LDMOS 300 includes adrain region 311, agate polysilicon region 312, agate oxide region 313, asource region 314, abody contact region 315, ashallow body region 316 and adeep body region 317. TheLDMOS 300 is usually laid out in stripes with very large width, with source and drain stripes alternating. Normally, there is gate seal oxide formed atop and at the sidewall of thegate polysilicon region 312. But it could be omitted or replaced by other structures in some other embodiments. - Heavily doped
source region 314 andbody contact region 315 are both fabricated in theshallow body region 316 to provide good ohmic contact. Usually they are disposed as inFIG. 3 , with a P+ stripe in the middle and N+ stripes on both sides. However, other arrangements, for example with N+ and P+ alternating in the width direction, are possible. - Compared with the prior art shown in
FIG. 1 , the gate polysilicon etch, the shallow body implants and the deep body implants in theLDMOS 300 are all defined by the same mask, thus thegate polysilicon region 312,shallow body region 316 anddeep body region 317 are “self-aligned”. By doing so, theLDMOS 300 provides a roughly vertical body/drain junction below the edges of thegate polysilicon region 312. - The process flow used to create the structure is outlined in
FIG. 4 , and cross-sections of theLDMOS 300 at various stages of fabrication are shown inFIGS. 5a -5 i. - Up until gate polysilicon definition, the process flow is similar to prior art shown in
FIG. 2b . The frontend processing may comprise preparing anoriginal substrate 320, forming N+ buriedlayer 319, defining active area and forming N-well 318, as illustrated inFIG. 5a . Then, as illustrated inFIG. 5b , a top surface of the semiconductor substrate is oxidized to form agate oxide layer 313. Next, inFIG. 5c , polysilicon is deposited to form agate polysilicon layer 312 which is later patterned as a gate by etching. It is well known in the art that thegate oxide layer 313 is used as a dielectric layer and thegate polysilicon layer 312 is used as an electric conducting layer, and may be replaced by other proper materials. - Unlike the prior art, before gate polysilicon etch, the body definition step is done through a
photoresist layer 321. As shown inFIG. 5d , aphotoresist layer 321 is formed on thegate polysilicon layer 312 and then patterned using a body mask to form a source opening. All other regions of the wafer are covered with photoresist. This step must use thick photoresist, so that the combined thicknesses of thegate polysilicon layer 312 and thephotoresist layer 321 are enough to block the highest-energy deep body implant. - Subsequently, this
photoresist layer 321 is used to etch thegate polysilicon layer 312, as shown inFIG. 5e . Then, without removing thephotoresist layer 321, the deep and shallow body implants (acceptor ions such as boron and indium) are done through the source opening as illustrated inFIG. 5 f. - After removal of the
photoresist layer 321, asecond photoresist layer 322 is deposited and then patterned using a gate poly mask, as shown inFIG. 5g . Thisphotoresist layer 322 is used to etch the other side of the gate polysilicon. After removal of thephotoresist layer 322 as illustrated inFIG. 5h , the process continues as usual, including poly seal oxidation, N+ and P+ implantation and activation, silicide formation, contacts, and backend.FIG. 5i shows the LDMOS device in cross-section after tungsten plug contact formation. - A rough estimate of the area saving made possible by this invention is now made. The minimum photoresist opening that can be manufacturably and cost-effectively defined is about one-third of the photoresist thickness T_block. T_block is defined by the energy of the highest-energy deep body implant. If the side-diffusion of deep body plus maximum misalignment between gate and deep body masks is d, then the minimum source opening for the prior art method is approximately:
-
(T_block/3)+2*d. - For the self-aligned method of the invention, the photoresist thickness can be reduced approximately by the thickness T_poly of the gate polysilicon. The minimum source opening is therefore approximately:
-
(T_block−T_poly)/3. - Using ballpark values of 0.95 um for T_block, 0.2 um for T_poly, and 0.15 um for d, the minimum opening shrinks from 0.62 um to 0.25 um, which is a significant reduction.
- Deep body and shallow body implants are combined into one mask using this method. Assuming that in the prior art process, the deep body mask is a dedicated mask used only in the LDMOS region, the method of this invention reduces the number of photomasking steps in the Integrated Circuit process by one. This can reduce the wafer cost of the finished wafer by a non-negligible amount (several percent).
- Besides the constraint caused by mask misalignment mentioned above, there is another factor which could also limit the minimum size of the source opening. That is the minimum opening required to pattern three distinct heavily doped surface regions (source regions and body contact region, N+/P+/N+) inside the opening while maintaining strong ohmic contact to both source and body.
-
FIG. 6 shows an LDMOS in accordance with another embodiment of the present invention, which reduces the area of the source/body region by eliminating the need to pattern butted N+ and P+ regions inside the source/body region. - The shallow and deep body implants, self-aligned to the gate polysilicon, span the entire source opening. Implanted after spacer formation (oxide and/or nitride spacers formed at the sidewalls of the gate polysilicon to define the source region), an N+ source implant also spans the entire source opening. The junction depth of the
N+ source region 614 inside theshallow body region 316 is quite shallow, typically on the order of 0.1 um. This is true because directly under the N+ source, the acceptor concentration is quite heavy to increase the ruggedness of the LDMOS. - After silicidation of the gate and drain regions of the LDMOS, a pre-metal dielectric layer 623 (also called contact dielectric) is formed. It consists of various doped and undoped deposited oxides, nitrides, oxynitrides, and/or carbides, and isolates the first metal layer from the devices below.
- Afterwards, a photoresist layer is formed and a trench contact mask is used to image trench contact openings in the shape of long stripes down the center of all LDMOS sources. Then the
pre-metal dielectric 623 is etched, for example, using a standard contact etch recipe. After that, inside the trench contact openings, silicon is etched away to form a trench with a depth greater than the maximum junction depth of theN+ source region 614—typically 0.15-0.2 um. The photoresist is stripped, and then regular contacts are defined and etched. After the regular contact photoresist is stripped, acontact liner 624 is deposited on the top of the wafer, covering the edges and bottom of both regular contacts and trench contacts. Thiscontact liner 624 is typically a glue layer of titanium followed by a barrier layer of titanium nitride. A subsequent rapid thermal anneal step reduces oxygen-containing residues at the bottom of the contacts and makes the contact liner 624 a diffusion barrier to fluorine in the subsequent tungsten deposition step. Finally, the contacts are completed when they are filled with CVD tungsten, then polished back so all tungsten, and all contact liner, are removed from the top of thepre-metal dielectric 623. No special silicidation in the trench contact is required, since both theN+ source region 614 and theshallow body region 316 underneath theN+ source region 614 have high enough concentration so that the titanium of the contact liner forms a low-resistance titanium silicide contact. - The trench source contact solution illustrated in
FIG. 6 requires only a blanket N+ region all the way across the source opening, thus reduces the opening size. Although the trench source contact is fabricated ahead of the regular contacts in the process described above, it is possible to be done afterwards. Moreover, tungsten which is used to form tungsten plug contacts could also be replaced by other suitable metal. - In practical applications, it may be difficult to remove photoresist from small contact openings, so in some embodiments the etch-photoresist strip-liner deposition-rapid thermal anneal-tungsten CVD-planarization sequence is repeated twice, once for the trench contacts and once for the regular contacts.
-
FIG. 7 shows anLDMOS 700 with trench source contact in accordance with yet another embodiment of the present invention. In thedevice 700 ofFIG. 7 , there is a steppedgate oxide region 713, with thin gate oxide near the source and a thicker oxide near the drain. For lower-voltage devices, this is not necessary, and the gate polysilicon can be disposed wholly over thin gate oxide, just as shown inFIG. 3 . - In
FIG. 7 , it further shows a p-type “Resurf”layer 726 underlying the entire active device. The purpose of this p-type region is to deplete the n-type drift region (N well) from the bottom as well as from the source side, reducing the lateral electric field and thereby increasing the breakdown voltage. In a Resurf device, the deep body region must be deep enough to make electrical contact with the p-type Resurf layer 726, which is typically more than 0.5 um deep for breakdown voltages of 20V and above. - Further referring to the
device 700 ofFIG. 7 , there are shallow N-type regions 725 which underlap the gate polysilicon region and form the actual source of the LDMOS. These shallow n-type source regions may be implanted through the same photoresist layer with the shallow and deep body regions. - It should be known that the doping type for each region in the above embodiments may be in an alternating type, for example, the N type regions may be replaced with P type regions, and vice versa. Moreover, the N type dopants can be selected from one of the following: nitrogen, phosphorus, arsenic, antimony, bismuth and the combination thereof, while the P type dopants can be selected from one of the following: boron, aluminum, gallium, indium, thallium and the combination thereof.
- Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described. It should be understood, of course, the foregoing disclosure relates only to a preferred embodiment (or embodiments) of the invention and that numerous modifications may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims. Various modifications are contemplated and they obviously will be resorted to by those skilled in the art without departing from the spirit and the scope of the invention as hereinafter defined by the appended claims as only a preferred embodiment(s) thereof has been disclosed.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/116,843 US20180374949A1 (en) | 2016-09-28 | 2018-08-29 | Method for fabricating ldmos with self-aligned body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/279,190 US10090409B2 (en) | 2016-09-28 | 2016-09-28 | Method for fabricating LDMOS with self-aligned body |
US16/116,843 US20180374949A1 (en) | 2016-09-28 | 2018-08-29 | Method for fabricating ldmos with self-aligned body |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/279,190 Division US10090409B2 (en) | 2016-09-28 | 2016-09-28 | Method for fabricating LDMOS with self-aligned body |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180374949A1 true US20180374949A1 (en) | 2018-12-27 |
Family
ID=61235925
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/279,190 Active US10090409B2 (en) | 2016-09-28 | 2016-09-28 | Method for fabricating LDMOS with self-aligned body |
US16/116,843 Abandoned US20180374949A1 (en) | 2016-09-28 | 2018-08-29 | Method for fabricating ldmos with self-aligned body |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/279,190 Active US10090409B2 (en) | 2016-09-28 | 2016-09-28 | Method for fabricating LDMOS with self-aligned body |
Country Status (2)
Country | Link |
---|---|
US (2) | US10090409B2 (en) |
CN (1) | CN107742645A (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160089519A (en) * | 2013-12-20 | 2016-07-27 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Semiconductor device and method for manufacturing same |
KR102359373B1 (en) * | 2018-06-11 | 2022-02-08 | 에스케이하이닉스 시스템아이씨 주식회사 | Method of fabricating a high voltage semiconductor device |
CN108962979B (en) * | 2018-09-12 | 2024-01-02 | 长江存储科技有限责任公司 | High voltage device and semiconductor device |
CN111223932B (en) * | 2018-11-26 | 2023-11-03 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and forming method thereof |
CN111326569B (en) * | 2018-12-13 | 2021-06-25 | 中芯集成电路(宁波)有限公司 | Gate drive integrated circuit |
CN111384144B (en) * | 2018-12-27 | 2024-01-26 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device and method of forming the same |
US11228174B1 (en) | 2019-05-30 | 2022-01-18 | Silicet, LLC | Source and drain enabled conduction triggers and immunity tolerance for integrated circuits |
CN112309863B (en) * | 2019-07-31 | 2024-02-23 | 上海积塔半导体有限公司 | Ultralow on-resistance LDMOS and manufacturing method thereof |
CN112701151B (en) * | 2019-10-23 | 2022-05-06 | 株洲中车时代电气股份有限公司 | SiC MOSFET device and manufacturing method thereof |
US10892362B1 (en) | 2019-11-06 | 2021-01-12 | Silicet, LLC | Devices for LDMOS and other MOS transistors with hybrid contact |
CN111370314A (en) * | 2020-04-30 | 2020-07-03 | 上海华虹宏力半导体制造有限公司 | Method for manufacturing NLDMOS device by BCD process and device formed by method |
CN111430243B (en) * | 2020-05-11 | 2023-05-16 | 杰华特微电子股份有限公司 | Method for manufacturing semiconductor device and semiconductor device |
US11282955B2 (en) * | 2020-05-20 | 2022-03-22 | Silanna Asia Pte Ltd | LDMOS architecture and method for forming |
DE102020117171A1 (en) * | 2020-06-30 | 2021-12-30 | Infineon Technologies Dresden GmbH & Co. KG | LATERAL TRANSISTOR WITH SELF-ALIGNING BODY IMPLANT |
US11495675B2 (en) * | 2020-07-14 | 2022-11-08 | Joulwatt Technology Co., Ltd. | Manufacture method of lateral double-diffused transistor |
CN114078969A (en) | 2020-10-12 | 2022-02-22 | 台湾积体电路制造股份有限公司 | Lateral diffused MOSFET and method of manufacturing the same |
WO2022120175A1 (en) | 2020-12-04 | 2022-06-09 | Amplexia, Llc | Ldmos with self-aligned body and hybrid source |
CN114335156A (en) * | 2022-03-16 | 2022-04-12 | 北京芯可鉴科技有限公司 | Lateral double-diffused metal oxide semiconductor field effect transistor and manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030173624A1 (en) * | 2002-02-23 | 2003-09-18 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
US20080121986A1 (en) * | 2006-08-07 | 2008-05-29 | Force-Mos Technology Corp., Ltd. | Trenched mosfet device configuration with reduced mask processes |
US20110244644A1 (en) * | 2010-03-30 | 2011-10-06 | Zuniga Marco A | Two Step Poly Etch LDMOS Gate Formation |
US20150084126A1 (en) * | 2013-09-26 | 2015-03-26 | Monolithic Power Systems, Inc. | Ldmos device with short channel and associated fabrication method |
US20160260831A1 (en) * | 2015-03-03 | 2016-09-08 | Micrel, Inc. | Dmos transistor with trench schottky diode |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69534919T2 (en) * | 1995-10-30 | 2007-01-25 | Stmicroelectronics S.R.L., Agrate Brianza | Power device in MOS technology with a single critical size |
JP2012164730A (en) * | 2011-02-04 | 2012-08-30 | Renesas Electronics Corp | Semiconductor device |
US8546879B2 (en) * | 2011-08-18 | 2013-10-01 | Monolithic Power Systems, Inc. | High density lateral DMOS with recessed source contact |
CN104658913B (en) * | 2015-02-10 | 2017-12-05 | 上海华虹宏力半导体制造有限公司 | NLDMOS manufacture method |
US9893170B1 (en) * | 2016-11-18 | 2018-02-13 | Monolithic Power Systems, Inc. | Manufacturing method of selectively etched DMOS body pickup |
US9935176B1 (en) * | 2016-11-18 | 2018-04-03 | Monolithic Power Systems, Inc. | Method for fabricating LDMOS using CMP technology |
-
2016
- 2016-09-28 US US15/279,190 patent/US10090409B2/en active Active
-
2017
- 2017-09-18 CN CN201710842708.5A patent/CN107742645A/en active Pending
-
2018
- 2018-08-29 US US16/116,843 patent/US20180374949A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030173624A1 (en) * | 2002-02-23 | 2003-09-18 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
US20080121986A1 (en) * | 2006-08-07 | 2008-05-29 | Force-Mos Technology Corp., Ltd. | Trenched mosfet device configuration with reduced mask processes |
US20110244644A1 (en) * | 2010-03-30 | 2011-10-06 | Zuniga Marco A | Two Step Poly Etch LDMOS Gate Formation |
US20150084126A1 (en) * | 2013-09-26 | 2015-03-26 | Monolithic Power Systems, Inc. | Ldmos device with short channel and associated fabrication method |
US20160260831A1 (en) * | 2015-03-03 | 2016-09-08 | Micrel, Inc. | Dmos transistor with trench schottky diode |
Also Published As
Publication number | Publication date |
---|---|
CN107742645A (en) | 2018-02-27 |
US20180090613A1 (en) | 2018-03-29 |
US10090409B2 (en) | 2018-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10090409B2 (en) | Method for fabricating LDMOS with self-aligned body | |
US9466700B2 (en) | Semiconductor device and method of fabricating same | |
US7687853B2 (en) | System and method for making a LDMOS device with electrostatic discharge protection | |
US7087958B2 (en) | Termination structure of DMOS device | |
US9356133B2 (en) | Medium voltage MOSFET device | |
US6617656B2 (en) | EDMOS device having a lattice type drift region | |
US8921173B2 (en) | Deep silicon via as a drain sinker in integrated vertical DMOS transistor | |
US20150279969A1 (en) | Double-Resurf LDMOS With Drift And PSURF Implants Self-Aligned To A Stacked Gate "BUMP" Structure | |
US7154154B2 (en) | MOS transistors having inverted T-shaped gate electrodes | |
US7544558B2 (en) | Method for integrating DMOS into sub-micron CMOS process | |
US9893170B1 (en) | Manufacturing method of selectively etched DMOS body pickup | |
US6777745B2 (en) | Symmetric trench MOSFET device and method of making same | |
US9935176B1 (en) | Method for fabricating LDMOS using CMP technology | |
US7883971B2 (en) | Gate structure in a trench region of a semiconductor device and method for manufacturing the same | |
CN111048420A (en) | Method for manufacturing lateral double-diffused transistor | |
US11355580B2 (en) | Lateral DMOS device with step-profiled RESURF and drift structures | |
CN108305903B (en) | JFET and manufacturing method thereof | |
KR102424771B1 (en) | Semiconductor device and method of manufacturing the same | |
KR100929635B1 (en) | Vertical transistor and method of formation thereof | |
US7488638B2 (en) | Method for fabricating a voltage-stable PMOSFET semiconductor structure | |
US6579765B1 (en) | Metal oxide semiconductor field effect transistors | |
US20240178283A1 (en) | Ldmos device and method of fabrication of same | |
US11069777B1 (en) | Manufacturing method of self-aligned DMOS body pickup | |
KR101044778B1 (en) | Asymmetry high voltage transistor and method for manufacturing thereof | |
KR20040008478A (en) | Method for manufacturing a transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MONOLITHIC POWER SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCGREGOR, JOEL M.;XIAO, DEMING;YAO, ZEQIANG;AND OTHERS;SIGNING DATES FROM 20160920 TO 20160928;REEL/FRAME:046953/0512 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |