US20180226483A1 - Display device - Google Patents
Display device Download PDFInfo
- Publication number
- US20180226483A1 US20180226483A1 US15/949,986 US201815949986A US2018226483A1 US 20180226483 A1 US20180226483 A1 US 20180226483A1 US 201815949986 A US201815949986 A US 201815949986A US 2018226483 A1 US2018226483 A1 US 2018226483A1
- Authority
- US
- United States
- Prior art keywords
- layer
- display
- region
- voltage line
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000010409 thin film Substances 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000010410 layer Substances 0.000 claims description 204
- 239000012044 organic layer Substances 0.000 claims description 17
- 238000005538 encapsulation Methods 0.000 claims description 2
- 239000010936 titanium Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 17
- 239000011229 interlayer Substances 0.000 description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000011575 calcium Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- -1 region Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910003437 indium oxide Inorganic materials 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H01L27/3258—
-
- H01L27/3276—
-
- H01L27/3297—
-
- H01L51/5246—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/842—Containers
- H10K50/8426—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- H01L51/5253—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
Definitions
- the described technology generally relates to a display device.
- OLED organic light-emitting diode
- One inventive aspect relates to a display device.
- a display device that includes: a substrate; and a display unit disposed on the substrate, the display unit including a thin film transistor, a display element electrically connected to the thin film transistor, and a planarization layer disposed between the thin film transistor and the display element, wherein the display unit includes a display region and a non-display region that is around the display region, and a voltage line is arranged in the non-display region, wherein the planarization layer includes a dividing region by which the planarization layer is divided into a central part and an outer part, and the dividing region is located in the non-display region that is around the display region, wherein the voltage line is partially exposed in the dividing region, and the planarization layer covers at least a lateral side of the voltage line exposed in the dividing region.
- the voltage line may include: a first voltage line disposed at a position corresponding to a side of the display region; and a pair of connection parts protruding from the first voltage line in a first direction across the dividing region, wherein lateral sides of the pair of first connection parts exposed in the dividing region may be covered with first covering parts extending from the central part and second covering parts extending from the outer part, and the first covering parts and the second covering parts may be separate from each other.
- Each of the first connection parts may include: a first region extending from the first voltage line in the first direction; and a second region continuously extending from the first region in the first direction, wherein the second region may be shifted from the first region in a direction perpendicular to the first direction.
- the first covering parts may extend from the central part in the first direction and may cover lateral sides of the first regions
- the second covering parts may extend from the outer part in a direction opposite the first direction and may cover lateral sides of the second regions.
- the voltage line may further include a second voltage line covering a pair of first end portions of the first voltage line and remaining regions of the display region, and the central part may be in contact with inner edge portions of the second voltage line in an overlapping manner.
- the second voltage line may include: a pair of bent parts covering the pair of first end portions; and a pair of second connection parts respectively protruding from the pair of bent parts in the first direction across the dividing region, wherein the second covering parts may cover lateral sides of the pair of second connection parts exposed in the dividing region.
- the pair of second connection parts may be respectively spaced apart from end portions of the pair of bent parts, and the first covering parts may cover lateral sides which are formed on the end portions of the pair of bent parts in the first direction.
- the display device may further include a dam making contact with outer edge portions of the second voltage line in an overlapping manner, wherein the dam may be located in the dividing region.
- the dam may be formed in the same layer as the planarization layer by using the same material as that used to form the planarization layer.
- the display device may further include a thin film encapsulating layer sealing the display unit, wherein the thin film encapsulating layer may include at least one organic layer and at least one inorganic layer, and the at least one organic layer may be located inside the dam.
- the at least one inorganic layer may extend to a region outside the outer part.
- the thin film transistor may include an active layer, a gate electrode, a source electrode, and a drain electrode, and each of the source electrode, the drain electrode, and the voltage line may have a triple-layer structure of titanium, aluminum, and titanium.
- a gate insulating layer may be disposed between the active layer and the gate electrode, and an interlayer insulating layer may be disposed between the gate electrode and the source and drain electrodes, wherein the gate insulating layer and the interlayer insulating layer may extend even in the non-display region, and the at least one inorganic layer may be in contact with the gate insulating layer or the interlayer insulating layer in the region outside the outer part.
- the at least one inorganic layer may pass by an end portion of the gate insulating layer or the interlayer insulating layer and may make contact with an upper surface of the substrate.
- the display element may be an organic light-emitting device including a first electrode electrically connected to the thin film transistor, a second electrode opposite the first electrode, and an intermediate layer disposed between the first and second electrodes.
- a display device comprising: a substrate; and a display unit disposed on the substrate and including a plurality of pixels each pixel comprising a thin film transistor, a display element electrically connected to the thin film transistor, and a planarization layer interposed between the thin film transistor and the display element, wherein the display unit comprises a display region and a non-display region surrounding the display region, wherein the non-display region includes a voltage line, wherein the planarization layer comprises a central portion, an outer portion and a dividing region interposed between the central and outer portions, wherein the dividing region is located in the non-display region, and wherein the planarization layer covers at least a lateral side of the voltage line formed in the dividing region.
- the voltage line comprises: a first voltage line disposed at a position corresponding to a side of the display region; and a pair of connectors protruding from the first voltage line in a first direction, wherein lateral sides of the first connectors are covered by a pair of first covering portions extending from the central portion and a pair of second covering portions extending from the outer portion, and wherein the first and second covering portions are separated apart from each other.
- each of the first connectors comprises: a first region extending from the first voltage line in the first direction; and a second region continuously extending from the first region in the first direction, wherein the first and second regions are not aligned in a second direction crossing the first direction.
- the first covering portions extend from the central portion in the first direction and cover lateral sides of the first regions, and wherein the second covering portions extend from the outer portion in a third direction opposite the first direction and cover lateral sides of the second regions.
- the voltage line further comprises a second voltage line covering a pair of first end portions of the first voltage line and a remaining region of the display region other than the side of the display region, and wherein the central portion contacts and overlaps an inner edge portion of the second voltage line in the depth dimension of the display device.
- the second voltage line comprises: a pair of bent portions covering the first end portions; and a pair of second connectors respectively protruding from the bent portions in the first direction, wherein the second covering portions cover lateral sides of the second connectors.
- the second connectors are respectively spaced apart from end portions of the bent portions, and wherein the first covering portions cover lateral sides formed on the end portions of the bent portions.
- the above display device further comprises a dam contacting and overlapping outer edge portions of the second voltage line in the depth dimension of the display device, wherein the dam is located in the dividing region and does not contact the central portion.
- the dam is formed on the same layer as the planarization layer and formed of the same material as that of the planarization layer.
- the above display device further comprises a thin film encapsulating layer sealing the display unit, wherein the thin film encapsulating layer comprises at least one organic layer and at least one inorganic layer, and wherein the at least one organic layer is located inside the dam.
- the at least one inorganic layer extends to a region outside the outer portion.
- the thin film transistor comprises an active layer, a gate electrode, a source electrode, and a drain electrode, and wherein each of the source electrode, the drain electrode, and the voltage line has a triple-layer structure formed of titanium, aluminum, and titanium.
- the above display device further comprises: a gate insulating layer interposed between the active layer and the gate electrode; and an interlayer insulating layer interposed between the gate and source electrodes and between the gate and drain electrodes, wherein the gate insulating layer and the interlayer insulating layer extend into the non-display region, and wherein the at least one inorganic layer contacts the gate insulating layer or the interlayer insulating layer in the region outside the outer portion.
- the at least one inorganic layer is formed over an end portion of the gate insulating layer or the interlayer insulating layer and contacts an upper surface of the substrate.
- the display element includes an organic light-emitting diode comprising a first electrode electrically connected to the thin film transistor, a second electrode opposite the first electrode, and an intermediate layer interposed between the first and second electrodes.
- a display device comprising: a substrate including a display region and a non-display region surrounding the display region; a planarization layer formed over the display area and a portion of the non-display area; and a voltage line formed in the non-display region of the substrate, wherein the planarization layer comprises a first portion formed in the display and non-display regions and a second portion formed only in the non-display region, and wherein the voltage line and at least a portion of the planarization layer are formed on the same layer.
- the above display device further comprises a thin film encapsulation layer including at least one organic layer and at least one inorganic layer alternately formed with respect to each other over the first portion of the planarization layer.
- the at least one inorganic layer comprises a plurality of inorganic layers contacting each other at least over the second portion of the planarization layer.
- the planarization layer further includes a dam formed in the non-display region and interposed between the first and second regions of the planarization layer, and wherein the organic layers do not overlap the dam in the depth dimension of the display device.
- the voltage line includes first and second voltage lines, wherein the second voltage line extends in a first direction, wherein the first voltage line extends in a second direction crossing the first direction, and wherein the second voltage line is formed in the non-display region.
- the display device is configured to prevent the permeation of moisture or oxygen into display elements, thereby minimizing defects such as dark points.
- FIG. 1 is a schematic plan view illustrating a display device according to an exemplary embodiment.
- FIG. 2 is a schematic cross-sectional view taken along line I-I′ of FIG. 1 .
- FIG. 3 is a schematic plan view illustrating a voltage line and a planarization layer of the display device illustrated in FIG. 1 .
- FIG. 4 is an enlarged view schematically illustrating a region A of FIG. 3 .
- FIG. 5 is a schematic cross-sectional view taken along line II-II′ of FIG. 4 .
- FIG. 6 is an enlarged view schematically illustrating a region B of FIG. 3 .
- FIG. 1 is a schematic plan view illustrating a display device 10 according to an exemplary embodiment.
- FIG. 2 is a schematic cross-sectional view taken along line I-I′ of FIG. 1 .
- FIG. 3 is a schematic plan view illustrating a voltage line 200 and a planarization layer 109 (refer to FIG. 2 ) of the display device 10 illustrated in FIG. 1 .
- FIG. 4 is an enlarged view schematically illustrating a region A of FIG. 3 .
- FIG. 5 is a schematic cross-sectional view taken along line II-II′ of FIG. 4 .
- FIG. 6 is an enlarged view schematically illustrating a region B of FIG. 3 .
- the display device 10 of the exemplary embodiment includes a substrate 101 , a display unit 100 disposed on the substrate 101 , and a thin film encapsulating layer 300 sealing the display unit 100 .
- the substrate 101 may be formed of one or more materials.
- the substrate 101 is formed of a transparent glass material including SiO 2 as a main component.
- the substrate 101 is not limited thereto.
- the substrate 101 is formed of a transparent plastic material.
- the plastic material include polyethersulphone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), and cellulose acetate propionate (CAP).
- the substrate 101 may include a transparent material. However, if the display device 10 is a top emission-type display device configured to emit light in a direction opposite the substrate 101 for displaying images, the substrate 101 does not include a transparent material. In this case, the substrate 101 may include a metallic material. Examples of the metallic material that may be used to form the substrate 101 includes iron, chromium, manganese, nickel, titanium, molybdenum, stainless steel (SUS), Invar, Inconel, and Kovar.
- the display unit 100 is disposed on the substrate 101 .
- the display unit 100 may include a display region DA in which user-perceptible images are formed and a non-display region NDA that is around the display region DA.
- Display elements 100 b may be arranged in the display region DA.
- the display elements 100 b are organic light-emitting diodes (OLEDs).
- the voltage line 200 may be arranged in the non-display region NDA for supplying power to elements such as the display elements 100 b .
- a pad unit 150 may be disposed in the non-display region NDA for transmitting electric signals from a power supply (not shown) or a signal generator to the display region DA.
- the display unit 100 will be described with reference to FIG. 2 .
- a buffer layer 102 may be disposed on the substrate 101 .
- the buffer layer 102 may be disposed in the display region DA and may extend even in the non-display region NDA.
- the buffer layer 102 may form a flat surface on an upper side of the substrate 101 and may block the ingress of foreign substances or moisture through the substrate 101 .
- the buffer layer 102 includes an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, titanium oxide, or titanium nitride, or an organic material such as polyimide, polyester, or acrylic.
- the buffer layer 102 may have a stacked structure including two or more of the listed materials.
- Thin film transistors 100 a and the display elements 100 b electrically connected to the thin film transistors 100 a may be arranged above the substrate 101 .
- Each of the thin film transistors 100 a may include an active layer 103 , a gate electrode 105 , a source electrode 107 , and a drain electrode 108 .
- the following description will be presented under the assumption that each of the thin film transistors 100 a is a top gate-type transistor in which the active layer 103 , the gate electrode 105 , the source electrode 107 , and the drain electrode 108 are sequentially formed.
- the described technology is not limited thereto, and the thin film transistors 100 a may be other types of transistors such as bottom gate-type transistors.
- the active layer 103 may be formed of a semiconductor material such as amorphous silicon or polycrystalline silicon. However, the described technology is not limited thereto, and the active layer 103 may include another material. In some exemplary embodiments, the active layer 103 includes an organic semiconductor material.
- the active layer 103 includes an oxide semiconductor material.
- the active layer 103 includes an oxide of a material selected from Group 12, 13, and 14 metal elements such as zinc (Zn), indium (In), gallium (Ga), tin (Sn), cadmium (Cd), and germanium (Ge), and combinations thereof.
- a gate insulating layer 104 is disposed on the active layer 103 .
- the gate insulating layer 104 may have a monolayer or multi-layer structure including one or more inorganic materials such as silicon oxide and/or silicon nitride.
- the gate insulating layer 104 insulates the active layer 103 and the gate electrode 105 from each other.
- the gate insulating layer 104 may be formed in a portion of the non-display region NDA as well as in the display region DA.
- the gate electrode 105 is disposed on the gate insulating layer 104 .
- the gate electrode 105 may be connected to a gate line (not shown) through which an on/off signal is applied to the thin film transistors 100 a.
- the gate electrode 105 may include a metallic material having low resistance.
- the gate electrode 105 has a monolayer or multi-layer structure including at least one of aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), and copper (Cu).
- An interlayer insulating layer 106 is disposed on the gate electrode 105 .
- the interlayer insulating layer 106 insulates the source electrode 107 and the drain electrode 108 from the gate electrode 105 .
- the interlayer insulating layer 106 may be formed in a portion of the non-display region NDA as well as in the display region DA.
- the interlayer insulating layer 106 may have a monolayer or multi-layer structure including one or more inorganic materials.
- the inorganic materials include a metal oxide or a metal nitride.
- the inorganic materials include silicon oxide (SiO 2 ), silicon nitride (SiNx), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), hafnium oxide (HfO 2 ), and zirconium oxide (ZrO 2 ).
- the source electrode 107 and the drain electrode 108 are disposed on the interlayer insulating layer 106 .
- the source electrode 107 and the drain electrode 108 are in contact with regions of the active layer 103 .
- Each of the source electrode 107 and the drain electrode 108 may have a monolayer or multi-layer structure including at least one of aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), and copper (Cu).
- each of the source electrode 107 and the drain electrode 108 may have a triple-layer structure of titanium (Ti), aluminum (Al), and titanium (Ti).
- the planarization layer 109 covers the thin film transistors 100 a .
- the planarization layer 109 prevents height differences caused by the thin film transistors 100 a and forms a flat upper surface.
- the planarization layer 109 prevents defects of the display elements 100 b , caused by a lower uneven surface.
- the planarization layer 109 may have a monolayer or multi-layer structure including one or more organic materials.
- the organic materials include general-purpose polymers such as polymethylmethacrylate (PMMA) or polystylene (PS), polymer derivatives having phenolic groups; acrylic polymers, imidic polymers, aryletheric polymers, amidic polymers, fluoric polymers, p-xylenic polymers, vinyl alcoholic polymers, and blends thereof.
- the planarization layer 109 may have a multi-layer structure formed by an inorganic insulating layer and an organic insulating layer.
- the planarization layer 109 may include a dividing region V formed in the non-display region NDA around the display region DA.
- the dividing region V may be formed by partially removing the planarization layer 109 so as to prevent the permeation of moisture into the display region DA through the planarization layer 109 formed of organic matter.
- the dividing region V may divide the planarization layer 109 into a central part 109 a and an outer part 109 b , and the area of the central part 109 a may be larger than the area of the display region DA.
- each of the display elements 100 b is an OLED including a first electrode 111 , a second electrode 113 opposite the first electrode 111 , and an intermediate layer 112 disposed between the first and second electrodes 111 and 113 .
- the first electrode 111 may be disposed on the planarization layer 109 and may be electrically connected to the thin film transistor 100 a through a contact hole formed in the planarization layer 109 .
- the first electrode 111 may have a shape such as an island shape formed through a patterning process.
- the first electrode 111 is a reflective electrode.
- the first electrode 111 includes a reflective layer including silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), or a compound thereof, and a transparent or translucent electrode layer disposed on the reflective layer.
- the transparent or translucent electrode layer may include at least one of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In 2 O 3 ), indium gallium oxide (IGO), and aluminum zinc oxide (AZO).
- the second electrode 113 may be a transparent or translucent electrode including a thin metal film including lithium (Li), calcium (Ca), LiF/Ca, LiF/Al, aluminum (Al), silver (Ag), magnesium (Mg), or a compound thereof which has a low work function.
- an auxiliary electrode layer or a bus electrode may be formed on the thin metal film by using a transparent electrode-forming material such as ITO, IZO, ZnO, or In 2 O 3 . Therefore, the second electrode 113 may transmit light emitted from an organic emission layer included in the intermediate layer 112 . Light emitted from the organic emission layer may be incident on the second electrode 113 directly or after being reflected by the first electrode 111 , which is a reflective electrode.
- the display unit 100 is not limited to a top emission-type.
- the display unit 100 is a bottom emission-type display unit 100 in which light is emitted from the organic emission layer to the substrate 101 .
- the first electrode 111 may be a transparent or translucent electrode
- the second electrode 113 may be a reflective electrode.
- the display unit 100 may be a double-sided emission-type display unit configured to emit light through top and bottom sides thereof.
- a pixel-defining layer 119 is formed of an insulating material on the first electrode 111 .
- the pixel-defining layer 119 may be formed by a spin coating method using at least one organic insulating material selected from polyimide, polyamide, acrylic resins, benzocyclobutene, and phenol resin.
- the pixel-defining layer 119 exposes a region of the first electrode 111 , and the intermediate layer 112 including the organic emission layer is disposed in the exposed region of the first electrode 111 .
- the pixel-defining layer 119 defines pixel regions of the OLEDs.
- the organic emission layer of the intermediate layer 112 may include a low molecular weight organic material or a high molecular weight organic material.
- the intermediate layer 112 may further include functional layers such as a hole transport layer (HTL), a hole injection layer (HIL), an electron transport layer (ETL), or an electron injection layer (EIL).
- HTL hole transport layer
- HIL hole injection layer
- ETL electron transport layer
- EIL electron injection layer
- the voltage line 200 surrounding the display region DA, and the dividing region V, dividing the planarization layer 109 into the central part 109 a and the outer part 109 b , may be disposed in the non-display region NDA.
- the voltage line 200 may be partially exposed in the dividing region V, and the planarization layer 109 may cover at least lateral sides of the voltage line 200 exposed in the dividing region V.
- the voltage line 200 may include the same material as that used to form the source electrode 107 and the drain electrode 108 .
- the voltage line 200 has a stacked structure including a first layer 200 a formed of titanium (Ti), a second layer 200 b formed of aluminum (Al), and a third layer 200 c formed of titanium (Ti). Since aluminum (Al) is easily etched compared to titanium (Ti), if the lateral sides of the voltage line 200 are exposed in the dividing region V, the first and third layers 200 a and 200 c (titanium (Ti) layers) formed on the second layer 200 b (an aluminum (Al) layer) may be damaged during an etching process because the etching rate of the second layer 200 b is relatively high.
- the step coverage of the voltage line 200 may deteriorate.
- the thin film encapsulating layer 300 formed above the voltage line 200 may have defects. Therefore, the planarization layer 109 covers at least the lateral sides of the voltage line 200 exposed in the dividing region V so as to prevent the formation of defects in the thin film encapsulating layer 300 .
- the voltage line 200 may include a first voltage line 210 and a second voltage line 220 .
- the first voltage line 210 is a driving voltage (ELVDD) line
- the second voltage line 220 is a common voltage (ELVSS) line.
- the second voltage line 220 may be connected to the second electrode 113 .
- the second voltage line 220 is connected to the second electrode 113 through a line 116 .
- the described technology is not limited thereto.
- the second voltage line 220 and the second electrode 113 are directly connected to each other.
- the first voltage line 210 may be disposed at a position corresponding to a side of the display region DA. For example, if the display region DA has a rectangular shape, the first voltage line 210 is disposed at a position corresponding to a side of the display region DA. The first voltage line 210 may be parallel with the side of the display region DA and longer than the side of the display region DA. The side of the display region DA corresponding to the first voltage line 210 may be a side adjacent to the pad unit 150 .
- a pair of first connection parts (or connectors) 214 may protrude from the first voltage line 210 in a first direction across the dividing region V.
- the first direction is a direction defined from the display region DA toward the pad unit 150 .
- the pair of first connection parts 214 may be connected to the pad unit 150 .
- the first voltage line 210 may be covered with the central part 109 a , and the pair of first connection parts 214 may be exposed in the dividing region V.
- At least lateral sides of the pair of first connection parts 214 exposed in the dividing region V may be covered with the planarization layer 109 .
- the lateral sides of the pair of first connection parts 214 are covered with first covering parts 110 a extending from the central part 109 a and second covering parts 110 b extending from the outer part 109 b . Since the dividing region V is formed to prevent the permeation of moisture into the display region DA through the planarization layer 109 , the first covering parts 110 a are formed separate from the second covering parts 110 b.
- each of the first connection parts 214 includes a first region P 1 extending from the first voltage line 210 in the first direction and a second region P 2 continuously extending from the first region P 1 in the first direction.
- the second region P 2 may be shifted from the first region P 1 in a direction substantially perpendicular to the first direction.
- lateral sides of the first region P 1 are covered with the first covering parts 110 a extending from the central part 109 a in the first direction covers
- lateral sides of the second region P 2 are covered with the second covering parts 110 b extending from the outer part 109 b in a direction opposite the first direction, such that the first covering parts 110 a may be separate from the second covering parts 110 b.
- the second voltage line 220 may cover a pair of first end portions 212 of the first voltage line 210 and remaining regions of the display region DA, and the central part 109 a may be in contact with inner edge portions of the second voltage line 220 in an overlapping manner, such that inner sides of the second voltage line 220 may be covered.
- the second voltage line 220 may include a pair of bent parts 222 covering outer sides of the pair of first end portions 212 , and a pair of second connection parts 224 respectively protruding from the pair of bent parts 222 in the first direction across the dividing region V.
- the pair of second connection parts 224 may be connected to the pad unit 150 .
- the pair of second connection parts 224 may be exposed in the dividing region V, and lateral sides of the pair of second connection parts 224 may be covered with the second covering parts 110 b .
- lateral sides 222 E formed on end portions of the pair of bent parts 222 in the first direction may be covered with the first covering parts 110 a .
- the pair of second connection parts 224 may be respectively separate from the end portions of the pair of bent parts 222 , and thus the first covering parts 110 a may be separate from the second covering parts 110 b.
- a dam 109 c may be formed in the dividing region V.
- the dam 109 c is in contact with outer edge portions of the second voltage line 220 in an overlapping manner such that outer sides of the second voltage line 220 may be covered with the dam 109 c .
- the dam 109 c blocks flows of organic matter toward edges of the substrate 101 , thereby preventing the formation of edge tails of the organic layers 310 and 330 .
- the dam 109 c may be formed in the same layer as the planarization layer 109 by using the same material used to form the planarization layer 109 .
- the dam 109 c is not limited thereto.
- the dam 109 c has two or more layers.
- a lower layer includes the same material as that used to form the planarization layer 109
- an upper layer includes the same material as that used to form the pixel-defining layer 119 .
- a plurality of dams 109 c may be formed. In this case, the height of the dams 109 c may increase in a direction toward the substrate 101 .
- the thin film encapsulating layer 300 may seal the display unit 100 to prevent the permeation of moisture or oxygen into the display unit 100 .
- the thin film encapsulating layer 300 may include one or more organic layers such as the organic layers 310 and 330 , and one or more inorganic layers 320 and 340 .
- the thin film encapsulating layer 300 includes two organic layers 310 and 330 and two inorganic layers 320 and 340 that are alternately stacked.
- the thin film encapsulating layer 300 is not limited thereto.
- the thin film encapsulating layer 300 further includes inorganic encapsulating layers and organic encapsulating layers that are alternately stacked, and the number of inorganic encapsulating layers and the number of organic encapsulating layers are not limited.
- the organic layers 310 and 330 are formed of at least one of an acrylic resin, a methacrylic resin, polyisoprene, a vinyl resin, an epoxy resin, a urethane resin, a cellulose resin, and a perylene resin.
- the dam 109 c blocks flows of organic matter toward edges of the substrate 101 . That is, the organic layers 310 and 330 are formed inside the dam 109 c.
- the inorganic layers 320 and 340 may include at least one of silicon nitride, aluminum nitride, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, silicon oxide, aluminum oxide, titanium oxide, tin oxide, cerium oxide, and silicon oxynitride (SiON).
- the inorganic layers 320 and 340 may be larger than the organic layers 310 and 330 and may cover the outer part 109 b . Therefore, the dividing region V may be covered with the inorganic layers 320 and 340 . In this case, as described above, at least the lateral sides of the voltage line 200 exposed in the dividing region V are covered with the planarization layer 109 , thereby improving the step coverage of the voltage line 200 and preventing defects of the inorganic layers 320 and 340 formed above the voltage line 200 . In this manner, the permeation of moisture or oxygen into the display elements 100 b may be prevented, and defects such as dark points may be minimized.
- the inorganic layers 320 and 340 may extend to a region outside the outer part 109 b and may be in contact with each other in the region outside the outer part 109 b . In addition, at least one of the inorganic layers 320 and 340 may be in contact with the gate insulating layer 104 or the interlayer insulating layer 106 in the region outside the outer part 109 b . Therefore, the permeation of moisture through lateral sides may be prevented, and the adhesion of the thin film encapsulating layer 300 may be improved.
- At least one of the inorganic layers 320 and 340 may pass by an end portion of the interlayer insulating layer 106 . Then, the at least one of the inorganic layers 320 and 340 may make contact with an upper surface of the substrate 101 , and the gate insulating layer 104 and the interlayer insulating layer 106 as well. In this case, edge portions of the inorganic layers 320 and 340 may not be stripped, and thus the sealing characteristics of the thin film encapsulating layer 300 may not be deteriorated or disabled.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 15/080,381, filed Mar. 24, 2016, which claims priority under 35 U.S.C. 119 of Korean Patent Application No. 10-2015-0083664, filed on Jun. 12, 2015, in the Korean Intellectual Property Office, the disclosures of which are incorporated by reference herein in their entireties.
- The described technology generally relates to a display device.
- Recently, the trend in display devices is the use of plate-type flat panel displays. Among flat panel displays, self-luminous electroluminescent technology has favorable characteristics such as wide viewing angles, high contrast, and high refresh rate, and are thus considered to be the preferred choice for next-generation display devices. An organic light-emitting diode (OLED) display has a light-emitting layer formed of an organic material and high brightness, improved driving-voltage, and a multi-color display capability.
- One inventive aspect relates to a display device.
- Another aspect is a display device that includes: a substrate; and a display unit disposed on the substrate, the display unit including a thin film transistor, a display element electrically connected to the thin film transistor, and a planarization layer disposed between the thin film transistor and the display element, wherein the display unit includes a display region and a non-display region that is around the display region, and a voltage line is arranged in the non-display region, wherein the planarization layer includes a dividing region by which the planarization layer is divided into a central part and an outer part, and the dividing region is located in the non-display region that is around the display region, wherein the voltage line is partially exposed in the dividing region, and the planarization layer covers at least a lateral side of the voltage line exposed in the dividing region.
- The voltage line may include: a first voltage line disposed at a position corresponding to a side of the display region; and a pair of connection parts protruding from the first voltage line in a first direction across the dividing region, wherein lateral sides of the pair of first connection parts exposed in the dividing region may be covered with first covering parts extending from the central part and second covering parts extending from the outer part, and the first covering parts and the second covering parts may be separate from each other.
- Each of the first connection parts may include: a first region extending from the first voltage line in the first direction; and a second region continuously extending from the first region in the first direction, wherein the second region may be shifted from the first region in a direction perpendicular to the first direction.
- The first covering parts may extend from the central part in the first direction and may cover lateral sides of the first regions, and the second covering parts may extend from the outer part in a direction opposite the first direction and may cover lateral sides of the second regions.
- The voltage line may further include a second voltage line covering a pair of first end portions of the first voltage line and remaining regions of the display region, and the central part may be in contact with inner edge portions of the second voltage line in an overlapping manner.
- The second voltage line may include: a pair of bent parts covering the pair of first end portions; and a pair of second connection parts respectively protruding from the pair of bent parts in the first direction across the dividing region, wherein the second covering parts may cover lateral sides of the pair of second connection parts exposed in the dividing region.
- The pair of second connection parts may be respectively spaced apart from end portions of the pair of bent parts, and the first covering parts may cover lateral sides which are formed on the end portions of the pair of bent parts in the first direction.
- The display device may further include a dam making contact with outer edge portions of the second voltage line in an overlapping manner, wherein the dam may be located in the dividing region.
- The dam may be formed in the same layer as the planarization layer by using the same material as that used to form the planarization layer.
- The display device may further include a thin film encapsulating layer sealing the display unit, wherein the thin film encapsulating layer may include at least one organic layer and at least one inorganic layer, and the at least one organic layer may be located inside the dam.
- The at least one inorganic layer may extend to a region outside the outer part.
- The thin film transistor may include an active layer, a gate electrode, a source electrode, and a drain electrode, and each of the source electrode, the drain electrode, and the voltage line may have a triple-layer structure of titanium, aluminum, and titanium.
- A gate insulating layer may be disposed between the active layer and the gate electrode, and an interlayer insulating layer may be disposed between the gate electrode and the source and drain electrodes, wherein the gate insulating layer and the interlayer insulating layer may extend even in the non-display region, and the at least one inorganic layer may be in contact with the gate insulating layer or the interlayer insulating layer in the region outside the outer part.
- The at least one inorganic layer may pass by an end portion of the gate insulating layer or the interlayer insulating layer and may make contact with an upper surface of the substrate.
- The display element may be an organic light-emitting device including a first electrode electrically connected to the thin film transistor, a second electrode opposite the first electrode, and an intermediate layer disposed between the first and second electrodes.
- Another aspect is a display device, comprising: a substrate; and a display unit disposed on the substrate and including a plurality of pixels each pixel comprising a thin film transistor, a display element electrically connected to the thin film transistor, and a planarization layer interposed between the thin film transistor and the display element, wherein the display unit comprises a display region and a non-display region surrounding the display region, wherein the non-display region includes a voltage line, wherein the planarization layer comprises a central portion, an outer portion and a dividing region interposed between the central and outer portions, wherein the dividing region is located in the non-display region, and wherein the planarization layer covers at least a lateral side of the voltage line formed in the dividing region.
- In the above display device, the voltage line comprises: a first voltage line disposed at a position corresponding to a side of the display region; and a pair of connectors protruding from the first voltage line in a first direction, wherein lateral sides of the first connectors are covered by a pair of first covering portions extending from the central portion and a pair of second covering portions extending from the outer portion, and wherein the first and second covering portions are separated apart from each other. In the above display device, each of the first connectors comprises: a first region extending from the first voltage line in the first direction; and a second region continuously extending from the first region in the first direction, wherein the first and second regions are not aligned in a second direction crossing the first direction.
- In the above display device, the first covering portions extend from the central portion in the first direction and cover lateral sides of the first regions, and wherein the second covering portions extend from the outer portion in a third direction opposite the first direction and cover lateral sides of the second regions. In the above display device, the voltage line further comprises a second voltage line covering a pair of first end portions of the first voltage line and a remaining region of the display region other than the side of the display region, and wherein the central portion contacts and overlaps an inner edge portion of the second voltage line in the depth dimension of the display device.
- In the above display device, the second voltage line comprises: a pair of bent portions covering the first end portions; and a pair of second connectors respectively protruding from the bent portions in the first direction, wherein the second covering portions cover lateral sides of the second connectors. In the above display device, the second connectors are respectively spaced apart from end portions of the bent portions, and wherein the first covering portions cover lateral sides formed on the end portions of the bent portions.
- The above display device further comprises a dam contacting and overlapping outer edge portions of the second voltage line in the depth dimension of the display device, wherein the dam is located in the dividing region and does not contact the central portion. In the display device, the dam is formed on the same layer as the planarization layer and formed of the same material as that of the planarization layer. The above display device further comprises a thin film encapsulating layer sealing the display unit, wherein the thin film encapsulating layer comprises at least one organic layer and at least one inorganic layer, and wherein the at least one organic layer is located inside the dam.
- In the above display device, the at least one inorganic layer extends to a region outside the outer portion. In the above display device, the thin film transistor comprises an active layer, a gate electrode, a source electrode, and a drain electrode, and wherein each of the source electrode, the drain electrode, and the voltage line has a triple-layer structure formed of titanium, aluminum, and titanium. The above display device further comprises: a gate insulating layer interposed between the active layer and the gate electrode; and an interlayer insulating layer interposed between the gate and source electrodes and between the gate and drain electrodes, wherein the gate insulating layer and the interlayer insulating layer extend into the non-display region, and wherein the at least one inorganic layer contacts the gate insulating layer or the interlayer insulating layer in the region outside the outer portion.
- In the above display device, the at least one inorganic layer is formed over an end portion of the gate insulating layer or the interlayer insulating layer and contacts an upper surface of the substrate. In the above display device, the display element includes an organic light-emitting diode comprising a first electrode electrically connected to the thin film transistor, a second electrode opposite the first electrode, and an intermediate layer interposed between the first and second electrodes.
- Another aspect is a display device, comprising: a substrate including a display region and a non-display region surrounding the display region; a planarization layer formed over the display area and a portion of the non-display area; and a voltage line formed in the non-display region of the substrate, wherein the planarization layer comprises a first portion formed in the display and non-display regions and a second portion formed only in the non-display region, and wherein the voltage line and at least a portion of the planarization layer are formed on the same layer.
- The above display device further comprises a thin film encapsulation layer including at least one organic layer and at least one inorganic layer alternately formed with respect to each other over the first portion of the planarization layer. In the above display device, the at least one inorganic layer comprises a plurality of inorganic layers contacting each other at least over the second portion of the planarization layer. In the above display device, the planarization layer further includes a dam formed in the non-display region and interposed between the first and second regions of the planarization layer, and wherein the organic layers do not overlap the dam in the depth dimension of the display device. In the above display device, the voltage line includes first and second voltage lines, wherein the second voltage line extends in a first direction, wherein the first voltage line extends in a second direction crossing the first direction, and wherein the second voltage line is formed in the non-display region.
- According to at least one of the disclosed embodiments, the display device is configured to prevent the permeation of moisture or oxygen into display elements, thereby minimizing defects such as dark points.
-
FIG. 1 is a schematic plan view illustrating a display device according to an exemplary embodiment. -
FIG. 2 is a schematic cross-sectional view taken along line I-I′ ofFIG. 1 . -
FIG. 3 is a schematic plan view illustrating a voltage line and a planarization layer of the display device illustrated inFIG. 1 . -
FIG. 4 is an enlarged view schematically illustrating a region A ofFIG. 3 . -
FIG. 5 is a schematic cross-sectional view taken along line II-II′ ofFIG. 4 . -
FIG. 6 is an enlarged view schematically illustrating a region B ofFIG. 3 . - Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In this regard, the present exemplary embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the exemplary embodiments are merely described below, by referring to the figures, to explain aspects of the present description. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list. Moreover, detailed descriptions related to well-known functions or configurations will be ruled out in order not to unnecessarily obscure subject matters of the present disclosure.
- It will be understood that although the terms “first,” “second,” etc. may be used herein to describe various components, these components should not be limited by these terms. These terms are only used to distinguish one component from another.
- In the following description, the technical terms are used only for explaining a specific exemplary embodiment while not limiting the inventive concept. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Sizes of elements in the drawings may be exaggerated for convenience of explanation. In other words, since sizes and thicknesses of components in the drawings are arbitrarily illustrated for convenience of explanation, the following embodiments are not limited thereto.
- It will be understood that when a layer, region, or component is referred to as being disposed or formed “on” or “under” another layer, region, or component, it can be directly or indirectly disposed or formed on the other layer, region, or component. That is, for example, intervening layers, regions, or components may be present. In addition, the word “on” or “above” is selected based on the drawings.
- Hereinafter, the exemplary embodiments will be described with reference to the accompanying drawings. In the drawings, like reference numerals denote like elements, and overlapping descriptions thereof will be omitted. In this disclosure, the term “substantially” includes the meanings of completely, almost completely or to any significant degree under some applications and in accordance with those skilled in the art. The term “connected” can include an electrical connection.
-
FIG. 1 is a schematic plan view illustrating adisplay device 10 according to an exemplary embodiment.FIG. 2 is a schematic cross-sectional view taken along line I-I′ ofFIG. 1 .FIG. 3 is a schematic plan view illustrating avoltage line 200 and a planarization layer 109 (refer toFIG. 2 ) of thedisplay device 10 illustrated inFIG. 1 .FIG. 4 is an enlarged view schematically illustrating a region A ofFIG. 3 .FIG. 5 is a schematic cross-sectional view taken along line II-II′ ofFIG. 4 .FIG. 6 is an enlarged view schematically illustrating a region B ofFIG. 3 . - Referring to
FIGS. 1 to 6 , thedisplay device 10 of the exemplary embodiment includes asubstrate 101, adisplay unit 100 disposed on thesubstrate 101, and a thinfilm encapsulating layer 300 sealing thedisplay unit 100. - The
substrate 101 may be formed of one or more materials. For example, thesubstrate 101 is formed of a transparent glass material including SiO2 as a main component. However, thesubstrate 101 is not limited thereto. In another example, thesubstrate 101 is formed of a transparent plastic material. Examples of the plastic material include polyethersulphone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), polyallylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), and cellulose acetate propionate (CAP). - If the
display device 10 is a bottom emission-type display device configured to emit light through thesubstrate 101 for displaying images, thesubstrate 101 may include a transparent material. However, if thedisplay device 10 is a top emission-type display device configured to emit light in a direction opposite thesubstrate 101 for displaying images, thesubstrate 101 does not include a transparent material. In this case, thesubstrate 101 may include a metallic material. Examples of the metallic material that may be used to form thesubstrate 101 includes iron, chromium, manganese, nickel, titanium, molybdenum, stainless steel (SUS), Invar, Inconel, and Kovar. - The
display unit 100 is disposed on thesubstrate 101. Thedisplay unit 100 may include a display region DA in which user-perceptible images are formed and a non-display region NDA that is around the display region DA. -
Display elements 100 b may be arranged in the display region DA. For example, thedisplay elements 100 b are organic light-emitting diodes (OLEDs). Thevoltage line 200 may be arranged in the non-display region NDA for supplying power to elements such as thedisplay elements 100 b. Apad unit 150 may be disposed in the non-display region NDA for transmitting electric signals from a power supply (not shown) or a signal generator to the display region DA. - Hereinafter, the
display unit 100 will be described with reference toFIG. 2 . - A
buffer layer 102 may be disposed on thesubstrate 101. Thebuffer layer 102 may be disposed in the display region DA and may extend even in the non-display region NDA. - The
buffer layer 102 may form a flat surface on an upper side of thesubstrate 101 and may block the ingress of foreign substances or moisture through thesubstrate 101. For example, thebuffer layer 102 includes an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, titanium oxide, or titanium nitride, or an organic material such as polyimide, polyester, or acrylic. Thebuffer layer 102 may have a stacked structure including two or more of the listed materials. -
Thin film transistors 100 a and thedisplay elements 100 b electrically connected to thethin film transistors 100 a may be arranged above thesubstrate 101. - Each of the
thin film transistors 100 a may include anactive layer 103, agate electrode 105, asource electrode 107, and adrain electrode 108. The following description will be presented under the assumption that each of thethin film transistors 100 a is a top gate-type transistor in which theactive layer 103, thegate electrode 105, thesource electrode 107, and thedrain electrode 108 are sequentially formed. However, the described technology is not limited thereto, and thethin film transistors 100 a may be other types of transistors such as bottom gate-type transistors. - The
active layer 103 may be formed of a semiconductor material such as amorphous silicon or polycrystalline silicon. However, the described technology is not limited thereto, and theactive layer 103 may include another material. In some exemplary embodiments, theactive layer 103 includes an organic semiconductor material. - In other exemplary embodiments, the
active layer 103 includes an oxide semiconductor material. For example, theactive layer 103 includes an oxide of a material selected from Group 12, 13, and 14 metal elements such as zinc (Zn), indium (In), gallium (Ga), tin (Sn), cadmium (Cd), and germanium (Ge), and combinations thereof. - A
gate insulating layer 104 is disposed on theactive layer 103. Thegate insulating layer 104 may have a monolayer or multi-layer structure including one or more inorganic materials such as silicon oxide and/or silicon nitride. Thegate insulating layer 104 insulates theactive layer 103 and thegate electrode 105 from each other. Thegate insulating layer 104 may be formed in a portion of the non-display region NDA as well as in the display region DA. - The
gate electrode 105 is disposed on thegate insulating layer 104. Thegate electrode 105 may be connected to a gate line (not shown) through which an on/off signal is applied to thethin film transistors 100 a. - The
gate electrode 105 may include a metallic material having low resistance. For example, thegate electrode 105 has a monolayer or multi-layer structure including at least one of aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), and copper (Cu). - An interlayer insulating
layer 106 is disposed on thegate electrode 105. The interlayer insulatinglayer 106 insulates thesource electrode 107 and thedrain electrode 108 from thegate electrode 105. The interlayer insulatinglayer 106 may be formed in a portion of the non-display region NDA as well as in the display region DA. - The interlayer insulating
layer 106 may have a monolayer or multi-layer structure including one or more inorganic materials. For example, the inorganic materials include a metal oxide or a metal nitride. Examples of the inorganic materials include silicon oxide (SiO2), silicon nitride (SiNx), silicon oxynitride (SiON), aluminum oxide (Al2O3), titanium oxide (TiO2), tantalum oxide (Ta2O5), hafnium oxide (HfO2), and zirconium oxide (ZrO2). - The
source electrode 107 and thedrain electrode 108 are disposed on theinterlayer insulating layer 106. Thesource electrode 107 and thedrain electrode 108 are in contact with regions of theactive layer 103. - Each of the
source electrode 107 and thedrain electrode 108 may have a monolayer or multi-layer structure including at least one of aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), and copper (Cu). For example, each of thesource electrode 107 and thedrain electrode 108 may have a triple-layer structure of titanium (Ti), aluminum (Al), and titanium (Ti). - The
planarization layer 109 covers thethin film transistors 100 a. Theplanarization layer 109 prevents height differences caused by thethin film transistors 100 a and forms a flat upper surface. In addition, theplanarization layer 109 prevents defects of thedisplay elements 100 b, caused by a lower uneven surface. - The
planarization layer 109 may have a monolayer or multi-layer structure including one or more organic materials. Examples of the organic materials include general-purpose polymers such as polymethylmethacrylate (PMMA) or polystylene (PS), polymer derivatives having phenolic groups; acrylic polymers, imidic polymers, aryletheric polymers, amidic polymers, fluoric polymers, p-xylenic polymers, vinyl alcoholic polymers, and blends thereof. Alternatively, theplanarization layer 109 may have a multi-layer structure formed by an inorganic insulating layer and an organic insulating layer. - The
planarization layer 109 may include a dividing region V formed in the non-display region NDA around the display region DA. The dividing region V may be formed by partially removing theplanarization layer 109 so as to prevent the permeation of moisture into the display region DA through theplanarization layer 109 formed of organic matter. The dividing region V may divide theplanarization layer 109 into acentral part 109 a and anouter part 109 b, and the area of thecentral part 109 a may be larger than the area of the display region DA. - The
display elements 100 b are disposed on theplanarization layer 109. For example, each of thedisplay elements 100 b is an OLED including afirst electrode 111, asecond electrode 113 opposite thefirst electrode 111, and anintermediate layer 112 disposed between the first andsecond electrodes - The
first electrode 111 may be disposed on theplanarization layer 109 and may be electrically connected to thethin film transistor 100 a through a contact hole formed in theplanarization layer 109. Thefirst electrode 111 may have a shape such as an island shape formed through a patterning process. - For example, the
first electrode 111 is a reflective electrode. For example, thefirst electrode 111 includes a reflective layer including silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), or a compound thereof, and a transparent or translucent electrode layer disposed on the reflective layer. The transparent or translucent electrode layer may include at least one of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO), and aluminum zinc oxide (AZO). - The
second electrode 113 may be a transparent or translucent electrode including a thin metal film including lithium (Li), calcium (Ca), LiF/Ca, LiF/Al, aluminum (Al), silver (Ag), magnesium (Mg), or a compound thereof which has a low work function. In addition, an auxiliary electrode layer or a bus electrode may be formed on the thin metal film by using a transparent electrode-forming material such as ITO, IZO, ZnO, or In2O3. Therefore, thesecond electrode 113 may transmit light emitted from an organic emission layer included in theintermediate layer 112. Light emitted from the organic emission layer may be incident on thesecond electrode 113 directly or after being reflected by thefirst electrode 111, which is a reflective electrode. - In the present exemplary embodiment, the
display unit 100 is not limited to a top emission-type. For example, thedisplay unit 100 is a bottom emission-type display unit 100 in which light is emitted from the organic emission layer to thesubstrate 101. In this case, thefirst electrode 111 may be a transparent or translucent electrode, and thesecond electrode 113 may be a reflective electrode. Alternatively, thedisplay unit 100 may be a double-sided emission-type display unit configured to emit light through top and bottom sides thereof. - A pixel-defining
layer 119 is formed of an insulating material on thefirst electrode 111. The pixel-defininglayer 119 may be formed by a spin coating method using at least one organic insulating material selected from polyimide, polyamide, acrylic resins, benzocyclobutene, and phenol resin. The pixel-defininglayer 119 exposes a region of thefirst electrode 111, and theintermediate layer 112 including the organic emission layer is disposed in the exposed region of thefirst electrode 111. For example, the pixel-defininglayer 119 defines pixel regions of the OLEDs. - The organic emission layer of the
intermediate layer 112 may include a low molecular weight organic material or a high molecular weight organic material. In addition to the organic emission layer, theintermediate layer 112 may further include functional layers such as a hole transport layer (HTL), a hole injection layer (HIL), an electron transport layer (ETL), or an electron injection layer (EIL). - The
voltage line 200, surrounding the display region DA, and the dividing region V, dividing theplanarization layer 109 into thecentral part 109 a and theouter part 109 b, may be disposed in the non-display region NDA. Thevoltage line 200 may be partially exposed in the dividing region V, and theplanarization layer 109 may cover at least lateral sides of thevoltage line 200 exposed in the dividing region V. - The
voltage line 200 may include the same material as that used to form thesource electrode 107 and thedrain electrode 108. For example, thevoltage line 200 has a stacked structure including afirst layer 200 a formed of titanium (Ti), asecond layer 200 b formed of aluminum (Al), and athird layer 200 c formed of titanium (Ti). Since aluminum (Al) is easily etched compared to titanium (Ti), if the lateral sides of thevoltage line 200 are exposed in the dividing region V, the first andthird layers second layer 200 b (an aluminum (Al) layer) may be damaged during an etching process because the etching rate of thesecond layer 200 b is relatively high. Thus, the step coverage of thevoltage line 200 may deteriorate. As a result, the thinfilm encapsulating layer 300 formed above thevoltage line 200 may have defects. Therefore, theplanarization layer 109 covers at least the lateral sides of thevoltage line 200 exposed in the dividing region V so as to prevent the formation of defects in the thinfilm encapsulating layer 300. - The
voltage line 200 may include afirst voltage line 210 and asecond voltage line 220. For example, thefirst voltage line 210 is a driving voltage (ELVDD) line, and thesecond voltage line 220 is a common voltage (ELVSS) line. Thesecond voltage line 220 may be connected to thesecond electrode 113. InFIG. 2 , thesecond voltage line 220 is connected to thesecond electrode 113 through aline 116. However, the described technology is not limited thereto. For example, thesecond voltage line 220 and thesecond electrode 113 are directly connected to each other. - The
first voltage line 210 may be disposed at a position corresponding to a side of the display region DA. For example, if the display region DA has a rectangular shape, thefirst voltage line 210 is disposed at a position corresponding to a side of the display region DA. Thefirst voltage line 210 may be parallel with the side of the display region DA and longer than the side of the display region DA. The side of the display region DA corresponding to thefirst voltage line 210 may be a side adjacent to thepad unit 150. - A pair of first connection parts (or connectors) 214 may protrude from the
first voltage line 210 in a first direction across the dividing region V. The first direction is a direction defined from the display region DA toward thepad unit 150. The pair offirst connection parts 214 may be connected to thepad unit 150. Thefirst voltage line 210 may be covered with thecentral part 109 a, and the pair offirst connection parts 214 may be exposed in the dividing region V. - At least lateral sides of the pair of
first connection parts 214 exposed in the dividing region V may be covered with theplanarization layer 109. For example, the lateral sides of the pair offirst connection parts 214 are covered with first coveringparts 110 a extending from thecentral part 109 a andsecond covering parts 110 b extending from theouter part 109 b. Since the dividing region V is formed to prevent the permeation of moisture into the display region DA through theplanarization layer 109, thefirst covering parts 110 a are formed separate from thesecond covering parts 110 b. - For example, each of the
first connection parts 214 includes a first region P1 extending from thefirst voltage line 210 in the first direction and a second region P2 continuously extending from the first region P1 in the first direction. In addition, the second region P2 may be shifted from the first region P1 in a direction substantially perpendicular to the first direction. In this state, lateral sides of the first region P1 are covered with thefirst covering parts 110 a extending from thecentral part 109 a in the first direction covers, and lateral sides of the second region P2 are covered with thesecond covering parts 110 b extending from theouter part 109 b in a direction opposite the first direction, such that thefirst covering parts 110 a may be separate from thesecond covering parts 110 b. - The
second voltage line 220 may cover a pair offirst end portions 212 of thefirst voltage line 210 and remaining regions of the display region DA, and thecentral part 109 a may be in contact with inner edge portions of thesecond voltage line 220 in an overlapping manner, such that inner sides of thesecond voltage line 220 may be covered. - The
second voltage line 220 may include a pair ofbent parts 222 covering outer sides of the pair offirst end portions 212, and a pair ofsecond connection parts 224 respectively protruding from the pair ofbent parts 222 in the first direction across the dividing region V. The pair ofsecond connection parts 224 may be connected to thepad unit 150. - The pair of
second connection parts 224 may be exposed in the dividing region V, and lateral sides of the pair ofsecond connection parts 224 may be covered with thesecond covering parts 110 b. In addition,lateral sides 222E formed on end portions of the pair ofbent parts 222 in the first direction may be covered with thefirst covering parts 110 a. In this case, the pair ofsecond connection parts 224 may be respectively separate from the end portions of the pair ofbent parts 222, and thus thefirst covering parts 110 a may be separate from thesecond covering parts 110 b. - A
dam 109 c may be formed in the dividing region V. Thedam 109 c is in contact with outer edge portions of thesecond voltage line 220 in an overlapping manner such that outer sides of thesecond voltage line 220 may be covered with thedam 109 c. Whenorganic layers film encapsulating layer 300 are formed to seal thedisplay unit 100, thedam 109 c blocks flows of organic matter toward edges of thesubstrate 101, thereby preventing the formation of edge tails of theorganic layers - The
dam 109 c may be formed in the same layer as theplanarization layer 109 by using the same material used to form theplanarization layer 109. However, thedam 109 c is not limited thereto. For example, thedam 109 c has two or more layers. For example, if thedam 109 c has a double-layer structure, a lower layer includes the same material as that used to form theplanarization layer 109, and an upper layer includes the same material as that used to form the pixel-defininglayer 119. A plurality ofdams 109 c may be formed. In this case, the height of thedams 109 c may increase in a direction toward thesubstrate 101. - The thin
film encapsulating layer 300 may seal thedisplay unit 100 to prevent the permeation of moisture or oxygen into thedisplay unit 100. The thinfilm encapsulating layer 300 may include one or more organic layers such as theorganic layers inorganic layers FIG. 2 , the thinfilm encapsulating layer 300 includes twoorganic layers inorganic layers film encapsulating layer 300 is not limited thereto. For example, the thinfilm encapsulating layer 300 further includes inorganic encapsulating layers and organic encapsulating layers that are alternately stacked, and the number of inorganic encapsulating layers and the number of organic encapsulating layers are not limited. - For example, the
organic layers - When the
organic layers dam 109 c blocks flows of organic matter toward edges of thesubstrate 101. That is, theorganic layers dam 109 c. - The
inorganic layers - The
inorganic layers organic layers outer part 109 b. Therefore, the dividing region V may be covered with theinorganic layers voltage line 200 exposed in the dividing region V are covered with theplanarization layer 109, thereby improving the step coverage of thevoltage line 200 and preventing defects of theinorganic layers voltage line 200. In this manner, the permeation of moisture or oxygen into thedisplay elements 100 b may be prevented, and defects such as dark points may be minimized. - The
inorganic layers outer part 109 b and may be in contact with each other in the region outside theouter part 109 b. In addition, at least one of theinorganic layers gate insulating layer 104 or the interlayer insulatinglayer 106 in the region outside theouter part 109 b. Therefore, the permeation of moisture through lateral sides may be prevented, and the adhesion of the thinfilm encapsulating layer 300 may be improved. - Furthermore, in the region outside the
outer part 109 b, at least one of theinorganic layers layer 106. Then, the at least one of theinorganic layers substrate 101, and thegate insulating layer 104 and the interlayer insulatinglayer 106 as well. In this case, edge portions of theinorganic layers film encapsulating layer 300 may not be deteriorated or disabled. - It should be understood that exemplary embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each exemplary embodiment should typically be considered as available for other similar features or aspects in other exemplary embodiments.
- While one the inventive technology been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/949,986 US20180226483A1 (en) | 2015-06-12 | 2018-04-10 | Display device |
US17/145,273 US11569335B2 (en) | 2015-06-12 | 2021-01-08 | Display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0083664 | 2015-06-12 | ||
KR1020150083664A KR102477299B1 (en) | 2015-06-12 | 2015-06-12 | Display device |
US15/080,381 US9972693B2 (en) | 2015-06-12 | 2016-03-24 | Display device |
US15/949,986 US20180226483A1 (en) | 2015-06-12 | 2018-04-10 | Display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/080,381 Division US9972693B2 (en) | 2015-06-12 | 2016-03-24 | Display device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/145,273 Continuation US11569335B2 (en) | 2015-06-12 | 2021-01-08 | Display device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180226483A1 true US20180226483A1 (en) | 2018-08-09 |
Family
ID=57517332
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/080,381 Active US9972693B2 (en) | 2015-06-12 | 2016-03-24 | Display device |
US15/949,986 Abandoned US20180226483A1 (en) | 2015-06-12 | 2018-04-10 | Display device |
US17/145,273 Active US11569335B2 (en) | 2015-06-12 | 2021-01-08 | Display device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/080,381 Active US9972693B2 (en) | 2015-06-12 | 2016-03-24 | Display device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/145,273 Active US11569335B2 (en) | 2015-06-12 | 2021-01-08 | Display device |
Country Status (3)
Country | Link |
---|---|
US (3) | US9972693B2 (en) |
KR (2) | KR102477299B1 (en) |
CN (2) | CN114361235A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10770683B2 (en) | 2018-01-11 | 2020-09-08 | Joled Inc. | Organic EL display panel and manufacturing method thereof |
WO2020181467A1 (en) | 2019-03-11 | 2020-09-17 | Boe Technology Group Co., Ltd. | Display substrate, display apparatus, method of fabricating display substrate |
US11061498B2 (en) * | 2016-09-30 | 2021-07-13 | Samsung Display Co., Ltd. | Display module |
US11569335B2 (en) | 2015-06-12 | 2023-01-31 | Samsung Display Co., Ltd. | Display device |
US12029086B2 (en) | 2020-09-29 | 2024-07-02 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Display substrate, manufacturing method thereof, and display device |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101763616B1 (en) | 2015-07-29 | 2017-08-02 | 삼성디스플레이 주식회사 | Organic luminescence emitting display device |
KR102592956B1 (en) | 2016-08-29 | 2023-10-24 | 삼성디스플레이 주식회사 | Display apparatus |
CN107887405A (en) * | 2016-09-30 | 2018-04-06 | 群创光电股份有限公司 | Organic electric-excitation luminescent displaying panel |
KR102567001B1 (en) * | 2016-11-15 | 2023-08-11 | 엘지디스플레이 주식회사 | Organic light emitting display device |
KR102328679B1 (en) * | 2016-11-23 | 2021-11-19 | 삼성디스플레이 주식회사 | Display device |
KR20180060851A (en) | 2016-11-29 | 2018-06-07 | 엘지디스플레이 주식회사 | Organic light emitting display device |
JP2018113104A (en) * | 2017-01-06 | 2018-07-19 | 株式会社ジャパンディスプレイ | Display device and manufacturing method of display device |
CN106775173B (en) * | 2017-02-07 | 2019-12-20 | 上海天马微电子有限公司 | Touch display panel and touch display device |
JP2018181578A (en) * | 2017-04-12 | 2018-11-15 | 株式会社ジャパンディスプレイ | Display device |
CN109216576A (en) * | 2017-06-30 | 2019-01-15 | 京东方科技集团股份有限公司 | A kind of organic electroluminescent display panel, its production method and display device |
KR102281226B1 (en) * | 2017-07-18 | 2021-07-22 | 엘지디스플레이 주식회사 | Display device |
US11527589B2 (en) | 2017-07-24 | 2022-12-13 | Boe Technology Group Co., Ltd. | Encapsulation structure, display panel and manufacturing method thereof each having edge encapsulation member on edge of encapsulation film |
CN109301079B (en) * | 2017-07-24 | 2019-10-25 | 京东方科技集团股份有限公司 | Encapsulating structure and preparation method thereof, LED display panel |
KR102399567B1 (en) * | 2017-08-02 | 2022-05-19 | 삼성디스플레이 주식회사 | Display Apparatus |
KR102441783B1 (en) | 2017-12-05 | 2022-09-08 | 삼성디스플레이 주식회사 | Display device and manufacturing method thereof |
KR102431788B1 (en) * | 2017-12-13 | 2022-08-10 | 엘지디스플레이 주식회사 | Display device |
CN111527793B (en) * | 2017-12-26 | 2023-07-04 | 夏普株式会社 | Display apparatus |
KR102536257B1 (en) * | 2018-01-25 | 2023-05-24 | 삼성디스플레이 주식회사 | Display device |
KR102603869B1 (en) | 2018-02-08 | 2023-11-21 | 삼성디스플레이 주식회사 | Organic light emitting display apparatus and the method for manufacturing the same |
KR102541447B1 (en) | 2018-02-20 | 2023-06-09 | 삼성디스플레이 주식회사 | organic light emitting display device |
KR102562901B1 (en) * | 2018-03-26 | 2023-08-04 | 삼성디스플레이 주식회사 | Display apparatus |
CN111937491A (en) * | 2018-03-28 | 2020-11-13 | 夏普株式会社 | Display device |
US11751445B2 (en) * | 2018-03-29 | 2023-09-05 | Sharp Kabushiki Kaisha | Display device |
WO2019187074A1 (en) * | 2018-03-30 | 2019-10-03 | シャープ株式会社 | Display device |
KR102637790B1 (en) * | 2018-05-31 | 2024-02-19 | 삼성디스플레이 주식회사 | Display device and manufacturing method thereof |
CN112823568B (en) * | 2018-09-25 | 2024-06-14 | 夏普株式会社 | Display device |
US12075640B2 (en) * | 2018-10-23 | 2024-08-27 | Samsung Display Co., Ltd. | Display apparatus and mask for manufacturing the same |
KR102637116B1 (en) * | 2018-11-20 | 2024-02-14 | 엘지디스플레이 주식회사 | Organic light emitting display device |
KR102617275B1 (en) | 2018-11-30 | 2023-12-27 | 삼성디스플레이 주식회사 | Display device |
CN109742115B (en) * | 2019-01-08 | 2021-01-26 | 京东方科技集团股份有限公司 | Array substrate and display device |
KR20200108176A (en) * | 2019-03-07 | 2020-09-17 | 삼성디스플레이 주식회사 | Organic light emitting display device |
CN110112311B (en) * | 2019-05-10 | 2020-10-27 | 武汉华星光电半导体显示技术有限公司 | Display panel and display module |
KR20200137071A (en) | 2019-05-28 | 2020-12-09 | 삼성디스플레이 주식회사 | Display apparatus |
KR20210025167A (en) * | 2019-08-26 | 2021-03-09 | 삼성디스플레이 주식회사 | Display device |
WO2021079412A1 (en) * | 2019-10-21 | 2021-04-29 | シャープ株式会社 | Display device |
KR20210063530A (en) * | 2019-11-22 | 2021-06-02 | 삼성디스플레이 주식회사 | Display apparatus |
KR20210086040A (en) * | 2019-12-31 | 2021-07-08 | 엘지디스플레이 주식회사 | Organic light emitting pannel and including organic light emitting display |
KR20210085630A (en) * | 2019-12-31 | 2021-07-08 | 엘지디스플레이 주식회사 | Display apparatus |
KR20210106065A (en) * | 2020-02-19 | 2021-08-30 | 삼성디스플레이 주식회사 | Display apparatus |
KR20210109715A (en) | 2020-02-27 | 2021-09-07 | 삼성디스플레이 주식회사 | Manufacturing method of display apparatus |
CN112885879B (en) * | 2021-01-20 | 2022-12-09 | 京东方科技集团股份有限公司 | Display substrate and display device |
CN113540377B (en) * | 2021-06-28 | 2023-08-01 | 昆山国显光电有限公司 | Display panel, preparation method of display panel and display device |
KR20240146714A (en) * | 2023-03-30 | 2024-10-08 | 주식회사 야스 | Organic Light Emitting Display Device |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100072482A1 (en) * | 2008-09-25 | 2010-03-25 | Samsung Electronics Co., Ltd. | Organic light emitting display and method of manufacturing the same |
US20110116019A1 (en) * | 2009-11-18 | 2011-05-19 | Samsung Electronics Co., Ltd. | Liquid crystal display |
US20110316803A1 (en) * | 2010-06-29 | 2011-12-29 | Kim Tae-Hwan | Touch panel |
US20140022230A1 (en) * | 2012-07-23 | 2014-01-23 | Lg Display Co., Ltd. | Display device and method of forming a display device |
US20140070195A1 (en) * | 2012-09-12 | 2014-03-13 | Samsung Display Co., Ltd. | Organic light emitting device and method for preparing the same |
US20140131683A1 (en) * | 2012-11-09 | 2014-05-15 | Lg Display Co., Ltd. | Flexible organic electroluminescent device and method for fabricating the same |
US20140176399A1 (en) * | 2012-12-21 | 2014-06-26 | Lg Display Co., Ltd. | Device display |
US20150041791A1 (en) * | 2013-08-08 | 2015-02-12 | Samsung Display Co., Ltd. | Organic light emitting diode display |
US20150060806A1 (en) * | 2013-08-30 | 2015-03-05 | Lg Display Co., Ltd. | Organic light emitting diode display device and method of fabricating the same |
US20150144922A1 (en) * | 2013-11-28 | 2015-05-28 | Lg Display Co., Ltd. | Large area organic light emitting diode display |
US20150311237A1 (en) * | 2014-04-29 | 2015-10-29 | Lg Display Co., Ltd. | Rework method of array substrate for display device and array substrate formed by the method |
US20150380685A1 (en) * | 2014-06-25 | 2015-12-31 | Lg Display Co., Ltd. | Organic light emitting display apparatus |
US20160141545A1 (en) * | 2014-11-14 | 2016-05-19 | Lg Display Co., Ltd. | Narrow bezel large area organic light emitting diode display |
US20160307936A1 (en) * | 2015-04-20 | 2016-10-20 | Lg Display Co., Ltd. | Thin film transistor substrate and method for manufacturing the same |
US20170125734A1 (en) * | 2015-10-28 | 2017-05-04 | Lg Display Co., Ltd. | Flexible organic light emitting display device |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7619258B2 (en) * | 2004-03-16 | 2009-11-17 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
KR100683791B1 (en) * | 2005-07-30 | 2007-02-20 | 삼성에스디아이 주식회사 | Thin film transistor substrate and flat panel display apparatus |
KR100730156B1 (en) | 2005-11-03 | 2007-06-19 | 삼성에스디아이 주식회사 | Flat panel display apparatus |
KR20070067909A (en) | 2005-12-26 | 2007-06-29 | 삼성전자주식회사 | Organic light emitting diode display |
KR100751376B1 (en) * | 2006-04-05 | 2007-08-22 | 삼성에스디아이 주식회사 | Flat panel display device with long life time |
KR101302620B1 (en) * | 2007-01-30 | 2013-09-03 | 엘지디스플레이 주식회사 | Thin film transistor substrate |
KR20080003962U (en) | 2007-03-14 | 2008-09-19 | 이미지랩(주) | Flexible multi display Device |
KR101362164B1 (en) * | 2007-12-11 | 2014-02-12 | 엘지디스플레이 주식회사 | Organcic electro-luminescence dispaly and manufacturing method thereof |
JP4458379B2 (en) | 2007-12-14 | 2010-04-28 | キヤノン株式会社 | Organic EL display device |
US7936122B2 (en) | 2007-12-14 | 2011-05-03 | Canon Kabushiki Kaisha | Organic EL display apparatus |
KR100906321B1 (en) | 2008-07-28 | 2009-07-06 | 주식회사 아모텍 | In-Car Sensor Assembly Using Aspiration Motor |
KR20110019498A (en) * | 2009-08-20 | 2011-02-28 | 삼성모바일디스플레이주식회사 | Organic light emitting display device |
KR101677266B1 (en) | 2010-02-12 | 2016-11-18 | 삼성디스플레이 주식회사 | Organic light emitting diode display and method for manufacturing the same |
CN101901568A (en) * | 2010-08-12 | 2010-12-01 | 福建华映显示科技有限公司 | Display device |
JP2012068379A (en) * | 2010-09-22 | 2012-04-05 | Canon Inc | Display device |
KR101829313B1 (en) * | 2011-11-03 | 2018-02-20 | 삼성디스플레이 주식회사 | Flexible display device |
KR101936625B1 (en) * | 2012-03-27 | 2019-01-10 | 엘지디스플레이 주식회사 | Flexible organic light emitting diode display device and fabricating method of the same |
KR20130109383A (en) | 2012-03-27 | 2013-10-08 | 에코바이오텍 주식회사 | Manufacturing method of eco-friendly agricultural material and cultivation method of strawberry by using this material |
KR101398448B1 (en) * | 2012-11-29 | 2014-05-30 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
KR101987320B1 (en) * | 2012-12-31 | 2019-06-11 | 삼성디스플레이 주식회사 | Display device |
KR20140133053A (en) | 2013-05-09 | 2014-11-19 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
KR102100880B1 (en) * | 2013-06-26 | 2020-04-14 | 엘지디스플레이 주식회사 | Organic Light Emitting Diode Display Device |
KR102195166B1 (en) * | 2013-12-26 | 2020-12-24 | 엘지디스플레이 주식회사 | Top emission organic light emitting display device and method of manufacturing the same |
KR102477299B1 (en) | 2015-06-12 | 2022-12-14 | 삼성디스플레이 주식회사 | Display device |
-
2015
- 2015-06-12 KR KR1020150083664A patent/KR102477299B1/en active IP Right Grant
-
2016
- 2016-03-24 US US15/080,381 patent/US9972693B2/en active Active
- 2016-06-12 CN CN202210050176.2A patent/CN114361235A/en active Pending
- 2016-06-12 CN CN201610409457.7A patent/CN106252379B/en active Active
-
2018
- 2018-04-10 US US15/949,986 patent/US20180226483A1/en not_active Abandoned
-
2021
- 2021-01-08 US US17/145,273 patent/US11569335B2/en active Active
-
2022
- 2022-12-08 KR KR1020220170970A patent/KR102668686B1/en active IP Right Grant
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100072482A1 (en) * | 2008-09-25 | 2010-03-25 | Samsung Electronics Co., Ltd. | Organic light emitting display and method of manufacturing the same |
US20110116019A1 (en) * | 2009-11-18 | 2011-05-19 | Samsung Electronics Co., Ltd. | Liquid crystal display |
US20110316803A1 (en) * | 2010-06-29 | 2011-12-29 | Kim Tae-Hwan | Touch panel |
US20140022230A1 (en) * | 2012-07-23 | 2014-01-23 | Lg Display Co., Ltd. | Display device and method of forming a display device |
US20140070195A1 (en) * | 2012-09-12 | 2014-03-13 | Samsung Display Co., Ltd. | Organic light emitting device and method for preparing the same |
US20140131683A1 (en) * | 2012-11-09 | 2014-05-15 | Lg Display Co., Ltd. | Flexible organic electroluminescent device and method for fabricating the same |
US20140176399A1 (en) * | 2012-12-21 | 2014-06-26 | Lg Display Co., Ltd. | Device display |
US20150041791A1 (en) * | 2013-08-08 | 2015-02-12 | Samsung Display Co., Ltd. | Organic light emitting diode display |
US20150060806A1 (en) * | 2013-08-30 | 2015-03-05 | Lg Display Co., Ltd. | Organic light emitting diode display device and method of fabricating the same |
US20150144922A1 (en) * | 2013-11-28 | 2015-05-28 | Lg Display Co., Ltd. | Large area organic light emitting diode display |
US20150311237A1 (en) * | 2014-04-29 | 2015-10-29 | Lg Display Co., Ltd. | Rework method of array substrate for display device and array substrate formed by the method |
US20150380685A1 (en) * | 2014-06-25 | 2015-12-31 | Lg Display Co., Ltd. | Organic light emitting display apparatus |
US20160141545A1 (en) * | 2014-11-14 | 2016-05-19 | Lg Display Co., Ltd. | Narrow bezel large area organic light emitting diode display |
US20160307936A1 (en) * | 2015-04-20 | 2016-10-20 | Lg Display Co., Ltd. | Thin film transistor substrate and method for manufacturing the same |
US20170125734A1 (en) * | 2015-10-28 | 2017-05-04 | Lg Display Co., Ltd. | Flexible organic light emitting display device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11569335B2 (en) | 2015-06-12 | 2023-01-31 | Samsung Display Co., Ltd. | Display device |
US11061498B2 (en) * | 2016-09-30 | 2021-07-13 | Samsung Display Co., Ltd. | Display module |
US20210294447A1 (en) * | 2016-09-30 | 2021-09-23 | Samsung Display Co., Ltd. | Display module |
US11880519B2 (en) * | 2016-09-30 | 2024-01-23 | Samsung Display Co., Ltd. | Display module |
US10770683B2 (en) | 2018-01-11 | 2020-09-08 | Joled Inc. | Organic EL display panel and manufacturing method thereof |
WO2020181467A1 (en) | 2019-03-11 | 2020-09-17 | Boe Technology Group Co., Ltd. | Display substrate, display apparatus, method of fabricating display substrate |
EP3939088A4 (en) * | 2019-03-11 | 2022-11-09 | Boe Technology Group Co., Ltd. | Display substrate, display apparatus, method of fabricating display substrate |
US12029086B2 (en) | 2020-09-29 | 2024-07-02 | Chengdu Boe Optoelectronics Technology Co., Ltd. | Display substrate, manufacturing method thereof, and display device |
Also Published As
Publication number | Publication date |
---|---|
CN114361235A (en) | 2022-04-15 |
KR102477299B1 (en) | 2022-12-14 |
CN106252379A (en) | 2016-12-21 |
KR20230004356A (en) | 2023-01-06 |
CN106252379B (en) | 2022-02-08 |
US20160365398A1 (en) | 2016-12-15 |
US20210143245A1 (en) | 2021-05-13 |
KR20160147195A (en) | 2016-12-22 |
US11569335B2 (en) | 2023-01-31 |
US9972693B2 (en) | 2018-05-15 |
KR102668686B1 (en) | 2024-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11569335B2 (en) | Display device | |
US11610955B2 (en) | Display device with protection and encapsulation layers to seal display unit | |
US11925055B2 (en) | Organic light-emitting diode display | |
US11672138B2 (en) | Organic light-emitting display apparatus | |
KR102632616B1 (en) | Display device | |
KR102314470B1 (en) | Organic light emitting display device | |
US20210234125A1 (en) | Display device | |
KR20200145952A (en) | Display device | |
KR102528305B1 (en) | Organic luminescence emitting display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |