US20180170403A1 - Zip track system - Google Patents

Zip track system Download PDF

Info

Publication number
US20180170403A1
US20180170403A1 US15/897,404 US201815897404A US2018170403A1 US 20180170403 A1 US20180170403 A1 US 20180170403A1 US 201815897404 A US201815897404 A US 201815897404A US 2018170403 A1 US2018170403 A1 US 2018170403A1
Authority
US
United States
Prior art keywords
track
crossover
zip
extension
extension mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US15/897,404
Inventor
Randy G. Watermiller
Steven J. Schaust
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Landscape Structures Inc
Original Assignee
Landscape Structures Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landscape Structures Inc filed Critical Landscape Structures Inc
Priority to US15/897,404 priority Critical patent/US20180170403A1/en
Publication of US20180170403A1 publication Critical patent/US20180170403A1/en
Assigned to LANDSCAPE STRUCTURES INC. reassignment LANDSCAPE STRUCTURES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHAUST, STEVEN J., WATERMILLER, RANDY G.
Priority to US17/689,449 priority patent/US20220185341A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B7/00Rope railway systems with suspended flexible tracks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G21/00Chutes; Helter-skelters
    • A63G21/20Slideways with movably suspended cars, or with cars moving on ropes, or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G21/00Chutes; Helter-skelters
    • A63G21/22Suspended slideways
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63GMERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
    • A63G7/00Up-and-down hill tracks; Switchbacks

Definitions

  • Zip lines are known in the art as a trolley or carriage running along a suspended cable allowing a rider to move from one end to the other.
  • the first includes the deceleration of the rider as they approach the end as well as the initial force to move the user—for example, a push from another person, or a push off from a portion of the structure.
  • the riding structures of the prior art require significant upper body strength and the ability of a user to grip and hold on with their hands, thus limiting many users from enjoying the structure.
  • the cable requires a gradient in order to allow a user to continue propulsion from one end to another. This often limits spaces where a zip line can be installed to those with a natural gradient, or requires the creation of an artificial gradient. There is also a limitation to the maximum length of a zip line before structural soundness is compromised. Additionally, the connection between the riding structure and the cable presents some safety hazards, including the potential for the fingers of users to get caught on or around the cable.
  • the extension system comprises a crossover unit configured to attach to a zip track.
  • the crossover unit comprises a crossover arch, configured to couple to the zip track.
  • the crossover unit also comprises a support pole configured to couple to an end of the crossover arch, such that the support pole does not obstruct a path of movement under the zip track.
  • the extension mechanism also comprises a connection mechanism configured to connect the crossover unit to the zip track system such that the crossover unit distributes the weight of the track through the crossover arch and the crossover support poles.
  • FIG. 1 is a perspective side view of a zip track system in accordance with one embodiment.
  • FIG. 2 is a perspective end view of a zip track system in accordance with one embodiment.
  • FIG. 3 is an exploded view of a track of a connection scheme of the zip track system of FIG. 1 in accordance with one embodiment.
  • FIGS. 4A and 4B are a perspective side view and a perspective end view, respectively, of an extended zip track system in accordance with one embodiment.
  • FIG. 5 is an exploded view of a track connection mechanism of the zip track system of FIG. 1 in accordance with one embodiment.
  • a safe, extendable zip track is desired where user can, in a seated position, enjoy the sensation of a conventional zip line play structure, without the limitations of such a conventional structure. Further, a zip track system is desired where an external force is not necessary for an initial movement, in order to engender more exciting, inclusive and safe, play. By introducing a track into the design, a more consistent control over the deceleration is achieved. In addition, this enables different styles of seats to be introduced into the design that allow for a safe use of the product.
  • FIG. 1 is a perspective side view of a zip track system 100 in accordance with one embodiment.
  • Zip track system 100 comprises two end platforms 102 , in the illustrated embodiment. However, in another embodiment, the rip track system 100 may only have one end platform 102 or may be constructed with no end platforms 102 .
  • Zip track system 100 comprises a crossover unit 104 that is connected to the zip track system 100 at a connection point along the zip track system 100 in order to support a longer track 108 as part of the zip track system 100 .
  • Track 108 runs from the top of a first end platform 102 to a second end platform 102 .
  • Zip track system 100 may also comprise, in one embodiment, a seat structure 106 .
  • a seat structure 106 any structure that connects to the track 108 such that it facilitates a user's movement along the track 108 would be adequate, for example a pre-formed seat or a knotted rope structure.
  • the seat structure 106 is configured to accommodate a user comfortably in a seated position. This allows for a larger number of users with a variety of ability levels to enjoy the zip track system 100 .
  • a seat structure like seat structure 106 , allows such ways to still access the zip track system, for example by sitting on the seat structure 106 and wrapping their legs around the connection to hold on.
  • track 108 comprises at least one inclined portion with incline angle 110 and a straight portion with a length 112 .
  • Track 108 preferably has two incline portions, such that a user riding on the seat structure 106 , starting at one end platform 102 , will go down one incline portion of track 108 across a straight portion of the track 108 and propel, by momentum gained along the first incline portion and the straight portion, back up a second incline portion of the track 108 to the second end platform 102 .
  • track 108 could have multiple series of incline portions separated by straight portions.
  • the incline angle 110 along a first incline portion 116 is different from incline angle associated with the second incline portion 116 .
  • the end platforms 102 may also contain a raised platform 114 , such that a user could stand on raised. platform 114 as a departure point to ride along track 108 on the seated structure 106 .
  • This raised. portion 114 ensures that the seat structure 106 does not brush the ground and otherwise damage system 100 , or present a danger to a user of the system 100 .
  • the raised portion 114 is separate from, and not connected to, the zip track system 100 .
  • the raised portion 114 may also be connected to the zip track system 100 .
  • FIG. 2 presents a substantially end-on view of the zip track system 100 described above with respect to FIG. 1 .
  • Track 108 shown in FIG. 2 comprises an opening of width 118 to accommodate the movement of seat structure 106 along track 108 .
  • the track curve is modest enough such that it does not present a hazard to a user, but sufficient to allow a user to gather enough momentum along the track 108 to move along the straight portion and back up a second incline portion.
  • FIG. 2 also details another embodiment wherein the seat structure 106 comprises a safety seat that may, in one embodiment, further comprise a safety belt configuration.
  • FIG. 3 is an exploded view of a track of a connection scheme of the zip track system 100 of FIG. 1 in accordance with one embodiment.
  • Two portions of the track 108 connect to each other through and including a crossover connection 304 .
  • Each portion of a track 108 may include a track connection portion 302 at one or both ends.
  • a middle section of a track 108 may include a track connection portion 302 at both a first and second end.
  • each portion of a track 108 may only comprise a single track connection portion 302 .
  • a first track connection portion 302 in one embodiment, is connected on a first side of the crossover connection 304 , on a receiving side.
  • a second track connection portion 302 may be connected on a second side of the crossover connection 304 , on a connection side.
  • a connection mechanism 310 may then extend through the second track connection portion 302 , through the crossover connection 304 , and through the first track connection portion 304 to a connection receiving mechanism 306 .
  • the connection mechanism 310 and the connection receiving mechanism 306 may be a nut and bolt, respectively. Additionally, in other embodiments, other appropriate connection mechanisms may be used to connect the track connection portions 302 to a crossover connection 304 .
  • the track connections 302 and the crossover connection 304 are welded or otherwise fused together.
  • FIG. 4A shows how the crossover units 404 allow for the expansion of zip track system 400 to longer lengths to provide a longer ride for a user of the zip track system 400 .
  • the crossover units 404 provide strength and structure to the system without interrupting the user experience of the zip track system 400 and, thus, allow for the system to be lengthened by placing the crossover units at regular intervals along the length of the zip track system 400 .
  • these crossover units 404 are placed roughly every 200 inches to ensure that sufficient stability is provided to the zip track system 400 along its entire length.
  • the crossover units 404 could be placed more closely together for increased stability, or further apart, for increased length.
  • Crossover units 404 are placed sufficiently apart on the zip track system 400 such that they provide strength and stability throughout the entire unit. These crossover units connect and engage with the zip track system 400 at crossover connection points 408 .
  • FIG. 4A shows the zip track system 400 , in accordance with one embodiment, where the zip track system 400 includes two end platforms 402 with raised structures for a user to stand on before beginning a ride, and after ending a ride on the zip track system 400 .
  • the zip track. system 400 also includes a seat unit 406 that user may engage in order to ride in a safe fashion along the zip track system 400 .
  • zip line systems have employed bars or other methods for users to hang on as they move across the system. However, this presented users with the risk of pinched fingers or risk of falling if the user ran out of strength. Additionally, for users without enough upper body strength, or an inability to use upper body strength (due to disability or other factors), conventional zip line systems were not accessible.
  • the zip track system 400 shown in FIG. 4A , through the use of the seat unit 406 , allows any user (with the ability to sit and hold on) to use the zip track system 400 such that they can sit on the seat unit 406 and hold on with their hands and/or legs. In another embodiment, the user can stand on the seat unit 406 and hold on with their hands. In either of these positions on the seat unit 406 , the user is not required to support their entire body weight through their arms alone.
  • Crossover unit 404 is more clearly illustrated in FIG. 4B .
  • the crossover unit comprises a crossover arch 411 that extends from one crossover support pole 410 to a second crossover support pole 410 and connects with the zip track system 400 at a crossover connection 408 . This helps to distribute the weight of a user seated on the seat unit 406 through the crossover unit 404 such that the weight is held by the crossover support poles 410 and the crossover arch 411 .
  • the crossover arch 411 is welded to the crossover support poles 410 .
  • the crossover arch 411 is fastened to the crossover support poles 410 such that the crossover unit 404 can be dismantled.
  • the crossover arch 411 is screwed to the crossover support poles 410 .
  • the crossover arch 411 is attached to the crossover support poles 410 with a nut and bolt configuration.
  • the crossover connection 408 comprises welding the crossover unit 404 to the track at the center of the crossover arch 411 .
  • the crossover connection 408 comprises a screw system or a nut and bolt structure to connect the crossover arch to the zip track system 400 .
  • any other suitable connection mechanism that sufficiently attaches the crossover connection 408 to the zip track system 400 such that the weight of the track and any potential user is distributed through the crossover arch 411 and support poles 410 would be adequate.
  • FIGS. 4A and 4B show a zip track system 400 with only two crossover units 404
  • a zip track system 400 could comprise three crossover units 404 , providing an even longer play structure for a user.
  • the zip track system 400 is not limited to three crossover units 404 , but could comprise five, ten, or more, crossover units 404 , such that the system could be as long (or short) as desired by a purchaser/user of the system.
  • FIGS. 1-4 show a track system that runs in a substantially straight line
  • an additional embodiment comprises a zip track system with a curve or a turn, providing a means for compacting the play experience within an enclosed area that would not accommodate an equivalent length zip track to run in a straight line.
  • the zip track system 400 could comprise a substantially curved track 408 such that there are no straight portions, but a curved track that substantially alternates an inclined down portion and an inclined up portion.
  • the inclined portions are configured to alternate in such a way that a user is not jolted from the inclined down portion to the inclined up portion to avoid a jolt to a user of the zip track system 400 .
  • the track 408 is configured to accommodate sway by a user on the seating structure caused by centripetal force as a user moves along the curved track.
  • FIG. 5 is an exploded view of a track connection mechanism of the zip track system 100 of FIG. 1 in accordance with one embodiment.
  • a trolley 502 sits on a track 500 such that a portion of the trolley 502 is within the track 500 , for example as shown in the end view of FIG. 2 .
  • trolley 502 connects to a seat structure 504 through a connecting portion 506 .
  • the trolley 502 connects directly to a seat structure 504 .
  • the trolley 502 connects through a trolley connection 518 at a trolley connection point 508
  • the seat structure 504 connects through a seat connection 516 at a seat connection point 510 .
  • Connection mechanisms 512 are used to connect the trolley 502 and the seat structure 504 to the connecting portion 506 .
  • the connection mechanisms 512 may be screws.
  • the connection mechanism 512 may comprise a nut and bolt configuration or any other appropriate connection mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Seats For Vehicles (AREA)
  • Handcart (AREA)
  • Rehabilitation Tools (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Abstract

An extension mechanism for a zip track system within a playground environment is provided. The extension system comprises a crossover unit configured to attach to a zip track. The crossover unit comprises a crossover arch, configured to couple to the zip track. The crossover unit also comprises a support pole configured to couple to an end of the crossover arch, such that the support pole does not obstruct a path of movement under the zip track. The extension mechanism also comprises a connection mechanism configured to connect the crossover unit to the zip track system such that the crossover unit distributes the weight of the track through the crossover arch and the crossover support poles.

Description

    CROSS-REFERENCE To RELATED APPLICATION
  • The present application claims the priority of nonprovisional application Ser. No. 14/524,298, filed Oct. 27, 2014, which claims the priority of provisional application Ser. No. 61/896,460, filed on Oct. 28, 2013, the content of which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • Zip lines are known in the art as a trolley or carriage running along a suspended cable allowing a rider to move from one end to the other. However, there are several known problems with these structures. The first includes the deceleration of the rider as they approach the end as well as the initial force to move the user—for example, a push from another person, or a push off from a portion of the structure. Further, the riding structures of the prior art require significant upper body strength and the ability of a user to grip and hold on with their hands, thus limiting many users from enjoying the structure.
  • Another series of problems arise from the cable used in a zip line. The cable requires a gradient in order to allow a user to continue propulsion from one end to another. This often limits spaces where a zip line can be installed to those with a natural gradient, or requires the creation of an artificial gradient. There is also a limitation to the maximum length of a zip line before structural soundness is compromised. Additionally, the connection between the riding structure and the cable presents some safety hazards, including the potential for the fingers of users to get caught on or around the cable.
  • A solution to these problems is required that provides the fun experience of a zip line without all of the hazards and limitations of the conventional design.
  • The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.
  • SUMMARY
  • An extension mechanism for a zip track system within a playground environment is provided. The extension system comprises a crossover unit configured to attach to a zip track. The crossover unit comprises a crossover arch, configured to couple to the zip track. The crossover unit also comprises a support pole configured to couple to an end of the crossover arch, such that the support pole does not obstruct a path of movement under the zip track. The extension mechanism also comprises a connection mechanism configured to connect the crossover unit to the zip track system such that the crossover unit distributes the weight of the track through the crossover arch and the crossover support poles.
  • These and various other features and advantages that characterize the claimed embodiments will become apparent upon reading the following detailed description and upon reviewing the associated drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective side view of a zip track system in accordance with one embodiment.
  • FIG. 2 is a perspective end view of a zip track system in accordance with one embodiment.
  • FIG. 3 is an exploded view of a track of a connection scheme of the zip track system of FIG. 1 in accordance with one embodiment.
  • FIGS. 4A and 4B are a perspective side view and a perspective end view, respectively, of an extended zip track system in accordance with one embodiment.
  • FIG. 5 is an exploded view of a track connection mechanism of the zip track system of FIG. 1 in accordance with one embodiment.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • A safe, extendable zip track is desired where user can, in a seated position, enjoy the sensation of a conventional zip line play structure, without the limitations of such a conventional structure. Further, a zip track system is desired where an external force is not necessary for an initial movement, in order to engender more exciting, inclusive and safe, play. By introducing a track into the design, a more consistent control over the deceleration is achieved. In addition, this enables different styles of seats to be introduced into the design that allow for a safe use of the product.
  • FIG. 1 is a perspective side view of a zip track system 100 in accordance with one embodiment. Zip track system 100 comprises two end platforms 102, in the illustrated embodiment. However, in another embodiment, the rip track system 100 may only have one end platform 102 or may be constructed with no end platforms 102. Zip track system 100 comprises a crossover unit 104 that is connected to the zip track system 100 at a connection point along the zip track system 100 in order to support a longer track 108 as part of the zip track system 100. Track 108 runs from the top of a first end platform 102 to a second end platform 102.
  • Zip track system 100 may also comprise, in one embodiment, a seat structure 106. However, in another embodiment, any structure that connects to the track 108 such that it facilitates a user's movement along the track 108 would be adequate, for example a pre-formed seat or a knotted rope structure. The seat structure 106 is configured to accommodate a user comfortably in a seated position. This allows for a larger number of users with a variety of ability levels to enjoy the zip track system 100. For example, for users that do not have sufficient motor function in their upper body and hands, a seat structure, like seat structure 106, allows such ways to still access the zip track system, for example by sitting on the seat structure 106 and wrapping their legs around the connection to hold on.
  • As shown in FIG. 1, track 108 comprises at least one inclined portion with incline angle 110 and a straight portion with a length 112. Track 108 preferably has two incline portions, such that a user riding on the seat structure 106, starting at one end platform 102, will go down one incline portion of track 108 across a straight portion of the track 108 and propel, by momentum gained along the first incline portion and the straight portion, back up a second incline portion of the track 108 to the second end platform 102. However, in another embodiment, track 108 could have multiple series of incline portions separated by straight portions. Additionally, in one embodiment the incline angle 110 along a first incline portion 116 is different from incline angle associated with the second incline portion 116. The end platforms 102 may also contain a raised platform 114, such that a user could stand on raised. platform 114 as a departure point to ride along track 108 on the seated structure 106. This raised. portion 114 ensures that the seat structure 106 does not brush the ground and otherwise damage system 100, or present a danger to a user of the system 100. In the embodiment as shown in FIG. 1, the raised portion 114 is separate from, and not connected to, the zip track system 100. However, in other embodiments, as shown in FIGS. 4A-4B below, the raised portion 114 may also be connected to the zip track system 100.
  • FIG. 2 presents a substantially end-on view of the zip track system 100 described above with respect to FIG. 1. Track 108 shown in FIG. 2 comprises an opening of width 118 to accommodate the movement of seat structure 106 along track 108. As shown in FIG. 2, the track curve is modest enough such that it does not present a hazard to a user, but sufficient to allow a user to gather enough momentum along the track 108 to move along the straight portion and back up a second incline portion. FIG. 2 also details another embodiment wherein the seat structure 106 comprises a safety seat that may, in one embodiment, further comprise a safety belt configuration.
  • FIG. 3 is an exploded view of a track of a connection scheme of the zip track system 100 of FIG. 1 in accordance with one embodiment. Two portions of the track 108, as shown in FIG. 3, connect to each other through and including a crossover connection 304. Each portion of a track 108 may include a track connection portion 302 at one or both ends. For example, in an embodiment comprising multiple crossover units 104, a middle section of a track 108 may include a track connection portion 302 at both a first and second end. In another embodiment, where a track 108 includes only a single crossover unit 104, each portion of a track 108 may only comprise a single track connection portion 302. A first track connection portion 302, in one embodiment, is connected on a first side of the crossover connection 304, on a receiving side. A second track connection portion 302 may be connected on a second side of the crossover connection 304, on a connection side. A connection mechanism 310 may then extend through the second track connection portion 302, through the crossover connection 304, and through the first track connection portion 304 to a connection receiving mechanism 306. In one embodiment, the connection mechanism 310 and the connection receiving mechanism 306 may be a nut and bolt, respectively. Additionally, in other embodiments, other appropriate connection mechanisms may be used to connect the track connection portions 302 to a crossover connection 304. In another embodiment, the track connections 302 and the crossover connection 304 are welded or otherwise fused together.
  • One limitation to conventional zip line systems has been the length of the cable. The cable length had to be limited to ensure that the support structure was strong enough to hold the weight of a user along the full length of the cable. One advantage of embodiments of zip track system 400 the ability to stretch the track system across a greater length, providing a longer play experience for a user without sacrificing the strength and safety of the structure. FIG. 4A shows how the crossover units 404 allow for the expansion of zip track system 400 to longer lengths to provide a longer ride for a user of the zip track system 400.
  • The crossover units 404 provide strength and structure to the system without interrupting the user experience of the zip track system 400 and, thus, allow for the system to be lengthened by placing the crossover units at regular intervals along the length of the zip track system 400. In one particular embodiment, such as the embodiment shown in FIG. 4A, these crossover units 404 are placed roughly every 200 inches to ensure that sufficient stability is provided to the zip track system 400 along its entire length. However, in another embodiment, the crossover units 404 could be placed more closely together for increased stability, or further apart, for increased length. Crossover units 404 are placed sufficiently apart on the zip track system 400 such that they provide strength and stability throughout the entire unit. These crossover units connect and engage with the zip track system 400 at crossover connection points 408.
  • FIG. 4A shows the zip track system 400, in accordance with one embodiment, where the zip track system 400 includes two end platforms 402 with raised structures for a user to stand on before beginning a ride, and after ending a ride on the zip track system 400. The zip track. system 400 also includes a seat unit 406 that user may engage in order to ride in a safe fashion along the zip track system 400.
  • Conventional zip line systems have employed bars or other methods for users to hang on as they move across the system. However, this presented users with the risk of pinched fingers or risk of falling if the user ran out of strength. Additionally, for users without enough upper body strength, or an inability to use upper body strength (due to disability or other factors), conventional zip line systems were not accessible. However, the zip track system 400, shown in FIG. 4A, through the use of the seat unit 406, allows any user (with the ability to sit and hold on) to use the zip track system 400 such that they can sit on the seat unit 406 and hold on with their hands and/or legs. In another embodiment, the user can stand on the seat unit 406 and hold on with their hands. In either of these positions on the seat unit 406, the user is not required to support their entire body weight through their arms alone.
  • Crossover unit 404 is more clearly illustrated in FIG. 4B. The crossover unit comprises a crossover arch 411 that extends from one crossover support pole 410 to a second crossover support pole 410 and connects with the zip track system 400 at a crossover connection 408. This helps to distribute the weight of a user seated on the seat unit 406 through the crossover unit 404 such that the weight is held by the crossover support poles 410 and the crossover arch 411. In one embodiment, the crossover arch 411 is welded to the crossover support poles 410. In another embodiment, the crossover arch 411 is fastened to the crossover support poles 410 such that the crossover unit 404 can be dismantled. For example, in one embodiment the crossover arch 411 is screwed to the crossover support poles 410. In another example, the crossover arch 411 is attached to the crossover support poles 410 with a nut and bolt configuration.
  • In one embodiment, the crossover connection 408 comprises welding the crossover unit 404 to the track at the center of the crossover arch 411. In another embodiment, the crossover connection 408 comprises a screw system or a nut and bolt structure to connect the crossover arch to the zip track system 400. Additionally, any other suitable connection mechanism that sufficiently attaches the crossover connection 408 to the zip track system 400 such that the weight of the track and any potential user is distributed through the crossover arch 411 and support poles 410 would be adequate.
  • While FIGS. 4A and 4B show a zip track system 400 with only two crossover units 404, in another embodiment a zip track system 400 could comprise three crossover units 404, providing an even longer play structure for a user. However, the zip track system 400 is not limited to three crossover units 404, but could comprise five, ten, or more, crossover units 404, such that the system could be as long (or short) as desired by a purchaser/user of the system.
  • Additionally, while FIGS. 1-4 show a track system that runs in a substantially straight line, an additional embodiment comprises a zip track system with a curve or a turn, providing a means for compacting the play experience within an enclosed area that would not accommodate an equivalent length zip track to run in a straight line.
  • In a further embodiment, instead of inclined portions alternating with straight portions of track, the zip track system 400 could comprise a substantially curved track 408 such that there are no straight portions, but a curved track that substantially alternates an inclined down portion and an inclined up portion. However, in such an embodiment, the inclined portions are configured to alternate in such a way that a user is not jolted from the inclined down portion to the inclined up portion to avoid a jolt to a user of the zip track system 400. Additionally, in one embodiment the track 408 is configured to accommodate sway by a user on the seating structure caused by centripetal force as a user moves along the curved track.
  • FIG. 5 is an exploded view of a track connection mechanism of the zip track system 100 of FIG. 1 in accordance with one embodiment. In one embodiment, a trolley 502 sits on a track 500 such that a portion of the trolley 502 is within the track 500, for example as shown in the end view of FIG. 2. In one embodiment, trolley 502 connects to a seat structure 504 through a connecting portion 506. However, in another embodiment, the trolley 502 connects directly to a seat structure 504. In the embodiment including a connection structure 506, the trolley 502 connects through a trolley connection 518 at a trolley connection point 508, while the seat structure 504 connects through a seat connection 516 at a seat connection point 510. Connection mechanisms 512 are used to connect the trolley 502 and the seat structure 504 to the connecting portion 506. In one embodiment, the connection mechanisms 512 may be screws. In another embodiment, the connection mechanism 512 may comprise a nut and bolt configuration or any other appropriate connection mechanism.
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (20)

What is claimed is:
1. An extension mechanism for a zip track system within a playground environment, comprising:
a crossover unit. configured to attach to a zip track, the crossover unit comprising:
a crossover arch, configured to couple to the zip track; and
a support pole configured to couple to an end of the crossover arch, such that the support pole does not obstruct a path of movement under the zip track; and
a connection mechanism configured to connect the crossover unit to the zip track system such that the crossover unit distributes the weight of the track through the crossover arch and the crossover support poles.
2. The extension mechanism of claim 1, wherein the connection mechanism is further configured to connect the crossover units to the top of a track of the zip track system.
3. The extension mechanism of claim 1, and wherein the extension system comprises a plurality of crossover units and connection mechanisms spaced evenly along the zip track.
4. The extension mechanism of claim 2, wherein the connection mechanism comprises welding the crossover unit to the top of the track.
5. The extension mechanism of claim 2, wherein the connection mechanism comprises bolting the crossover unit to the top of the track.
6. The extension mechanism of claim 1, wherein the connection mechanism is configured to couple to a coupling point where a first track portion couples to a second track portion.
7. The extension mechanism of claim 1, and further comprising a second support pole coupled to a second end of the crossover arch such that both the support pole and second support pole are substantially perpendicular to a ground of the playground environment.
8. An extendable zip track system for installation in a playground environment, comprising:
a first end and a second end;
a track extending between the first and second end, the track suspended above a ground of the playground environment, wherein the first end connects to a decline portion, wherein the decline portion also connects to a straight portion, wherein the straight portion also couples to an incline portion, and wherein the incline portion also couples to the second end;
a trolley, moveably coupled to the track, wherein the trolley is configured to move along the track, from the first end to the second end; and
a seat, configured to support a user of the extendable zip track system, wherein the seat is coupled to the trolley and is configured to move below the track and above the ground.
9. The track cable system of claim 8, and further comprising:
an extension mechanism configured to couple to the track such that the extension mechanism is on an opposite side of the trolley, wherein the extension mechanism is configured to support a portion of the weight of the track.
10. The track mechanism of claim 9, wherein the seat is trolley is configured to move along the track underneath the extension mechanism.
11. The track mechanism of claim 9, wherein the extension mechanism comprises an arch connected to two support poles.
12. The track mechanism of claim 11, wherein the arch couples to the track at substantially a midpoint of the arch.
13. The track mechanism of claim 9, wherein the track comprises a first track portion and a second track portion, wherein the first and second track portions are mechanically coupled by a flange.
14. The track mechanism of claim 13, wherein the extension mechanism is positioned substantially at a coupling point between the first and second track portions.
15. The track cable system of claim 9, wherein the extension mechanism is a first extension mechanism, and wherein the track cable system further comprises a second extension mechanism, wherein the second extension mechanism is coupled to the track at a coupling point between the first extension mechanism and the second end.
16. A zip track system for a playground, comprising:
a track with a first and a second end;
a raised platform located at the first end;
a seat configured to moveably couple to the track, wherein the seat is configured to travel along the track, above a ground of the playground; and
an extension system, coupled to the track at a point between the first and second end, the extension system configured to support a weight of a portion of the track, wherein the extension system comprises;
a crossover unit configured to couple to the track at a coupling point; and
a support structure configured to couple, at a first point, to the crossover unit and, at a second point, to a ground of the playground, wherein the support structure is configured such that the seat moves along the track in an unobstructed path.
17. The zip track system of claim 16, wherein the seat comprises a safety feature configured to maintain a rider within the seat.
18. The zip track system of claim 16, and further comprising a second extension system coupled to the track at a second coupling point, wherein the second coupling point is between the first end and the extension system.
19. The zip track system of claim 16, and further comprising at least one inclined portion of track and at least one declined portion of track, wherein both the inclined and declined portions are located between the first end portion and the second end portion.
20. The zip track system of claim 19, and further comprising a straight portion of track, wherein the first end portion connects to the declined portion of track which further connects to the straight portion of track which further connects to the inclined portion of track which further connects to the second end portion.
US15/897,404 2013-10-28 2018-02-15 Zip track system Pending US20180170403A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/897,404 US20180170403A1 (en) 2013-10-28 2018-02-15 Zip track system
US17/689,449 US20220185341A1 (en) 2013-10-28 2022-03-08 Zip track system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361896460P 2013-10-28 2013-10-28
US14/524,298 US9932046B2 (en) 2013-10-28 2014-10-27 Zip track system
US15/897,404 US20180170403A1 (en) 2013-10-28 2018-02-15 Zip track system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/524,298 Continuation US9932046B2 (en) 2013-10-28 2014-10-27 Zip track system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/689,449 Division US20220185341A1 (en) 2013-10-28 2022-03-08 Zip track system

Publications (1)

Publication Number Publication Date
US20180170403A1 true US20180170403A1 (en) 2018-06-21

Family

ID=52993981

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/524,298 Active 2035-01-16 US9932046B2 (en) 2013-10-28 2014-10-27 Zip track system
US15/897,404 Pending US20180170403A1 (en) 2013-10-28 2018-02-15 Zip track system
US17/689,449 Abandoned US20220185341A1 (en) 2013-10-28 2022-03-08 Zip track system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/524,298 Active 2035-01-16 US9932046B2 (en) 2013-10-28 2014-10-27 Zip track system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/689,449 Abandoned US20220185341A1 (en) 2013-10-28 2022-03-08 Zip track system

Country Status (4)

Country Link
US (3) US9932046B2 (en)
EP (1) EP3062899B1 (en)
CA (2) CA2928825C (en)
WO (1) WO2015065991A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932046B2 (en) * 2013-10-28 2018-04-03 Landscape Structures Inc. Zip track system
USD788930S1 (en) * 2015-10-21 2017-06-06 Rehabilitation Institute Of Chicago Gait track
KR102616735B1 (en) * 2021-05-28 2023-12-21 주식회사 플레이두두 Zipline using unit clamp assembly for connecting of orthographic or intersecting component
KR102616733B1 (en) * 2021-05-28 2023-12-21 주식회사 플레이두두 Total playing facilities using unit clamp assembly for connecting of orthographic or intersecting component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US833835A (en) * 1905-10-21 1906-10-23 Charles Mcmahon Gravity-railway.
US3070035A (en) * 1962-01-02 1962-12-25 Nichola P Russo Children's amusement and exercising apparatus
US3327644A (en) * 1964-11-25 1967-06-27 Diebold Inc Overhead conveyor
US20110012394A1 (en) * 2008-11-19 2011-01-20 Mark Furman Baby seat sling for suspending a baby seat from a structure
US9932046B2 (en) * 2013-10-28 2018-04-03 Landscape Structures Inc. Zip track system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US537699A (en) * 1895-04-16 Tie-joint for suspended channel-bar tracks
DE374406C (en) 1923-04-23 Friedrich Brake Wave suspension railway for popular amusement
US637775A (en) * 1899-06-26 1899-11-28 Henry Funk Pleasure-railway.
US831302A (en) * 1906-05-29 1906-09-18 Ind Motor Company Aerial electric trackway.
US1222007A (en) * 1916-05-29 1917-04-10 Charles Mcguire Cableway.
US1546375A (en) * 1925-02-26 1925-07-21 Charles J Geiser Public amusement device
US2630076A (en) * 1948-08-26 1953-03-03 American Steel Foundries Loading system
DE2703833A1 (en) * 1977-01-31 1978-08-03 Schwarzkopf Stahl Fahrzeugbau ENTERTAINMENT TRACK WITH A LOOPING
US4125908A (en) * 1977-05-18 1978-11-21 Vail Dottie J Invalid transfer lift
JPS5767763U (en) 1980-10-10 1982-04-23
US4708048A (en) * 1986-05-14 1987-11-24 Ver-Val Enterprises, Inc. Munitions assembly system
US5289778A (en) * 1992-07-06 1994-03-01 Romine Richard A Automated electric transportation system
US5468199A (en) * 1993-12-17 1995-11-21 Bigtoys, Inc. Sliding-handgrip amusement apparatus
US5655457A (en) 1996-05-23 1997-08-12 Sherman; Yury System of suspended supports for aerial transportation
US5732635A (en) * 1996-06-11 1998-03-31 Mckoy; Errol W. Amusement power-cable-propelled and channel-guided boat ride structure
US5860364A (en) * 1996-06-11 1999-01-19 Mckoy; Errol W. Amusement boat ride featuring linear induction motor drive integrated with guide channel structure
US5904099A (en) * 1997-08-15 1999-05-18 Playworld Systems, Inc. Cushioned braking system for a monorail trolley
US5931100A (en) * 1997-12-10 1999-08-03 Newco, Inc. Track-supported playground shuttle
US6629500B1 (en) * 1998-11-17 2003-10-07 R. Trent Hansen Open-course coaster with two vertical end segments
US20020162477A1 (en) * 2001-03-02 2002-11-07 Emiliano Palumbo Dual cable zipline having mechanical ascension and braking systems
PT1364691E (en) * 2002-05-21 2013-12-11 Ronald Bussink Amusement Des Amusement device and method for using an amusement device
CA2472784A1 (en) 2004-07-02 2006-01-02 Ziptrek Ecotours, Inc. Zipline braking and motion-arrest system
EP1972365A3 (en) 2007-03-22 2011-01-12 Innova Patent GmbH Facility for conveying persons
CH701855A1 (en) * 2009-09-18 2011-03-31 Ferag Ag Conveyor device for use in food industry, has guiding section with external flanges connected with external flange of another guiding section by centering unit, and contact surfaces arranged at preset location with respect to centering unit
SI2550075T1 (en) 2010-03-23 2017-02-28 Polin Su Parklari Ve Havuz Sistemleri Anonim Sirketi Multilane waterslide with a common sliding area
US8985027B2 (en) * 2010-04-02 2015-03-24 Alien Flier LLC Zip line apparatus
DE112012001743B4 (en) 2011-04-18 2020-02-27 Ropes Courses, Inc. Rail chute system
KR101300142B1 (en) 2012-07-02 2013-09-10 (주) 한국 레드벤쳐 The equipment for a downhill leisure sports
US20140116282A1 (en) * 2012-10-25 2014-05-01 Sean Horihan Horihan Suspended Transport System
KR101506140B1 (en) * 2013-06-12 2015-03-27 (주) 한국 레드벤쳐 The equipment for a downhill leisure sports

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US833835A (en) * 1905-10-21 1906-10-23 Charles Mcmahon Gravity-railway.
US3070035A (en) * 1962-01-02 1962-12-25 Nichola P Russo Children's amusement and exercising apparatus
US3327644A (en) * 1964-11-25 1967-06-27 Diebold Inc Overhead conveyor
US20110012394A1 (en) * 2008-11-19 2011-01-20 Mark Furman Baby seat sling for suspending a baby seat from a structure
US9932046B2 (en) * 2013-10-28 2018-04-03 Landscape Structures Inc. Zip track system

Also Published As

Publication number Publication date
WO2015065991A1 (en) 2015-05-07
US9932046B2 (en) 2018-04-03
CA3046769C (en) 2022-07-12
EP3062899A1 (en) 2016-09-07
US20220185341A1 (en) 2022-06-16
CA2928825C (en) 2019-08-13
CA2928825A1 (en) 2015-05-07
EP3062899B1 (en) 2020-02-19
US20150114250A1 (en) 2015-04-30
EP3062899A4 (en) 2017-10-04
CA3046769A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US20220185341A1 (en) Zip track system
US7699140B2 (en) Method and system for transporting a person between a plurality of fixed platforms
US7300355B1 (en) Tandem swing
US20090078148A1 (en) Suspended coaster rail apparatus and method
US10625169B1 (en) Standing playground glider
US2123233A (en) Swing
US2517207A (en) Child's gliding teeter
US8985028B2 (en) Multiple cable zip line ride
KR101839530B1 (en) Board type zip line
US3674262A (en) Playground apparatus
US2325141A (en) Chair
CN208200105U (en) A kind of staircase escape device
CN205164119U (en) Multi -functional seesaw
EP1389148A1 (en) Amusement ride
CN220465492U (en) Improved subway handrail
CN208218347U (en) Anti-breaking cable protection forthright coaster
KR102215531B1 (en) Rail for Exciting Riding Equipment and Exciting Riding Equipment
KR102230853B1 (en) Rail for Exciting Riding Equipment
KR102502215B1 (en) Apparatus for helicopter simulation experience
CN204034251U (en) A kind of safe and reliable two-player swing
CN210991609U (en) Walking rehabilitation device
CN205252402U (en) Single foot of lurch suspends bridge in midair
JPS61217185A (en) Slider paly tool
CN205252512U (en) Cake suspends bridge in midair
CN205854340U (en) A kind of preposition seat of child

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: LANDSCAPE STRUCTURES INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WATERMILLER, RANDY G.;SCHAUST, STEVEN J.;REEL/FRAME:058733/0466

Effective date: 20141027

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS