US20170320684A1 - Support apparatus for moving proppant from a container in a proppant discharge system - Google Patents

Support apparatus for moving proppant from a container in a proppant discharge system Download PDF

Info

Publication number
US20170320684A1
US20170320684A1 US15/662,374 US201715662374A US2017320684A1 US 20170320684 A1 US20170320684 A1 US 20170320684A1 US 201715662374 A US201715662374 A US 201715662374A US 2017320684 A1 US2017320684 A1 US 2017320684A1
Authority
US
United States
Prior art keywords
proppant
container
containers
gate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/662,374
Inventor
John OREN
Joshua Oren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandbox Enterprises LLC
Original Assignee
Oren Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/628,702 external-priority patent/US10464741B2/en
Application filed by Oren Technologies LLC filed Critical Oren Technologies LLC
Priority to US15/662,374 priority Critical patent/US20170320684A1/en
Assigned to OREN TECHNOLOGIES, LLC reassignment OREN TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OREN, John, OREN, JOSHUA
Publication of US20170320684A1 publication Critical patent/US20170320684A1/en
Assigned to BNP PARIBAS reassignment BNP PARIBAS SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OREN TECHNOLOGIES, LLC, A TX LLC, U.S. SILICA COMPANY, A DE CORPORATION, SANDBOX LOGISTICS, LLC, A TX LLC
Assigned to SANDBOX ENTERPRISES, LLC reassignment SANDBOX ENTERPRISES, LLC IP ASSIGNMENT AGREEMENT Assignors: OREN TECHNOLOGIES, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • B65D88/30Hoppers, i.e. containers having funnel-shaped discharge sections specially adapted to facilitate transportation from one utilisation site to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • B65D88/32Hoppers, i.e. containers having funnel-shaped discharge sections in multiple arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/542Ramps forming part of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/54Large containers characterised by means facilitating filling or emptying
    • B65D88/548Large containers characterised by means facilitating filling or emptying by pneumatic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/10Manholes; Inspection openings; Covers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/12Supports
    • B65D90/14Legs, e.g. detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/54Gates or closures
    • B65D90/58Gates or closures having closure members sliding in the plane of the opening
    • B65D90/587Gates or closures having closure members sliding in the plane of the opening having a linear motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/54Gates or closures
    • B65D90/62Gates or closures having closure members movable out of the plane of the opening
    • B65D90/626Gates or closures having closure members movable out of the plane of the opening having a linear motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/16Devices for feeding articles or materials to conveyors for feeding materials in bulk
    • B65G47/18Arrangements or applications of hoppers or chutes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/4891With holder for solid, flaky or pulverized material to be dissolved or entrained

Definitions

  • the present invention relates to proppant discharge system wherein proppant can be discharged from a storage container. Additionally, the present invention relates to a support apparatus for maintaining the container in a desired location during the discharging of proppant from the container. Additionally, the present invention relates to conveying systems whereby the proppant can be discharged from a container and conveyed to a location remote from the container.
  • Hydraulic fracturing is the propagation of fractions in a rock layer caused by the presence of pressurized fluid. Hydraulic fractures may form naturally, in the case of veins or dikes, or may be man-made in order to release petroleum, natural gas, coal seam gas, or other substances for extraction. Fracturing is done from a wellbore drilled into reservoir rock formations. The energy from the injection of a highly-pressurized fracking fluid creates new channels in the rock which can increase the extraction rates and ultimate recovery of fossil fuels. The fracture width is typically maintained after the injection by introducing a proppant into the injected fluid. Proppant is a material, such as grains of sand, ceramic, or other particulates, that prevent the fractures from closing when the injection is stopped.
  • silica sand made up of ancient weathered quartz, the most common mineral in the Earth's continental crust. Unlike common sand, which often feels gritty when rubbed between the fingers, sand used as a proppant tends to roll to the touch as a result of its round, spherical shape and tightly-graded particle distribution. Sand quality is a function of both deposit and processing. Grain size is critical, as any given proppant must reliably fall within certain mesh ranges, subject to downhole conditions and completion design. Generally, coarser proppant allows the higher now capacity due to the larger pore spaces between grains. However, it may break down or crush more readily under stress due to the relatively fewer grain-to-grain contact points to bear the stress often incurred in deep oil- and gas-bearing formations.
  • Sand mines are being rapidly developed all over the United States to satisfy the demand that the “Shale Boom” has created for proppant.
  • many mines are building rail-spurs that will accommodate up to 100 rail cars or more that can be loaded and stand for transportation to the designated destination.
  • these companies are also investing in expensive vertical silo storage facilities to store thousands of tons of proppant.
  • the sand mines are unable to effectively ship proppant to the shale regions without equal fluid trans-loading and storage facilities on the receiving end of the logistics chain. This results in lost revenue and productivity for the mine owner and higher prices for proppant buyers in the destination region.
  • trans-loading facilities Limited storage at trans-loading facilities has severely limited many of the current facilities' ability to operate efficiently. Most trans-load facilities are forced to off-load rail hopper cars by bringing in trucks (i.e. pneumatics) along the rail siding, and conveying sand directly from rail to truck. This requires an intense coordination effort on the part of the trans-loader as well as the trucking community. Long truck lines are commonplace, and demurrage fees (i.e. waiting time charged by trucking companies) amount to hundreds of millions of dollars nationwide. As such, the trans-loader is not able to fully realize the utilization of conveying and other material handling equipment. The throughput of these trans-loading terminals severely reduces costing of the terminal meaningful revenue.
  • optimal trans-load terminal locations are immobile and not able to move from one area of the shale pay to another. Investors in immobile silo and flat storage facilities can see the utilization and value of those investments tumble. A potential loss of the investment in such immobile silos can often scare investment capital away from these types of future projects so as to further exacerbate the logistics chain problem. As such, a need has developed for a portable, inexpensive storage and delivery solution for proppant that would help revive the capital needed to improve the facilities and maximize the revenue-generating potential of existing and new trans-load and storage facilities.
  • Exploration and production companies along with the entire U.S. population, pay the ultimate bill for all of the inefficiencies and waste that plagues the proppant supply chain.
  • Service companies are forced to price hydraulic fracturing services by taking into account the historical costs of supply chain problems. Exploration and production companies need to pass on the overall increased cost of production. As such, there is a need to provide a cost-effective solution to improve the profitability of stake holders in the proppant logistics chain, while lowering the overall cost to the consumer.
  • U.S. patent application Ser. No. 13/427,140 filed on Mar. 22, 2012 by the present inventor, describes a system for the delivery of proppant between a loading station and the well site.
  • This application describes the steps of placing the storage container in a location adjacent to a train site such that the proppant, as delivered by the train, can be discharged into the container.
  • the container can then be transported for storage in stacks at the loading area or can be delivered to a tilting mechanism at the loading station.
  • the tilting station will tilt the container so as to allow the proppant to flow outwardly therefrom.
  • This proppant will flow, by a conveyor, to a pneumatic truck.
  • the truck can then transport the proppant over the highways to the well site.
  • the proppant from the pneumatic truck can then be discharged into a twenty foot container at the well site.
  • These twenty foot containers can be stored at the well site in a stacked configuration.
  • each of the containers can be transported to another tilting mechanism at the well site so that the proppant within each of the storage containers can be discharged onto a conveyor and ultimately for use during the fracturing operation.
  • the twenty-foot ISO container that is utilized is one of the most inexpensive and readily-available pieces of transportation equipment in the world. It was determined that the use of the twenty-foot container allows for the transportation of proppant through various minor modifications to the internal walls and reinforcements of the twenty-foot ISO container. The available capacity is more than acceptable. It was determined that this modified twenty-foot container could hold in excess of forty-five tons of proppant. The cost of an unmodified twenty-foot ISO container is less than four thousand dollars. This makes it very affordable compared to the cost of building vertical silos or flat storage buildings.
  • the twenty-foot ISO container was modified by cutting a hole in the top of the container and constructing a water-tight, hinged hatch through which the proppant could be poured by any number of readily-available conveying units. There was also a lower hatch in the twenty-foot ISO container. This lower hatch could be opened to drain the proppant out of the twenty-foot ISO container.
  • a square flow-gate was fabricated and welded to the vertical rear lower side of the twenty-foot container. This gate hatch allowed the container to be tilted in the manner of a dump truck bed. As a result, sand could flow out of the flow gate while moderating the flow of the sand.
  • This patent application provided the ability to trans-load sand via containers from a standard rail hopper car to the twenty-foot ISO container. It was determined that the container could be loaded in less than twenty minutes with at least fort-five tons of proppant. By pre-positioning the container along, the rail track, movable conveyors could work the train from one end to the other and unload the train in a very efficient and timely manner. This part of the process eliminated the coordination efforts of calling in pneumatic trucks that could be systematically loaded by conveying units. This reduced the time necessary to unload a train's hopper cars by many hours. It also eliminated truck traffic and demurrage charges at the rail-spur and trans-load facility.
  • proppant By “containerizing” proppant, it was found that an inventory management system could be added in order to provide real-time, accurate information pertaining to the volume/inventory of proppant that the customers own in a particular region.
  • many proppant buyers are subject to inaccurate volume reporting from trans-loading facilities. As such, they may not be certain that the proppant being delivered to the well-site is, in fact, of the quality and grade that they have purchased.
  • an inventory management system, bar coding, and scanning the containers into and out of inventory the customers would be assured that they have received their proppant and would be able streamline the procurement process when ordering more material.
  • the angle of repose of a granular material is the steepest angle of descent or dip of the slope relative to the horizontal plane when material on the slope face is on the verge of sliding.
  • the angle of repose is also gravity-dependent.
  • U.S. patent application Ser. No. 13/555,635 described a new generation of the container by taking the original twenty-foot ISO container and splitting it in half. As such, a ten foot ISO container was provided. By breaking the container into a ten foot configuration, it was determined that such a container could hold approximately 45,000-48,000 pounds of proppant. More importantly, the total gross vehicle weight of such a fully-loaded container could be legally transported over a public road. This was a major breakthrough. The container could be delivered to the wellhead in advance of a frac crew and eliminate sand deliveries during the fracturing process.
  • This prior application utilized an insert that is fabricated and welded within the interior of the ten-foot ISO container.
  • the insert allowed the proppant, loaded through the top hatch, to fully flow out of a newly designed bottom flow-gate. The need to manipulate or tilt the container was eliminated.
  • This ten-foot container could now be filled and emptied by using only gravity to do so.
  • U.S. Patent Publication No. 2008/0179054 published on Jul. 31, 2008 to McGough et al., shows a bulk material storage and transportation system.
  • the storage system is mounted on the trailer of a truck.
  • the storage system includes walls that define an interior volume suitable for receiving the aggregate material therein.
  • U.S. Pat. No. 7,240,681 issued on Jul. 10, 2007 to L. Saik, describes a trailer-mounted mobile apparatus for dewatering and recovering formation sand.
  • the trailer is mounted to a truck-towable trailer so as to receive sand therein.
  • the container has a pair of sloping end walls.
  • the back end of the container is suitably openable so as to allow the sand to be removed therefrom.
  • a pneumatic or hydraulic ram is provided on the forward part of the container so as to allow the container to be lifted angularly upwardly so as to allow sand to be discharged through the gate at the rear of the container.
  • the container is mounted to a frame on wheels.
  • a hydraulic ram tilts the container for dumping through a rear outlet.
  • a pneumatic conveyor is carried by the frame with an intake at the rear of the container.
  • a gate allows the solids to be dumped conventionally by gravity or to be blown to a storage facility by the pneumatic container.
  • the container has a top hatch formed therein so as to allow the solids to be introduced into the interior of the container.
  • U.S. Pat. No. 2,865,521, issued on Dec. 23, 1958 to Fisher et al. shows a bulk material truck that has an interior volume suitable for the receipt of bulk material therein.
  • a pneumatic conveyer is utilized so as to allow the removal of such material from the bottom of the container.
  • a pair of sloping walls are provided on opposite sides of the container so as to allow the bulk material within the container to be passed toward the bottom of the container.
  • a top hatch is provided on the top of the conveyer.
  • the pneumatic conveyer is connected to the bottom of the container.
  • the present invention is a support for moving proppant from a container.
  • the support apparatus comprises a frame having a surface for suitable for receiving a container thereon, a hopper affixed to the frame and having an opening at or adjacent to a lower end thereof, and a conveyor having a surface positioned below the opening of the hopper.
  • the hopper is suitable for receiving proppant from the container.
  • the surface of the conveyor is suitable for receiving the proppant from the hopper.
  • a receptacle is translatably positioned at the surface of the frame.
  • An actuator is connected to the receptacle so as to move the receptacle between a first position and a second position.
  • the first position is suitable for retaining the proppant in the container.
  • the second position is suitable for discharging the proppant from the container into the hopper.
  • the receptacle comprises a body having a slot opening at an upper end thereof. The body extends above the surface of the frame.
  • the receptacle includes a first receptacle positioned adjacent one side of the frame and a second receptacle positioned adjacent an opposite side of the frame.
  • the hopper includes a first side wall, a second side wall, a first end wall and a second end wall.
  • the first end wall and the second end wall extend between the first side wall and the second side wall.
  • the first and second side walls and the first and second end walls converge toward the opening of the hopper.
  • the opening of the hopper in the preferred embodiment of the present invention, has an inverted V-shaped configuration.
  • the opening of the hopper has a plurality of slots extending thereacross. A solid portion is formed between adjacent pairs of the plurality of slots.
  • a metering gate is translatably positioned adjacent to the opening of the hopper.
  • An actuator is connected to the metering gate so as to move the metering gate between a closed position and an open position.
  • the closed position is suitable for retaining the proppant in the hopper.
  • the open position is suitable for selectively releasing proppant from the hopper.
  • the metering gate also has an inverted V-shaped configuration that is in mating relationship with the inverted V-shaped opening of the hopper.
  • the metering gate has a plurality of slots extending thereacross with adjacent pairs of the plurality of slots of the metering gate having a solid portion therebetween.
  • the solid portions of the metering gate are aligned with the plurality of slots of the opening of the hopper when the metering gate is in the closed position.
  • the plurality of slots of the metering gate are aligned with a plurality of slots of the opening of the hopper when the metering gate is in the open position.
  • the conveyor has a portion extending outwardly beyond an end of the frame.
  • the conveyor is suitable for discharging the proppant to a location outwardly of the frame. This portion of the conveyor angles upwardly beyond the end of the frame.
  • a chute is positioned adjacent an end of the conveyor. The chute is directable toward a desired location.
  • the frame has at least a pair of pin connectors extending upwardly from the surface of the frame.
  • the pin connectors are suitable for engaging respective receptacles formed in the container.
  • the frame has at least a pair of wheels mounted thereto. The pair of wheels are suitable for allowing the frame to move along an underlying surface.
  • the frame also has a hitch at an end thereof. This hitch is suitable for connecting the frame to a vehicle.
  • FIG. 1 is a perspective view of the container in accordance with the preferred embodiment of the present invention.
  • FIG. 2 is a side elevational view of the container in accordance with the preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the container of the preferred embodiment of the present invention.
  • FIG. 4 is a plan view showing the interior of the container of the preferred embodiment of the present invention.
  • FIG. 5 is an isolated end view showing the support structure of the system of the preferred embodiment of the present invention.
  • FIG. 6 is a plan view of the support structure of the system of the present invention.
  • FIG. 7 is an end view showing the placement of the container upon the support structure in accordance with the preferred embodiment of the system of the present invention.
  • FIG. 8 is a side view of the container as place on the support structure in accordance with the preferred embodiment of the system of the present invention.
  • FIG. 9 is a side elevational view showing a plurality of containers as placed upon the support structure in accordance with the system of the preferred embodiment of the present invention.
  • FIG. 10 is a plan view showing a plurality of containers as placed upon the support structure in accordance with the preferred embodiment of the system of the present invention.
  • the container 10 in accordance with the preferred embodiment of the present invention.
  • the container 10 is in the nature of a box 12 having an exterior frame 14 .
  • the box 12 includes a top 16 , a bottom 18 , an end wall 20 and a side wall 22 .
  • the side wall 24 is opposite to the side wall 22 .
  • An inlet 28 is formed through the top 16 of the box 12 .
  • a hatch 30 is removably or hingedly affixed over the inlet 28 so as to allow proppant to be introduced into the interior volume of the container 10 .
  • the frame 14 extends generally around the exterior of the end walls 20 and 26 and over the side walls 22 and 24 . As such, as will be described hereinafter, there is a funnel-shaped bottom of the container that has exterior surfaces exposed through the frame 14 . During the course of international shipment, it is important to avoid closed spaces within such a container. As such, the exposure of the surfaces through the openings 32 at the bottom of the frame 14 will allow inspectors to have visual access to the areas adjacent to this funnel-shaped area.
  • the container 10 is illustrated as having the top 16 and the bottom 18 .
  • the frame 14 provides structural support for the container 10 and generally surrounds the exterior of the container.
  • the frame is formed of a plurality of vertical bars that extend so as to form a cage-like configuration around the walls 20 , 22 , 24 and 26 .
  • the bottom 18 is generally of a planar shape so that the bottom 18 can be placed upon the support structure (to be described hereinafter).
  • the area 32 shows that the funnel-shaped portion 34 is exposed through the openings of the frame 14 . As such, there will be no closed or sealed areas within the interior of the container 10 .
  • the hatch 30 is positioned over the inlet 28 at the top 16 of the container 10 . As a result, the proppant can be introduced through the inlet 28 when the hatch 30 is opened so as to fill the interior volume of the container 10 .
  • the funnel-shaped area 34 defines an outlet 36 located at the bottom 18 of the container 10 .
  • the container 10 is a ten-foot ISO container.
  • the container has a length of ten feet, a width of eight feet and a height of 8.5 feet. The height can also be 9.5 feet. This configuration allows between 43,000 and 48,000 pounds of proppant to be introduced into the interior volume of the container.
  • FIG. 3 shows a partial cross-sectional view of the container 10 .
  • the container 10 has an interior volume 38 .
  • the outlet 36 is formed adjacent to the bottom 18 of the container 10 .
  • a first ramp 40 will extend from the end wall 20 to the outlet 36 .
  • a second ramp 42 will extend from the end wall 22 to the outlet 36 .
  • the ramps 40 and 42 will serve to funnel the proppant that is retained within the interior volume 38 of the container 10 toward the outlet 36 .
  • a gate 44 is positioned within a track 46 located at the bottom 18 of the container 10 .
  • the gate 44 is in the nature of flat plate which, as shown in FIG. 3 , covers the outlet 36 .
  • the gate 44 includes a pin 48 (in the nature of king bolt) that extends outwardly from the gate 44 .
  • a pin 48 in the nature of king bolt
  • an actuator When an actuator is connected to the pin 48 , it can move the gate 44 from the position closing the outlet 36 to a position opening the outlet 36 .
  • Arrow 50 shows the movement of the gate 44 between these positions. Since the gate 44 has a width that generally corresponds to the size of the outlet 36 , the gate 44 will only need to move for a small amount of travel so as to move the gate 44 to the open position.
  • FIG. 4 is an interior view of the container 10 .
  • the first ramp 40 will extend from the end wall 20 to the outlet 36 .
  • the second ramp 42 extends from the end all 26 to the outlet 36 .
  • a third ramp 52 will extend from the side wall 22 to the outlet 36 .
  • Another ramp 54 will extend front the side wall 24 to the outlet 36 .
  • the ramps 40 , 42 , 52 and 54 form the funnel-like shape so that the proppant that is received within the interior volume 38 of the container 10 can flow free downwardly toward the outlet 36 .
  • FIG. 4 it can be seen that the gate 44 is positioned within the track 46 .
  • FIG. 4 shows the gate 44 in its closed position.
  • An actuator can be used so as to move the gate 44 from the position shown in FIG. 4 in a direction toward either the side wall 22 or the side wall 24 .
  • Pins 48 and 58 are illustrated as extending outwardly of the sides of the gate 44 .
  • a suitable actuator such as a hydraulic piston-and-cylinder arrangement, can be connected to these pins 48 and/or 50 so as to achieve the requisite movement of the gate 44 from the closed position to the open position.
  • FIG. 5 is an end view showing the support structure 60 as used in the proppant discharge system of the present invention.
  • the support structure 60 has a frame 62 which forms a top surface 64 , a bottom surface 66 , and sides 68 and 70 .
  • the top 64 of the frame 62 has a surface upon which the container 10 can be placed.
  • Suitable pin connections 72 and 74 extend upwardly from the top surface 64 so as to engage corresponding receptacles on the container 10 . These pins 72 and 74 can be utilized so as to assure that the container 10 is properly positioned upon the support structure 60 .
  • a receptacle 76 is positioned at or adjacent to the top surface 64 .
  • the actuator 78 is affixed to the frame 62 and extends to the receptacle 76 .
  • the receptacle 76 has a slot formed in the top end thereof.
  • the slot of the receptacle 76 is suitable for receiving one of the pins 48 and 58 of the gate 44 of the container 10 .
  • the gate 44 will be opened so that the proppant can be discharged through the outlet 36 of the container 10 . Since pins 48 and 58 are symmetrically placed, and since the container 10 is rather symmetrical, the support structure 60 is particularly adapted to the variety of orientations with the container 10 can be placed upon the top surface 64 .
  • FIG. 5 it can be seen that there is a hopper 84 that is positioned below the top surface 54 .
  • Hopper 84 serves to receive a portion of the proppant as discharged through the outlet 36 of the container 10 when the gate 44 is in the open position.
  • the hopper 84 can be utilized so as to properly meter the proppant onto the conveyor 86 .
  • Conveyor 86 is located below the opening 88 of the hopper 84 .
  • hopper 84 has an opening 88 of as generally inverted V-shaped configuration.
  • metering gate 90 that is mated with the opening 88 and also has a V-shaped configuration. The metering gate 90 can be moved a small distance so as to allow for the selected and controlled discharge of proppant from the hopper 84 onto the conveyor 86 .
  • FIG. 6 shows the interior of the hopper 84 .
  • Hopper 84 includes side walls 92 and 94 and end walls 96 and 98 .
  • the walls 92 , 94 , 96 and 98 are formed into a funnel-like shape so as to move the proppant downwardly toward the metering gate 90 .
  • the opening 88 of the hopper 84 has a plurality of slots formed therein.
  • the metering gate 90 has a plurality of slots formed therethrough. The structures between the slots is solid. As such, when the slots of the metering gate 90 are aligned, with the slots of the opening 88 , then proppant can be discharged onto the underlying conveyor 86 .
  • a small movement of the metering gate 90 in one direction or another, will block the flow of the proppant through the slots of the opening 88 of hopper 84 .
  • very small actuators 100 and 102 can be used so as to achieve the proper metering of the proppant onto the conveyor. If a small flow rate of proppant is desired, then the actuators 100 and 102 will move the metering gate 90 only a small distance. If a greater flow rate is required, then the actuators 100 and 102 will move the metering gate 90 so that the slots of the metering gate 90 fully correspond with the slots of the opening 88 so as to achieve a maximum flow of proppant from the hopper 84 down to the conveyor.
  • FIG. 7 shows the container 10 as placed upon the top surface 64 of the support structure 60 .
  • a forklift can be utilized so as to properly position the container 10 in a proper position upon the pins 72 and 74 of the support structure 60 .
  • the gate 44 of the container 10 will be closed.
  • the metering gate 90 can also be closed.
  • the gate 44 can be moved to an open position so that the proppant is discharged into the hopper 84 .
  • the hopper 84 can then be filled with proppant.
  • the metering gate 90 can be opened so as to achieve the desired flow rate of proppant through the opening 88 of the hopper 84 .
  • FIG. 8 shows a side view in which the container 10 is placed upon the top surface 64 of the support structure 60 .
  • the conveyor 86 is illustrated as extending longitudinally. As such, when the proppant passes through the metering gate 90 associated with the hopper 84 , any proppant within the interior volume 38 of the container 10 can be delivered, in a controlled manner, onto the conveyor.
  • FIG. 9 is an illustration of containers 110 , 112 , 114 and 116 as placed upon the support structure 118 .
  • the support structure 118 has a sufficient length so as to accommodate the containers 110 , 112 , 114 and 116 .
  • the conveyor 20 is arranged beneath the top surface of the support structure 118 and below the respective hoppers 122 , 124 , 126 and 128 below the respective containers 110 , 112 , 114 and 116 .
  • the conveyor 120 is an endless conveyor that is suitably wound around sheaves and idlers so as to travel a desired path.
  • the proppant that is discharged from the containers 110 , 112 , 114 and 116 is discharged onto the conveyor 120 so as to travel therealong and along upwardly extending section 130 .
  • the end 132 of the conveyor 120 will open to a chute 134 .
  • the chute 134 can be directed toward the desired purposes at the fracturing site.
  • the array of containers 110 , 112 , 114 and 116 can be configured so as to replace existing storage facilities at the fracturing site.
  • the support structure 118 , along with the conveyor 120 can be easily transportable by a truck upon a roadway because of the use of the wheels 136 .
  • the forward end 138 can be suitably connected to a truck so as to allow for the easy transport of the system of the present invention.
  • FIG. 10 illustrates the placement of the containers 110 , 112 , 114 and 116 upon the support structure 118 .
  • the end 138 includes a suitable hitch connection for attachment to a truck.
  • the conveyor 120 extends below the containers 110 , 112 , 114 and 116 so as to deliver the proppant to the chute 134 .
  • FIG. 10 illustrates that the chute 134 is suitably pivotable in cooperation with the end 132 of the conveyor 120 so as to allow for the controlled and directed discharge of the proppant to the desired location.
  • the container 10 of the present invention is manufactured as a single unit.
  • the gate 44 of the container 10 is specifically engineered to align with the actuator 70 located on the conveying system.
  • the actuator is hydraulically controlled and accepts the pin 48 which is attached to the gate 44 .
  • the gate 44 moves horizontally so as to allow for the discharge of proppant therefrom.
  • the container of the present invention can be specifically applied for transport via rail.
  • the railcar can be designed so as to accommodate up to four containers 10 .
  • the railcar can carry approximately 180,000 pounds of proppant when the four containers are placed on the railcar.
  • the railcar can be similar to current inter-modal railcars that carry twenty foot, forty foot and fifty-three foot inter-modal containers.
  • the railcar would include typical inter-modal load-locks which are evenly spaced down to chassis of the railcar.
  • the container should be constructed of materials wide enough to keep the overall loaded weight of the container under currently regulated railroad weight guidelines. Additionally, it must be strong enough to bear the load of the loaded container. This development allows sand mines to load proppant directly into a container 10 in order to speed up the loading process. It also eliminates the need to build a silo storage at the mine site. Once the container arrives at its designated location or region, trans-load processes to pneumatic trailers, silos or flat storage, are thus eliminated.
  • the present invention is an improved delivery system that can be used at the well-site.
  • the support structure 60 includes a fabricated steel frame upon which multiple containers can be positioned.
  • the containers lock into receptacles that secure the containers to the frame.
  • the container will then sit above a conveying system that delivers the proppant from the container as the gate is opened to a master-conveying belt.
  • the cradle is outfitted with a hydraulic system which can control the opening and closing of the gates.
  • the containers of the present invention can be combined as an attachment or cartridge compatible with existing devices known as SAND KINGSTM, SAND CHIEFSTM and SAND DRAGONSTM. By replacing existing hoppers on these devices with the removable containers of the present invention, even greater efficiencies can be attained in the proppant delivery process.
  • the conveying system of the present invention is an alternative method of delivering proppant from the container to the blender belt for the mixing unit once delivered to the well-site.
  • the conveying system of the present invention provides all of the functionality commonly seen in the SAND MASTERTM, SAND KINGTM, SAND DRAGONTM, SAND MOVETM, etc.
  • the present invention allows the flow of sand to be metered onto the conveyor belt through a hydraulic system of flow gates.
  • the container is first lifted into position onto the support structure.
  • the bottom flow gate is received by the receptacle of the hydraulic actuator so as to create a lock between the pin of the gate and the hydraulic system.
  • the hydraulic system then opens the flow gate and the proppant so as to gravity-feed into a hopper located on the support structure.
  • Another set of flow gates associated with the hopper system are then opened by way of another hydraulic system. This allows the proppant to be metered and to flow onto a conveyor belt.
  • the conveyor belt can then deliver the proppant to the blender or the T-Belt.
  • the proppant can then be mixed with other materials in the blender.
  • the flatbed trailer, now empty, has the ability to accept that load while it is on-site rather than calling in another trucking company to provide that service.
  • the reduced need for “hot-shot” service is another significant value to the service company and ultimately the exploration and production company.
  • a total of four (4) empty containers can be returned by a single flatbed trailer. This provides a 4:1 level of efficiency in removing the containers from the well-site. Additionally, a forty foot container chassis will be used in the movement of both empty and full containers.
  • the support structure just like the containers, can be delivered to the well-site by a typical flatbed truck. The support structure could be towed via truck to the site in manner similar to any other trailer.
  • Another important advantage to the present invention is the small footprint that the ten-foot ISO containers of the present invention occupy relative to the capacity of sand that they can store.
  • the containers When the containers are stacked three high, the containers can store approximately 135,000 pounds in a footprint of eighty square feet.
  • the available space at the wellhead, and in potential proppant trans-loading facilities, can be extremely limited. As such, the process of the present invention minimizes the footprint that is required for a given amount of proppant at such a location.
  • the present invention minimizes the amount of particulate matter that is released into the air.
  • Proppant is currently delivered to the frac site via pneumatic trailers. Pneumatic pressure is used to pressurize the trailer and then “blow” the material into a sand storage unit. This process creates an immense amount of particulate matter than can then be inhaled by personnel at the frac-site. Additionally, while blowing the sand into the sand storage facility, the sand storage facility must vent the pressurized air to the atmosphere. This creates an even greater exposure to particulate matter.
  • the constant need to take delivery of proppant on-site creates a constant environment of dust and small particles in the air. Since the present invention eliminates pneumatic deliveries, the process of the present invention significantly reduces the amount of particulate matter on the frac-site.
  • the gravity-feed delivery method from the container to the blender greatly improves the safety of well-site personnel.
  • the present invention also serves to reduce trucking emissions by reducing the amount of trucks that are being used or waiting.
  • the safety at the wellhead is improved by reducing such truck traffic.

Abstract

An apparatus for moving proppant from a container has a frame with a surface for suitable for receiving a container thereon, a hopper affixed to the frame, and a conveyor having a surface positioned below the hopper. The hopper has an opening at or adjacent to a lower end thereof. The hopper is suitable for receiving proppant from the container. The surface of the conveyor is suitable for receiving the proppant a discharged through the opening of the hopper. A receptacle is translatably positioned at the surface of the frame. A metering gate is translatably positioned adjacent to the opening of the hopper.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 13/768,962, filed Feb. 15, 2013, titled “Support Apparatus for Moving Proppant from a Container in a Proppant Discharge System,” which is a continuation-in-part of U.S. application Ser. No. 13/628,702, filed Sep. 27, 2012, titled “Proppant Discharge System and a Container for Use in Such a Proppant Discharge System,” which is a continuation-in-part of U.S. application Ser. No. 13/555,635, filed Jul. 23, 2012, titled “Proppant Discharge System Having a Container and the Process for Providing Proppant to a Well Site,” all of which are incorporated herein by reference in their entireties.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to proppant discharge system wherein proppant can be discharged from a storage container. Additionally, the present invention relates to a support apparatus for maintaining the container in a desired location during the discharging of proppant from the container. Additionally, the present invention relates to conveying systems whereby the proppant can be discharged from a container and conveyed to a location remote from the container.
  • 2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98
  • Hydraulic fracturing is the propagation of fractions in a rock layer caused by the presence of pressurized fluid. Hydraulic fractures may form naturally, in the case of veins or dikes, or may be man-made in order to release petroleum, natural gas, coal seam gas, or other substances for extraction. Fracturing is done from a wellbore drilled into reservoir rock formations. The energy from the injection of a highly-pressurized fracking fluid creates new channels in the rock which can increase the extraction rates and ultimate recovery of fossil fuels. The fracture width is typically maintained after the injection by introducing a proppant into the injected fluid. Proppant is a material, such as grains of sand, ceramic, or other particulates, that prevent the fractures from closing when the injection is stopped.
  • With the rise of hydraulic fracturing over the past decade, there is a steep climb in proppant demand. Global supplies are currently tight. The number of proppant suppliers worldwide has increased since 2000 from a handful to well over fifty sand, ceramic proppant and resin-coat producers.
  • By the far the dominant proppant is silica sand, made up of ancient weathered quartz, the most common mineral in the Earth's continental crust. Unlike common sand, which often feels gritty when rubbed between the fingers, sand used as a proppant tends to roll to the touch as a result of its round, spherical shape and tightly-graded particle distribution. Sand quality is a function of both deposit and processing. Grain size is critical, as any given proppant must reliably fall within certain mesh ranges, subject to downhole conditions and completion design. Generally, coarser proppant allows the higher now capacity due to the larger pore spaces between grains. However, it may break down or crush more readily under stress due to the relatively fewer grain-to-grain contact points to bear the stress often incurred in deep oil- and gas-bearing formations.
  • Typically, in any hydraulic fracturing operation, a large amount of such proppant is required. Typically, it has been difficult to effectively store the proppant at the fracturing sites. Additionally, it has been found to be rather difficult to effectively transport the proppant to the desired location. Often, proppant is hauled to the desired locations on the back of trucks and is clumped onsite. Under such circumstances, the proppant is often exposed to adverse weather conditions. This will effectively degrade the quality of the proppant during its storage. Additionally, the maintenance of proppant in containers at the hydraulic fracturing site requires a large capital investment in storage facilities. Typically, the unloading of such storage facilities is carried out on a facility-by-facility basis. As such, there is a need to be able to effectively transport the proppant to and store the proppant in a desired location adjacent to the hydraulic fracturing location.
  • With the development and acceptance of the well stimulation methodology known as “hydraulic fracturing”, a unique logistics challenge has been created in delivering the massive quantities of proppant from domestic sand mines to the wellhead. This logistics challenge affects every stakeholder up-and-down the logistics chain. In particular, this includes sand mine owners, railroads, trans-loading facilities, oil-field service companies, trucking companies and exploration and production companies. The existing method of delivering sand to the consumer requires the use of expensive specialized equipment and a high level of coordination. This makes the process subject to a myriad of problems that disrupt the efficient flow of proppant to the wellhead. The result of utilizing the current method is the expenditure of hundreds of millions of dollars in largely unnecessary logistics costs.
  • Sand mines are being rapidly developed all over the United States to satisfy the demand that the “Shale Boom” has created for proppant. Most of the recent mines that have come on-line, or are in varying stages of development, have limited transportation infrastructure to support the export of sand from the sand-pit. As a result, many mines are building rail-spurs that will accommodate up to 100 rail cars or more that can be loaded and stand for transportation to the designated destination. Along with rail-track, these companies are also investing in expensive vertical silo storage facilities to store thousands of tons of proppant. The sand mines are unable to effectively ship proppant to the shale regions without equal fluid trans-loading and storage facilities on the receiving end of the logistics chain. This results in lost revenue and productivity for the mine owner and higher prices for proppant buyers in the destination region.
  • Railroads are a critical part of the logistics chain required to move proppant from mine to the various shale regions. Due to the lack of rail track and trans-loading facilities in some of these remote regions, the railroad companies must be selective of their customers' delivery locations, and make sure that their customers have the ability to efficiently off-load rail cars. Recently, the railroads have seen the allocated fleet of hopper cars being stranded at those destinations where there is no cost-effective storage option to efficiently off-load those cars. Consequently, there has been a significant opportunity cost that the railroads have been forced to pay. As such, a need has developed for facilitating the ability to quickly and inexpensively off-load proppant from rail cars so as to enable the railroads to improve the velocity, turn-around and revenue-generating capacity of the rail-car fleet.
  • Limited storage at trans-loading facilities has severely limited many of the current facilities' ability to operate efficiently. Most trans-load facilities are forced to off-load rail hopper cars by bringing in trucks (i.e. pneumatics) along the rail siding, and conveying sand directly from rail to truck. This requires an intense coordination effort on the part of the trans-loader as well as the trucking community. Long truck lines are commonplace, and demurrage fees (i.e. waiting time charged by trucking companies) amount to hundreds of millions of dollars nationwide. As such, the trans-loader is not able to fully realize the utilization of conveying and other material handling equipment. The throughput of these trans-loading terminals severely reduces costing of the terminal meaningful revenue.
  • Additionally, optimal trans-load terminal locations are immobile and not able to move from one area of the shale pay to another. Investors in immobile silo and flat storage facilities can see the utilization and value of those investments tumble. A potential loss of the investment in such immobile silos can often scare investment capital away from these types of future projects so as to further exacerbate the logistics chain problem. As such, a need has developed for a portable, inexpensive storage and delivery solution for proppant that would help revive the capital needed to improve the facilities and maximize the revenue-generating potential of existing and new trans-load and storage facilities.
  • The lack of efficient trans-load and storage facilities in shale regions have taken a heavy toll on the efficiencies of trucking fleets. While trucking companies have typically charged demurrage fees to compensate for the waiting time and lost productivity, those types of charges are under significant resistance from the customer base. When trucking companies are required to wait in line to be loaded, or wait at a well-site to be unloaded, the number of turns that the equipment can make in a day is severely limited. Rather than turning two or three loads in a single day, the trucks more typically make one trip per day, and very commonly may make one delivery every two or three days. This lack of efficient fleet utilization results in the trucking company having to buy more equipment and hire more drivers to move the same amount of material than would be necessary. As such, it would be desirable to eliminate demurrage charges and to present the opportunity for trucking companies to become more profitable while making smaller investments in equipment.
  • Service companies (such as fracturing companies) are held captive by the current proppant delivery process. This is the result of inefficient trans-load facilities and pneumatic (bulk) truck deliveries. The service company cannot frac a well if it does not have a supply of proppant. It is widely known that the problems surrounding the efficient delivery of proppant to the well-site is one of the primary challenges to the service companies in successfully completing a frac job. Pressure pumps, coiled tubing and other well stimulation equipment, often site idle due to the lack of required proppant at the well-site. “Screening-Out” or running out of proppant is very common at well locations due to the lack of control over what is happening up-stream in the proppant logistics chain. This results in lower profit margins to the service company. Many small to medium-sized hydraulic fracturing companies have little or no logistics infrastructure. Some have entered the marketplace without much thought to the logistics problems associated with taking delivery of the necessary supplies to complete a well. In doing so, many of these companies have been forced to source material and employ very expensive logistics options in order to survive. This has resulted in above-market pricing in order to complete wells. There is also as risk of losing out on otherwise viable hydraulic fracturing contracts. As such, there is a need to lower costs across the board in order to properly compete.
  • Exploration and production companies, along with the entire U.S. population, pay the ultimate bill for all of the inefficiencies and waste that plagues the proppant supply chain. Service companies are forced to price hydraulic fracturing services by taking into account the historical costs of supply chain problems. Exploration and production companies need to pass on the overall increased cost of production. As such, there is a need to provide a cost-effective solution to improve the profitability of stake holders in the proppant logistics chain, while lowering the overall cost to the consumer.
  • U.S. patent application Ser. No. 13/427,140, filed on Mar. 22, 2012 by the present inventor, describes a system for the delivery of proppant between a loading station and the well site. This application describes the steps of placing the storage container in a location adjacent to a train site such that the proppant, as delivered by the train, can be discharged into the container. The container can then be transported for storage in stacks at the loading area or can be delivered to a tilting mechanism at the loading station. The tilting station will tilt the container so as to allow the proppant to flow outwardly therefrom. This proppant will flow, by a conveyor, to a pneumatic truck. The truck can then transport the proppant over the highways to the well site. At the well site, the proppant from the pneumatic truck can then be discharged into a twenty foot container at the well site. These twenty foot containers can be stored at the well site in a stacked configuration. Ultimately, each of the containers can be transported to another tilting mechanism at the well site so that the proppant within each of the storage containers can be discharged onto a conveyor and ultimately for use during the fracturing operation.
  • In this U.S. patent application Ser. No. 13/427,140, the twenty-foot ISO container that is utilized is one of the most inexpensive and readily-available pieces of transportation equipment in the world. It was determined that the use of the twenty-foot container allows for the transportation of proppant through various minor modifications to the internal walls and reinforcements of the twenty-foot ISO container. The available capacity is more than acceptable. It was determined that this modified twenty-foot container could hold in excess of forty-five tons of proppant. The cost of an unmodified twenty-foot ISO container is less than four thousand dollars. This makes it very affordable compared to the cost of building vertical silos or flat storage buildings.
  • The twenty-foot ISO container was modified by cutting a hole in the top of the container and constructing a water-tight, hinged hatch through which the proppant could be poured by any number of readily-available conveying units. There was also a lower hatch in the twenty-foot ISO container. This lower hatch could be opened to drain the proppant out of the twenty-foot ISO container. Alternatively, a square flow-gate was fabricated and welded to the vertical rear lower side of the twenty-foot container. This gate hatch allowed the container to be tilted in the manner of a dump truck bed. As a result, sand could flow out of the flow gate while moderating the flow of the sand.
  • This patent application provided the ability to trans-load sand via containers from a standard rail hopper car to the twenty-foot ISO container. It was determined that the container could be loaded in less than twenty minutes with at least fort-five tons of proppant. By pre-positioning the container along, the rail track, movable conveyors could work the train from one end to the other and unload the train in a very efficient and timely manner. This part of the process eliminated the coordination efforts of calling in pneumatic trucks that could be systematically loaded by conveying units. This reduced the time necessary to unload a train's hopper cars by many hours. It also eliminated truck traffic and demurrage charges at the rail-spur and trans-load facility.
  • Once the proppant is loaded into the container, another piece of specialized equipment would be used to lift the full container and to stack the container upon other containers. The stackable arrangement of containers allows the ability to operate and store proppant within a very small footprint. The specialized equipment that was required to lift the full containers was so heavy and large that it would have to be disassembled into several pieces before moving from one location to another. This created some limitations on the flexibility that such equipment lent to the containerized process.
  • By “containerizing” proppant, it was found that an inventory management system could be added in order to provide real-time, accurate information pertaining to the volume/inventory of proppant that the customers own in a particular region. Currently, many proppant buyers are subject to inaccurate volume reporting from trans-loading facilities. As such, they may not be certain that the proppant being delivered to the well-site is, in fact, of the quality and grade that they have purchased. By applying an inventory management system, bar coding, and scanning the containers into and out of inventory, the customers would be assured that they have received their proppant and would be able streamline the procurement process when ordering more material.
  • In this prior process, since the twenty-foot ISO container needed to be emptied and trans-loaded into pneumatic trailers for delivery to the wellhead, a tilting unit was incorporated into the process. This tilting unit accepted the twenty-foot ISO containers. The tilting unit is able to lift one end of the container and create the required angle to wholly empty the container through the flow gate. Once tilted, the sand would spill onto the belt of the conveyor and rise vertically into a hopper. The hopper rested on a steel fabrication stand. This stand is high enough such that a truck that pulls a pneumatic trailer could drive under the stand and be gravity fed by the hopper so as to fill up the sand trailer. These “loading stations” could be replicated along a path so as to alleviate the bottleneck of trucks at a trans-load facility that has a limited number of conveyors available to load the trucks. Once again, trucking demurrage at this trans-load facility could be dramatically reduced through the process. The railcars can be off-loaded rapidly and released back to the railroads. This also reduced or eliminated demurrage fees charged by the railroads for rail hopper cars that stood waiting to be off-loaded.
  • This prior process created an inexpensive storage solution, improved the efficiencies of the trans-loading process, added inventory visibility and controls, and reduced both truck and rail demurrage charges. However, it did have several limitations. For example, the twenty-foot ISO container, while capable of handling ninety thousand pounds of proppant, could not be transported legally over a public road. In most states, the maximum allowable total weight of a vehicle and its payload is eighty thousand pounds of gross vehicle weight in order to be considered a legal load. By law, any load that can be broken down by two units or more, in order to achieve a legal weight limit, must be divided into multiple loads. Since proppant is divisible, the law does not allow for heavy or over-weight loads.
  • The angle of repose of a granular material is the steepest angle of descent or dip of the slope relative to the horizontal plane when material on the slope face is on the verge of sliding. When bulk granular materials are poured onto a horizontal surface, a conical pile will form. The internal angle between the surface of the pile and the horizontal surface is known as the angle of repose and is related to the density, surface area and shape of the particles, and the coefficient of friction of the material. The angle of repose is also gravity-dependent.
  • When analyzing the angle of repose of proppant poured into a twenty-foot ISO container, it was evident that much of the volume of such a container was void. Specifically, the upper ends of twenty-foot ISO container could not be utilized without somehow manipulating or tilting the container as it was filled by a conveyor. Moreover, when emptying the container, by way of the original bottom hatch, the proppant would pour directly out of the bottom and leave a significant amount of material sitting on the floor of the container.
  • U.S. patent application Ser. No. 13/555,635, filed on Jul. 23, 2012 by the present inventor, is the parent of the present application. U.S. patent application Ser. No. 13/555,635 described a new generation of the container by taking the original twenty-foot ISO container and splitting it in half. As such, a ten foot ISO container was provided. By breaking the container into a ten foot configuration, it was determined that such a container could hold approximately 45,000-48,000 pounds of proppant. More importantly, the total gross vehicle weight of such a fully-loaded container could be legally transported over a public road. This was a major breakthrough. The container could be delivered to the wellhead in advance of a frac crew and eliminate sand deliveries during the fracturing process. Because all of the required proppant for any frac job could be delivered and stored on-site, such a ten-foot ISO container effectively eliminated the occurrence of trucking demurrage charges at the well-site. Also, the use of such a ten-foot container effectively eliminated the problems caused by the angle of repose of the proppant and allowed the volumetric capacity of such a ten-foot ISO container to be more fully utilized. It was found to be the optimal configuration, size, and cost for the process.
  • This prior application utilized an insert that is fabricated and welded within the interior of the ten-foot ISO container. The insert allowed the proppant, loaded through the top hatch, to fully flow out of a newly designed bottom flow-gate. The need to manipulate or tilt the container was eliminated. This ten-foot container could now be filled and emptied by using only gravity to do so.
  • In the past, various patents have issued relating to storage and transport facilities. For example, U.S. Patent Publication No. 2008/0179054, published on Jul. 31, 2008 to McGough et al., shows a bulk material storage and transportation system. In particular, the storage system is mounted on the trailer of a truck. The storage system includes walls that define an interior volume suitable for receiving the aggregate material therein. There are hoppers provided at the bottom of the container. These hoppers have inclined walls. The hoppers can extend so as to allow the material from the inside of the container to be properly conveyed to a location exterior of the container. Actuators are used so as to expand and collapse the container.
  • U.S. Pat. No. 7,240,681, issued on Jul. 10, 2007 to L. Saik, describes a trailer-mounted mobile apparatus for dewatering and recovering formation sand. The trailer is mounted to a truck-towable trailer so as to receive sand therein. The container has a pair of sloping end walls. The back end of the container is suitably openable so as to allow the sand to be removed therefrom. A pneumatic or hydraulic ram is provided on the forward part of the container so as to allow the container to be lifted angularly upwardly so as to allow sand to be discharged through the gate at the rear of the container.
  • U.S. Pat. No. 4,247,228, issued on Jan. 27, 1981 to Gray et al., describes a dump truck or trailer with a pneumatic conveyor. The container is mounted to a frame on wheels. A hydraulic ram tilts the container for dumping through a rear outlet. A pneumatic conveyor is carried by the frame with an intake at the rear of the container. A gate allows the solids to be dumped conventionally by gravity or to be blown to a storage facility by the pneumatic container. The container has a top hatch formed therein so as to allow the solids to be introduced into the interior of the container.
  • U.S. Pat. No. 2,865,521, issued on Dec. 23, 1958 to Fisher et al., shows a bulk material truck that has an interior volume suitable for the receipt of bulk material therein. A pneumatic conveyer is utilized so as to allow the removal of such material from the bottom of the container. A pair of sloping walls are provided on opposite sides of the container so as to allow the bulk material within the container to be passed toward the bottom of the container. A top hatch is provided on the top of the conveyer. The pneumatic conveyer is connected to the bottom of the container.
  • It is an object of the present invention to provide a support apparatus for moving proppant that allows proppant to be easily discharged from a container positioned on the support apparatus.
  • It is another object of the present invention to provide a support apparatus that allows proppant from the container to be easily conveyed to a desired location.
  • It is a further object of the present invention to provide a support apparatus which allows proppant to be selectively discharged from a container positioned on the support apparatus.
  • It is a further object of the present invention to provide a support apparatus which allows proppant from the container to be properly metered during the discharging onto the conveyor.
  • It is still another object of the present invention to provide a support apparatus that maximizes the ability to control the flow of proppant from the container for the purposes of metering the proppant onto the conveyor.
  • It is still another object of the present invention to provide a support apparatus that facilitates the ability to easily place a container upon a surface of the support apparatus.
  • It is still another object of the present invention to provide as support apparatus for a proppant-containing container which can be easily transported to a desired location.
  • It is also a further object of the present invention to provide a support apparatus which minimizes the requirements of actuators associated with the metering of proppant onto the conveyor.
  • These and other objects and advantages of the present invention will become apparent from a reading of the attached specification and appended claims.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention is a support for moving proppant from a container. The support apparatus comprises a frame having a surface for suitable for receiving a container thereon, a hopper affixed to the frame and having an opening at or adjacent to a lower end thereof, and a conveyor having a surface positioned below the opening of the hopper. The hopper is suitable for receiving proppant from the container. The surface of the conveyor is suitable for receiving the proppant from the hopper.
  • In the present invention, a receptacle is translatably positioned at the surface of the frame. An actuator is connected to the receptacle so as to move the receptacle between a first position and a second position. The first position is suitable for retaining the proppant in the container. The second position is suitable for discharging the proppant from the container into the hopper. The receptacle comprises a body having a slot opening at an upper end thereof. The body extends above the surface of the frame. In the preferred embodiment of the present invention, the receptacle includes a first receptacle positioned adjacent one side of the frame and a second receptacle positioned adjacent an opposite side of the frame.
  • The hopper includes a first side wall, a second side wall, a first end wall and a second end wall. The first end wall and the second end wall extend between the first side wall and the second side wall. The first and second side walls and the first and second end walls converge toward the opening of the hopper. The opening of the hopper, in the preferred embodiment of the present invention, has an inverted V-shaped configuration. The opening of the hopper has a plurality of slots extending thereacross. A solid portion is formed between adjacent pairs of the plurality of slots.
  • A metering gate is translatably positioned adjacent to the opening of the hopper. An actuator is connected to the metering gate so as to move the metering gate between a closed position and an open position. The closed position is suitable for retaining the proppant in the hopper. The open position is suitable for selectively releasing proppant from the hopper. The metering gate also has an inverted V-shaped configuration that is in mating relationship with the inverted V-shaped opening of the hopper. The metering gate has a plurality of slots extending thereacross with adjacent pairs of the plurality of slots of the metering gate having a solid portion therebetween. The solid portions of the metering gate are aligned with the plurality of slots of the opening of the hopper when the metering gate is in the closed position. The plurality of slots of the metering gate are aligned with a plurality of slots of the opening of the hopper when the metering gate is in the open position.
  • The conveyor has a portion extending outwardly beyond an end of the frame. The conveyor is suitable for discharging the proppant to a location outwardly of the frame. This portion of the conveyor angles upwardly beyond the end of the frame. A chute is positioned adjacent an end of the conveyor. The chute is directable toward a desired location.
  • The frame has at least a pair of pin connectors extending upwardly from the surface of the frame. The pin connectors are suitable for engaging respective receptacles formed in the container. The frame has at least a pair of wheels mounted thereto. The pair of wheels are suitable for allowing the frame to move along an underlying surface. The frame also has a hitch at an end thereof. This hitch is suitable for connecting the frame to a vehicle.
  • This foregoing section is intended to describe, with particularity, the preferred embodiments of the present invention. It is understood that modifications to these preferred embodiments can be made within the scope of the present invention. As such, this section should not be construed, in any way, as limiting of the true scope of the present invention. The present invention should only be limited by the following claims and their legal equivalents.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • FIG. 1 is a perspective view of the container in accordance with the preferred embodiment of the present invention.
  • FIG. 2 is a side elevational view of the container in accordance with the preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the container of the preferred embodiment of the present invention.
  • FIG. 4 is a plan view showing the interior of the container of the preferred embodiment of the present invention.
  • FIG. 5 is an isolated end view showing the support structure of the system of the preferred embodiment of the present invention.
  • FIG. 6 is a plan view of the support structure of the system of the present invention.
  • FIG. 7 is an end view showing the placement of the container upon the support structure in accordance with the preferred embodiment of the system of the present invention.
  • FIG. 8 is a side view of the container as place on the support structure in accordance with the preferred embodiment of the system of the present invention.
  • FIG. 9 is a side elevational view showing a plurality of containers as placed upon the support structure in accordance with the system of the preferred embodiment of the present invention.
  • FIG. 10 is a plan view showing a plurality of containers as placed upon the support structure in accordance with the preferred embodiment of the system of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, there is shown the container 10 in accordance with the preferred embodiment of the present invention. The container 10 is in the nature of a box 12 having an exterior frame 14. The box 12 includes a top 16, a bottom 18, an end wall 20 and a side wall 22. The side wall 24 is opposite to the side wall 22. There also an end wall 26 that is opposite to that of end wall 20. An inlet 28 is formed through the top 16 of the box 12. A hatch 30 is removably or hingedly affixed over the inlet 28 so as to allow proppant to be introduced into the interior volume of the container 10.
  • In FIG. 1, it can be seen that the frame 14 extends generally around the exterior of the end walls 20 and 26 and over the side walls 22 and 24. As such, as will be described hereinafter, there is a funnel-shaped bottom of the container that has exterior surfaces exposed through the frame 14. During the course of international shipment, it is important to avoid closed spaces within such a container. As such, the exposure of the surfaces through the openings 32 at the bottom of the frame 14 will allow inspectors to have visual access to the areas adjacent to this funnel-shaped area.
  • As can be seen in FIG. 2, the container 10 is illustrated as having the top 16 and the bottom 18. The frame 14 provides structural support for the container 10 and generally surrounds the exterior of the container. The frame is formed of a plurality of vertical bars that extend so as to form a cage-like configuration around the walls 20, 22, 24 and 26. The bottom 18 is generally of a planar shape so that the bottom 18 can be placed upon the support structure (to be described hereinafter). Importantly, the area 32 shows that the funnel-shaped portion 34 is exposed through the openings of the frame 14. As such, there will be no closed or sealed areas within the interior of the container 10. The hatch 30 is positioned over the inlet 28 at the top 16 of the container 10. As a result, the proppant can be introduced through the inlet 28 when the hatch 30 is opened so as to fill the interior volume of the container 10. The funnel-shaped area 34 defines an outlet 36 located at the bottom 18 of the container 10.
  • As can be seen in FIGS. 1 and 2, the container 10 is a ten-foot ISO container. In accordance with standard ISO terminology, this means that the container has a length of ten feet, a width of eight feet and a height of 8.5 feet. The height can also be 9.5 feet. This configuration allows between 43,000 and 48,000 pounds of proppant to be introduced into the interior volume of the container.
  • FIG. 3 shows a partial cross-sectional view of the container 10. It can be seen that the container 10 has an interior volume 38. The outlet 36 is formed adjacent to the bottom 18 of the container 10. A first ramp 40 will extend from the end wall 20 to the outlet 36. A second ramp 42 will extend from the end wall 22 to the outlet 36. The ramps 40 and 42 will serve to funnel the proppant that is retained within the interior volume 38 of the container 10 toward the outlet 36. Importantly, a gate 44 is positioned within a track 46 located at the bottom 18 of the container 10. The gate 44 is in the nature of flat plate which, as shown in FIG. 3, covers the outlet 36. The gate 44 includes a pin 48 (in the nature of king bolt) that extends outwardly from the gate 44. When an actuator is connected to the pin 48, it can move the gate 44 from the position closing the outlet 36 to a position opening the outlet 36. Arrow 50 shows the movement of the gate 44 between these positions. Since the gate 44 has a width that generally corresponds to the size of the outlet 36, the gate 44 will only need to move for a small amount of travel so as to move the gate 44 to the open position.
  • FIG. 4 is an interior view of the container 10. As can be seen, the first ramp 40 will extend from the end wall 20 to the outlet 36. The second ramp 42 extends from the end all 26 to the outlet 36. A third ramp 52 will extend from the side wall 22 to the outlet 36. Another ramp 54 will extend front the side wall 24 to the outlet 36. As such, the ramps 40, 42, 52 and 54 form the funnel-like shape so that the proppant that is received within the interior volume 38 of the container 10 can flow free downwardly toward the outlet 36.
  • In FIG. 4, it can be seen that the gate 44 is positioned within the track 46. FIG. 4 shows the gate 44 in its closed position. An actuator can be used so as to move the gate 44 from the position shown in FIG. 4 in a direction toward either the side wall 22 or the side wall 24. Pins 48 and 58 are illustrated as extending outwardly of the sides of the gate 44. As such, a suitable actuator, such as a hydraulic piston-and-cylinder arrangement, can be connected to these pins 48 and/or 50 so as to achieve the requisite movement of the gate 44 from the closed position to the open position.
  • FIG. 5 is an end view showing the support structure 60 as used in the proppant discharge system of the present invention. The support structure 60 has a frame 62 which forms a top surface 64, a bottom surface 66, and sides 68 and 70. The top 64 of the frame 62 has a surface upon which the container 10 can be placed. Suitable pin connections 72 and 74 extend upwardly from the top surface 64 so as to engage corresponding receptacles on the container 10. These pins 72 and 74 can be utilized so as to assure that the container 10 is properly positioned upon the support structure 60.
  • A receptacle 76 is positioned at or adjacent to the top surface 64. The actuator 78 is affixed to the frame 62 and extends to the receptacle 76. As can be seen, the receptacle 76 has a slot formed in the top end thereof. The slot of the receptacle 76 is suitable for receiving one of the pins 48 and 58 of the gate 44 of the container 10. Once the receptacle 76 receives the pin 48 therein, the actuator 78 can be actuated so as to move the receptacle (and its received pin) from the first position 80 to a second position 82. When the receptacle 82 (along with the pin received therein) is moved to the second position 82, the gate 44 will be opened so that the proppant can be discharged through the outlet 36 of the container 10. Since pins 48 and 58 are symmetrically placed, and since the container 10 is rather symmetrical, the support structure 60 is particularly adapted to the variety of orientations with the container 10 can be placed upon the top surface 64.
  • In FIG. 5, it can be seen that there is a hopper 84 that is positioned below the top surface 54. Hopper 84 serves to receive a portion of the proppant as discharged through the outlet 36 of the container 10 when the gate 44 is in the open position. As such, the hopper 84 can be utilized so as to properly meter the proppant onto the conveyor 86. Conveyor 86 is located below the opening 88 of the hopper 84.
  • As can be seen in FIG. 5, hopper 84 has an opening 88 of as generally inverted V-shaped configuration. There is a metering gate 90 that is mated with the opening 88 and also has a V-shaped configuration. The metering gate 90 can be moved a small distance so as to allow for the selected and controlled discharge of proppant from the hopper 84 onto the conveyor 86.
  • FIG. 6 shows the interior of the hopper 84. Hopper 84 includes side walls 92 and 94 and end walls 96 and 98. The walls 92, 94, 96 and 98 are formed into a funnel-like shape so as to move the proppant downwardly toward the metering gate 90. In FIG. 6, it can be seen that the opening 88 of the hopper 84 has a plurality of slots formed therein. Similarly, the metering gate 90 has a plurality of slots formed therethrough. The structures between the slots is solid. As such, when the slots of the metering gate 90 are aligned, with the slots of the opening 88, then proppant can be discharged onto the underlying conveyor 86. A small movement of the metering gate 90 in one direction or another, will block the flow of the proppant through the slots of the opening 88 of hopper 84. As such, very small actuators 100 and 102 can be used so as to achieve the proper metering of the proppant onto the conveyor. If a small flow rate of proppant is desired, then the actuators 100 and 102 will move the metering gate 90 only a small distance. If a greater flow rate is required, then the actuators 100 and 102 will move the metering gate 90 so that the slots of the metering gate 90 fully correspond with the slots of the opening 88 so as to achieve a maximum flow of proppant from the hopper 84 down to the conveyor.
  • FIG. 7 shows the container 10 as placed upon the top surface 64 of the support structure 60. In normal use, a forklift can be utilized so as to properly position the container 10 in a proper position upon the pins 72 and 74 of the support structure 60. Initially, the gate 44 of the container 10 will be closed. Additionally, the metering gate 90 can also be closed. When the container 10 is properly positioned, the gate 44 can be moved to an open position so that the proppant is discharged into the hopper 84. The hopper 84 can then be filled with proppant. When it is desired to move the proppant from the hopper 84, along the conveyor, to the desired destination, then the metering gate 90 can be opened so as to achieve the desired flow rate of proppant through the opening 88 of the hopper 84.
  • FIG. 8 shows a side view in which the container 10 is placed upon the top surface 64 of the support structure 60. The conveyor 86 is illustrated as extending longitudinally. As such, when the proppant passes through the metering gate 90 associated with the hopper 84, any proppant within the interior volume 38 of the container 10 can be delivered, in a controlled manner, onto the conveyor.
  • FIG. 9 is an illustration of containers 110, 112, 114 and 116 as placed upon the support structure 118. The support structure 118 has a sufficient length so as to accommodate the containers 110, 112, 114 and 116. It can be seen that the conveyor 20 is arranged beneath the top surface of the support structure 118 and below the respective hoppers 122, 124, 126 and 128 below the respective containers 110, 112, 114 and 116. The conveyor 120 is an endless conveyor that is suitably wound around sheaves and idlers so as to travel a desired path. The proppant that is discharged from the containers 110, 112, 114 and 116 is discharged onto the conveyor 120 so as to travel therealong and along upwardly extending section 130. The end 132 of the conveyor 120 will open to a chute 134. The chute 134 can be directed toward the desired purposes at the fracturing site. As such, the array of containers 110, 112, 114 and 116 can be configured so as to replace existing storage facilities at the fracturing site. The support structure 118, along with the conveyor 120, can be easily transportable by a truck upon a roadway because of the use of the wheels 136. The forward end 138 can be suitably connected to a truck so as to allow for the easy transport of the system of the present invention.
  • FIG. 10 illustrates the placement of the containers 110, 112, 114 and 116 upon the support structure 118. The end 138 includes a suitable hitch connection for attachment to a truck. The conveyor 120 extends below the containers 110, 112, 114 and 116 so as to deliver the proppant to the chute 134. FIG. 10 illustrates that the chute 134 is suitably pivotable in cooperation with the end 132 of the conveyor 120 so as to allow for the controlled and directed discharge of the proppant to the desired location.
  • The container 10 of the present invention is manufactured as a single unit. The gate 44 of the container 10 is specifically engineered to align with the actuator 70 located on the conveying system. The actuator is hydraulically controlled and accepts the pin 48 which is attached to the gate 44. When the actuator 70 is activated, the gate 44 moves horizontally so as to allow for the discharge of proppant therefrom.
  • The container of the present invention can be specifically applied for transport via rail. In particular, the railcar can be designed so as to accommodate up to four containers 10. As such, the railcar can carry approximately 180,000 pounds of proppant when the four containers are placed on the railcar. The railcar can be similar to current inter-modal railcars that carry twenty foot, forty foot and fifty-three foot inter-modal containers. The railcar would include typical inter-modal load-locks which are evenly spaced down to chassis of the railcar. The container should be constructed of materials wide enough to keep the overall loaded weight of the container under currently regulated railroad weight guidelines. Additionally, it must be strong enough to bear the load of the loaded container. This development allows sand mines to load proppant directly into a container 10 in order to speed up the loading process. It also eliminates the need to build a silo storage at the mine site. Once the container arrives at its designated location or region, trans-load processes to pneumatic trailers, silos or flat storage, are thus eliminated.
  • The present invention is an improved delivery system that can be used at the well-site. The support structure 60 includes a fabricated steel frame upon which multiple containers can be positioned. The containers lock into receptacles that secure the containers to the frame. The container will then sit above a conveying system that delivers the proppant from the container as the gate is opened to a master-conveying belt. The cradle is outfitted with a hydraulic system which can control the opening and closing of the gates. The containers of the present invention can be combined as an attachment or cartridge compatible with existing devices known as SAND KINGS™, SAND CHIEFS™ and SAND DRAGONS™. By replacing existing hoppers on these devices with the removable containers of the present invention, even greater efficiencies can be attained in the proppant delivery process.
  • The conveying system of the present invention is an alternative method of delivering proppant from the container to the blender belt for the mixing unit once delivered to the well-site. The conveying system of the present invention provides all of the functionality commonly seen in the SAND MASTER™, SAND KING™, SAND DRAGON™, SAND MOVE™, etc. As such, the present invention allows the flow of sand to be metered onto the conveyor belt through a hydraulic system of flow gates. The container is first lifted into position onto the support structure. The bottom flow gate is received by the receptacle of the hydraulic actuator so as to create a lock between the pin of the gate and the hydraulic system. The hydraulic system then opens the flow gate and the proppant so as to gravity-feed into a hopper located on the support structure. Another set of flow gates associated with the hopper system are then opened by way of another hydraulic system. This allows the proppant to be metered and to flow onto a conveyor belt. The conveyor belt can then deliver the proppant to the blender or the T-Belt. The proppant can then be mixed with other materials in the blender.
  • Currently, expensive pneumatic bulk trucks are utilized in the delivery of proppant to a well-site. Once on-site, the trucker employs a power take-off unit to “blow” the sand into the sand storage devices. This delivery often takes over one (1) hour to complete. By delivering sand to the well in the ten-foot containers of the present invention, the use of expensive pieces of specialized equipment are eliminated. The container can ride on a standard flatbed, step-deck, low-boy, or other more commonly-used trailer. As such, the process of the present invention is able to tap into a much larger universe of available trucking capacity. This can reduce the transportation costs to the well. While pneumatic trailer deliveries are priced in “round trip” miles, the delivery of the container of the present invention by a more common piece of equipment (capable of getting a “back-haul”) significantly reduces the overall transportation cost. As an example, there is a great need for parts, tools and other wellhead equipment to be taken off the well-site for repair or return to a manufacturer or rental company. The flatbed trailer, now empty, has the ability to accept that load while it is on-site rather than calling in another trucking company to provide that service. The reduced need for “hot-shot” service is another significant value to the service company and ultimately the exploration and production company.
  • In terms of returning empty containers to the sand distribution facilities, a total of four (4) empty containers can be returned by a single flatbed trailer. This provides a 4:1 level of efficiency in removing the containers from the well-site. Additionally, a forty foot container chassis will be used in the movement of both empty and full containers. The support structure, just like the containers, can be delivered to the well-site by a typical flatbed truck. The support structure could be towed via truck to the site in manner similar to any other trailer.
  • Another important advantage to the present invention is the small footprint that the ten-foot ISO containers of the present invention occupy relative to the capacity of sand that they can store. When the containers are stacked three high, the containers can store approximately 135,000 pounds in a footprint of eighty square feet. The available space at the wellhead, and in potential proppant trans-loading facilities, can be extremely limited. As such, the process of the present invention minimizes the footprint that is required for a given amount of proppant at such a location.
  • Since environmental and safety concerns surrounding well-site operations is becoming an increasing concern, the present invention minimizes the amount of particulate matter that is released into the air. Proppant is currently delivered to the frac site via pneumatic trailers. Pneumatic pressure is used to pressurize the trailer and then “blow” the material into a sand storage unit. This process creates an immense amount of particulate matter than can then be inhaled by personnel at the frac-site. Additionally, while blowing the sand into the sand storage facility, the sand storage facility must vent the pressurized air to the atmosphere. This creates an even greater exposure to particulate matter. The constant need to take delivery of proppant on-site creates a constant environment of dust and small particles in the air. Since the present invention eliminates pneumatic deliveries, the process of the present invention significantly reduces the amount of particulate matter on the frac-site. The gravity-feed delivery method from the container to the blender greatly improves the safety of well-site personnel.
  • The present invention also serves to reduce trucking emissions by reducing the amount of trucks that are being used or waiting. The safety at the wellhead is improved by reducing such truck traffic.
  • The present application is a continuation of U.S. application Ser. No. 13/768,962, filed Feb. 15, 2013, titled “Support Apparatus for Moving Proppant from a Container in a Proppant Discharge System,” which is a continuation-in-part of U.S. application Ser. No. 13/628,702, filed Sep. 27, 2012, titled “Proppant Discharge System and a Container for Use in Such a Proppant Discharge System,” which is a continuation-in-part of U.S. application Ser. No. 13/555,635, filed Jul. 23, 2012, titled “Proppant Discharge System Having a Container and the Process for Providing Proppant to a Well Site,” all of which are incorporated herein by reference in their entireties.
  • The foregoing disclosure and description of the invention is illustrative and explanatory thereof. Various changes in the details of the illustrated construction, or in the steps of the described method, can be made within the scope of the present invention without departing from the true spirit of the invention. The present invention should only be limited by the following claims and their legal equivalents.

Claims (3)

That claimed is:
1. A system to move proppant from a plurality of proppant containers, the system comprising:
a plurality of containers each having proppant stored therein, each of the plurality of containers having ramps to direct proppant through an opening at a bottom of the container when proppant is positioned in the container, the opening being covered by a gate that is movable between an open position that allows proppant to flow through the opening and a closed position that blocks proppant from flowing through the opening;
a frame having a surface positioned to receive a plurality of containers when positioned thereon, the frame including spaced apart rails forming at least a portion of the surface, a plurality of legs extending downwardly from respective corners of the frame, and open areas positioned between the legs to grant visual access to an area below the surface of the frame; and
one or more hoppers positioned below the surface and connected to the frame such that an inlet to each of the one or more hoppers is proximate the spaced apart rails, the one or more hoppers each including an opening adjacent a lower end thereof, the one or more hoppers being positioned to receive proppant from one or more of the plurality of containers when the one or more of the plurality of containers is positioned on the surface of the frame and the gate of the one or more of the plurality of containers is in the open position.
2. A system as defined in claim 1, further comprising a metering gate translatably positioned adjacent the opening of the one or more hoppers, and a metering gate actuator operably connected to the metering gate to move the metering gate between a closed position and an open position, the closed position being to retain proppant in the one or more hoppers, the open position being to selectively releasing proppant from the one or more hoppers.
3. The system as defined in claim 1, wherein the opening of the one or more hoppers includes a plurality of slots extending thereacross, adjacent pairs of the plurality of slots including a solid portion therebetween, the metering gate including a plurality of slots extending thereacross with adjacent pairs of the plurality of slots of the metering gate including a solid portion therebetween, the solid portions of the metering gate being aligned with the plurality of slots of the opening of the one or more hoppers when the metering gate is in the closed position, the plurality of slots of the metering gate being aligned with a plurality of slots of the opening of the one or more hoppers when the metering gate is in the open position.
US15/662,374 2012-07-23 2017-07-28 Support apparatus for moving proppant from a container in a proppant discharge system Abandoned US20170320684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/662,374 US20170320684A1 (en) 2012-07-23 2017-07-28 Support apparatus for moving proppant from a container in a proppant discharge system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/555,635 US9718610B2 (en) 2012-07-23 2012-07-23 Proppant discharge system having a container and the process for providing proppant to a well site
US13/628,702 US10464741B2 (en) 2012-07-23 2012-09-27 Proppant discharge system and a container for use in such a proppant discharge system
US13/768,962 US9771224B2 (en) 2012-07-23 2013-02-15 Support apparatus for moving proppant from a container in a proppant discharge system
US15/662,374 US20170320684A1 (en) 2012-07-23 2017-07-28 Support apparatus for moving proppant from a container in a proppant discharge system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/768,962 Continuation US9771224B2 (en) 2011-12-21 2013-02-15 Support apparatus for moving proppant from a container in a proppant discharge system

Publications (1)

Publication Number Publication Date
US20170320684A1 true US20170320684A1 (en) 2017-11-09

Family

ID=49945531

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/555,635 Active 2032-09-19 US9718610B2 (en) 2011-12-21 2012-07-23 Proppant discharge system having a container and the process for providing proppant to a well site
US13/768,962 Active 2032-08-19 US9771224B2 (en) 2011-12-21 2013-02-15 Support apparatus for moving proppant from a container in a proppant discharge system
US15/498,629 Active 2033-01-26 US10662006B2 (en) 2012-07-23 2017-04-27 Proppant discharge system having a container and the process for providing proppant to a well site
US15/662,374 Abandoned US20170320684A1 (en) 2012-07-23 2017-07-28 Support apparatus for moving proppant from a container in a proppant discharge system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US13/555,635 Active 2032-09-19 US9718610B2 (en) 2011-12-21 2012-07-23 Proppant discharge system having a container and the process for providing proppant to a well site
US13/768,962 Active 2032-08-19 US9771224B2 (en) 2011-12-21 2013-02-15 Support apparatus for moving proppant from a container in a proppant discharge system
US15/498,629 Active 2033-01-26 US10662006B2 (en) 2012-07-23 2017-04-27 Proppant discharge system having a container and the process for providing proppant to a well site

Country Status (1)

Country Link
US (4) US9718610B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486579B2 (en) 2018-02-20 2019-11-26 Kevin M. O'Neill Lightweight transport, storage and delivery system
US11104510B2 (en) 2018-02-20 2021-08-31 Kevin M. O'Neill Lightweight transport, storage, and delivery system

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538381B2 (en) 2011-09-23 2020-01-21 Sandbox Logistics, Llc Systems and methods for bulk material storage and/or transport
US10300830B2 (en) 2011-10-24 2019-05-28 Solaris Oilfield Site Services Operating Llc Storage and blending system for multi-component granular compositions
US10836568B2 (en) 2011-10-24 2020-11-17 Solaris Oilfield Site Services Operating Llc Blender hopper control system for multi-component granular compositions
US8926252B2 (en) * 2011-10-24 2015-01-06 Solaris Oilfield Site Services Operating Llc Fracture sand silo system and methods of deployment and retraction of same
USD703582S1 (en) 2013-05-17 2014-04-29 Joshua Oren Train car for proppant containers
US8622251B2 (en) 2011-12-21 2014-01-07 John OREN System of delivering and storing proppant for use at a well site and container for such proppant
US9718610B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US10464741B2 (en) 2012-07-23 2019-11-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US8827118B2 (en) 2011-12-21 2014-09-09 Oren Technologies, Llc Proppant storage vessel and assembly thereof
US9809381B2 (en) 2012-07-23 2017-11-07 Oren Technologies, Llc Apparatus for the transport and storage of proppant
US20130206415A1 (en) 2012-02-10 2013-08-15 SandCan Inc. Method and Apparatus for Modifying a Cargo Container to Deliver Sand to a Frac Site
US9309064B2 (en) 2012-02-10 2016-04-12 John M. Sheesley Belly-dump intermodal cargo container
US9790022B2 (en) 2012-02-10 2017-10-17 SandCan, Inc. Container to deliver bulk granular material
US9421899B2 (en) * 2014-02-07 2016-08-23 Oren Technologies, Llc Trailer-mounted proppant delivery system
US20190135535A9 (en) 2012-07-23 2019-05-09 Oren Technologies, Llc Cradle for proppant container having tapered box guides
US9340353B2 (en) 2012-09-27 2016-05-17 Oren Technologies, Llc Methods and systems to transfer proppant for fracking with reduced risk of production and release of silica dust at a well site
US20160031658A1 (en) * 2012-10-25 2016-02-04 Oren Technologies, Llc Proppant Discharge and Storage System
USD688772S1 (en) 2012-11-02 2013-08-27 John OREN Proppant vessel
USD688349S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel base
USD688351S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
USD688350S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
US20140286716A1 (en) * 2013-03-22 2014-09-25 Pinnacle Manufacturing, LLC Portable Materials Transportation System
US9446801B1 (en) 2013-04-01 2016-09-20 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
USD688597S1 (en) * 2013-04-05 2013-08-27 Joshua Oren Trailer for proppant containers
US9758082B2 (en) 2013-04-12 2017-09-12 Proppant Express Solutions, Llc Intermodal storage and transportation container
USD694670S1 (en) 2013-05-17 2013-12-03 Joshua Oren Trailer for proppant containers
US9428330B2 (en) 2014-04-11 2016-08-30 Double Crown Resources Inc. Interlocking container
US9963292B2 (en) 2014-06-19 2018-05-08 Scott Bromley Storage bin and method of use
US11873160B1 (en) 2014-07-24 2024-01-16 Sandbox Enterprises, Llc Systems and methods for remotely controlling proppant discharge system
US9670752B2 (en) 2014-09-15 2017-06-06 Oren Technologies, Llc System and method for delivering proppant to a blender
US9676554B2 (en) 2014-09-15 2017-06-13 Oren Technologies, Llc System and method for delivering proppant to a blender
CA2967291C (en) 2015-05-07 2019-04-16 Halliburton Energy Services, Inc. Container bulk material delivery system
USD747588S1 (en) * 2015-06-24 2016-01-12 SandCan, LLC Belly-dump intermodal cargo container
WO2017014768A1 (en) 2015-07-22 2017-01-26 Halliburton Energy Services, Inc. Mobile support structure for bulk material containers
US10569242B2 (en) 2015-07-22 2020-02-25 Halliburton Energy Services, Inc. Blender unit with integrated container support frame
US11203495B2 (en) 2015-11-25 2021-12-21 Halliburton Energy Services, Inc. Sequencing bulk material containers for continuous material usage
WO2017111968A1 (en) 2015-12-22 2017-06-29 Halliburton Energy Services, Inc. System and method for determining slurry sand concentration and continuous calibration of metering mechanisms for transferring same
EP3505471A1 (en) 2016-01-06 2019-07-03 Oren Technologies, LLC Conveyor with integrated dust collector system
USD783772S1 (en) * 2016-03-04 2017-04-11 Halliburton Energy Services, Inc. Soft-sided proppant container
USD780883S1 (en) * 2016-03-04 2017-03-07 Halliburton Energy Services, Inc. Rigid proppant container
USD783771S1 (en) * 2016-03-04 2017-04-11 Halliburton Energy Services, Inc. Soft-sided proppant container
CA3007350C (en) 2016-03-15 2020-06-23 Halliburton Energy Services, Inc. Mulling device and method for treating bulk material released from portable containers
US11273421B2 (en) 2016-03-24 2022-03-15 Halliburton Energy Services, Inc. Fluid management system for producing treatment fluid using containerized fluid additives
WO2017171797A1 (en) 2016-03-31 2017-10-05 Halliburton Energy Services, Inc. Loading and unloading of bulk material containers for on site blending
WO2017204786A1 (en) 2016-05-24 2017-11-30 Halliburton Energy Services, Inc. Containerized system for mixing dry additives with bulk material
US10518828B2 (en) 2016-06-03 2019-12-31 Oren Technologies, Llc Trailer assembly for transport of containers of proppant material
US10994954B2 (en) 2016-06-30 2021-05-04 Sandbox Enterprises, Llc Bulk material shipping container unloader
CA2945454C (en) 2016-06-30 2023-11-07 Arrows Up, Llc Bulk material shipping container
CA3024330C (en) 2016-07-21 2021-06-08 Halliburton Energy Services, Inc. Bulk material handling system for reduced dust, noise, and emissions
WO2018022064A1 (en) * 2016-07-28 2018-02-01 Halliburton Energy Services, Inc. Modular bulk material container
US11338260B2 (en) 2016-08-15 2022-05-24 Halliburton Energy Services, Inc. Vacuum particulate recovery systems for bulk material containers
US11066259B2 (en) 2016-08-24 2021-07-20 Halliburton Energy Services, Inc. Dust control systems for bulk material containers
WO2018038723A1 (en) * 2016-08-24 2018-03-01 Halliburton Energy Services, Inc. Dust control systems for discharge of bulk material
US10618744B2 (en) * 2016-09-07 2020-04-14 Proppant Express Solutions, Llc Box support frame for use with T-belt conveyor
WO2018101959A1 (en) 2016-12-02 2018-06-07 Halliburton Energy Services, Inc. Transportation trailer with space frame
US10836297B2 (en) * 2017-03-03 2020-11-17 The Modern Group, Ltd. Method for staging deliveries using roll-off containers
US10759595B2 (en) * 2017-03-03 2020-09-01 The Modern Group, Ltd. Roll-off transport barrel with gravity, vacuum, and pneumatic loading and unloading
CN108045816A (en) * 2017-11-24 2018-05-18 深圳市联润达集装箱管理服务有限公司 A kind of container storage case and the high warehousing system of container heap
WO2019112570A1 (en) * 2017-12-05 2019-06-13 Halliburton Energy Services, Inc. Loading and unloading of material containers
DE102018115613A1 (en) * 2018-06-28 2020-01-02 Bombardier Transportation Gmbh Traction vehicle and group of vehicles and method for operating a motor vehicle and group of vehicles
CA3109202A1 (en) * 2018-08-10 2020-02-13 Matthew Oehler Proppant dispensing system
US11661235B2 (en) 2018-10-15 2023-05-30 Sandbox Enterprises, Llc Bulk material shipping container top wall assembly and bulk material shipping container having a top wall assembly
US10926940B2 (en) 2018-11-20 2021-02-23 Sandbox Enterprises, Llc Bulk material shipping container
US11267663B2 (en) 2019-01-15 2022-03-08 Quickthree Technology, Llc Bottom dump pneumatic material handling system
WO2020150808A1 (en) 2019-01-22 2020-07-30 Westcap Ag Corp. Portable conveyor system including pivotable and extendable feed conveyors for feeding particulate material into an elevating assembly
US10759610B1 (en) 2019-05-03 2020-09-01 Sandbox Logistics, Llc Bulk material conveyor
US11173826B2 (en) 2019-06-12 2021-11-16 Sandbox Enterprises, Llc Bulk material shipping container trailer
US11661291B2 (en) 2019-10-31 2023-05-30 Sandbox Enterprises, Llc Support apparatus for proppant storage containers
CN111806329B (en) * 2020-04-17 2023-02-17 李巧庆 Fluidized cement soil conveyer
US11880804B1 (en) 2020-04-29 2024-01-23 Prop Sense Canada Ltd. System and method for automated inventory, transport, management, and storage control in hydraulic fracturing operations
US11760584B2 (en) 2020-07-14 2023-09-19 Quickthree Technology, Llc Flow control for bottom dump pneumatic material handling
CN112265806A (en) * 2020-11-03 2021-01-26 山东祺龙电子有限公司 High-viscosity material scale
CN112499289B (en) * 2020-11-20 2022-03-15 南京庚鼠科技有限公司 Powder unloader for machining
CN112643716B (en) * 2020-12-30 2021-12-21 常州捷仕特机器人科技有限公司 But self-lubricate's feed bin for robot
CN112978301A (en) * 2021-02-04 2021-06-18 陈伟 Auxiliary feeding equipment for elevator
CA3155282A1 (en) * 2021-04-15 2022-10-15 Rocky Mountain Investor Holdings, Inc. Reloadable containerized system for wet and dry proppants and methods of making and using same
CN113370870B (en) * 2021-06-24 2023-03-14 中车齐齐哈尔车辆有限公司 Vehicle with a steering wheel
CN114132643B (en) * 2021-11-30 2023-04-07 贵州电网有限责任公司 Energy storage container shell manufactured by adopting 3D printing technology
US11913317B2 (en) 2022-05-05 2024-02-27 Colton Willis Proppants processing system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109486A (en) * 1999-03-17 2000-08-29 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Dry sand pluviation device
US7252309B2 (en) * 2001-06-13 2007-08-07 Bee Kim Ong Containerised handling of bulk materials and apparatus therefor
US20130020641A1 (en) * 2010-03-16 2013-01-24 Sharp Kabushiki Kaisha Substrate for display panel, manufacturing method of same, display panel, and display device

Family Cites Families (618)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2603342A (en) 1952-07-15 Hopper discharge control
US137871A (en) 1873-04-15 Improvement in convertible freight-cars
US2563470A (en) 1951-08-07 Portable load supporting structure
US448238A (en) 1891-03-17 Automatic grain-meter
US150894A (en) 1874-05-12 Improvement in the methods of transferring grain
US384443A (en) 1888-06-12 Feed-regulator
US711632A (en) 1902-03-19 1902-10-21 Charles O Johnson Hopper-gate and operating mechanism therefor.
US710611A (en) 1902-06-14 1902-10-07 Edward S Lowry Chute-wagon.
US917649A (en) 1908-04-15 1909-04-06 Arthur D Otto Safety cartridge-loader.
US1143641A (en) 1914-08-10 1915-06-22 Alexander G Mcgregor Car.
US1344768A (en) 1918-12-12 1920-06-29 Electric Weighing Company Conveyer feed control
US1331883A (en) 1919-10-02 1920-02-24 Stuart Francis Lee Conveying system
US1520560A (en) 1920-03-30 1924-12-23 Joseph N Burno Dispensing apparatus
US1434488A (en) 1921-08-08 1922-11-07 John W Forsythe Bin gate
US1506936A (en) 1922-09-25 1924-09-02 Lea James Edward Apparatus for indicating and recording the rate of feed of granular materials
US1526527A (en) 1924-02-01 1925-02-17 Morgan R Butler Material-handling equipment
US1573664A (en) 1925-10-06 1926-02-16 Wetherill Richard Wayne Storage and reclaiming system
US1850000A (en) 1929-01-29 1932-03-15 Dauteuil Edouard Fernand Distributing apparatus for conical corks
US1807447A (en) 1929-03-02 1931-05-26 Smith William George Gravel spreader
US1973312A (en) 1931-04-28 1934-09-11 Hardinge Co Inc Continuous weighing apparatus
US1932320A (en) 1932-03-07 1933-10-24 Edgar C Stewart Bulk cement carrier
US2020628A (en) 1934-02-09 1935-11-12 Lcl Corp Means for handling pulverulent or granular material and the like
US2255448A (en) 1939-12-23 1941-09-09 Ohio Brass Co Dust collecting apparatus
US2233005A (en) 1940-04-30 1941-02-25 Leslie H Garlinghouse Portable self-supporting material handling hopper
US2385245A (en) 1941-01-14 1945-09-18 American Car & Foundry Co Railway hopper construction
US2293160A (en) 1941-08-14 1942-08-18 Du Pont Portable container for calcium carbide and the like
US2368672A (en) 1942-10-21 1945-02-06 Houdry Process Corp Apparatus for indicating and controlling the flow of solid materials
US2381103A (en) 1943-02-26 1945-08-07 Beardsley & Piper Co Portable hopper
US2413661A (en) 1945-02-28 1946-12-31 Stokes Charles Calvin Material handling construction
US2423879A (en) 1945-07-12 1947-07-15 Pennsylvania Furnace And Iron Bottom-fill truck tank
US2622771A (en) 1947-03-04 1952-12-23 Tulou Jean Container with pivoted bottom gate
US2812970A (en) 1949-02-26 1957-11-12 Johnson Co C S Gate operating mechanism for a concrete bucket
US2616758A (en) 1949-06-06 1952-11-04 Brogdex Co Vehicle construction for hauling bulk material
US2564020A (en) 1950-02-13 1951-08-14 William F Mengel Vehicle for hauling and dispensing material
US2670866A (en) 1950-03-13 1954-03-02 Glesby David Means for transporting bulk commodities
US2652174A (en) 1950-07-29 1953-09-15 Union Metal Mfg Co Tote box stack construction
US2693282A (en) 1951-07-24 1954-11-02 Jacob R Sensibar Hopper
US2791973A (en) 1952-01-04 1957-05-14 Entpr Railway Equipment Co Operating mechanism for sliding gate for a discharge outlet mounted on a load containing hopper of a railway car
US2700574A (en) 1952-02-27 1955-01-25 Tourneau Robert G Le Cable operated bottom gate for a hopper
US2678145A (en) 1952-05-22 1954-05-11 Avco Mfg Corp Hand operated fertilizer spreader
US2774515A (en) 1953-07-20 1956-12-18 Youngstown Steel Door Co Transportation containers for bulk materials
US2873036A (en) 1954-12-16 1959-02-10 Jack D Noble Portable batching plant
US2792262A (en) 1955-04-08 1957-05-14 Halliburton Oil Well Cementing Pneumatically discharged vessel for pulverulent materials
US2801125A (en) 1955-10-12 1957-07-30 Delta Tank Mfg Company Inc Container
US2837369A (en) 1955-11-07 1958-06-03 Stopps Alfred Leslie Bottom opening bin
US2808164A (en) 1956-01-19 1957-10-01 Amalgamated Limestone Corp Ltd Transportable bin or container
US2894666A (en) 1956-03-05 1959-07-14 Jr Claude N Campbell Bulk dispensing container
US2865521A (en) 1957-06-06 1958-12-23 Sprout Waldron & Co Inc Bulk material truck
US2988235A (en) 1957-12-04 1961-06-13 Koehring Co Portable batching apparatus
US3083879A (en) 1958-03-24 1963-04-02 Clarence B Coleman Dispensing bin
US3109389A (en) 1958-11-05 1963-11-05 Svenska Jarnvagsverkst Erna Ab Hopper car pivoted closure latching mechanism
US3049248A (en) 1959-01-08 1962-08-14 Heltzel Steel Form And Iron Co Portable batching plant
US3090527A (en) 1959-04-13 1963-05-21 Joseph T Rensch Truck mounted hopper
US2994460A (en) 1959-06-24 1961-08-01 Max A Matthews Blending hopper
US3122258A (en) 1959-08-31 1964-02-25 Shile Raymond Collapsible stacking material handling devices
GB1000621A (en) 1960-02-16 1965-08-11 Pullman Inc A freight container transporting railroad
US3041113A (en) 1960-05-02 1962-06-26 Sackett & Sons Co A J Elevator dust control apparatus
NL262123A (en) 1960-06-15
US3187684A (en) 1961-03-06 1965-06-08 Ortner Freight Car Co Rapid discharge hopper car
US3064832A (en) 1962-04-05 1962-11-20 Robert E Heltzel Mobile batching plant
US3134606A (en) 1962-05-02 1964-05-26 Otto I Oyler Trailer construction
US3135432A (en) 1962-12-31 1964-06-02 Hoover Ball & Bearing Co Discharge apparatus for bins
US3199585A (en) 1963-03-13 1965-08-10 Dow Chemican Company Well treating method
US3270921A (en) 1963-12-13 1966-09-06 Styron Beggs Res Corp Unloading system for bulk material bins
US3281006A (en) 1964-01-06 1966-10-25 Wei Tohchung Combined partitioned food vessels
US3198494A (en) 1964-03-27 1965-08-03 Curran Mobile batching apparatus
US3265443A (en) 1964-03-30 1966-08-09 Triangle Co Portable overhead bin with trailer
US3294306A (en) 1964-05-18 1966-12-27 Ind Packaging Specialists Palletized shipping container
US3248026A (en) 1964-07-29 1966-04-26 Acf Ind Inc Hopper structure for pneumatically unloading bulk materials
US3353599A (en) 1964-08-04 1967-11-21 Gulf Oil Corp Method and apparatus for stabilizing formations
US3318473A (en) 1964-08-11 1967-05-09 Benjamin D Jones Portable dispensing bin
US3255927A (en) 1964-10-05 1966-06-14 Us Bulk Handling And Container Collapsible container
US3326572A (en) 1965-08-02 1967-06-20 Harley W Murray Detachable goose neck trailer
US3385478A (en) 1965-10-23 1968-05-28 Miller Fertilizer plant
US3396675A (en) 1966-02-17 1968-08-13 Acf Ind Inc Dual hopper outlet closure structure
US3354918A (en) 1966-02-21 1967-11-28 Clarence B Coleman Bin and unloading stand
US3378152A (en) 1966-02-24 1968-04-16 Guy F Aktinson Company Truck unloader
US3406995A (en) 1966-07-13 1968-10-22 Norco Inc Releasable catch for equipment
US3407971A (en) 1966-08-15 1968-10-29 Oehler S Welding And Fabricati Bulk container
FR1532254A (en) 1966-08-19 1968-07-12 Large frame container
US3343688A (en) 1966-09-06 1967-09-26 Harsco Corp Mobile concrete batching unit
US3387570A (en) 1966-09-22 1968-06-11 Acf Ind Inc Sequential hopper gate operating mechanism
US3397654A (en) 1967-02-10 1968-08-20 Acf Ind Inc Sliding hopper gate operating mechanism
US3425599A (en) 1967-03-02 1969-02-04 Int Harvester Co Gravity type fertilizer spreader
US3486787A (en) 1967-10-09 1969-12-30 Trailco Mfg & Sales Co Retractable lock
US3455474A (en) 1967-11-13 1969-07-15 Vito J Truncali Self-loading bin trailer
GB1248035A (en) 1968-01-03 1971-09-29 Alcoa Container Syst Improvements in or relating to containers for materials in bulk
SE347936B (en) 1968-02-27 1972-08-21 Westerwaelder Eisenwerk P Gerh
US3508762A (en) 1968-03-22 1970-04-28 Clark Equipment Co Container chassis
US3561633A (en) 1968-06-05 1971-02-09 Morrison Ind Inc Container
US3528570A (en) 1968-07-18 1970-09-15 Pase Progressive Ind Inc Apparatus for unloading bulk material
US3524567A (en) 1968-09-23 1970-08-18 Fabricated Metals Storage container having a sliding closure
US3476270A (en) 1968-10-09 1969-11-04 Aggregate Plant Products Co Mobile concrete batching plant
US3587834A (en) 1969-01-07 1971-06-28 Acf Ind Inc Unloading structure for a covered hopper railway car
US3854612A (en) 1969-01-15 1974-12-17 Bulk Unit Load Syst Ltd Container discharge systems
US3601244A (en) 1969-06-30 1971-08-24 Exxon Research Engineering Co Combination stockpiler reclaimer
US3596609A (en) 1969-08-13 1971-08-03 Ortner Freight Car Co Rapid discharge hopper car door actuator
US3653521A (en) 1969-11-10 1972-04-04 John Bridge System and apparatus for holding freight containers of vehicles and the like
US3650567A (en) 1969-11-14 1972-03-21 Miner Enterprises Hopper outlet assembly
CH510577A (en) 1970-02-06 1971-07-31 Buehler Ag Geb Silo discharge device
US3777909A (en) 1970-03-11 1973-12-11 Standard Havens Systems Inc Apparatus for loading hotmix in a surge bin
GB1296736A (en) 1970-10-02 1972-11-15
US3721199A (en) 1970-11-16 1973-03-20 Amsted Ind Inc Articulated container car
US3729121A (en) 1971-02-08 1973-04-24 R Cannon Bottom discharge bin and dust tight unloading station therefor
US3738511A (en) 1971-03-12 1973-06-12 Pacific Car & Foundry Co Convertible railway hopper car
US3692363A (en) 1971-05-18 1972-09-19 Strick Corp Convertible vehicle body and auxiliaries
US3704797A (en) 1971-05-24 1972-12-05 Borg Warner Canada Ltd Bulk material discharging arrangement
US3752511A (en) 1971-06-04 1973-08-14 Line Fast Corp Container coupler
SE356460B (en) 1971-06-23 1973-05-28 Roebaecks Mekaniska Verkstad
JPS5413693B2 (en) 1971-12-28 1979-06-01
JPS4876041A (en) 1972-01-17 1973-10-13
US3802584A (en) 1972-02-18 1974-04-09 Sackett & Sons Co A J Conveyor system
FR2173445A5 (en) 1972-02-21 1973-10-05 Pilloud Michel
NL7305209A (en) 1972-04-17 1973-10-19
US3734215A (en) 1972-05-02 1973-05-22 Great Western Sugar Co Continuous flow scale with alternating volumetric measuring and weighing chambers
US3817261A (en) 1972-05-09 1974-06-18 L Rogge Grain moisturizer
US3785534A (en) 1972-07-14 1974-01-15 Cincinnati Milacron Inc Dispensing shipping container with funnel-type pallet
US3827578A (en) 1972-09-25 1974-08-06 R Hough Rotary grain distribution system
US3800712A (en) 1972-09-29 1974-04-02 Acf Ind Inc Railroad car for transporting containers
US3883005A (en) 1973-02-08 1975-05-13 Robert K Stevens Transportable storage containers
US3861716A (en) 1973-04-30 1975-01-21 Binkley Co Platform lift transporter
US3909223A (en) 1973-05-15 1975-09-30 Gfe Ges Fur Entstaubungstechni Dust extraction equipment for bulk material handling installations
US3904105A (en) 1973-10-18 1975-09-09 Olinkraft Inc Bulk material container
US3913933A (en) 1973-12-17 1975-10-21 Clark Equipment Co Adjustable vehicle frame
US3970123A (en) 1974-05-13 1976-07-20 Simon-Barron Limited Handling of materials
US3933100A (en) 1974-07-31 1976-01-20 Acf Industries, Incorporated Hopper gate actuating mechanism
NL7505061A (en) 1974-11-14 1976-11-02 Akzo Nv IMPROVEMENT OF A TRANSPORTABLE HOLDER WITH A BAG FOR DISPOSABLE MATERIAL.
US4057153A (en) 1974-11-25 1977-11-08 Weaver Richard L Silo center discharge mechanism
US3963149A (en) 1975-01-31 1976-06-15 Fassauer Industries, Inc. Granular material conveyor
US3997089A (en) 1975-03-24 1976-12-14 Florig Equipment Company, Inc. Sealing hopper closure assembly
US3986708A (en) 1975-06-23 1976-10-19 Heltzel Company Mobile batching plant
US4003301A (en) 1975-11-10 1977-01-18 Titan Trailer Corporation Vacuum relief system for tarpaulin covered hopper trailers
US4138163A (en) 1975-11-26 1979-02-06 Union Carbide Corporation Bulk material containers
US4004700A (en) 1975-12-22 1977-01-25 Allis-Chalmers Corporation Hopper gate for self-unloading ships
US4105143A (en) 1976-02-05 1978-08-08 Pohlig-Heckelbleichert Vereinigte Maschinenfabriken Aktiengesellschaft Device for discharging bulk material
US4058239A (en) 1976-03-08 1977-11-15 Work Horse Manufacturing Co. Gravity feed box
US3999290A (en) 1976-03-15 1976-12-28 Wood Jess W Safety knife
US4210963A (en) 1976-04-19 1980-07-01 Angelo Ferrara Weigh feeder system
US4063656A (en) 1976-06-24 1977-12-20 Rexnord Inc. System and apparatus for moving and unloading articles
US4282988A (en) 1976-08-13 1981-08-11 Burch I. Williams Apparatus for facilitating flow of solid particles by gravity through a container having an opening in the bottom thereof
US4073410A (en) 1976-09-08 1978-02-14 Melcher Herbert R Construction filler material dispensing apparatus
GB1572578A (en) 1977-02-18 1980-07-30 Winget Ltd Mixing means
US4125195A (en) 1977-03-23 1978-11-14 Edc Inc. Dry rock loading spout system
US4329106A (en) 1978-01-23 1982-05-11 Adler Franklin P Hopper car discharge gate operating mechanism
US4178117A (en) 1978-02-02 1979-12-11 Heltzel Company Mobile side-by-side batching plant
ES479981A1 (en) 1978-05-18 1979-11-16 Demag Ag Mannesmann Mobile delivery flow equalizer
US4280640A (en) 1978-06-22 1981-07-28 Pennsylvania Pacific Corporation Integral double-wall container
US4232884A (en) 1978-08-24 1980-11-11 Dewitt Merl Lightweight trailer bed construction
US4227732A (en) 1978-11-24 1980-10-14 Kish Gerald J Pneumatically operated gate for hopper bottoms for bulk handling equipment
USRE30358E (en) 1978-11-24 1980-08-05 David Sensibar, Irrevocable Trust Hopper valve module for hopper dredge
US4258953A (en) 1978-11-29 1981-03-31 Johnson Ronald D Dry bulk hopper having an improved slope sheet
US4222498A (en) 1979-01-17 1980-09-16 Astec Industries, Inc. Control system for aggregate delivery system
GB2041772B (en) 1979-02-02 1982-11-17 Coal Industry Patents Ltd Apparatus for mixing powdered or particulate material with a liquid
DE2906353C3 (en) 1979-02-19 1983-02-03 Gebrüder Bühler AG, 9240 Uzwil Process and filter control system for cyclical counter-flushing of membrane valve-operated filter bags
US4210273A (en) 1979-02-22 1980-07-01 Inland Container Corporation Bottom-unloading bulk container
US4247370A (en) 1979-03-12 1981-01-27 Envirotech Corporation Coke oven fumes control system
US4247228A (en) 1979-04-02 1981-01-27 Morton E. Gray Dump truck or trailer with pneumatic conveyor
DE7909924U1 (en) 1979-04-05 1979-07-19 Rhein Conti Kunststoff Tech Pallet container
US4289353A (en) 1979-05-07 1981-09-15 Merritt Jackie A Combination belly dump/end dump vehicle
BE876438A (en) 1979-05-22 1979-11-22 Caroloregienne De Cokefaction UNLOADING PLANT FOR TREMIES AND SIMILAR WAGONS
US4287921A (en) 1979-06-05 1981-09-08 Sanford Robert B Canister set
US4245820A (en) 1979-07-20 1981-01-20 Wheeling-Pittsburgh Steel Corporation Pipe curtain for pollution control hood
US4239424A (en) 1979-07-25 1980-12-16 Pullman Incorporated Method and apparatus for distribution of granular material in a railway hopper car
US4363396A (en) 1979-08-20 1982-12-14 Helmut Wolf Device for building-up and discharging an annular dump of bulk material
GB2066220A (en) 1979-12-06 1981-07-08 Williamson K E Improvements in or relating to the dispensing of free-flowing material
US4278190A (en) 1980-01-07 1981-07-14 Rotec Industries, Inc. Concrete discharge hopper
US4410106A (en) 1980-01-23 1983-10-18 Halliburton Company Additive material metering system with pneumatic discharge
US4427133A (en) 1980-01-23 1984-01-24 Halliburton Company Additive material metering system with weighing means
US4265266A (en) 1980-01-23 1981-05-05 Halliburton Company Controlled additive metering system
US4287997A (en) 1980-01-29 1981-09-08 Rolfe Keith O Container for transported goods
US4306895A (en) 1980-01-31 1981-12-22 Dravo Corporation Coal stacking tower dust control system
US4407202A (en) 1980-04-03 1983-10-04 Mccormick Dennis L Hydraulically actuated railway car dumping system
US4395052A (en) 1980-04-03 1983-07-26 Proco, Inc. Uranium slurry hauling system
SE422607B (en) 1980-08-01 1982-03-15 Karl Gunnar Ohlson PROCEDURE AND DEVICE FOR BATTLE PREPARATION OF COATING PASS CONTAINING STONE MATERIAL AND BITUMEN BINDING AGENTS
DE3032559C2 (en) 1980-08-29 1982-10-07 Fried. Krupp Gmbh, 4300 Essen Movable belt conveyors, in particular apron belt conveyors for crushing plants
US4359176A (en) 1980-09-19 1982-11-16 Johnson Grady L Powered hopper door
AU544720B2 (en) 1980-10-09 1985-06-13 Semenenko, I. Controlling discharge from silo
JPS6011975B2 (en) 1980-11-25 1985-03-29 積水化成品工業株式会社 Method for manufacturing polyolefin resin foam sheet
FR2497504A1 (en) 1981-01-05 1982-07-09 Lafarge Conseils INSTALLATION FOR LOADING TRUCKS WITH BULK MATERIAL CONTAINED IN A SILO OR THE LIKE
DE3108121C2 (en) 1981-02-27 1986-04-10 Schweizerische Aluminium Ag, Chippis Device for the metered supply of clay
IT1147157B (en) 1981-04-30 1986-11-19 Sasib Spa REGULATOR DEVICE TO REGULATE TRENCHED TOBACCO RECIRCULATED TO THE DISTRIBUTOR OF A CIGARETTE PACKER
US4660733A (en) 1981-06-08 1987-04-28 Snyder Industries, Inc. Cone bottom tank and liftable tank support
US4397406A (en) 1981-06-26 1983-08-09 Willamette Industries, Inc. Knocked-down drum-like fiberboard container for bulk material with funnel-like dispensing bottom
NL8105283A (en) 1981-11-23 1983-06-16 Estel Hoogovens Bv Sack opening and emptying system - cuts along slot between table halves then swung into vertical position
US4428504A (en) 1981-12-02 1984-01-31 American Steamship Company Dual-function cargo discharge apparatus
US4608931A (en) 1981-12-03 1986-09-02 Acf Industries, Incorporated Filament wound railway hopper car
US4478155A (en) 1981-12-22 1984-10-23 Atchison, Topeka And Santa Fe Railway Company Railway container and car
US4449861A (en) 1982-02-09 1984-05-22 Q.P. Corporation System for transporting plastics articles
US4398653A (en) 1982-02-25 1983-08-16 Pennsylvania Pacific Corporation Portable storage and dispenser plastic hopper with plastic base
US4552573A (en) 1982-03-12 1985-11-12 Cargill Incorporated Dust suppressor apparatus
JPS58161888A (en) 1982-03-19 1983-09-26 動力炉・核燃料開発事業団 Failed fuel position detecti
US4475672A (en) 1982-07-06 1984-10-09 Whitehead Jerald M Hopper discharge device
US4483462A (en) 1982-07-07 1984-11-20 Texas Industries, Inc. Water guard
US4741273A (en) 1982-08-16 1988-05-03 Sherwood Clyde L Rail semi-trailer and releasable coupler
LU84481A1 (en) 1982-11-19 1984-06-13 Wurth Paul Sa PROTECTIVE DEVICE FOR PAN LID
JPS59177164A (en) 1983-03-21 1984-10-06 ジ−グフリ−ト・フライ Method and apparatus for adhering strip-shaped powder layer onto welded seam of cylindrical can body
US4534869A (en) 1983-05-09 1985-08-13 Seibert Darrel L Portable water filtration system for oil well fractionation
US4474204A (en) 1983-07-22 1984-10-02 The Western Company Of North America Delivery and metering device control system
DE3342281A1 (en) 1983-11-23 1985-06-05 Drehtainer Container-Technik GmbH & Co, 2000 Hamburg Container with a loading space for piece goods and bulk material
US4570967A (en) 1983-11-25 1986-02-18 Fred Allnutt Extendible trailer system
US4532098A (en) 1983-12-02 1985-07-30 Campbell Clarence R Method for fabricating non-linear side wall conveyor belting
US4569394A (en) 1984-02-29 1986-02-11 Hughes Tool Company Method and apparatus for increasing the concentration of proppant in well stimulation techniques
US4571143A (en) 1984-04-12 1986-02-18 Hellerich Gary L Means for transporting and delivering dry chemicals
US4525071A (en) 1984-05-31 1985-06-25 Crawford & Russell, Inc. Additive inventory control, batching and delivery system
US4628825A (en) 1984-06-27 1986-12-16 American Autogate Corporation Sliding gate actuating mechanism
DE3427086C1 (en) 1984-07-19 1986-04-10 Mannesmann AG, 4000 Düsseldorf Metallurgical vessel
IT1177081B (en) 1984-10-30 1987-08-26 Vitreal Specchi Spa APPARATUS FOR ENGRAVING IN CONTINUOUS ACID ON A FACE OF GLASS SHEETS
US4619531A (en) 1984-11-15 1986-10-28 Dunstan & Partners Pty. Ltd. Batching plant
US4701095A (en) 1984-12-28 1987-10-20 Halliburton Company Transportable material conveying apparatus
US4714010A (en) 1985-04-12 1987-12-22 Cm & E/California, Inc. Industrial exhaust ventilation system
US4639015A (en) 1985-08-19 1987-01-27 Pitts John A Z-neck, T-bar trailer
US4946068A (en) 1985-09-30 1990-08-07 Amoco Corporation Fresh catalyst container
US4626166A (en) 1985-11-06 1986-12-02 Jolly Arthur E Method for the placement of a trailer-mounted sand hopper
GB2182907B (en) 1985-11-18 1989-10-04 Hydraroll Ltd Mechanical handling apparatus
FI854653A (en) 1985-11-25 1987-05-26 Tarmo Koskinen TRANSPORTERINGSBEHAOLLARE FOER TRANSPORTERING AV BULK-MATERIAL.
CH667057A5 (en) 1985-12-05 1988-09-15 Ipatec Sa DEVICE FOR VACUUM FILLING OF CONTAINERS AND METHOD FOR ACTIVATING IT.
US4626155A (en) 1986-01-13 1986-12-02 Maclean-Fogg Company Automatic container securement device with a spring biased, cam surfaced head
US4761039A (en) 1986-03-07 1988-08-02 Hydro-Ergon Corporation Cutting head for removing material with a high velocity jet of working liquid
US4715754A (en) 1986-06-18 1987-12-29 The United States Of America As Represented By The Secretary Of The Army Tiedown assembly
US5102286A (en) 1986-09-18 1992-04-07 Fenton E Dale Trailer and trailer unloading system
US4738774A (en) 1986-10-10 1988-04-19 Patrick Charles W Spout line buster
US4724976A (en) 1987-01-12 1988-02-16 Lee Alfredo A Collapsible container
US4889219A (en) 1987-03-16 1989-12-26 Key Ted G Method and apparatus for the receiving of carbon black pellets for weighing prior to injection into a mixer which inhibits the accumulation of carbon black fines on internal surfaces
US4779751A (en) 1987-04-06 1988-10-25 Thomas Munroe Knock-down containers, container fastening system and elements thereof
US5224635A (en) 1987-04-08 1993-07-06 Plastech International Inc. Mobile pharmaceutical hopper
US4848605A (en) 1987-04-08 1989-07-18 Plastech International Inc. Mobile pharmaceutical hopper
AT389342B (en) 1987-04-09 1989-11-27 Voest Alpine Ag OVEN HALL WITH A HOUSING FOR A METALLURGICAL TANK
GB8711130D0 (en) 1987-05-12 1987-06-17 Bruce J P Batching apparatus
US4801389A (en) 1987-08-03 1989-01-31 Dowell Schlumberger Incorporated High temperature guar-based fracturing fluid
US4882784A (en) 1987-11-04 1989-11-21 Moksnes Manufacturing Co., Inc. Loss-in-weight feeder system
US4923358A (en) 1987-08-13 1990-05-08 Unverferth Manufacturing Co., Inc. Portable cart with angular discharge auger
US4947760A (en) 1987-10-19 1990-08-14 Trailer Train Company Articulated flat car
US4917019A (en) 1987-10-28 1990-04-17 Trinity Industries, Inc. Railway freight car
FR2625146B1 (en) 1987-12-23 1990-06-08 Ermont Cm AGGREGATE STORAGE AND HANDLING DEVICE FOR CONSTRUCTION SITES
US4819830A (en) 1988-02-11 1989-04-11 Salco Products Incorporated Vented hatch cover
US4836735A (en) 1988-03-11 1989-06-06 Xtra Corporation Load positioning container chassis
IT1219384B (en) 1988-06-17 1990-05-11 Pier Carlo Biginelli METALLIC PAINTING PROCEDURE OF ARTIFACTS AND EQUIPMENT FOR ITS IMPLEMENTATION
US4954975A (en) 1988-08-10 1990-09-04 K-Tron International, Inc. Weigh feeding system with self-tuning stochastic control and weight and actuator measurements
US5028002A (en) 1988-09-05 1991-07-02 Drw Engineering Pty. Ltd. Cross-flow spray assembly
CN2037354U (en) 1988-09-22 1989-05-10 江成鑫 Bulk cement container
US4919583A (en) 1988-10-03 1990-04-24 Speakman Jr William J Trailer
US4901649A (en) 1988-12-01 1990-02-20 Thrall Car Manufacturing Company Span bolster assembly
FR2640598A1 (en) 1988-12-16 1990-06-22 Constantin Pierre Device for closing orifices for transferring a product, in particular from one container to another
DE3926558A1 (en) 1989-01-12 1990-07-26 Orenstein & Koppel Ag DEVICE FOR MONITORING CONVEYOR BELTS
ZA898556B (en) 1989-03-15 1990-08-29 Fourie Johannes J Collapsible container
US5004400A (en) 1989-04-13 1991-04-02 Halliburton Company Automatic rate matching system
US5195861A (en) 1989-04-13 1993-03-23 Halliburton Company Automatic rate matching system
US5102281A (en) 1989-04-13 1992-04-07 Halliburton Company Automatic rate matching system
US4995522A (en) 1989-04-24 1991-02-26 Barr Fraser M Bottom dumping bulk container apparatus
US4975205A (en) 1989-05-03 1990-12-04 Subaqueous Services, Inc. Apparatus and method for receiving, draining and disposing of dredged material
US4964243A (en) 1989-07-10 1990-10-23 Reiter John P Vacuum pole sander
US4949714A (en) 1989-07-26 1990-08-21 Viratek Inc. Scavenging medical hood
US4988115A (en) 1989-07-31 1991-01-29 Steinke Charles W Undercarriages
US4956821A (en) 1989-10-12 1990-09-11 Fenelon Terrance P Silo and delivery system for premixed dry mortar blends to batch mixers
JPH03221669A (en) 1989-10-19 1991-09-30 Hokkaido Pipe Rain Kogyo Kk Method and device for removing asbestos blowed
US5069352A (en) 1989-10-31 1991-12-03 Union Oil Company Of California Transportable cargo container
CN2059909U (en) 1989-11-29 1990-08-01 江成鑫 Repeatedly used container for powder and granular bulk materials
US6422413B1 (en) 1989-12-19 2002-07-23 William Y. Hall Tank vault
US5042538A (en) 1990-02-07 1991-08-27 Custom Metalcraft Inc. Slide gate and dust cover operator and seal assembly
JPH04115809U (en) 1990-05-09 1992-10-15 株式会社エレツツ Conveyor device with moving partition plate
US5082304A (en) 1990-06-05 1992-01-21 Sea-Land Service, Inc. Twenty foot container transporter
CN2075632U (en) 1990-07-13 1991-04-24 朱珍兴 Self unloading bulk cement container
GB9017323D0 (en) 1990-08-07 1990-09-19 Rig Technology Ltd Bag valve
CA2023138A1 (en) 1990-08-10 1992-02-11 Mihail I. Marcu Overland pipeline conveyors
US5105858A (en) 1990-11-19 1992-04-21 Levinson Lionel R Water dispenser bottle
US5036979A (en) 1990-12-21 1991-08-06 Selz John C Collapsible container
US5080259A (en) 1991-01-03 1992-01-14 Robert Hadley Portable container with automatic discharge capability
JP2948678B2 (en) 1991-04-24 1999-09-13 玄々化学工業株式会社 Vacuum coating equipment
DE4116331C2 (en) 1991-05-17 1994-07-07 Schenck Ag Carl Dosing device for bulk goods and liquids
DE4117159C2 (en) 1991-05-25 1993-10-14 Sotralentz Sa Transport and / or storage containers
GB9115905D0 (en) 1991-07-23 1991-09-04 Material Control Eng Ltd Material handling apparatus
EP0555451A1 (en) 1991-09-02 1993-08-18 Ladislav Stephan Karpisek Openable container base
WO1993006031A1 (en) 1991-09-25 1993-04-01 Consilium Cmh Ab Device for opening a door of a container
FR2682069A1 (en) 1991-10-08 1993-04-09 Faivre Jacques TURRET FOR A MATERIAL TRANSPORT VEHICLE AND TELESCOPIC CONVEYOR MOUNTED ON SUCH A TURRET.
US5201546A (en) 1991-10-11 1993-04-13 Lindsay Industries, Inc. Towable floor frame assembly
DE4217329A1 (en) 1991-11-19 1993-05-27 Robert Eith Silo for loose flowable materials - has separate silo container for connecting onto separate underframe
US5320046A (en) 1992-01-22 1994-06-14 Trinity Industries, Inc. Low profile railway car
US5199826A (en) 1992-02-14 1993-04-06 Lawrence James C Pump unloading trailer container for powdered bulk material
FR2693140B1 (en) 1992-07-03 1994-09-23 Solomat Sa Installation of scrap cutting by flame cutting.
US5190182A (en) 1992-03-13 1993-03-02 Hoechst Celanese Corporation Slide gate
DE4211396A1 (en) 1992-04-04 1993-10-07 Bock Norman Reusable packaging for flowable and / or free-flowing bulk goods
US5324097A (en) 1992-04-21 1994-06-28 Decap Camille Bottom dump trailer
US5290139A (en) 1992-05-29 1994-03-01 Hedrick Concrete Products Corp. Portable hopper with internal bracing
US5326156A (en) 1992-06-19 1994-07-05 Heider Merle J Trailer construction
US5286158A (en) 1992-06-19 1994-02-15 Zimmerman Harold M Material distributing apparatus
CH686457A5 (en) 1992-08-11 1996-03-29 Sistag Plate slide.
US5277014A (en) 1992-09-14 1994-01-11 Abr Corporation Bag discharge station
US5317783A (en) 1992-09-25 1994-06-07 Haybuster Manufacturing Inc. Vacuum trailer
US5358137A (en) 1992-11-12 1994-10-25 Sotralentz, S.A. Liquid bulk container with tensioning straps
US5345982A (en) 1992-11-18 1994-09-13 Griffin Environmental Co., Inc. Adjustable hood assembly
GB2273488B (en) 1992-12-17 1996-03-06 Flomotion Ltd Bulk container with removable tray
US5253746A (en) 1992-12-17 1993-10-19 Friesen Garry D Auger assembly for a bulk seed transport bin
US5470176A (en) 1993-01-05 1995-11-28 Manhole Adjusting Contractors Inc. System and method for controlling emissions created by spraying liquids from moving vehicles
US5353967A (en) 1993-04-20 1994-10-11 Northbrook Rail Corporation Dry bulk pressure differential container
US5339996A (en) 1993-04-26 1994-08-23 Midwest Pre-Mix, Inc. Portable mini silo system
US5373792A (en) 1993-05-10 1994-12-20 Gunderson, Inc. Railway gondola car incorporating flexible panels of composite sheet material
US5392946A (en) 1993-05-28 1995-02-28 Martin Marietta Energy Systems, Inc. Lid design for low level waste container
US5522459A (en) 1993-06-03 1996-06-04 Halliburton Company Continuous multi-component slurrying process at oil or gas well
CA2099290C (en) 1993-06-15 1994-08-02 Charles H. Jacques Dockable container chassis
CA2100845C (en) 1993-07-19 1998-12-15 Brian Johnson Collapsible portable containerized shelter
US5538286A (en) 1993-09-07 1996-07-23 Halliburton Company Bulk cement transport apparatus
US5413154A (en) * 1993-10-14 1995-05-09 Bulk Tank, Inc. Programmable modular system providing controlled flows of granular materials
RU2125532C1 (en) 1993-11-02 1999-01-27 ЦТС ЕВРОКОНтейнер унд Транспортфермиттлунгс ГмбХ Heavy freight container
US5402915A (en) 1993-11-30 1995-04-04 Kaneka Texas Corporation Bottom draining bin-type, bulk fluid container with insert
US5602761A (en) 1993-12-30 1997-02-11 Caterpillar Inc. Machine performance monitoring and fault classification using an exponentially weighted moving average scheme
US5465829A (en) 1994-01-31 1995-11-14 Sudenga Industries, Inc. Pallet with hopper and auguer and method for distributing particular material
US6179070B1 (en) 1994-02-17 2001-01-30 M-I L.L.C. Vacuum tank for use in handling oil and gas well cuttings
US6006918A (en) 1994-03-29 1999-12-28 Hart; Michael John Collapsible storage container
US5470175A (en) 1994-05-16 1995-11-28 Spudnik Equipment Company Apparatus and methods for efficient and precise placement of discrete quantities of materials adjacent to the apparatus
US5845799A (en) 1994-05-18 1998-12-08 Buckhorn Material Handling Group, Inc. Dispensing gate for knock down bulk box
US5429259A (en) 1994-06-17 1995-07-04 Robin; Raymond S. Interlocking crating system
US5493852A (en) 1995-01-27 1996-02-27 Stewart; John D. Lawnmower attachment spreader
US5505583A (en) 1995-02-01 1996-04-09 Courtesy Enterprises, Incorporated Slope plates for particulate material truck box
NZ301752A (en) 1995-02-17 1998-09-24 Kevin William Raven Sliding bogie trailer with wheeled bogie section slideable connected to chassis by way of fifth wheel clasp
US5617974A (en) 1995-02-27 1997-04-08 Sawyer, Jr.; Thomas K. Storage dispensing container
US5564599A (en) 1995-03-15 1996-10-15 Hoover Group, Inc. Foldable shipping container
US5611570A (en) 1995-04-17 1997-03-18 Panderra Enterprises Inc. Unibeam trailer chassis
US5613446A (en) 1995-05-02 1997-03-25 Trinity Industries, Inc. Railway hopper car gate valve and operating assembly
US5601181A (en) 1995-05-23 1997-02-11 Lindhorst; Tim J. Adjustable grain elevator spout
US5590976A (en) 1995-05-30 1997-01-07 Akzo Nobel Ashpalt Applications, Inc. Mobile paving system using an aggregate moisture sensor and method of operation
US5718555A (en) 1995-05-30 1998-02-17 Swalheim; Duane P. Seed loading and transport apparatus
US5782524A (en) 1995-06-30 1998-07-21 Heider; Merle J. Curved wall trailer construction
US5722552A (en) 1995-08-21 1998-03-03 Noslo Enterprises, Inc. Collapsible stackable container system for flowable materials
US6077068A (en) 1995-08-31 2000-06-20 Ngk Insulators, Ltd. Pulsated combustion apparatus and a method for controlling such a pulsated combustion apparatus
US5911337A (en) 1995-10-04 1999-06-15 Bedeker; James E. Vessel for a shipping container
IT1289530B1 (en) 1995-10-13 1998-10-15 Fata Automation HIGH CAPACITY INTEGRATED WAREHOUSE FOR CONTAINERS
US5687881A (en) 1995-10-18 1997-11-18 Bandag, Incorporated Apparatus for conveying a solid particular material
US5697535A (en) 1995-11-07 1997-12-16 Fabricated Metals, Inc. Bulk material container with a sliding cam lock closure plate
US5667298A (en) 1996-01-16 1997-09-16 Cedarapids, Inc. Portable concrete mixer with weigh/surge systems
AU5633196A (en) 1996-02-16 1997-09-02 Aluminum Company Of America A container module for intermodal transportation and storage of dry flowable product
US5725119A (en) 1996-02-28 1998-03-10 Bradford Company Collapsible container with integrally supported
US5746258A (en) 1996-04-03 1998-05-05 Waeschle Inc. Apparatus for filling a container with free-flowing bulk material
AUPO139996A0 (en) 1996-08-02 1996-08-29 Technosearch Pty. Limited Method and apparatus for use in discharging containers
TW320162U (en) 1996-08-28 1997-11-11 Lu-Xiong Weng Extendable storage container
US6002063A (en) 1996-09-13 1999-12-14 Terralog Technologies Inc. Apparatus and method for subterranean injection of slurried wastes
JPH1087046A (en) 1996-09-13 1998-04-07 Ube Ind Ltd Belt conveyor of crushed sand manufacturing facility
US5746341A (en) 1996-09-16 1998-05-05 Olson; David Alan Collapsible, stackable, hard-sided container
US5960974A (en) 1996-10-03 1999-10-05 Advance Engineered Products Ltd. Intermodal bulk container
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US5706614A (en) 1996-10-16 1998-01-13 Wiley, Jr.; James G. Modular building having a steel shipping container core
US5785421A (en) 1996-10-22 1998-07-28 Milek; Robert C. Mobile modular concrete batch plant
CA2189476C (en) 1996-11-04 1997-07-22 Richard E. Epp Stackable hopper bottom for storage bin
AU5259398A (en) 1996-11-04 1998-05-29 P. Michael Collins Hopper
US5906471A (en) 1996-11-27 1999-05-25 Schwoerer; Larry J. Self propelled bedding dispenser vehicle
JPH10264882A (en) 1997-03-26 1998-10-06 Ishikawajima Harima Heavy Ind Co Ltd Container supporting device
US5924829A (en) 1997-04-29 1999-07-20 Hastings; Thomas M. Gooseneck-type roadway-chassis
US6120233A (en) 1997-06-03 2000-09-19 Adam; Gerald E. Bulk seed carrier
US5772390A (en) 1997-06-06 1998-06-30 Walker; Harold A. Coal loading system and method
JP3385922B2 (en) 1997-07-17 2003-03-10 日本鋼管株式会社 Container transport cart and control method thereof
GB9716838D0 (en) 1997-08-08 1997-10-15 Philips Electronics Nv Temperature sensing circuits
US5762222A (en) 1997-08-12 1998-06-09 Liu; Pang-Pao Composite packing container
JP3783366B2 (en) 1997-10-09 2006-06-07 松下電器産業株式会社 Firing furnace
US6155175A (en) 1997-11-05 2000-12-05 Ers Industries, Inc. Railroad material cart
US6401983B1 (en) 1997-12-09 2002-06-11 Composite Structures, Inc. Bulk cargo container
DE19802308C2 (en) 1998-01-22 2001-05-31 Horst Laug Suction device for sandblasting and liquid pressure nozzles
US5927558A (en) 1998-03-04 1999-07-27 Bruce; Floyd Apparatus for dispensing granular material
US6193402B1 (en) 1998-03-06 2001-02-27 Kristian E. Grimland Multiple tub mobile blender
GB9805246D0 (en) 1998-03-12 1998-05-06 Blackrock Engineering Limited Improvements in or relating to freight container utilisation and to a pallet therefor
US6457291B2 (en) 1998-03-31 2002-10-01 Wick Building Systems, Inc. Floor frame structural support assembly and a method of making the same
US6069118A (en) 1998-05-28 2000-05-30 Schlumberger Technology Corporation Enhancing fluid removal from fractures deliberately introduced into the subsurface
US6537002B2 (en) 1998-08-08 2003-03-25 Macgregor-Conver Gmbh Method for holding containers
US6263803B1 (en) 1998-09-18 2001-07-24 Miner Enterprises, Inc. Gate assembly for a railroad hopper car
AU137782S (en) 1998-10-01 1999-07-20 Sixty Fifth Calejero Pty Ltd Bin with cover
SE513174C2 (en) 1998-10-22 2000-07-24 Abb Ab Process for handling containers and apparatus for carrying out the process
US6092974A (en) 1998-11-19 2000-07-25 Roth; Jason B. Trailer for bulk material containers
US6192985B1 (en) 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
WO2000041950A1 (en) 1999-01-11 2000-07-20 Nippon Aluminium Co. Ltd. Polycarbonate resin pellet tank type container and transportation method using the same
US6190107B1 (en) 1999-01-27 2001-02-20 John J. Lanigan, Sr. High density narrow-profile storage system
AUPP842999A0 (en) 1999-02-02 1999-02-25 Austrack Project Management Pty Ltd A stockyard for bulk materials
US6186654B1 (en) 1999-02-23 2001-02-13 Guntert & Zimmerman Construction Division, Inc. Portable and modular batching and mixing plant for concrete and the like
US6283212B1 (en) 1999-04-23 2001-09-04 Schlumberger Technology Corporation Method and apparatus for deliberate fluid removal by capillary imbibition
US6328183B1 (en) 1999-05-11 2001-12-11 Clarence B. Coleman Mass flow bulk material bin
US6237813B1 (en) 1999-06-14 2001-05-29 Richard J. Epp Storage bin for particulate materials
US6196590B1 (en) 1999-07-09 2001-03-06 Sun Y. Kim Slide hatch for bulk carrier
US6932266B2 (en) 1999-07-13 2005-08-23 Rmc Jones Llc Collapsible bulk material container
US6205938B1 (en) 1999-09-23 2001-03-27 Deere & Company Grain box insert for seeding implement
JP3212978B2 (en) 1999-10-01 2001-09-25 普 山田 Transport vehicle
US6425725B1 (en) 1999-10-28 2002-07-30 Robert A. Ehlers Bulk handling apparatus
GB2386876B (en) 1999-11-02 2003-11-19 Allan William Stobart Improvements in and relating to road and rail tankers
US6390742B1 (en) 1999-11-22 2002-05-21 Larry O. Breeden Locking cone chassis
US6328156B1 (en) 1999-12-06 2001-12-11 Arthur C. Ostman Conveyor belt side curtains
NL1013796C2 (en) 1999-12-08 2001-06-25 Jansens & Dieperink Bv Steel container, especially intended for the transport of bulk goods.
US6296109B1 (en) 2000-02-02 2001-10-02 Astec Industries Inc. Fold linkage and method of using same
US20020139643A1 (en) 2000-02-07 2002-10-03 Jeff Peltier Conveyor system
ATE333036T1 (en) 2000-02-25 2006-08-15 Sofitech Nv FOAM AGENT FOR USE IN COAL SEAMS
AU2001241509A1 (en) 2000-02-28 2001-09-12 Morgan Corporation Roller conveying apparatus
US6269849B1 (en) 2000-03-22 2001-08-07 Robert E Fields, Jr. Filling machine for sandbags and other containers
US6416271B1 (en) 2000-04-07 2002-07-09 Nucon Corporation Drop box container
US20010038777A1 (en) 2000-05-03 2001-11-08 Harry Cassell Trailer chassis for containerized cargo
DE60030841T2 (en) 2000-05-09 2007-03-15 Fata Aluminium S.P.A. A storage device for a sand container that is vibrated in a lost-cast forming apparatus
US6210088B1 (en) 2000-05-23 2001-04-03 Brian Crosby Chassis conversion device
US6374915B1 (en) 2000-06-01 2002-04-23 William Andrews Process and apparatus for sealing abandoned well bores
JP3658284B2 (en) 2000-07-05 2005-06-08 ユニ・チャーム株式会社 Nonwoven fabric manufacturing equipment
US6415909B1 (en) 2000-07-07 2002-07-09 The Young Industries, Inc. Apparatus for transporting bulk materials
US6508387B1 (en) 2000-08-17 2003-01-21 Material Systems Engineers Gravity flow sludge load-out metering gate
US6247594B1 (en) 2000-08-31 2001-06-19 Snyder Industries, Inc. Fluid tank assembly
US6364584B1 (en) 2000-09-01 2002-04-02 Patrick Asher Taylor Access bar for a shipping container
GB0023866D0 (en) 2000-09-29 2000-11-15 Extec Ind Plc Bulk material processing apparatus
US6902061B1 (en) 2000-09-29 2005-06-07 Paul Elstone Collapsible liquid box
US6498976B1 (en) 2000-10-30 2002-12-24 Freightliner Llc Vehicle operator advisor system and method
DE20100219U1 (en) 2001-01-08 2001-07-05 Bothor Kerim Patrick Device for receiving, transporting, controlled emptying and storage of flowable bulk goods in large-volume containers
US6774318B2 (en) 2001-02-14 2004-08-10 Process Control Corporation Removable material hopper assembly and method of using same to eliminate residual ingredient material
CA2341925A1 (en) 2001-03-21 2002-09-21 Pancanadian Petroleum Limited Slurry recovery process
US7084095B2 (en) 2001-04-04 2006-08-01 Schlumberger Technology Corporation Methods for controlling the rheological properties of viscoelastic surfactants based fluids
GB2374864A (en) 2001-04-24 2002-10-30 Terence Albert White Hopper outlet valve
US6523482B2 (en) 2001-05-01 2003-02-25 Thomas A. Wingate Bulk material transport system
US20030006248A1 (en) 2001-05-09 2003-01-09 Flexicon Corporation Apparatus and system for atmospherically controlling the removal of a bulk bag from an unloader
US6675066B2 (en) 2001-05-25 2004-01-06 George Koch Sons, Llc Conveyor line process control system and method
US6920841B2 (en) 2001-08-01 2005-07-26 Rick Meritt Unitary construction animal feeder and method for manufacture
US6660693B2 (en) 2001-08-08 2003-12-09 Schlumberger Technology Corporation Methods for dewatering shaly subterranean formations
US6828280B2 (en) 2001-08-14 2004-12-07 Schlumberger Technology Corporation Methods for stimulating hydrocarbon production
US6505760B1 (en) 2001-08-28 2003-01-14 Crustbuster/Speed King Seed box tote
SE520413C2 (en) 2001-09-19 2003-07-08 Arca Systems Ab Bulk containers
US6915854B2 (en) 2001-10-02 2005-07-12 Schlumberger Technology Corporation Foaming agents for use in coal seam reservoirs
US6666573B2 (en) 2001-10-18 2003-12-23 Frank Grassi Portable mixing/delivery apparatus for pre-blended granular mixtures
FR2832137B1 (en) 2001-11-09 2004-10-08 Vaslin Bucher DOOR DEVICE, PRESSOR HAVING SUCH A DOOR, AND MANUFACTURING METHOD
US6675073B2 (en) 2001-11-20 2004-01-06 Steve Kieman System and method for tuning the weight control of a flow of material
CN2517684Y (en) 2001-12-04 2002-10-23 耿福兴 Negative pressure container having frame structure
US6964551B1 (en) 2001-12-12 2005-11-15 Friesen Usa, Inc. Trailer for transporting bulk seed boxes
JP3579030B2 (en) 2002-01-21 2004-10-20 本田技研工業株式会社 Dust removal device
US6811048B2 (en) 2002-02-12 2004-11-02 David M. K. Lau Fold-up storage container
ITMI20020337A1 (en) 2002-02-20 2003-08-20 Guido Porta RAILWAY TRANSPORT METHOD AND EQUIPMENT FOR THE LOADING AND DISCHARGE OF CONVEYORS
US7008163B2 (en) 2002-02-21 2006-03-07 Matthew Russell Bulk storage bins and methods and apparatus for unloading same
US6953119B1 (en) 2002-04-04 2005-10-11 Scott Wening System for gathering discarded post-consumer carpet, for recycling
WO2003089202A1 (en) 2002-04-15 2003-10-30 Boasso America Corporation (A Louisiana Corporation) Method and apparatus for supplying bulk product to an end user
US6772912B1 (en) 2002-07-15 2004-08-10 James L. Schall Liquid storage and dispensing tank
US20040065699A1 (en) 2002-07-23 2004-04-08 Schoer Jeffrey R. Bulk material dispenser
US6776235B1 (en) 2002-07-23 2004-08-17 Schlumberger Technology Corporation Hydraulic fracturing method
US6966097B2 (en) 2002-09-06 2005-11-22 Tennant Company Street sweeper with dust control
US7104425B2 (en) 2002-10-18 2006-09-12 Le Roy Curtis W Intermodal bulk dry particulate cargo container and method
CA2410169C (en) 2002-10-28 2006-05-09 Bws Manufacturing Ltd. Pneumatically assisted tractor trailer attachment assembly
CA2441969C (en) 2002-11-06 2010-09-28 Larry Saik A trailer mounted mobile apparatus for dewatering and recovering formation sand
US6835041B1 (en) 2002-11-12 2004-12-28 Bulk Unloading Ba, Llc High capacity bulk material transportation and discharge method and system
JP3769653B2 (en) 2002-12-19 2006-04-26 株式会社共立物流システム Method for assembling bag body of liquid container and liquid container
US6968946B2 (en) 2002-12-19 2005-11-29 Shuert Lyle H Bulk container with plastic liner
DE60310614T2 (en) 2003-01-24 2007-09-27 Metso Paper, Inc. DEVICE FOR STORING AND UNLOADING GRANULES
US6955127B2 (en) 2003-02-03 2005-10-18 Taylor Fred J Manual railroad hopper car door actuating mechanism
US6882960B2 (en) 2003-02-21 2005-04-19 J. Davis Miller System and method for power pump performance monitoring and analysis
WO2004087320A2 (en) 2003-03-28 2004-10-14 Hyclone Laboratories, Inc. Fluid dispensing bins and related methods
US7201290B2 (en) 2003-05-12 2007-04-10 Ecolab Inc. Method and apparatus for mass based dispensing
AU2004268995B2 (en) 2003-08-26 2010-04-29 Trinity Industries, Inc. Railcar with discharge control system
DE20317967U1 (en) 2003-11-20 2004-03-04 A. Bittner GmbH & Co. KG Behälter- und Stahlbau Container for truck mounting has the metal side panels double skinned with the outer skin pressed with reinforcing ribs
US7146914B2 (en) 2003-12-11 2006-12-12 Morton William R Identity preserved container
US7367271B2 (en) 2004-01-30 2008-05-06 Aero Transportation Products, Inc. Railway hopper car discharge gate
CA2557335A1 (en) * 2004-02-23 2005-09-01 Gordon O. Smith Hopper container
US6974021B1 (en) 2004-05-25 2005-12-13 Craig Boevers Adjustable grain spout assembly
US20060151058A1 (en) 2004-06-18 2006-07-13 John Salaoras Product dispensing apparatus
WO2006000237A1 (en) 2004-06-23 2006-01-05 Ecolab Inc. Method for multiple dosage of liquid products, dosing appartus and dosing system
US20060012183A1 (en) 2004-07-19 2006-01-19 David Marchiori Rail car door opener
US20060027582A1 (en) 2004-08-04 2006-02-09 Beach John E Support for cage and bottle style intermediate bulk container
FR2874240B1 (en) 2004-08-11 2006-11-24 Michel Alain Coustou AEROGENERATOR TOWER (COMBINING CHIMNEY EFFECT, GREENHOUSE EFFECT, CORIOLIS FORCE AND VENTURI EFFECT)
EP1791771A4 (en) 2004-09-08 2009-04-29 Australian Keg Company Pty Ltd Storage bin
US20060180232A1 (en) * 2004-10-08 2006-08-17 Glewwe Donald P Intermodal container for shipping and storage of roofing granules
WO2006039757A1 (en) 2004-10-15 2006-04-20 Brian Bruce Container rail wagon
US7284670B2 (en) 2004-10-29 2007-10-23 Aero-Mod, Inc. Sedimentation removal assembly for flow-through sedimentary tank
US7513280B2 (en) 2004-11-12 2009-04-07 Gencor Industries Inc. Apparatus and methods for discharging particulate material from storage silos
US7316333B2 (en) 2004-11-17 2008-01-08 Mixer Systems, Inc. Modular volume storage bin
US7867613B2 (en) 2005-02-04 2011-01-11 Oxane Materials, Inc. Composition and method for making a proppant
US7500817B2 (en) 2005-02-16 2009-03-10 Ksi Conveyors, Inc. Agricultural seed tender with modular storage containers
US20060239806A1 (en) 2005-03-14 2006-10-26 Yelton James E Mobile material placer and conveying system and method of placing and conveying material utilizing the same
US7803321B2 (en) 2005-03-18 2010-09-28 Ecolab Inc. Formulating chemical solutions based on volumetric and weight based control measurements
US7845516B2 (en) 2005-04-04 2010-12-07 Schlumberger Technology Corporation System for precisely controlling a discharge rate of a product from a feeder bin
US7475796B2 (en) 2005-05-17 2009-01-13 Snyder Industries, Inc. Industrial hopper with support
US20060267377A1 (en) 2005-05-25 2006-11-30 Burt Lusk Shipping container
CA2508953A1 (en) 2005-06-01 2006-12-01 Frac Source Inc. High-pressure injection proppant system
JP4734100B2 (en) 2005-08-26 2011-07-27 株式会社リコー Packing equipment
WO2007005054A2 (en) 2005-07-02 2007-01-11 Syngenta Participations Ag Apparatus and method for coordinating automated package and bulk dispensing
US8387824B2 (en) 2005-07-02 2013-03-05 Syngenta Participations Ag Apparatuses and methods for bulk dispensing
EP1775190A3 (en) 2005-10-17 2007-06-20 VolkerRail Nederland BV Renewal of the ballast bed of a railway
US7306291B2 (en) 2005-11-02 2007-12-11 Randall Hicks Monolithic dual-purpose trailer
WO2007057398A1 (en) 2005-11-15 2007-05-24 Intermediate Applications Ltd Stillage
NO326422B1 (en) 2005-11-25 2008-12-01 Torstein Yttersian Container
US7841394B2 (en) 2005-12-01 2010-11-30 Halliburton Energy Services Inc. Method and apparatus for centralized well treatment
ITMI20052338A1 (en) 2005-12-06 2007-06-07 Fata Fab App Sollevamento CONTAINER TRANSFER PLANT BETWEEN SHIP AND WAREHOUSE
AT503082B1 (en) 2005-12-21 2010-08-15 Starlinger & Co Gmbh SYSTEM FOR THE DISTRIBUTION OF BULBS AND CONTAINERS WITH SUCH A BULK DISCHARGE SYSTEM
US7377219B2 (en) 2006-02-03 2008-05-27 Calbrandt, Inc. Spike-type railcar mover with optional gate opener
CA2578884A1 (en) 2006-02-17 2007-08-17 Norco Industries, Inc. Trailer and method of assembly
CA2580418C (en) 2006-03-08 2013-08-13 Robert C. Hooper Multi-use intermodal container
US7967161B2 (en) 2006-03-20 2011-06-28 Townsend Arthur M Container liner systems
CN2913250Y (en) 2006-04-26 2007-06-20 邢聚宝 Negative pressure fresh-keeping container with frame structure
US7837427B2 (en) 2006-07-07 2010-11-23 Schlumberger Technology Corporation Method of transporting and storing an oilfield proppant
GB2440401B (en) 2006-07-26 2011-07-13 Catalyst Handling Res & Engineering Ltd System For Transferring Bulk Material To And From Containers
US7762281B2 (en) 2006-08-02 2010-07-27 Bushnell Illinois Tanks Co. Storage and dispensing bin
WO2008028074A2 (en) 2006-08-30 2008-03-06 Carbo Ceramics Inc. Low bulk density proppant and methods for producing the same
US20120255539A1 (en) 2006-09-14 2012-10-11 Greg Kolecki Overhead ventilation system incorporating a downwardly configured rear supply plenum with upward configured directional outlet and including baffle plates and dampeners incorporated into the plenum for evenly distributing an inlet airflow through the plenum outlet
US8366349B2 (en) 2006-11-13 2013-02-05 Beachner Construction Company, Inc. System and method for aggregate disposal
US20100080681A1 (en) 2006-12-20 2010-04-01 Roger Ernest Bain Method of alignment and target indicator
US20080179324A1 (en) 2007-01-30 2008-07-31 Halliburton Energy Services, Inc. Apparatus for expandable storage and metering
US20080179054A1 (en) 2007-01-30 2008-07-31 Halliburton Energy Services, Inc. Methods for expandable storage and metering
US8313278B2 (en) 2007-03-01 2012-11-20 The Boeing Company Modular interchangeable cargo deck
US7802958B2 (en) 2007-03-01 2010-09-28 The Boeing Company Versatile trailer deck
US7753637B2 (en) 2007-03-01 2010-07-13 Benedict Charles E Port storage and distribution system for international shipping containers
US8573387B2 (en) 2007-03-07 2013-11-05 David Trimble Foldable framework for auxiliary conveyor
US7921783B2 (en) 2007-03-16 2011-04-12 National Steel Car Limited Hopper car with lading dislodgement fittings and method of operation
US20080264641A1 (en) 2007-04-30 2008-10-30 Slabaugh Billy F Blending Fracturing Gel
WO2008134868A1 (en) 2007-05-05 2008-11-13 Gordon David Sherrer System and method for extracting power from fluid
US20080277423A1 (en) 2007-05-09 2008-11-13 Snyder Industries, Inc. Hopper with slide discharge gate and method making the same
US20080315558A1 (en) 2007-06-25 2008-12-25 Anthony John Cesternino Gooseneck trailer attachment assembly and center deck elevation system
US20090038242A1 (en) 2007-08-07 2009-02-12 Texsand Distributors, Lp Bulk materials rapid distribution network and apparatus
US7997213B1 (en) 2007-08-27 2011-08-16 R3G, Llc Cargo container cradle
US20090078410A1 (en) * 2007-09-21 2009-03-26 David Krenek Aggregate Delivery Unit
US7858888B2 (en) 2007-10-31 2010-12-28 Halliburton Energy Services, Inc. Methods and systems for metering and monitoring material usage
DE502008003259D1 (en) 2007-11-20 2011-06-01 Agristrade S P A Silo for granular material for storage and subsequent metered discharge in one or more transport vehicles
CN201161588Y (en) 2007-12-06 2008-12-10 南车眉山车辆有限公司 Flat car special for railway container
WO2009087338A1 (en) 2008-01-11 2009-07-16 Tripac Engineering Ltd A container, dispensing device, and method of dispensing goods
US20090223143A1 (en) 2008-03-05 2009-09-10 Joseph Esposito Prefabricated containerized housing
CA2627422A1 (en) 2008-03-27 2009-09-27 Donat Messier Trailer floor
US20090278326A1 (en) 2008-04-16 2009-11-12 Stackable Chassis International, Llc Kits, Components and Stackable Trailers for Transporting Containers
DE102008021484B4 (en) 2008-04-29 2010-01-28 Wirtgen Gmbh Bendable conveyor belt for a construction machine, self-propelled construction machine and method for pivoting a conveyor belt
MX2010013855A (en) 2008-06-20 2011-07-29 Alcoa Inc Trailer.
US7997623B2 (en) 2008-07-13 2011-08-16 Chris Williams Frac tank storage system
GB0813314D0 (en) 2008-07-21 2008-08-27 Swire Oilfield Services Ltd Tank for storing fluid
KR100949358B1 (en) 2008-07-25 2010-03-26 형제산업(주) Air roll unit for container car
US7695538B2 (en) 2008-08-12 2010-04-13 San Ford Machinery Co., Ltd. Negative pressure dust collector with a dust receiving bag smoothly inflatable
US20100038143A1 (en) 2008-08-14 2010-02-18 George Alexander Burnett Drill cuttings treatment systems
US8573917B2 (en) 2008-08-15 2013-11-05 Usc, L.L.C. Bulk seed handling system
WO2010026235A1 (en) 2008-09-05 2010-03-11 M-I Swaco Norge As System and method for proppant transfer
US8016113B2 (en) 2008-09-16 2011-09-13 Plastic Systems, Inc. Storage system with improved pole securement system
US20100072308A1 (en) 2008-09-19 2010-03-25 William Hemann Hopper spreader
US7762290B2 (en) 2008-11-06 2010-07-27 Poet Research, Inc. System for loading particulate matter into a transport container
US7959398B2 (en) 2008-12-11 2011-06-14 Air-Cure Incorporated Car dumper dust control system
US20100207371A1 (en) 2009-02-13 2010-08-19 Beall Corporation Trailer frame assembly
CN101823630A (en) 2009-03-03 2010-09-08 游勇 Containerized transport method of a large quantity of solid bulk cargos as well as solid bulk cargo container and decrater thereof
WO2010115144A2 (en) 2009-04-02 2010-10-07 Concept Systems Inc. Railcar unloading system
CN201390486Y (en) 2009-04-13 2010-01-27 包头北方创业股份有限公司 Grain hopper travelling box
CA2701937A1 (en) 2009-04-30 2010-10-30 Johan Redekop Bulk material container and container discharging apparatus
US7997406B2 (en) 2009-05-14 2011-08-16 Flsmidth A/S Conveyor apparatus
US8827313B2 (en) 2009-06-18 2014-09-09 International Transport Equipment Corporation Intermodal tank transport system, components, and methods
US20110011893A1 (en) 2009-07-17 2011-01-20 James William Cerny Transportable bulk container with slide gate dispenser
US20110017693A1 (en) 2009-07-21 2011-01-27 Aps Technology Group, Inc. Container tracking and locating systems, methods, and computer program products
US8083083B1 (en) 2009-07-30 2011-12-27 Brad Mohns Bulk material container with adaptable base
FR2948530B1 (en) 2009-07-31 2011-08-26 Stallergenes Sa POLLEN HARVESTING MACHINE
AT11740U1 (en) 2009-10-15 2011-04-15 Wanek Pusset Peter Dipl Ing CONTAINER
US8371476B2 (en) 2009-11-02 2013-02-12 Lincoln Global, Inc. Bulk bag with gate valve assembly
JP5351714B2 (en) 2009-11-12 2013-11-27 エスアイアイ・プリンテック株式会社 Liquid ejecting head, liquid ejecting apparatus, and method of manufacturing liquid ejecting head
US8434990B2 (en) 2009-12-02 2013-05-07 Alternative Energy, Inc. Bulk material storage apparatus
KR20110069445A (en) 2009-12-17 2011-06-23 한국과학기술원 Quaywall system for loading and unloading containers, mobile harbor, and transporter using thereof
MY156375A (en) 2009-12-31 2016-02-15 Halliburton Energy Services Inc Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same
CN102114985A (en) 2009-12-31 2011-07-06 贵州山水物流有限公司 Bulk loading and unloading method
US20110168593A1 (en) 2010-01-08 2011-07-14 Woodhaven Capitol Corp. Folding seed box with fork lift base
JP5690749B2 (en) 2010-02-15 2015-03-25 パシフィックサイエンス株式会社 container
US20110222983A1 (en) 2010-03-11 2011-09-15 Edward Dugic Roller Assembly System and Method for Installation
US20110297702A1 (en) 2010-06-03 2011-12-08 Stephen Gould Corporation Dispensing container with bottom valve
US8393502B2 (en) 2010-07-22 2013-03-12 Usc, L.L.C. Seed metering gate assembly
US8820559B2 (en) 2010-08-10 2014-09-02 Lake Effect Advisors, Inc. Shipping containers for flowable materials
US8640855B2 (en) 2010-10-13 2014-02-04 Steven Hays Brobst Apparatus and method for passive dust control in a transfer chute
US9428348B2 (en) 2010-10-21 2016-08-30 Ty-Crop Manufacturing Ltd. Mobile material handling and metering system
US8616370B2 (en) 2010-10-28 2013-12-31 Arrows Up, Inc. Bulk material shipping container
US8887914B2 (en) 2010-10-28 2014-11-18 Arrows Up, Inc. Bulk material shipping container
AT510766B1 (en) 2010-11-16 2013-06-15 Peter Dipl Ing Wanek-Pusset CONTAINERS AND CONTAINER CARS
US20120138191A1 (en) 2010-12-03 2012-06-07 Jack Harris System for delivering solid particulate matter for loading
US8915691B2 (en) 2010-12-31 2014-12-23 Michael Mintz Apparatus for transporting frac sand in intermodal container
CN201881469U (en) 2011-01-13 2011-06-29 巩义市天祥耐材有限公司 Automatic distribution device for oilfield fracturing proppant preparation
AU2012100085B4 (en) 2011-02-02 2012-12-13 Load And Move Pty Ltd Improvements in Container Lids
US9688492B2 (en) 2011-03-10 2017-06-27 Ksw Environmental, Llc Method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated silica sand, and apparatus therefor
US20120247335A1 (en) 2011-03-10 2012-10-04 Stutzman Scott S Method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated sand, and apparatus therefor
BR112013026247A2 (en) 2011-04-14 2019-09-24 Vermeer Mfg Co local dust extraction system for a digging machine
US20140077484A1 (en) 2011-05-26 2014-03-20 John M. Harrell Frac tank and trailer assembly
CA2778157A1 (en) 2011-07-20 2013-01-20 Thor's Oil Products, Inc. Method and apparatus for bulk transport of proppant
MX365956B (en) 2011-08-31 2019-06-18 Self Suspending Proppant Llc Self-suspending proppants for hydraulic fracturing.
US10538381B2 (en) 2011-09-23 2020-01-21 Sandbox Logistics, Llc Systems and methods for bulk material storage and/or transport
CA2791088C (en) 2011-09-23 2018-11-20 Robert A. Harris Systems and methods for bulk material storage and/or transport
US8926252B2 (en) 2011-10-24 2015-01-06 Solaris Oilfield Site Services Operating Llc Fracture sand silo system and methods of deployment and retraction of same
US8544419B1 (en) 2011-11-23 2013-10-01 Spalding Laboratories, Inc. Livestock insect-removal systems and related methods
USD703582S1 (en) 2013-05-17 2014-04-29 Joshua Oren Train car for proppant containers
US10464741B2 (en) 2012-07-23 2019-11-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
US9718610B2 (en) 2012-07-23 2017-08-01 Oren Technologies, Llc Proppant discharge system having a container and the process for providing proppant to a well site
US8827118B2 (en) 2011-12-21 2014-09-09 Oren Technologies, Llc Proppant storage vessel and assembly thereof
US8622251B2 (en) 2011-12-21 2014-01-07 John OREN System of delivering and storing proppant for use at a well site and container for such proppant
US9051801B1 (en) 2012-01-01 2015-06-09 Michael Mintz Dual modality container for storing and transporting frac sand and frac liquid
US20130206415A1 (en) 2012-02-10 2013-08-15 SandCan Inc. Method and Apparatus for Modifying a Cargo Container to Deliver Sand to a Frac Site
US20130209204A1 (en) 2012-02-10 2013-08-15 SandCan, Inc. Cargo container to deliver sand to a frac site
US20140097182A1 (en) 2012-10-10 2014-04-10 SandCan Inc. Intermodal container having a resilient liner
US9790022B2 (en) 2012-02-10 2017-10-17 SandCan, Inc. Container to deliver bulk granular material
US9309064B2 (en) 2012-02-10 2016-04-12 John M. Sheesley Belly-dump intermodal cargo container
US8636832B2 (en) 2012-03-09 2014-01-28 Propppant Controls, LLC Method of reducing silicosis caused by inhalation of silica-containing proppant, such as silica sand and resin-coated silica sand, and apparatus therefor
US20130284729A1 (en) 2012-04-27 2013-10-31 Frontier Logistics, L.P. Storage container
US9624036B2 (en) 2012-05-18 2017-04-18 Schlumberger Technology Corporation System and method for mitigating dust migration at a wellsite
WO2013184574A1 (en) 2012-06-03 2013-12-12 Conveyor Application Systems Llc System for conveying drill cuttings
USD740555S1 (en) 2012-06-06 2015-10-13 Telair International Gmbh Container
ITRM20120280A1 (en) 2012-06-15 2013-12-16 G A P Spa DEVICE FOR RECOVERY OF HEAT AND FUMES FROM STEEL PRODUCTION CYCLES
EP3243773A1 (en) 2012-07-23 2017-11-15 Oren Technologies, Llc Support apparatus for moving proppant from a container in a proppant discharge system
US20190135535A9 (en) 2012-07-23 2019-05-09 Oren Technologies, Llc Cradle for proppant container having tapered box guides
US9260253B2 (en) 2012-08-07 2016-02-16 Baker Hughes Incorporated Apparatus and methods for assisting in controlling material discharged from a conveyor
US9038865B2 (en) 2012-08-07 2015-05-26 Baker Hughes Incorporated Apparatus and methods for assisting in controlling the discharge of material onto a conveyor from a dispenser
USD688351S1 (en) 2012-11-02 2013-08-20 John OREN Proppant vessel
CN203050714U (en) 2012-12-26 2013-07-10 山东科技大学 Conveying and dust-removing device of outdoor continuous miner
CN203079194U (en) 2013-01-17 2013-07-24 中交一航局安装工程有限公司 Connecting structure of belt machine and dustproof cover
US9650216B2 (en) 2013-01-22 2017-05-16 Arrows Up, Llc Bulk material shipping container unloader
CN203033469U (en) 2013-01-24 2013-07-03 山东百特电子有限公司 Automatic feeding locomotive
US11185900B2 (en) 2013-02-18 2021-11-30 Sierra Dust Control, LLC Systems and methods for controlling silica dust during hydraulic fracturing operations using an improved manifold
US9162261B1 (en) 2013-02-18 2015-10-20 Sierra Dust Control, LLC Systems and methods for controlling silica dust during hydraulic fracturing operations
US9919635B2 (en) 2013-02-21 2018-03-20 Schlumberger Technology Corporation Remote wellsite material tracking
US8662525B1 (en) 2013-03-15 2014-03-04 Dakota Manufacturing Company, Inc. Adjustable width trailer
US9758082B2 (en) 2013-04-12 2017-09-12 Proppant Express Solutions, Llc Intermodal storage and transportation container
US9052034B1 (en) 2013-04-22 2015-06-09 GFW Enterprises, Inc. Bucket with wireless remote controlled gate assembly
USD694670S1 (en) 2013-05-17 2013-12-03 Joshua Oren Trailer for proppant containers
US9776813B2 (en) 2013-06-21 2017-10-03 Source Energy Services Canadian Logistics Lp Mobile dry material storage
US10808953B2 (en) 2013-06-28 2020-10-20 Illinois Tool Works Inc. Airborne component extractor with baffled debris collection
CN103350017B (en) 2013-06-29 2015-08-26 浙江双金机械集团股份有限公司 The preparation method of machine-made natural sand gradation adjustment system and natural sand
CN103625849B (en) 2013-07-26 2016-05-25 盘县金阳机械加工有限责任公司 Conveyer belt dust-proof shed
US20150086307A1 (en) 2013-09-25 2015-03-26 Timothy Stefan Container system for hydraulic fracturing proppants
US9410414B2 (en) 2013-10-22 2016-08-09 Robin Tudor Environmentally sealed system for fracturing subterranean formations
CA2869560A1 (en) 2013-10-29 2015-04-29 Lonny Thiessen Mobile fluid storage tank
CN203580948U (en) 2013-12-01 2014-05-07 太原轨道交通装备有限责任公司 Low-gravity center container flat car
BR102014002076A2 (en) 2014-01-28 2016-02-02 Green Metals Soluções Ambientais S A extraction process of clay, silica and iron ore through dry concentration
CA2886542A1 (en) 2014-04-04 2015-10-04 Gordon Gerald Houghton Nose cone for dust control
US9878651B2 (en) 2014-04-07 2018-01-30 Quickthree Solutions Inc. Vertically oriented transportable container with improved stability
CA2939429C (en) 2014-05-09 2018-09-11 Halliburton Energy Services, Inc. Surface fluid extraction and separator system
US9676554B2 (en) 2014-09-15 2017-06-13 Oren Technologies, Llc System and method for delivering proppant to a blender
US20160148813A1 (en) 2014-11-25 2016-05-26 Lam Research Corporation Gas injection method for uniformly processing a semiconductor substrate in a semiconductor substrate processing apparatus
US9534473B2 (en) 2014-12-19 2017-01-03 Evolution Well Services, Llc Mobile electric power generation for hydraulic fracturing of subsurface geological formations
US9796318B1 (en) 2015-08-05 2017-10-24 Pablo Nolasco Carrier with lowered platform height
US9771040B2 (en) 2015-08-18 2017-09-26 Sti Holdings, Inc. Trailer with rear impact guard
US10518688B2 (en) 2016-01-28 2019-12-31 Trail King Industries, Inc. Glass transport trailer
USD783772S1 (en) 2016-03-04 2017-04-11 Halliburton Energy Services, Inc. Soft-sided proppant container
USD780883S1 (en) 2016-03-04 2017-03-07 Halliburton Energy Services, Inc. Rigid proppant container
USD783771S1 (en) 2016-03-04 2017-04-11 Halliburton Energy Services, Inc. Soft-sided proppant container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109486A (en) * 1999-03-17 2000-08-29 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Dry sand pluviation device
US7252309B2 (en) * 2001-06-13 2007-08-07 Bee Kim Ong Containerised handling of bulk materials and apparatus therefor
US20130020641A1 (en) * 2010-03-16 2013-01-24 Sharp Kabushiki Kaisha Substrate for display panel, manufacturing method of same, display panel, and display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10486579B2 (en) 2018-02-20 2019-11-26 Kevin M. O'Neill Lightweight transport, storage and delivery system
US11104510B2 (en) 2018-02-20 2021-08-31 Kevin M. O'Neill Lightweight transport, storage, and delivery system

Also Published As

Publication number Publication date
US20170225883A1 (en) 2017-08-10
US20140023465A1 (en) 2014-01-23
US9771224B2 (en) 2017-09-26
US9718610B2 (en) 2017-08-01
US10662006B2 (en) 2020-05-26
US20140020765A1 (en) 2014-01-23

Similar Documents

Publication Publication Date Title
US10661981B2 (en) Proppant discharge system and a container for use in such a proppant discharge system
US20170320684A1 (en) Support apparatus for moving proppant from a container in a proppant discharge system
CA2974132C (en) Support apparatus for moving proppant from a container in a proppant discharge system
CA3014017C (en) Proppant discharge system and a container for use in such a proppant discharge system
US20160244279A1 (en) Proppant discharge system and a container for use in such a proppant discharge system

Legal Events

Date Code Title Description
AS Assignment

Owner name: OREN TECHNOLOGIES, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OREN, JOHN;OREN, JOSHUA;REEL/FRAME:043123/0423

Effective date: 20130901

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BNP PARIBAS, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:U.S. SILICA COMPANY, A DE CORPORATION;OREN TECHNOLOGIES, LLC, A TX LLC;SANDBOX LOGISTICS, LLC, A TX LLC;SIGNING DATES FROM 20180501 TO 20180502;REEL/FRAME:046434/0308

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SANDBOX ENTERPRISES, LLC, TEXAS

Free format text: IP ASSIGNMENT AGREEMENT;ASSIGNOR:OREN TECHNOLOGIES, LLC;REEL/FRAME:054443/0731

Effective date: 20200710