US20170295824A1 - Process for producing a pufa-containing biomass which has high cell stability - Google Patents

Process for producing a pufa-containing biomass which has high cell stability Download PDF

Info

Publication number
US20170295824A1
US20170295824A1 US15/516,024 US201515516024A US2017295824A1 US 20170295824 A1 US20170295824 A1 US 20170295824A1 US 201515516024 A US201515516024 A US 201515516024A US 2017295824 A1 US2017295824 A1 US 2017295824A1
Authority
US
United States
Prior art keywords
weight
content
biomass
feedstuff
pufa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/516,024
Inventor
Horst Priefert
Jens Schneider
Christian Rabe
Amelia Claudia SILVA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51702979&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20170295824(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHNEIDER, JENS, PRIEFERT, HORST, Silva, Amelia Claudia, RABE, CHRISTIAN
Publication of US20170295824A1 publication Critical patent/US20170295824A1/en
Assigned to EVONIK OPERATIONS GMBH reassignment EVONIK OPERATIONS GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: EVONIK DEGUSSA GMBH
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/25Shaping or working-up of animal feeding-stuffs by extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/10Protozoa; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Definitions

  • the present invention relates to a process for producing a PUFA-containing biomass having high cell stability.
  • the stability of the cell wall can be optimized by specific addition of sulphate to the fermentation medium.
  • the biomass thus obtained can be further processed at a very low energy input into a feedstuff with high abrasion resistance and high water stability.
  • Another object of the present invention can therefore be considered that of providing a biomass which, owing to its properties, is suited to an especially good extent to being able to be further processed into a feedstuff.
  • the present invention therefore firstly provides a process for producing a polyunsaturated fatty acid (PUFA)-containing biomass, characterized in that production of the biomass comprises culturing microorganisms in a fermentation medium containing sulphate in an amount such that a sulphate concentration, based on the dry mass, of 25 to 60 g/kg ensues in the resulting biomass.
  • the sulphate concentration in the resulting biomass is preferably 25 to 50 g/kg, in particular 25 to 40 g/kg, especially preferably 25 to 35 g/kg, based in each case on the dry mass.
  • the present invention similarly further provides a PUFA-containing biomass which is obtainable using a process according to the invention.
  • the present invention similarly provides a PUFA-containing biomass which has a sulphate content of 25 to 60 g/kg, based on the dry mass, and is obtainable preferably by a process described above.
  • the sulphate content is preferably 25 to 50 g/kg, in particular 25 to 40 g/kg, especially preferably 25 to 35 g/kg, based in each case on the dry mass.
  • sulphate content is to be understood to mean the total content of sulphate, i.e. the content of free and bound, in particular organically bound, sulphate. It can be assumed that the majority of the sulphate present in the biomass is present as a constituent of exopolysaccharides, which are involved in the formation of the cell wall of microorganisms.
  • the sulphate content is preferably determined by ascertaining the sulphur content of the biomass obtained, since the majority of the sulphur present in the biomass can be attributed to the sulphate present. Sulphur which can be attributed to other sources can be disregarded owing to the amount of sulphate present. Thus, the amount of sulphate present can be readily ascertained from the amount of sulphur ascertained.
  • the sulphur content of the biomass is preferably determined by elemental analysis in accordance with DIN EN ISO 11885.
  • appropriate aliquots of sample are disrupted preferably with nitric acid and hydrogen peroxide at 240° C. under pressure prior to the analysis in order to ensure the free accessibility of the sulphur present.
  • the present invention therefore also further provides a process for producing a biomass containing polyunsaturated fatty acids (PUFAs), characterized in that production of the biomass comprises culturing microorganisms in a fermentation medium containing sulphate in an amount such that a sulphur content of 8 to 20 g/kg, based on the dry mass, can be detected in the resulting biomass by elemental analysis in accordance with DIN EN ISO 11885.
  • the sulphur content in the resulting biomass is preferably 8 to 17 g/kg, in particular 8 to 14 g/kg, especially preferably 8 to 12 g/kg, based in each case on the dry mass.
  • the present invention therefore also further provides a PUFA-containing biomass, characterized in that a sulphur content of 8 to 20 g/kg, based on the dry mass, can be detected by elemental analysis in accordance with DIN EN ISO 11885.
  • the sulphur content in the resulting biomass is preferably 8 to 17 g/kg, in particular 8 to 14 g/kg, especially preferably 8 to 12 g/kg, based in each case on the dry mass.
  • the phosphorus content of biomasses according to the invention is, with regard to the dry mass, preferably 1 to 6 g/kg, in particular 2 to 5 g/kg.
  • the phosphorus content is preferably likewise ascertained by elemental analysis in accordance with DIN EN ISO 11885.
  • the biomass according to the invention preferably comprises cells, and preferably consists substantially of those cells which already naturally produce PUFAs; however, the cells can also be cells enabled by appropriate gene technology methods to produce PUFAs. In this context, the production may be autotrophic, mixotrophic or heterotrophic.
  • the cells of the biomass are those which produce PUFAs heterotrophically.
  • the cells preferably take the form of algae, fungi, in particular yeasts, or protists.
  • the cells are especially preferably microbial algae or fungi.
  • Suitable cells of oil-producing yeasts are, in particular, strains of Yarrowia, Candida, Rhodotorula, Rhodosporidium, Cryptococcus, Trichosporon and Lipomyces.
  • a biomass according to the invention preferably comprises cells, and preferably consists substantially of those cells of the taxon Labyrinthulomycetes (Labyrinthulea, slime nets), in particular those of the family of the Thraustochytriaceae.
  • the family of the Thraustochytriaceae includes the genera Althomia, Aplanochytrium, Elnia, Japonochytrium, Schizochytrium, Thraustochytrium, Aurantiochytrium, Oblongichytrium and Ulkenia. Particular preference is given to cells of the genera Thraustochytrium, Schizochytrium, Aurantiochytrium or Oblongichytrium, especially those of the genus Aurantiochytrium.
  • a particularly preferred strain is the strain Aurantiochytrium limacinum SR21 (IFO 32693).
  • the biomass according to the invention preferably takes the form of the product of a fermentative culturing process.
  • the biomass may contain not only the cells to be disrupted but also constituents of the fermentation medium. These constituents may take the form of, in particular, salts, antifoam agents and unreacted carbon source and/or nitrogen source.
  • the cell content in this biomass is preferably at least 70% by weight, preferably at least 75% by weight.
  • the cell content in the biomass may be increased by suitable wash steps to, for example, at least 80 or at least 90% by weight before carrying out the cell disruption process.
  • the biomass obtained may also be used directly in the cell disruption process.
  • the cells in the biomass are preferably distinguished by the fact that they contain at least 20% by weight, preferably at least 30% by weight, in particular at least 35% by weight, of PUFAs, based in each case on the cell dry mass.
  • the majority of the lipids is present in the form of triglycerides, with preferably at least 50% by weight, in particular at least 75% by weight and, in an especially preferred embodiment, at least 90% by weight of the lipids present in the cell being present in the form of triglycerides.
  • At least 10% by weight, in particular at least 20% by weight, especially preferably 20 to 60% by weight, in particular 20 to 40% by weight, of the fatty acids present in the cell are PUFAs.
  • polyunsaturated fatty acids are understood to mean fatty acids having at least two C-C double bonds.
  • highly unsaturated fatty acids are preferred among the PUFAs.
  • HUFAs are understood to mean fatty acids having at least four C-C double bonds.
  • the PUFAs may be present in the cell in free form or in bound form.
  • Examples of the presence in bound form are phospholipids and esters of the PUFAs, in particular monoacyl-, diacyl-and triacylglycerides.
  • the majority of the PUFAs is present in the form of triglycerides, with preferably at least 50% by weight, in particular at least 75% by weight and, in an especially preferred embodiment, at least 90% by weight of the PUFAs present in the cell being present in the form of triglycerides.
  • Preferred PUFAs are omega-3 fatty acids and omega-6 fatty acids, with omega-3 fatty acids being especially preferred.
  • Preferred omega-3 fatty acids are the eicosapentaenoic acid (EPA, 20:5 ⁇ -3), particularly the (5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoic acid, and the docosahexaenoic acid (DHA, 22:6 ⁇ -3), particularly the (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid, with the docosahexaenoic acid being especially preferred.
  • PUFA-containing cells especially of the order Thraustochytriales have been described in detail in the prior art (see, for example, WO91/07498, WO94/08467, WO97/37032, WO97/36996, WO01/54510).
  • the production takes place by cells being cultured in a fermenter in the presence of a carbon source and of a nitrogen source.
  • biomass densities of more than 100 grams per litre and production rates of more than 0.5 gram of lipid per litre per hour may be attained.
  • the process is preferably carried out as what is known as a fed-batch process, i.e. the carbon and nitrogen sources are fed in incrementally during the fermentation.
  • lipid production may be induced by various measures, for example by limiting the nitrogen source, the carbon source or the oxygen content or combinations of these.
  • Suitable carbon sources are both alcoholic and non-alcoholic carbon sources.
  • alcoholic carbon sources are methanol, ethanol and isopropanol.
  • non-alcoholic carbon sources are fructose, glucose, sucrose, molasses, starch and corn syrup.
  • Suitable nitrogen sources are both inorganic and organic nitrogen sources.
  • inorganic nitrogen sources are nitrates and ammonium salts, in particular ammonium sulphate and ammonium hydroxide.
  • organic nitrogen sources are amino acids, in particular glutamate, and urea.
  • the desired sulphate content in the resulting biomass may be achieved in different ways.
  • the required amount of sulphate may be initially charged in full right at the start.
  • the amount of sulphate required can be easily calculated, since the cells used to form the biomass virtually completely assimilate the sulphate.
  • the amount of sulphate required may alternatively be metered in during the course of fermentation or, accordingly, some of the sulphate may be initially charged and the remainder metered in during the course of fermentation.
  • the sulphate salt used is preferably sodium sulphate, ammonium sulphate or magnesium sulphate and also mixtures thereof.
  • the chloride content is, with regard to the liquid fermentation medium including the biomass present, preferably always below 3 g/kg, in particular below 1 g/kg, especially preferably below 400 mg/kg of fermentation medium.
  • these are preferably used in an amount such that each one during fermentation, with regard to the liquid fermentation medium including the biomass present, is present in each case in an amount of always less than 10 g/kg, in particular less than 5 g/kg, especially preferably less than 3 g/kg in the fermentation medium.
  • the total salt content in the fermentation medium including the biomass present is preferably always below 35 g/kg, in particular below 30 g/kg, during the course of the entire fermentation process.
  • the total salt content during the entire fermentation process, with regard to the liquid fermentation medium including the biomass present is between 10 and 35 g/kg, in particular between 12 and 30 g/kg.
  • the sulphate content in the fermentation medium including the biomass present is preferably always between 5 and 16 g/kg during the course of the entire fermentation process.
  • organic phosphorus compounds and/or known growth-stimulating substances such as, for example, yeast extract or corn steep liquor, may also be added to the fermentation medium so as to have a positive effect on the fermentation.
  • the cells are preferably fermented at a pH of 3 to 11, in particular 4 to 10, and preferably at a temperature of at least 20° C., in particular 20 to 40° C., especially preferably at least 30° C.
  • a typical fermentation process takes up to approximately 100 hours.
  • the cells are preferably fermented up to a biomass density of at least 50, 60 or 70 g/l, in particular at least 80 or 90 g/l, especially preferably at least 100 g/l.
  • the data are based on the content of dry biomass in relation to the total volume of the fermentation broth after the fermentation has ended.
  • the content of dry biomass is determined by filtering-off of the biomass from the fermentation broth, subsequent washing with water, then complete drying—for example in a microwave—and lastly ascertainment of the dry weight.
  • the cells After harvesting the cells or optionally even shortly before harvesting the cells, the cells are preferably pasteurized in order to kill the cells and to inactivate enzymes which might promote lipid degradation.
  • the biomass is harvested.
  • Solvent evaporation is preferably achieved using a drum dryer, a tunnel dryer, by means of spray drying or vacuum evaporation.
  • solvent evaporation may also be achieved using a rotary evaporator, a thin-film evaporator or a falling-film evaporator.
  • a useful alternative to solvent evaporation is, for example, reverse osmosis for concentrating the fermentation broth.
  • the biomass obtained is optionally further dried, preferably by means of fluidized bed granulation.
  • the moisture content is reduced to below 15% by weight, in particular to below 10% by weight, especially preferably to below 5% by weight, by the drying process.
  • dry mass is accordingly preferably to be understood to mean a biomass having a moisture content of below 10% by weight, in particular below 5% by weight.
  • the biomass is dried in accordance with the invention in a fluidized bed granulation process or a nozzle spray drying process, as described in EP13176661.0 for example.
  • silica may optionally be added to the biomass as anti-caking agent so that the biomass can be converted to an easier-to-manage state.
  • the fermentation broth comprising biomass and also the silica are preferably sprayed into the particular drying zone.
  • the biomass is preferably mixed with the silica only after the drying process.
  • a biomass to be used according to the invention has a concentration of silica, in particular hydrophilic or hydrophobic silica, of 0.2 to 10% by weight, in particular 0.5 to 5% by weight, especially 0.5 to 2% by weight, after the drying process.
  • a free-flowing, fine-grained or coarse-grained product, preferably a granulate, is preferably obtained by the drying process.
  • a product having the desired particle size can optionally be obtained from the granulate obtained by sieving or dust separation.
  • auxiliaries or supports such as starch, gelatin, cellulose derivatives or similar substances, which are typically used in food processing or feed processing as binding agents, gelling agents or thickeners, may optionally be used in this subsequent granulation or compacting process.
  • Free-flowing is understood to mean a powder that can flow out unhindered from a series of glass efflux vessels having different size outflow openings, at least from the vessel having the 5 millimetre opening (Klein: Seifen, ⁇ le, Fette, Wachse 94, 12 (1968)).
  • “Fine-grained” according to the invention is understood to mean a powder having a predominant fraction (>50%) of particle sizes of 20 to 100 micrometres in diameter.
  • Coarse-grained according to the invention is understood to mean a powder having a predominant fraction (>50%) of particle sizes of 100 to 2500 micrometres in diameter.
  • Dust-free according to the invention is understood to mean a powder that contains only low fractions ( ⁇ 10%, preferably ⁇ 5%) of particle sizes below 100 micrometres.
  • Particle sizes are preferably determined according to the invention by laser diffraction spectrometric methods. Possible methods are described in the textbook “Teilchengrö ⁇ entown in der Laborpraxis” [Particle size measurement in the laboratory] by R. H. Müller and R. Schuhmann, Wssenschaftliche Verlags Stuttgart (1996) and in the textbook “Introduction to Particle Technology” by M. Rhodes, Wiley & Sons (1998). Inasmuch as various methods can be used, the first-cited usable method from the textbook by R.H. Müller and R. Schuhmann for the measuring of particle size is preferably used.
  • the products obtained by the drying process according to the invention preferably have a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 100 to 3500 micrometres, preferably 100 to 3000 micrometres, above all 100 to 2500 micrometres.
  • the products of a fluidized bed granulation process obtained according to the invention preferably have in this case a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 200 to 3500 micrometres, preferably 300 to 3000 micrometres, above all 500 to 2500 micrometres.
  • the products of a spray drying process obtained according to the invention preferably have in contrast a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 100 to 500 micrometres, preferably 100 to 400 micrometres, above all 100 to 300 micrometres.
  • the products of a spray drying process and subsequent granulation process obtained according to the invention preferably have a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 100 to 1000 micrometres.
  • the fraction of dust i.e. particles having a particle size of less than 100 micrometres, is preferably at most 10% by weight, particularly at most 8% by weight, particularly preferably at most 5% by weight, above all at most 3% by weight.
  • the bulk density of the products according to the invention is preferably from 400 to 800 kg/m 3 , particularly preferably from 450 to 700 kg/m 3 .
  • a biomass according to the invention can be further processed at low energy input into a feedstuff with high oil load capacity, high abrasion resistance and high water stability.
  • the present invention therefore also further provides a feedstuff comprising a biomass according to the invention and also further feedstuff ingredients.
  • the further feedstuff ingredients are preferably selected from protein-containing, carbohydrate-containing, nucleic-acid-containing and lipid-soluble components and, if appropriate, further fat-containing components and furthermore from among other additives such as minerals, vitamins, pigments and amino acids.
  • structurants may also be present, besides nutrients, for example so as to improve the texture or the appearance of the feedstuff.
  • binders so as to influence the consistency of the feedstuff.
  • a component which is preferably employed and which constitutes both a nutrient and a structurant is starch.
  • a feedstuff according to the invention or a composition used to produce a feedstuff according to the invention is preferably distinguished by the fact that it contains a biomass according to the invention in an amount of 2 to 24% by weight, preferably 4 to 22% by weight, in particular 9 to 20% by weight, above all 11 to 18% by weight.
  • Said feedstuff or the composition used to produce the feedstuff preferably additionally has at least one, preferably all, of the following properties:
  • the invention therefore preferably also provides a feedstuff or a composition suitable for producing the feedstuff having at least one, preferably all, of the following properties:
  • the invention therefore preferably also provides a feedstuff or a composition suitable for producing the feedstuff having at least one, preferably all, of the following properties:
  • the invention therefore preferably also provides a feedstuff or a composition suitable for producing the feedstuff having at least one, preferably all, of the following properties:
  • extrusion of the above-mentioned compositions it is possible to obtain an extrudate having an abrasion resistance of at least 91%, in particular at least 92, 93 or 94%.
  • the present invention preferably provides said extrudates.
  • abrasion resistance was determined as follows: The dried extrudate (having a diameter of 4 mm and a length of 4 mm) was exposed to a mechanical load using the Holmen pellet tester NHP100 (Borregaard Lignotech, Hull, UK). Before carrying out the test, the samples were screened in order to remove any adherent fine particles. The processed samples (100 g) were subsequently introduced into the pellet tester using a 2.5 mm filter screen. The pellets were subsequently conveyed through a pipe having right-angled pipe bends at high air velocity (about 70 mbar) for 30 seconds. The experimental parameters are predetermined by the equipment. Subsequently, abrasion was determined by weighing. Abrasion resistance was specified as PDI (Pellet Durability Index), defined as the amount in per cent of sample remaining in the filter screen after the test has been carried out. The test was carried out with three samples and then the mean was determined.
  • PDI Poret Durability Index
  • a screw or twin-screw extruder is preferably employed in the extrusion process.
  • the extrusion process is preferably carried out at a temperature of 80-220° C., in particular 80-130° C., above all 95-110° C., a pressure of 10-40 bar, and a shaft rotational speed of 100-1000 rpm, in particular 300-700 rpm.
  • the residence time of the mixture introduced is preferably 5-30 seconds, in particular 10-20 seconds.
  • the extrusion process may optionally comprise a compacting step and/or a compression step.
  • this mixing step includes an injection of steam, in particular so as to bring about swelling of the starch which is preferably present.
  • the injection of steam is carried out preferably at a pressure of 1 to 5 bar, especially preferably at a pressure of 2 to 4 bar.
  • the further foodstuff or feedstuff ingredients are preferably comminuted—if required—so as to ensure that a homogeneous mixture is obtained in the mixing step.
  • the comminuting of the further foodstuff or feedstuff ingredients may be carried out, for example, using a hammer mill.
  • the extrudate created preferably has a diameter of 1 to 14 mm, preferably 2 to 12 mm, in particular 2 to 6 mm, and preferably also has a length of 1 to 14 mm, preferably 2 to 12 mm, in particular 2 to 6 mm.
  • the length of the extrudate is set during extrusion by using a cutting tool.
  • the length of the extrudate is preferably selected such that it approximately corresponds to the diameter of the extrudate.
  • the diameter of the extrudate is defined by selecting the screen diameter.
  • the extrusion process is followed by the extrudate obtained being loaded with oil.
  • the extrudate is preferably initially dried to a moisture content of at most 5% by weight.
  • the extrusion product may be loaded with oil by, for example, placing the extrudate in oil or spraying the extrudate with oil; however, according to the invention, preference is given to vacuum coating.
  • feedstuffs which contain biomasses according to the invention preferably in an amount of 2 to 22% by weight, in particular 4 to 20% by weight, especially preferably 8 to 18% by weight, above all 10 to 16% by weight.
  • said feedstuffs preferably additionally have at least one, preferably all, of the following properties:
  • the invention therefore preferably also provides a feedstuff, in particular an extrudate, having at least one, preferably all, of the following properties:
  • the invention therefore preferably also provides a feedstuff, in particular an extrudate, having at least one, preferably all, of the following properties:
  • the invention therefore preferably also provides a feedstuff, in particular an extrudate, having at least one, preferably all, of the following properties:
  • the present invention preferably further provides the above-mentioned extrudates obtainable by oil coating and having preferably a water stability of at least 96%, in particular at least 97 or 98%.
  • Water stability was essentially determined as described by Baeverfjord et al. (2006; Aquaculture 261, 1335-1345), with slight modifications.
  • 10 g samples of the extrudate (having a length and a diameter of 4 mm in each case) were introduced into metallic infusion baskets (Inox, Germany) having a diameter of 6.5 mm and a mesh size of 0.3 mm.
  • the infusion baskets were subsequently introduced into a plastic trough containing water, and so the samples were completely covered with water.
  • the trough was subsequently exposed for 30 minutes to a shake-agitation of 30 shake units per minute using the Multiorbital shaker PSU-20l (Biosan, Lithuania).
  • the fat-containing component used may be, besides the biomass to be used according to the invention, fats, in particular oils, of both animal and plant origin.
  • suitable fat-containing components are in particular vegetable oils, for example soya bean oil, rapeseed oil, sunflower seed oil, flaxseed oil or palm oil and mixtures thereof.
  • fish oil may also optionally be used as fat-containing component in low amounts.
  • a feedstuff according to the invention having an abrasion resistance of at least 96, 97 or 98% contains vegetable oils in an amount of 3 to 18% by weight, in particular 5 to 15% by weight, above all 7 to 13% by weight.
  • the vegetable oil is in this connection preferably applied to the extrudate in a subsequent manner, in particular by vacuum coating.
  • the protein-containing component used may be, for example, soya protein, pea protein, wheat gluten or corn gluten and mixtures thereof.
  • the following examples may be employed as a protein-containing component which additionally contains fats: fish meal, krill meal, bivalve meal, squid meal or shrimp shells.
  • a feedstuff according to the invention comprises marine meal, preferably fish meal, in an amount of 3 to 18% by weight, in particular 5 to 15% by weight, above all 7 to 13% by weight.
  • the carbohydrate-containing component used may be, for example, wheat meal, sunflower meal or soya meal and mixtures thereof.
  • the present invention also further provides a method for farming animals, characterized in that they are administered with a feedstuff according to the invention.
  • the present invention provides in particular a method for increasing the growth of animals, characterized in that they are administered with a feedstuff according to the invention.
  • the present invention further provides in particular similarly a method for increasing the fraction of omega-3 fatty acids, in particular DHA, in the muscle tissue of animals, characterized in that they are administered with a feedstuff according to the invention.
  • the feedstuff is administered at least every two days, preferably at least once daily.
  • the present invention further provides similarly the use of a feedstuff according to the invention for increasing growth in animals.
  • the present invention further provides likewise the use of a feedstuff according to the invention for increasing the fraction of omega-3 fatty acids in muscle tissue in animals.
  • the present invention further provides likewise the use of a feedstuff according to the invention for improving the physical condition of animals, in particular for improving the stress level of animals.
  • the present invention further provides likewise the use of a feedstuff according to the invention for allowing a stress-reduced farming of the animals.
  • the farmed animals fed with a feedstuff according to the invention are preferably poultry, pigs or cattle.
  • the farmed animals are especially preferably marine animals, especially preferably finfish or crustaceans. These include, in particular, carp, tilapia, catfish, tuna, salmon, trout, barramundi, bream, perch, cod, shrimps, lobster, crabs, prawns and crayfish.
  • the farmed animals are especially preferably salmon.
  • Preferred types of salmon in this context are the Atlantic salmon, red salmon, masu salmon, king salmon, keta salmon, coho salmon, Danube salmon, Pacific salmon and pink salmon.
  • the farmed animals may in particular also be fish which are subsequently processed into fish meal or fish oil.
  • the fish are preferably herring, pollack, menhaden, anchovies, capelin or cod.
  • the fish meal or fish oil thus obtained, in turn, can be used in aquaculture for farming edible fish or crustaceans.
  • the farmed animals may also be small organisms which are used as feedstuff in aquaculture. These small organisms may take the form of, for example, nematodes, crustaceans or rotifers.
  • the farming of marine animals may take place in ponds, tanks, basins or else in segregated areas in the sea or in lakes, in particular in this case in cages or net pens. Farming may be used for farming the finished edible fish, but also may be used for farming fry which are subsequently released so as to restock the wild fish stocks.
  • the fish are preferably first grown into smolts in freshwater tanks or artificial watercourses and then grown on in cages or net pens which float in the sea and which are preferably anchored in bays or fjords.
  • the feedstuff according to the invention is preferably a feedstuff for use in the farming of the above-mentioned animals.
  • the cells were cultured for about 75 h in a feed process using a steel fermenter having a fermenter volume of 2 litres with a total starting mass of 712 g and an attained total final mass of 1.3-1.5 kg.
  • a glucose solution 570 g/kg glucose was metered in (fed-batch process)
  • composition of the starting media was as follows:
  • Medium 1 20 g/kg glucose; 4 g/kg yeast extract; 2 g/kg ammonium sulphate; 2.46 g/kg magnesium sulphate (heptahydrate); 0.45 g/kg potassium chloride; 4.5 g/kg potassium dihydrogen phosphate; 0.1 g/kg thiamine (HCl); 5 g/kg trace element solution.
  • composition of the trace element solution was as follows: 35 g/kg hydrochloric acid (37%); 1.86 g/kg manganese chloride (tetrahydrate); 1.82 g/kg zinc sulphate (heptahydrate); 0.818 g/kg sodium EDTA; 0.29 g/kg boric acid; 0.24 g/kg sodium molybdate (dihydrate); 4.58 g/kg calcium chloride (dihydrate); 17.33 g/kg iron sulphate (heptahydrate); 0.15 g/kg copper chloride (dihydrate).
  • Culturing was carried out under the following conditions: Culture temperature 28° C.; aeration rate 0.5 vvm, stirrer speed 600-1950 rpm, control of pH in the growth phase at 4.5 using ammonia water (25% v/v).
  • the following biomass densities were achieved: 100 g/l (medium 1), 111 g/l (medium 2), 114 g/l (medium 3), 116 g/l (medium 4).
  • the fermentation broths were heated to 60° C. for 20 minutes in order to prevent further cellular activity.
  • the biomasses obtained were subjected to a fatty acid analysis.
  • 0.2-0.5 ml of each fermentation broth was admixed with 1 ml of internal standard and topped up with 9 ml of a methanol/chloroform solution (1:2; v/v).
  • the samples were treated for 10 min in an ultrasonic bath. Subsequently, the samples were concentrated to dryness under a nitrogen blanket at 50° C. in a thermal block. 2 ml of 0.5 N KOH were added to each of the residues of drying and incubated at 100° C. for 15 min.
  • the samples were cooled down to room temperature, admixed with, in each case, 2 ml of 0.7 N HCl and 1 ml of boron trifluoride solution (14% BF3 in methanol) and incubated at 100° C. for a further 15 min. After cooling down to room temperature, the samples were each extracted with a mixture composed of 3 ml of water and 2 ml of heptane. After centrifugation for 1 min at 2000 rpm, 1 ml from each upper phase was transferred to a GC vial and analysed by gas chromatography.
  • the cooled-down biomass-containing fermentation broths having different contents of Na 2 SO 4 according to Example 1 were each separately subjected to spray drying.
  • Spray drying was carried out in each case using a Büuchi mini spray dryer B-290 (diameter of nozzle tip: 0.7 mm; flow rate of spray air: 742 L/h; flow rate of aspirator: 35 m 3 /h; temperature of inlet air: 220° C.; temperature of outlet air: 80° C.).
  • the samples obtained by spray drying the fermentation broths having different contents of Na2SO4 were subjected to a sulphate or sulphur determination and a DHA concentration determination. DHA determination was carried out as described under Example 2. Sulphur content was determined in accordance with DIN EN ISO 11885.
  • the fermentation broths obtained after fermentation in media having different contents of sodium sulphate exhibited distinct differences in the spray drying process and the spray-dried material obtained exhibited varying caking tendency, the basis of this being released oil.
  • the biomasses obtained by fermentation in media 3 and 4 showed a distinctly lower caking tendency than the biomasses obtained by fermentation in media 1 and 2. This is evidence of the increased cell stability of the cells in the biomasses concerned.
  • the biomass from Example 1 obtained in the sulphate-rich medium 4 was subjected to a two-stage drying process for the purpose of producing feedstuffs: Firstly, the fermentation broth was concentrated by evaporation to a dry mass of about 20% by weight. This was followed by spray drying of the concentrated fermentation broth using a Production MinorTM spray dryer (GEA NIRO) at a drying air inlet temperature of 340° C. By means of spray drying, a powder having a dry mass of more than 95% by weight was thus obtained.
  • GEA NIRO Production MinorTM spray dryer
  • the feedstuff mixtures were each produced by mixing of the components—with the exception of the oils—using a double-helix mixer (model 500L, TGC Extrusion, France). The mixtures thus obtained were then comminuted to particle sizes below 250 ⁇ m using a hammer mill (model SH1, Hosokawa-Alpine, Germany).
  • the extrusion process use was made in each case of 140 kg per feedstuff.
  • the extrusion process was carried out using a twin-screw extruder (CLEXTRAL BC45) having a screw diameter of 55.5 mm and a maximum flow rate of 90-100 kg/h. Pellets of 4.0 mm in size (diameter and length) were extruded. To this end, the extruder was equipped with a high-speed cutter in order to convert the product to the intended pellet size.
  • SME is the specific mechanical energy. This is calculated as follows:
  • Test SS test speed (rpm) of the rotating screws
  • Max SS maximum speed (267 rpm) of the rotating screws
  • Abrasion resistance was ascertained as follows: Before being loaded with oil, the dried extrusion product was exposed to a mechanical load using the Holmen pellet tester (Borregaard Lignotech, Hull, UK). Before carrying out the test, the samples were screened in order to remove any adherent fine particles. The processed samples (100 g) were subsequently introduced into the pellet tester using a 2.5 mm filter screen. The pellets were subsequently conveyed through a pipe having right-angled pipe bends at high air velocity for 30 seconds. Subsequently, abrasion was determined by weighing. Abrasion resistance was specified as PDI (Pellet Durability Index), defined as the amount in per cent of sample remaining in the filter screen. The test was carried out with three samples and then the mean was determined.
  • PDI Poret Durability Index
  • Water stability was carried out using the oil-loaded samples. The method was essentially carried out as described by Baeverfjord et al. (2006; Aquaculture 261, 1335-1345), with slight modifications. 10 g samples were introduced into metallic infusion baskets having a mesh size of 0.3 mm. The infusion baskets were subsequently introduced into a plastic trough containing water, and so the samples were completely covered with water. The trough was subsequently exposed for 30 minutes to a shake-agitation of 30 shake units per minute. Thereafter, the samples were carefully dried with blotting paper and then weighed before and after they had been subjected to oven-drying at a temperature of 105° C. for 24 hours. Water stability was calculated as the difference in the dry weight of the sample before and after the incubation in water and specified in per cent of the dry weight of the sample used before the incubation with water.
  • a feedstuff according to the invention which contains a biomass according to the invention has a distinctly higher abrasion resistance and water stability than feedstuffs which contain a commercially available Labyrinthulea biomass or fish oil as a source of omega-3 fatty acids.
  • Feedstuffs each containing 42.5% by weight of total protein and 24% by weight of total lipid, based on the dry mass, and having a pellet size of 3 mm were produced by extrusion of the biomass from Example 5.
  • the control formulation “Diet 1” contained 11.0% by weight of fish oil.
  • the fish oil was partly (about 50%) replaced by Aurantiochytrium biomass, this being done by adding 9.1% by weight of biomass and, for that reason, reducing the amount of fish oil to 5.5% by weight.
  • the fish oil was completely replaced by Aurantiochytrium biomass, this being done by adding 16% by weight of biomass and, at the same time, increasing the amount of rape oil from 8.2 to 9.9% by weight. Differences in the total weight were balanced out by the amount of wheat added.
  • the individual components were—with the exception of the oils—mixed intimately with each other and then an extrudate was produced using a twin-screw extruder (Wenger Tex. 52, Wenger, USA) through use of an outlet nozzle having a diameter of 2 mm.
  • the extrudates were dried for about 1 hour in a carousel dryer (Paul Klöckner, Maschinenstechnik GmbH, Germany) at 65° C. to a water content of 7 to 8% by weight.
  • the extrudates were then dried overnight at room temperature before the oils were applied by vacuum coating (Dinnissen, Sevenum, the Netherlands).
  • the feeding experiments were carried out by feeding each of these formulations for a total of 12 weeks to each of three tanks containing smolts having a mean weight of 83.6 g and a total salmon weight of 4 kg per tank.
  • the total salmon weight per tank increased from 4 kg to 15-17 kg per tank.
  • the fish consumed 8 to 11 kg of feed per tank, corresponding to a feed conversion rate (FCR) of 0.8 to 0.9 kg of feed per kg of fish.
  • FCR feed conversion rate
  • Fat was extracted according to the method by Folch (1957; J. Biol. Chem., 226 (1), 497-509). Fat content was then determined by a gravimetric method.
  • Fat deposition in the liver is considered to be a sign of an imbalance in food metabolism and, in particular, also an indication of oxidative stress.
  • the distinct reduction in the proportion of fat in the liver is thus a clear indication of the reduction of stress and thus of the improvement in the physical condition of the salmon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Animal Husbandry (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Insects & Arthropods (AREA)
  • Birds (AREA)
  • Physiology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Fodder In General (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

According to the invention, it was found that culturing of PUFA-producing cells in a content of sulphate makes it possible to obtain a biomass having high cell stability and thus PUFAs protected against oxidation in a sustained manner, which biomass can in addition be advantageously further processed into a feedstuff.

Description

  • The present invention relates to a process for producing a PUFA-containing biomass having high cell stability.
  • Processes for producing biomass containing polyunsaturated fatty acids (PUFAs) have already been described in the prior art. A problem in the case of the biomass obtained is frequently the stability of the cell wall. The cell wall must not be too labile, since otherwise the oil present might be released too early and the unsaturated fatty acids oxidized in this connection. On the other hand, the cell wall must also not be too stable, since otherwise, during the production of the feedstuff, the cells are not completely broken and/or break-up of the cells requires a very high energy input, and so the oil cannot be completely released from the cells or only with a very high energy input and thus high costs.
  • It is therefore an object of the present invention to provide a process in which the biomass obtained has a cell stability which is suited to the further processing of the biomass into feedstuff and which must be neither too high nor too low.
  • According to the invention, it was found that, surprisingly, the stability of the cell wall can be optimized by specific addition of sulphate to the fermentation medium.
  • In this connection, it became apparent that an optimal cell stability can be attained by adding sulphate in an amount such that a sulphate concentration of 25 to 60 g/kg ensues in the resulting biomass.
  • Also, it became apparent that the biomass thus obtained can be further processed at a very low energy input into a feedstuff with high abrasion resistance and high water stability.
  • Furthermore, it became apparent that the feedstuff obtained using the biomass according to the invention can be used especially advantageously for farming fish.
  • Another object of the present invention can therefore be considered that of providing a biomass which, owing to its properties, is suited to an especially good extent to being able to be further processed into a feedstuff.
  • The present invention therefore firstly provides a process for producing a polyunsaturated fatty acid (PUFA)-containing biomass, characterized in that production of the biomass comprises culturing microorganisms in a fermentation medium containing sulphate in an amount such that a sulphate concentration, based on the dry mass, of 25 to 60 g/kg ensues in the resulting biomass. In this connection, the sulphate concentration in the resulting biomass is preferably 25 to 50 g/kg, in particular 25 to 40 g/kg, especially preferably 25 to 35 g/kg, based in each case on the dry mass.
  • The present invention similarly further provides a PUFA-containing biomass which is obtainable using a process according to the invention.
  • The present invention similarly provides a PUFA-containing biomass which has a sulphate content of 25 to 60 g/kg, based on the dry mass, and is obtainable preferably by a process described above. The sulphate content is preferably 25 to 50 g/kg, in particular 25 to 40 g/kg, especially preferably 25 to 35 g/kg, based in each case on the dry mass.
  • According to the invention, “sulphate content” is to be understood to mean the total content of sulphate, i.e. the content of free and bound, in particular organically bound, sulphate. It can be assumed that the majority of the sulphate present in the biomass is present as a constituent of exopolysaccharides, which are involved in the formation of the cell wall of microorganisms.
  • According to the invention, the sulphate content is preferably determined by ascertaining the sulphur content of the biomass obtained, since the majority of the sulphur present in the biomass can be attributed to the sulphate present. Sulphur which can be attributed to other sources can be disregarded owing to the amount of sulphate present. Thus, the amount of sulphate present can be readily ascertained from the amount of sulphur ascertained.
  • In this connection, the sulphur content of the biomass is preferably determined by elemental analysis in accordance with DIN EN ISO 11885. For the analysis of the sulphur content of the biomass, appropriate aliquots of sample are disrupted preferably with nitric acid and hydrogen peroxide at 240° C. under pressure prior to the analysis in order to ensure the free accessibility of the sulphur present.
  • The present invention therefore also further provides a process for producing a biomass containing polyunsaturated fatty acids (PUFAs), characterized in that production of the biomass comprises culturing microorganisms in a fermentation medium containing sulphate in an amount such that a sulphur content of 8 to 20 g/kg, based on the dry mass, can be detected in the resulting biomass by elemental analysis in accordance with DIN EN ISO 11885. In this connection, the sulphur content in the resulting biomass is preferably 8 to 17 g/kg, in particular 8 to 14 g/kg, especially preferably 8 to 12 g/kg, based in each case on the dry mass.
  • The present invention therefore also further provides a PUFA-containing biomass, characterized in that a sulphur content of 8 to 20 g/kg, based on the dry mass, can be detected by elemental analysis in accordance with DIN EN ISO 11885. In this connection, the sulphur content in the resulting biomass is preferably 8 to 17 g/kg, in particular 8 to 14 g/kg, especially preferably 8 to 12 g/kg, based in each case on the dry mass.
  • According to the invention, the phosphorus content of biomasses according to the invention is, with regard to the dry mass, preferably 1 to 6 g/kg, in particular 2 to 5 g/kg. The phosphorus content is preferably likewise ascertained by elemental analysis in accordance with DIN EN ISO 11885.
  • The biomass according to the invention preferably comprises cells, and preferably consists substantially of those cells which already naturally produce PUFAs; however, the cells can also be cells enabled by appropriate gene technology methods to produce PUFAs. In this context, the production may be autotrophic, mixotrophic or heterotrophic.
  • Preferably, the cells of the biomass are those which produce PUFAs heterotrophically. According to the invention, the cells preferably take the form of algae, fungi, in particular yeasts, or protists. The cells are especially preferably microbial algae or fungi.
  • Suitable cells of oil-producing yeasts are, in particular, strains of Yarrowia, Candida, Rhodotorula, Rhodosporidium, Cryptococcus, Trichosporon and Lipomyces.
  • A biomass according to the invention preferably comprises cells, and preferably consists substantially of those cells of the taxon Labyrinthulomycetes (Labyrinthulea, slime nets), in particular those of the family of the Thraustochytriaceae. The family of the Thraustochytriaceae includes the genera Althomia, Aplanochytrium, Elnia, Japonochytrium, Schizochytrium, Thraustochytrium, Aurantiochytrium, Oblongichytrium and Ulkenia. Particular preference is given to cells of the genera Thraustochytrium, Schizochytrium, Aurantiochytrium or Oblongichytrium, especially those of the genus Aurantiochytrium. A particularly preferred strain is the strain Aurantiochytrium limacinum SR21 (IFO 32693).
  • The biomass according to the invention preferably takes the form of the product of a fermentative culturing process. Accordingly, the biomass may contain not only the cells to be disrupted but also constituents of the fermentation medium. These constituents may take the form of, in particular, salts, antifoam agents and unreacted carbon source and/or nitrogen source. The cell content in this biomass is preferably at least 70% by weight, preferably at least 75% by weight. Optionally, the cell content in the biomass may be increased by suitable wash steps to, for example, at least 80 or at least 90% by weight before carrying out the cell disruption process. However, the biomass obtained may also be used directly in the cell disruption process.
  • The cells in the biomass are preferably distinguished by the fact that they contain at least 20% by weight, preferably at least 30% by weight, in particular at least 35% by weight, of PUFAs, based in each case on the cell dry mass.
  • In a preferred embodiment, the majority of the lipids is present in the form of triglycerides, with preferably at least 50% by weight, in particular at least 75% by weight and, in an especially preferred embodiment, at least 90% by weight of the lipids present in the cell being present in the form of triglycerides.
  • Preferably, at least 10% by weight, in particular at least 20% by weight, especially preferably 20 to 60% by weight, in particular 20 to 40% by weight, of the fatty acids present in the cell are PUFAs.
  • According to the invention, polyunsaturated fatty acids (PUFAs) are understood to mean fatty acids having at least two C-C double bonds. According to the invention, highly unsaturated fatty acids (HUFAs) are preferred among the PUFAs. According to the invention, HUFAs are understood to mean fatty acids having at least four C-C double bonds.
  • The PUFAs may be present in the cell in free form or in bound form. Examples of the presence in bound form are phospholipids and esters of the PUFAs, in particular monoacyl-, diacyl-and triacylglycerides. In a preferred embodiment, the majority of the PUFAs is present in the form of triglycerides, with preferably at least 50% by weight, in particular at least 75% by weight and, in an especially preferred embodiment, at least 90% by weight of the PUFAs present in the cell being present in the form of triglycerides.
  • Preferred PUFAs are omega-3 fatty acids and omega-6 fatty acids, with omega-3 fatty acids being especially preferred. Preferred omega-3 fatty acids here are the eicosapentaenoic acid (EPA, 20:5ω-3), particularly the (5Z,8Z,11Z,14Z,17Z)-eicosa-5,8,11,14,17-pentaenoic acid, and the docosahexaenoic acid (DHA, 22:6ω-3), particularly the (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid, with the docosahexaenoic acid being especially preferred.
  • Processes for producing the PUFA-containing cells especially of the order Thraustochytriales have been described in detail in the prior art (see, for example, WO91/07498, WO94/08467, WO97/37032, WO97/36996, WO01/54510). As a rule, the production takes place by cells being cultured in a fermenter in the presence of a carbon source and of a nitrogen source. In this context, biomass densities of more than 100 grams per litre and production rates of more than 0.5 gram of lipid per litre per hour may be attained. The process is preferably carried out as what is known as a fed-batch process, i.e. the carbon and nitrogen sources are fed in incrementally during the fermentation. Once the desired biomass has been obtained, lipid production may be induced by various measures, for example by limiting the nitrogen source, the carbon source or the oxygen content or combinations of these.
  • Suitable carbon sources are both alcoholic and non-alcoholic carbon sources. Examples of alcoholic carbon sources are methanol, ethanol and isopropanol. Examples of non-alcoholic carbon sources are fructose, glucose, sucrose, molasses, starch and corn syrup.
  • Suitable nitrogen sources are both inorganic and organic nitrogen sources. Examples of inorganic nitrogen sources are nitrates and ammonium salts, in particular ammonium sulphate and ammonium hydroxide. Examples of organic nitrogen sources are amino acids, in particular glutamate, and urea.
  • According to the invention, the desired sulphate content in the resulting biomass may be achieved in different ways.
  • For example, in what is known as a batch process, the required amount of sulphate may be initially charged in full right at the start. The amount of sulphate required can be easily calculated, since the cells used to form the biomass virtually completely assimilate the sulphate.
  • When using what is known as a fed-batch process, the amount of sulphate required may alternatively be metered in during the course of fermentation or, accordingly, some of the sulphate may be initially charged and the remainder metered in during the course of fermentation.
  • Especially when it emerges during the course of fermentation that the amount of biomass produced exceeds the originally calculated value, it is possible to ensure by subsequent metering-in of sulphate that the resulting biomass has sufficient cell stability.
  • According to the invention, the sulphate salt used is preferably sodium sulphate, ammonium sulphate or magnesium sulphate and also mixtures thereof.
  • During fermentation, the chloride content is, with regard to the liquid fermentation medium including the biomass present, preferably always below 3 g/kg, in particular below 1 g/kg, especially preferably below 400 mg/kg of fermentation medium.
  • In addition to sulphates and any chlorides used, it is also optionally possible during fermentation to use further salts, especially those selected from sodium carbonate, sodium hydrogen carbonate, soda ash or inorganic phosphorus compounds.
  • If further salts are used, these are preferably used in an amount such that each one during fermentation, with regard to the liquid fermentation medium including the biomass present, is present in each case in an amount of always less than 10 g/kg, in particular less than 5 g/kg, especially preferably less than 3 g/kg in the fermentation medium.
  • According to the invention, the total salt content in the fermentation medium including the biomass present is preferably always below 35 g/kg, in particular below 30 g/kg, during the course of the entire fermentation process. Especially preferably, the total salt content during the entire fermentation process, with regard to the liquid fermentation medium including the biomass present, is between 10 and 35 g/kg, in particular between 12 and 30 g/kg.
  • According to the invention, the sulphate content in the fermentation medium including the biomass present is preferably always between 5 and 16 g/kg during the course of the entire fermentation process.
  • In addition, organic phosphorus compounds and/or known growth-stimulating substances, such as, for example, yeast extract or corn steep liquor, may also be added to the fermentation medium so as to have a positive effect on the fermentation.
  • The cells are preferably fermented at a pH of 3 to 11, in particular 4 to 10, and preferably at a temperature of at least 20° C., in particular 20 to 40° C., especially preferably at least 30° C. A typical fermentation process takes up to approximately 100 hours.
  • According to the invention, the cells are preferably fermented up to a biomass density of at least 50, 60 or 70 g/l, in particular at least 80 or 90 g/l, especially preferably at least 100 g/l. In this case, the data are based on the content of dry biomass in relation to the total volume of the fermentation broth after the fermentation has ended. The content of dry biomass is determined by filtering-off of the biomass from the fermentation broth, subsequent washing with water, then complete drying—for example in a microwave—and lastly ascertainment of the dry weight.
  • After harvesting the cells or optionally even shortly before harvesting the cells, the cells are preferably pasteurized in order to kill the cells and to inactivate enzymes which might promote lipid degradation.
  • After the fermentation has ended, the biomass is harvested. By means of centrifugation, filtration, decanting or solvent evaporation, it is possible to remove the majority of the fermentation medium from the biomass. Solvent evaporation is preferably achieved using a drum dryer, a tunnel dryer, by means of spray drying or vacuum evaporation. In particular, solvent evaporation may also be achieved using a rotary evaporator, a thin-film evaporator or a falling-film evaporator. A useful alternative to solvent evaporation is, for example, reverse osmosis for concentrating the fermentation broth. Subsequently, the biomass obtained is optionally further dried, preferably by means of fluidized bed granulation. Preferably, the moisture content is reduced to below 15% by weight, in particular to below 10% by weight, especially preferably to below 5% by weight, by the drying process.
  • According to the invention, “dry mass” is accordingly preferably to be understood to mean a biomass having a moisture content of below 10% by weight, in particular below 5% by weight.
  • In a particularly preferred embodiment of the invention, the biomass is dried in accordance with the invention in a fluidized bed granulation process or a nozzle spray drying process, as described in EP13176661.0 for example.
  • During the drying process, silica may optionally be added to the biomass as anti-caking agent so that the biomass can be converted to an easier-to-manage state. For this purpose, the fermentation broth comprising biomass and also the silica are preferably sprayed into the particular drying zone. Alternatively, the biomass is preferably mixed with the silica only after the drying process. In this regard, reference is also made in particular to the patent application EP13187631.0.
  • In a preferred embodiment, a biomass to be used according to the invention has a concentration of silica, in particular hydrophilic or hydrophobic silica, of 0.2 to 10% by weight, in particular 0.5 to 5% by weight, especially 0.5 to 2% by weight, after the drying process.
  • A free-flowing, fine-grained or coarse-grained product, preferably a granulate, is preferably obtained by the drying process. A product having the desired particle size can optionally be obtained from the granulate obtained by sieving or dust separation.
  • Providing a free-flowing fine-grained powder was obtained, this can optionally be converted into a coarse-grained, free-flowing and largely dust-free product, which can be stored, by suitable compacting or granulating processes.
  • Conventional organic or inorganic auxiliaries or supports such as starch, gelatin, cellulose derivatives or similar substances, which are typically used in food processing or feed processing as binding agents, gelling agents or thickeners, may optionally be used in this subsequent granulation or compacting process.
  • “Free-flowing” according to the invention is understood to mean a powder that can flow out unhindered from a series of glass efflux vessels having different size outflow openings, at least from the vessel having the 5 millimetre opening (Klein: Seifen, Öle, Fette, Wachse 94, 12 (1968)).
  • “Fine-grained” according to the invention is understood to mean a powder having a predominant fraction (>50%) of particle sizes of 20 to 100 micrometres in diameter.
  • “Coarse-grained” according to the invention is understood to mean a powder having a predominant fraction (>50%) of particle sizes of 100 to 2500 micrometres in diameter.
  • “Dust-free” according to the invention is understood to mean a powder that contains only low fractions (<10%, preferably <5%) of particle sizes below 100 micrometres.
  • Particle sizes are preferably determined according to the invention by laser diffraction spectrometric methods. Possible methods are described in the textbook “Teilchengröβenmessung in der Laborpraxis” [Particle size measurement in the laboratory] by R. H. Müller and R. Schuhmann, Wssenschaftliche Verlagsgesellschaft Stuttgart (1996) and in the textbook “Introduction to Particle Technology” by M. Rhodes, Wiley & Sons (1998). Inasmuch as various methods can be used, the first-cited usable method from the textbook by R.H. Müller and R. Schuhmann for the measuring of particle size is preferably used.
  • The products obtained by the drying process according to the invention preferably have a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 100 to 3500 micrometres, preferably 100 to 3000 micrometres, above all 100 to 2500 micrometres.
  • The products of a fluidized bed granulation process obtained according to the invention preferably have in this case a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 200 to 3500 micrometres, preferably 300 to 3000 micrometres, above all 500 to 2500 micrometres.
  • The products of a spray drying process obtained according to the invention preferably have in contrast a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 100 to 500 micrometres, preferably 100 to 400 micrometres, above all 100 to 300 micrometres.
  • The products of a spray drying process and subsequent granulation process obtained according to the invention preferably have a fraction of at least 80% by weight, particularly at least 90% by weight, particularly preferably at least 95% by weight, of particles having a particle size of 100 to 1000 micrometres.
  • The fraction of dust, i.e. particles having a particle size of less than 100 micrometres, is preferably at most 10% by weight, particularly at most 8% by weight, particularly preferably at most 5% by weight, above all at most 3% by weight.
  • The bulk density of the products according to the invention is preferably from 400 to 800 kg/m3, particularly preferably from 450 to 700 kg/m3.
  • According to the invention, it became further apparent that a biomass according to the invention can be further processed at low energy input into a feedstuff with high oil load capacity, high abrasion resistance and high water stability.
  • The present invention therefore also further provides a feedstuff comprising a biomass according to the invention and also further feedstuff ingredients.
  • In this connection, the further feedstuff ingredients are preferably selected from protein-containing, carbohydrate-containing, nucleic-acid-containing and lipid-soluble components and, if appropriate, further fat-containing components and furthermore from among other additives such as minerals, vitamins, pigments and amino acids. Besides, structurants may also be present, besides nutrients, for example so as to improve the texture or the appearance of the feedstuff. Furthermore, it is also possible to employ, for example, binders so as to influence the consistency of the feedstuff. A component which is preferably employed and which constitutes both a nutrient and a structurant is starch.
  • According to the invention, a feedstuff according to the invention or a composition used to produce a feedstuff according to the invention is preferably distinguished by the fact that it contains a biomass according to the invention in an amount of 2 to 24% by weight, preferably 4 to 22% by weight, in particular 9 to 20% by weight, above all 11 to 18% by weight.
  • Said feedstuff or the composition used to produce the feedstuff preferably additionally has at least one, preferably all, of the following properties:
      • a) a total protein content of 33 to 67% by weight, preferably 39 to 61% by weight, in particular 44 to 55% by weight;
      • b) a total fat content of 5 to 25% by weight, preferably 8 to 22% by weight, in particular 10 to 20% by weight, above all 12 to 18% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 6 to 17% by weight, especially preferably 8 to 14% by weight;
      • d) a polyunsaturated fatty acid (PUFA) content of 2 to 13% by weight, preferably 3 to 11% by weight, in particular 4 to 10% by weight, above all 5.5 to 9% by weight;
      • e) an omega-3 fatty acid content of 1 to 7% by weight, preferably 1.5 to 5.5% by weight, in particular 2 to 5% by weight, above all 2.5 to 4.5% by weight;
      • f) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.8% by weight, in particular 1 to 2.8% by weight, above all 1.3 to 2.4% by weight, in particular 1.3 to 2.2% by weight.
  • The invention therefore preferably also provides a feedstuff or a composition suitable for producing the feedstuff having at least one, preferably all, of the following properties:
      • a) a total protein content of 33 to 67% by weight, preferably 39 to 61% by weight, in particular 44 to 55% by weight;
      • b) a total fat content of 5 to 25% by weight, preferably 8 to 22% by weight, in particular 10 to 20% by weight, above all 12 to 18% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 6 to 17% by weight, especially preferably 8 to 14% by weight;
      • d) a polyunsaturated fatty acid (PUFA) content of 2 to 13% by weight, preferably 3 to 11% by weight, in particular 4 to 10% by weight, above all 5.5 to 9% by weight;
      • e) an omega-3 fatty acid content of 1 to 7% by weight, preferably 1.5 to 5.5% by weight, in particular 2 to 5% by weight, above all 2.5 to 4.5% by weight;
      • f) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.8% by weight, in particular 1 to 2.8% by weight, above all 1.3 to 2.4% by weight, in particular 1.3 to 2.2% by weight.
  • The invention therefore preferably also provides a feedstuff or a composition suitable for producing the feedstuff having at least one, preferably all, of the following properties:
      • a) a total protein content of 33 to 67% by weight, preferably 39 to 61% by weight, in particular 44 to 55% by weight;
      • b) a total fat content of 5 to 25% by weight, preferably 8 to 22% by weight, in particular 10 to 20% by weight, above all 12 to 18% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 6 to 17% by weight, especially preferably 8 to 14% by weight;
      • d) a content of biomass according to the invention, in particular a Labyrinthulea biomass according to the invention, preferably a Thraustochytriaceae biomass according to the invention, of 2 to 24% by weight, preferably 4 to 22% by weight, in particular 9 to 20% by weight, above all 11 to 18% by weight;
      • e) a polyunsaturated fatty acid (PUFA) content of 2 to 13% by weight, preferably 3 to 11% by weight, in particular 4 to 10% by weight, above all 5.5 to 9% by weight;
      • f) an omega-3 fatty acid content of 1 to 7% by weight, preferably 1.5 to 5.5% by weight, in particular 2 to 5% by weight, above all 2.5 to 4.5% by weight;
      • g) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.8% by weight, in particular 1 to 2.8% by weight, above all 1.3 to 2.4% by weight, in particular 1.3 to 2.2% by weight.
  • The invention therefore preferably also provides a feedstuff or a composition suitable for producing the feedstuff having at least one, preferably all, of the following properties:
      • a) a total protein content of 33 to 67% by weight, preferably 39 to 61% by weight, in particular 40 to 50% by weight;
      • b) a total fat content of 5 to 25% by weight, preferably 8 to 22% by weight, in particular 10 to 20% by weight, above all 12 to 18% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 6 to 17% by weight, especially preferably 8 to 14% by weight;
      • d) a content of an Aurantiochytrium biomass according to the invention, preferably an Aurantiochytrium limacinum biomass according to the invention, above all an Aurantiochytrium limacinum SR21 biomass according to the invention, of 2 to 24% by weight, preferably 4 to 22% by weight, in particular 9 to 20% by weight, above all 11 to 18% by weight;
      • e) a polyunsaturated fatty acid (PUFA) content of 2 to 13% by weight, preferably 3 to 11% by weight, in particular 4 to 10% by weight, above all 5.5 to 9% by weight;
      • f) an omega-3 fatty acid content of 1 to 7% by weight, preferably 1.5 to 5.5% by weight, in particular 2 to 5% by weight, above all 2.5 to 4.5% by weight;
      • g) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.8% by weight, in particular 1 to 2.8% by weight, above all 1.3 to 2.4% by weight, in particular 1.3 to 2.2% by weight.
  • By extrusion of the above-mentioned compositions, it is possible to obtain an extrudate having an abrasion resistance of at least 91%, in particular at least 92, 93 or 94%. The present invention preferably provides said extrudates.
  • According to the invention, abrasion resistance was determined as follows: The dried extrudate (having a diameter of 4 mm and a length of 4 mm) was exposed to a mechanical load using the Holmen pellet tester NHP100 (Borregaard Lignotech, Hull, UK). Before carrying out the test, the samples were screened in order to remove any adherent fine particles. The processed samples (100 g) were subsequently introduced into the pellet tester using a 2.5 mm filter screen. The pellets were subsequently conveyed through a pipe having right-angled pipe bends at high air velocity (about 70 mbar) for 30 seconds. The experimental parameters are predetermined by the equipment. Subsequently, abrasion was determined by weighing. Abrasion resistance was specified as PDI (Pellet Durability Index), defined as the amount in per cent of sample remaining in the filter screen after the test has been carried out. The test was carried out with three samples and then the mean was determined.
  • It proved to be especially advantageous according to the invention when the extrusion is done at an energy input of 12-28 Wh/kg, in particular 14-26 Wh/kg, especially preferably 16-24 Wh/kg, above all 18-22 Wh/kg.
  • In this connection, a screw or twin-screw extruder is preferably employed in the extrusion process. The extrusion process is preferably carried out at a temperature of 80-220° C., in particular 80-130° C., above all 95-110° C., a pressure of 10-40 bar, and a shaft rotational speed of 100-1000 rpm, in particular 300-700 rpm. The residence time of the mixture introduced is preferably 5-30 seconds, in particular 10-20 seconds.
  • The extrusion process may optionally comprise a compacting step and/or a compression step.
  • It is preferred to intimately mix the components with each other before carrying out the extrusion process. This is preferably carried out in a drum equipped with vanes. In a preferred embodiment, this mixing step includes an injection of steam, in particular so as to bring about swelling of the starch which is preferably present. In this case, the injection of steam is carried out preferably at a pressure of 1 to 5 bar, especially preferably at a pressure of 2 to 4 bar.
  • Before being mixed with the algae biomass, the further foodstuff or feedstuff ingredients are preferably comminuted—if required—so as to ensure that a homogeneous mixture is obtained in the mixing step. The comminuting of the further foodstuff or feedstuff ingredients may be carried out, for example, using a hammer mill.
  • The extrudate created preferably has a diameter of 1 to 14 mm, preferably 2 to 12 mm, in particular 2 to 6 mm, and preferably also has a length of 1 to 14 mm, preferably 2 to 12 mm, in particular 2 to 6 mm. The length of the extrudate is set during extrusion by using a cutting tool. The length of the extrudate is preferably selected such that it approximately corresponds to the diameter of the extrudate. The diameter of the extrudate is defined by selecting the screen diameter.
  • In one embodiment preferred according to the invention, the extrusion process is followed by the extrudate obtained being loaded with oil. To this end, the extrudate is preferably initially dried to a moisture content of at most 5% by weight. According to the invention, the extrusion product may be loaded with oil by, for example, placing the extrudate in oil or spraying the extrudate with oil; however, according to the invention, preference is given to vacuum coating.
  • In this way, feedstuffs are obtained which contain biomasses according to the invention preferably in an amount of 2 to 22% by weight, in particular 4 to 20% by weight, especially preferably 8 to 18% by weight, above all 10 to 16% by weight.
  • Accordingly, said feedstuffs preferably additionally have at least one, preferably all, of the following properties:
      • a) a total protein content of 30 to 60% by weight, preferably 35 to 55% by weight, in particular 40 to 50% by weight;
      • b) a total fat content of 15 to 35% by weight, preferably 18 to 32% by weight, in particular 20 to 30% by weight, above all 22 to 28% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 5 to 15% by weight, especially preferably 7 to 13% by weight;
      • d) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight, preferably 3 to 10% by weight, in particular 4 to 9% by weight, above all 5 to 8% by weight;
      • e) an omega-3 fatty acid content of 1 to 6% by weight, preferably 1.5 to 5% by weight, in particular 2 to 4.5% by weight, above all 2.5 to 4% by weight;
      • f) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.5% by weight, in particular 1 to 2.5% by weight, above all 1.2 to 2.2% by weight, in particular 1.2 to 2.0% by weight.
  • The invention therefore preferably also provides a feedstuff, in particular an extrudate, having at least one, preferably all, of the following properties:
      • a) a total protein content of 30 to 60% by weight, preferably 35 to 55% by weight, in particular 40 to 50% by weight;
      • b) a total fat content of 15 to 35% by weight, preferably 18 to 32% by weight, in particular 20 to 30% by weight, above all 22 to 28% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 5 to 15% by weight, especially preferably 7 to 13% by weight;
      • d) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight, preferably 3 to 10% by weight, in particular 4 to 9% by weight, above all 5 to 8% by weight;
      • e) an omega-3 fatty acid content of 1 to 6% by weight, preferably 1.5 to 5% by weight, in particular 2 to 4.5% by weight, above all 2.5 to 4% by weight;
      • f) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.5% by weight, in particular 1 to 2.5% by weight, above all 1.2 to 2.2% by weight, in particular 1.2 to 2.0% by weight.
  • The invention therefore preferably also provides a feedstuff, in particular an extrudate, having at least one, preferably all, of the following properties:
      • a) a total protein content of 30 to 60% by weight, preferably 35 to 55% by weight, in particular 40 to 50% by weight;
      • b) a total fat content of 15 to 35% by weight, preferably 18 to 32% by weight, in particular 20 to 30% by weight, above all 22 to 28% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 5 to 15% by weight, especially preferably 7 to 13% by weight;
      • d) a content of a biomass according to the invention, in particular a Labyrinthulea biomass according to the invention, preferably a Thraustochytriaceae biomass according to the invention, of 2 to 22% by weight, preferably 4 to 20% by weight, in particular 8 to 18% by weight, above all 10 to 16% by weight;
      • e) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight, preferably 3 to 10% by weight, in particular 4 to 9% by weight, above all 5 to 8% by weight;
      • f) an omega-3 fatty acid content of 1 to 6% by weight, preferably 1.5 to 5% by weight, in particular 2 to 4.5% by weight, above all 2.5 to 4% by weight;
      • g) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.5% by weight, in particular 1 to 2.5% by weight, above all 1.2 to 2.2% by weight, in particular 1.2 to 2.0% by weight.
  • The invention therefore preferably also provides a feedstuff, in particular an extrudate, having at least one, preferably all, of the following properties:
      • a) a total protein content of 30 to 60% by weight, preferably 35 to 55% by weight, in particular 40 to 50% by weight;
      • b) a total fat content of 15 to 35% by weight, preferably 18 to 32% by weight, in particular 20 to 30% by weight, above all 22 to 28% by weight;
      • c) a total starch content of at most 25% by weight, in particular at most 20% by weight, preferably 5 to 15% by weight, especially preferably 7 to 13% by weight;
      • h) a content of an Aurantiochytrium biomass according to the invention, preferably an Aurantiochytrium limacinum biomass according to the invention, above all an Aurantiochytrium limacinum SR21 biomass according to the invention, of 2 to 22% by weight, preferably 4 to 20% by weight, in particular 8 to 18% by weight, above all 10 to 16% by weight;
      • d) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight, preferably 3 to 10% by weight, in particular 4 to 9% by weight, above all 5 to 8% by weight;
      • e) an omega-3 fatty acid content of 1 to 6% by weight, preferably 1.5 to 5% by weight, in particular 2 to 4.5% by weight, above all 2.5 to 4% by weight;
      • f) a DHA content of 0.5 to 3% by weight, preferably 0.8 to 2.5% by weight, in particular 1 to 2.5% by weight, above all 1.2 to 2.2% by weight, in particular 1.2 to 2.0% by weight.
  • The present invention preferably further provides the above-mentioned extrudates obtainable by oil coating and having preferably a water stability of at least 96%, in particular at least 97 or 98%.
  • Water stability was essentially determined as described by Baeverfjord et al. (2006; Aquaculture 261, 1335-1345), with slight modifications. 10 g samples of the extrudate (having a length and a diameter of 4 mm in each case) were introduced into metallic infusion baskets (Inox, Germany) having a diameter of 6.5 mm and a mesh size of 0.3 mm. The infusion baskets were subsequently introduced into a plastic trough containing water, and so the samples were completely covered with water. The trough was subsequently exposed for 30 minutes to a shake-agitation of 30 shake units per minute using the Multiorbital shaker PSU-20l (Biosan, Latvia). Thereafter, the samples were carefully dried with blotting paper and then weighed before and after they had been subjected to oven-drying at a temperature of 105° C. for 24 hours. Water stability was calculated as the difference in the dry weight of the sample before and after the incubation in water and specified in per cent of the dry weight of the sample used before the incubation with water.
  • According to the invention, the fat-containing component used may be, besides the biomass to be used according to the invention, fats, in particular oils, of both animal and plant origin. According to the invention, suitable fat-containing components are in particular vegetable oils, for example soya bean oil, rapeseed oil, sunflower seed oil, flaxseed oil or palm oil and mixtures thereof. In addition, fish oil may also optionally be used as fat-containing component in low amounts.
  • Preferably, a feedstuff according to the invention having an abrasion resistance of at least 96, 97 or 98% contains vegetable oils in an amount of 3 to 18% by weight, in particular 5 to 15% by weight, above all 7 to 13% by weight. As described above, the vegetable oil is in this connection preferably applied to the extrudate in a subsequent manner, in particular by vacuum coating.
  • According to the invention, the protein-containing component used may be, for example, soya protein, pea protein, wheat gluten or corn gluten and mixtures thereof.
  • The following examples may be employed as a protein-containing component which additionally contains fats: fish meal, krill meal, bivalve meal, squid meal or shrimp shells.
  • These are hereinafter subsumed under the term “marine meal”. In a preferred embodiment, a feedstuff according to the invention comprises marine meal, preferably fish meal, in an amount of 3 to 18% by weight, in particular 5 to 15% by weight, above all 7 to 13% by weight.
  • The carbohydrate-containing component used may be, for example, wheat meal, sunflower meal or soya meal and mixtures thereof.
  • When using feedstuffs according to the invention, in particular an oil-coated extrudate according to the invention, in animal farming, it became apparent that this especially promoted the growth of the animals and improved the stress level of the animals.
  • The present invention also further provides a method for farming animals, characterized in that they are administered with a feedstuff according to the invention.
  • In this connection, the present invention provides in particular a method for increasing the growth of animals, characterized in that they are administered with a feedstuff according to the invention.
  • The present invention further provides in particular similarly a method for increasing the fraction of omega-3 fatty acids, in particular DHA, in the muscle tissue of animals, characterized in that they are administered with a feedstuff according to the invention.
  • Preferably, in the process according to the invention, the feedstuff is administered at least every two days, preferably at least once daily.
  • The present invention further provides similarly the use of a feedstuff according to the invention for increasing growth in animals.
  • The present invention further provides likewise the use of a feedstuff according to the invention for increasing the fraction of omega-3 fatty acids in muscle tissue in animals.
  • The present invention further provides likewise the use of a feedstuff according to the invention for improving the physical condition of animals, in particular for improving the stress level of animals.
  • The present invention further provides likewise the use of a feedstuff according to the invention for allowing a stress-reduced farming of the animals.
  • The farmed animals fed with a feedstuff according to the invention are preferably poultry, pigs or cattle.
  • However, the farmed animals are especially preferably marine animals, especially preferably finfish or crustaceans. These include, in particular, carp, tilapia, catfish, tuna, salmon, trout, barramundi, bream, perch, cod, shrimps, lobster, crabs, prawns and crayfish. The farmed animals are especially preferably salmon. Preferred types of salmon in this context are the Atlantic salmon, red salmon, masu salmon, king salmon, keta salmon, coho salmon, Danube salmon, Pacific salmon and pink salmon.
  • The farmed animals may in particular also be fish which are subsequently processed into fish meal or fish oil. In this connection, the fish are preferably herring, pollack, menhaden, anchovies, capelin or cod. The fish meal or fish oil thus obtained, in turn, can be used in aquaculture for farming edible fish or crustaceans.
  • However, the farmed animals may also be small organisms which are used as feedstuff in aquaculture. These small organisms may take the form of, for example, nematodes, crustaceans or rotifers.
  • The farming of marine animals may take place in ponds, tanks, basins or else in segregated areas in the sea or in lakes, in particular in this case in cages or net pens. Farming may be used for farming the finished edible fish, but also may be used for farming fry which are subsequently released so as to restock the wild fish stocks.
  • In salmon farming, the fish are preferably first grown into smolts in freshwater tanks or artificial watercourses and then grown on in cages or net pens which float in the sea and which are preferably anchored in bays or fjords.
  • Accordingly, the feedstuff according to the invention is preferably a feedstuff for use in the farming of the above-mentioned animals.
  • WORKING EXAMPLES Example 1 Producing Biomass by Fermentation of Aurantiochytrium limacinum Sr21 in Media of Differing Sodium Sulphate Content
  • The cells were cultured for about 75 h in a feed process using a steel fermenter having a fermenter volume of 2 litres with a total starting mass of 712 g and an attained total final mass of 1.3-1.5 kg. During the process, a glucose solution (570 g/kg glucose) was metered in (fed-batch process)
  • The composition of the starting media was as follows:
  • Medium 1: 20 g/kg glucose; 4 g/kg yeast extract; 2 g/kg ammonium sulphate; 2.46 g/kg magnesium sulphate (heptahydrate); 0.45 g/kg potassium chloride; 4.5 g/kg potassium dihydrogen phosphate; 0.1 g/kg thiamine (HCl); 5 g/kg trace element solution.
  • Medium 2: As per medium 1 plus 8 g/kg sodium sulphate
  • Medium 3: As per medium 1 plus 12 g/kg sodium sulphate
  • Medium 4: As per medium 1 plus 16 g/kg sodium sulphate
  • The composition of the trace element solution was as follows: 35 g/kg hydrochloric acid (37%); 1.86 g/kg manganese chloride (tetrahydrate); 1.82 g/kg zinc sulphate (heptahydrate); 0.818 g/kg sodium EDTA; 0.29 g/kg boric acid; 0.24 g/kg sodium molybdate (dihydrate); 4.58 g/kg calcium chloride (dihydrate); 17.33 g/kg iron sulphate (heptahydrate); 0.15 g/kg copper chloride (dihydrate).
  • Culturing was carried out under the following conditions: Culture temperature 28° C.; aeration rate 0.5 vvm, stirrer speed 600-1950 rpm, control of pH in the growth phase at 4.5 using ammonia water (25% v/v). The following biomass densities were achieved: 100 g/l (medium 1), 111 g/l (medium 2), 114 g/l (medium 3), 116 g/l (medium 4).
  • After the culturing process, the fermentation broths were heated to 60° C. for 20 minutes in order to prevent further cellular activity.
  • Example 2 Determining the DHA Content of the Biomasses
  • After inactivation, the biomasses obtained were subjected to a fatty acid analysis. To this end, 0.2-0.5 ml of each fermentation broth was admixed with 1 ml of internal standard and topped up with 9 ml of a methanol/chloroform solution (1:2; v/v). The samples were treated for 10 min in an ultrasonic bath. Subsequently, the samples were concentrated to dryness under a nitrogen blanket at 50° C. in a thermal block. 2 ml of 0.5 N KOH were added to each of the residues of drying and incubated at 100° C. for 15 min. Subsequently, the samples were cooled down to room temperature, admixed with, in each case, 2 ml of 0.7 N HCl and 1 ml of boron trifluoride solution (14% BF3 in methanol) and incubated at 100° C. for a further 15 min. After cooling down to room temperature, the samples were each extracted with a mixture composed of 3 ml of water and 2 ml of heptane. After centrifugation for 1 min at 2000 rpm, 1 ml from each upper phase was transferred to a GC vial and analysed by gas chromatography.
  • The analysis revealed that all four biomasses contained a DHA fraction of more than 32% by weight with regard to the total amount of fatty acids present.
  • Example 3 Drying the Biomasses Obtained
  • The cooled-down biomass-containing fermentation broths having different contents of Na2SO4 according to Example 1 were each separately subjected to spray drying.
  • Spray drying was carried out in each case using a Büuchi mini spray dryer B-290 (diameter of nozzle tip: 0.7 mm; flow rate of spray air: 742 L/h; flow rate of aspirator: 35 m3/h; temperature of inlet air: 220° C.; temperature of outlet air: 80° C.).
  • Example 4 Determining the Sulphate and DHA Contents of the Spray-Dried Samples
  • The samples obtained by spray drying the fermentation broths having different contents of Na2SO4 were subjected to a sulphate or sulphur determination and a DHA concentration determination. DHA determination was carried out as described under Example 2. Sulphur content was determined in accordance with DIN EN ISO 11885.
  • TABLE 1
    Analysis of spray-dried samples
    Starting medium of the fermentation
    broth used for spray drying
    Property Medium 1 Medium 2 Medium 3 Medium 4
    Sulphur in 3.60 g/kg 7.72 g/kg 10.0 g/kg 11.0 g/kg
    accordance with
    DIN EN ISO
    11885
    DHA content 16.6% 15.6% 16.0% 16.0%
  • Example 4 Determining the Caking Tendency
  • The fermentation broths obtained after fermentation in media having different contents of sodium sulphate exhibited distinct differences in the spray drying process and the spray-dried material obtained exhibited varying caking tendency, the basis of this being released oil. The biomasses obtained by fermentation in media 3 and 4 showed a distinctly lower caking tendency than the biomasses obtained by fermentation in media 1 and 2. This is evidence of the increased cell stability of the cells in the biomasses concerned.
  • Example 5 Drying the Sulphate-Rich Biomass from Example 1 for the Purpose of Feedstuff Production
  • The biomass from Example 1 obtained in the sulphate-rich medium 4 was subjected to a two-stage drying process for the purpose of producing feedstuffs: Firstly, the fermentation broth was concentrated by evaporation to a dry mass of about 20% by weight. This was followed by spray drying of the concentrated fermentation broth using a Production Minor™ spray dryer (GEA NIRO) at a drying air inlet temperature of 340° C. By means of spray drying, a powder having a dry mass of more than 95% by weight was thus obtained.
  • Example 6 Producing a Feedstuff by Extrusion
  • The feedstuff mixtures shown in Table 3 were produced. Besides the biomass to be used according to the invention as per Example 5, two further commercially available Labyrinthulea biomasses and also fish oil as a currently still customary source of omega-3 fatty acids were tested for comparison.
  • The feedstuff mixtures were each produced by mixing of the components—with the exception of the oils—using a double-helix mixer (model 500L, TGC Extrusion, France). The mixtures thus obtained were then comminuted to particle sizes below 250 μm using a hammer mill (model SH1, Hosokawa-Alpine, Germany).
  • TABLE 2
    Feedstuff compositions used in the extrusion
    process (data in % by weight)
    Ingredient M1 M2 M3 M4
    Fish meal 10.00 10.00 10.00 10.00
    Soya protein concentrate 23.10 23.20 23.10 20.27
    Pea protein concentrate 15.00 15.00 15.00 15.00
    Wheat gluten 9.90 9.90 9.90 9.90
    Wheat meal 18.12 10.82 10.55 16.46
    Fish oil 10.00
    Biomass from Example 1 16.00
    Commercially available biomass 1 16.74
    Commercially available biomass 2 13.52
    Rape oil 10.00 11.00 11.00 11.00
    Vitamin/mineral premix 1.00 1.00 1.00 1.00
    DCP 2.00 2.00 2.00 2.00
    Yttrium oxide 0.03 0.03 0.03 0.03
    DL-Methionine 0.35 0.36 0.33 0.33
    Aquavi Lys 0.17 0.35 0.08 0.19
    TrypAmino 0.09 0.09 0.08 0.09
    L-Histidine 0.24 0.25 0.19 0.21
  • For the extrusion process, use was made in each case of 140 kg per feedstuff. The extrusion process was carried out using a twin-screw extruder (CLEXTRAL BC45) having a screw diameter of 55.5 mm and a maximum flow rate of 90-100 kg/h. Pellets of 4.0 mm in size (diameter and length) were extruded. To this end, the extruder was equipped with a high-speed cutter in order to convert the product to the intended pellet size.
  • Various extrusion parameters were then tested in order to find out under what extrusion conditions it is possible to obtain an optimal oil load capacity of the extrudate obtained. In this connection, it became apparent that, surprisingly, an optimal oil load capacity can be achieved with a very low energy input. In this connection, the energy input was distinctly lower than when using fish oil. Furthermore, the optimal energy input in the case of an algae biomass to be preferably used according to the invention was again distinctly lower than in the case of commercially available algae biomasses. The results are shown in Table 3.
  • TABLE 3
    Energy inputs relating to producing pellets having the desired oil load capacity
    Barrel 1 Barrel 2 Rotational Amount of
    Temp Temp Feeder rate speed water Current SME
    Diet (° C.) (° C.) (kg/h) (rpm) (0-10) (A) (Wh/kg)
    M1 31 116-118  112 215 9 11 34.6
    M2 32 98-104 141 253 5 7 20.6
    M3 32 97-102 136 255 5 8 24.6
    M4 31 99-107 133 253 5 8 24.9
  • In this connection, the variable “SME” is the specific mechanical energy. This is calculated as follows:
  • SME ( Wh / kg ) = U I cos Φ Test SS Max SS Qs
  • where
  • U: operating voltage of the motor (here 460 V)
  • I: current of the motor (A)
  • cos φ: theoretical performance of the extruder motor (here 0.95)
  • Test SS: test speed (rpm) of the rotating screws
  • Max SS: maximum speed (267 rpm) of the rotating screws
  • Qs: inlet flow rate of the mash (kg/h)
  • After extrusion, the extrudate was dried in a vibrating fluidized bed dryer (model DR100, TGC Extrusion, France).
  • This was followed, after the extrudate had cooled down, by an oil coating process by means of vacuum coating (vacuum coater PG-10VCLAB, Dinnisen, the Netherlands).
  • Example 7 Ascertaining the Abrasion Resistance and Water Stability of the Feedstuffs from Example 6
  • Abrasion resistance was ascertained as follows: Before being loaded with oil, the dried extrusion product was exposed to a mechanical load using the Holmen pellet tester (Borregaard Lignotech, Hull, UK). Before carrying out the test, the samples were screened in order to remove any adherent fine particles. The processed samples (100 g) were subsequently introduced into the pellet tester using a 2.5 mm filter screen. The pellets were subsequently conveyed through a pipe having right-angled pipe bends at high air velocity for 30 seconds. Subsequently, abrasion was determined by weighing. Abrasion resistance was specified as PDI (Pellet Durability Index), defined as the amount in per cent of sample remaining in the filter screen. The test was carried out with three samples and then the mean was determined.
  • Water stability was carried out using the oil-loaded samples. The method was essentially carried out as described by Baeverfjord et al. (2006; Aquaculture 261, 1335-1345), with slight modifications. 10 g samples were introduced into metallic infusion baskets having a mesh size of 0.3 mm. The infusion baskets were subsequently introduced into a plastic trough containing water, and so the samples were completely covered with water. The trough was subsequently exposed for 30 minutes to a shake-agitation of 30 shake units per minute. Thereafter, the samples were carefully dried with blotting paper and then weighed before and after they had been subjected to oven-drying at a temperature of 105° C. for 24 hours. Water stability was calculated as the difference in the dry weight of the sample before and after the incubation in water and specified in per cent of the dry weight of the sample used before the incubation with water.
  • The results are shown in Table 4 below.
  • Sample M1 M2 M3 M4
    Abrasion 90.0 93.3 88.3 85.2
    resistance [%]
    Water stability [%] 95.7 98.5 93.8 90.2
  • It can be seen that a feedstuff according to the invention which contains a biomass according to the invention has a distinctly higher abrasion resistance and water stability than feedstuffs which contain a commercially available Labyrinthulea biomass or fish oil as a source of omega-3 fatty acids.
  • Example 8 Producing Feedstuffs for Feeding Experiments
  • Feedstuffs each containing 42.5% by weight of total protein and 24% by weight of total lipid, based on the dry mass, and having a pellet size of 3 mm were produced by extrusion of the biomass from Example 5.
  • Three different feedstuff formulations in total were produced (Diet 1, 2 and 3). The control formulation “Diet 1” contained 11.0% by weight of fish oil. In the formulation “Diet 2”, the fish oil was partly (about 50%) replaced by Aurantiochytrium biomass, this being done by adding 9.1% by weight of biomass and, for that reason, reducing the amount of fish oil to 5.5% by weight. In the formulation “Diet 3”, the fish oil was completely replaced by Aurantiochytrium biomass, this being done by adding 16% by weight of biomass and, at the same time, increasing the amount of rape oil from 8.2 to 9.9% by weight. Differences in the total weight were balanced out by the amount of wheat added.
  • The individual components of the feedstuff are shown in the table below.
  • TABLE 5
    Formulations used for farming
    Components (g kg−1) Diet 1 Diet 2 Diet 3
    Aurantiochytrium biomass 0.0 91.6 160.0
    SPC 229.0 229.0 229.0
    Fish meal 150.0 150.0 150.0
    Wheat 147.6 111.0 80.5
    Fish oil 110.0 55.0 0.0
    Wheat gluten 100.0 100.0 100.0
    Pea protein concentrate 100.0 100.0 100.0
    Rape oil 82.0 82.0 99.1
    Monosodium phosphate 20.0 20.0 20.0
    Vitamin mixture 20.0 20.0 20.0
    Soya lecithin 10.0 10.0 10.0
    L-Lysine (50% by weight) 10.0 10.0 10.0
    Betafine 9.4 9.4 9.4
    Mineral mixture 5.2 5.2 5.2
    L-Histidine (98% by 4.2 4.2 4.2
    weight)
    DL-Methionine (99% by 2.0 2.0 2.0
    weight)
    Carop. Pink (10% by 0.50 0.50 0.50
    weight)
    Yttrium Oxide 0.10 0.10 0.10
  • The individual components were—with the exception of the oils—mixed intimately with each other and then an extrudate was produced using a twin-screw extruder (Wenger Tex. 52, Wenger, USA) through use of an outlet nozzle having a diameter of 2 mm. The extrudates were dried for about 1 hour in a carousel dryer (Paul Klöckner, Verfahrenstechnik GmbH, Germany) at 65° C. to a water content of 7 to 8% by weight. The extrudates were then dried overnight at room temperature before the oils were applied by vacuum coating (Dinnissen, Sevenum, the Netherlands).
  • Example 9 Feeding Experiments Using the Formulations from Example 8
  • The feeding experiments were carried out by feeding each of these formulations for a total of 12 weeks to each of three tanks containing smolts having a mean weight of 83.6 g and a total salmon weight of 4 kg per tank.
  • Over this period, the total salmon weight per tank increased from 4 kg to 15-17 kg per tank. In this connection, the fish consumed 8 to 11 kg of feed per tank, corresponding to a feed conversion rate (FCR) of 0.8 to 0.9 kg of feed per kg of fish.
  • The results of the feeding experiments are shown in the table below.
  • TABLE 6
    Diet-dependent fish weight gain
    Diet Final weight [g]
    1 331
    2 362
    3 339
  • Altogether, it was established that it was possible to achieve an increase in salmon growth both in the case of complete and in the case of partial replacement of the fish oil by an Aurantiochytrium biomass according to the invention.
  • Interestingly, partial replacement of the fish oil by the Aurantiochytrium biomass achieved a higher salmon growth than complete replacement by the Aurantiochytrium biomass.
  • In this connection, it was established that the fish fed with the control formulation Diet 1, having a mean final weight of 331 g, had a distinctly lower final weight than the fish fed with the formulations Diet 1 or 2. In this connection, the fish fed with the formulation Diet 2 performed the best: they achieved a distinctly increased mean final weight of 362 g.
  • Example 10 Fatty Acid Utilization by the Fish
  • Fatty acid utilization was ascertained by lipid detection using the Bligh & Dryer extraction method and subsequent fatty acid analysis in accordance with AOCS Ce 1b-89. Both muscle samples and total salmon samples were analysed. In this connection, the results shown in the tables below were obtained (displayed in each table is the amount of ascertained fats at the start and end of the diet in grams, based in each case on 100 g of total fat).
  • TABLE 7
    Diet-dependent fatty acid profile of salmon muscle samples
    Diet PUFAs Omega-3 fatty acids DHA
    Start 41.6 32.7 22.1
    1 31.8 19.0 10.1
    2 35.3 21.7 14.2
    3 38.0 22.8 16.4
  • TABLE 8
    Diet-dependent fatty acid profile of total salmon samples
    Diet PUFAs Omega-3 fatty acids DHA
    Start 32.5 22.4 12.5
    1 29.9 17.2 9.0
    2 32.6 18.8 11.5
    3 35.2 19.6 13.1
  • It can be observed that it was already possible to achieve a distinct increase in the content of PUFAs, omega-3 fatty acids and DHA in the case of partial replacement of the fish oil by an Aurantiochytrium biomass according to the invention. In the case of complete replacement of the fish oil by the Aurantiochytrium biomass, the increase in the content of PUFAs is accordingly higher.
  • Example 11 Determining the Fat Content in Salmon Liver
  • Each of 3 smolts were fed for 9 weeks in each case with the different formulations Diet 1, 2 and 3 and the livers of the salmons were subsequently removed for determination of the fat content. Fat was extracted according to the method by Folch (1957; J. Biol. Chem., 226 (1), 497-509). Fat content was then determined by a gravimetric method.
  • It became apparent that it was possible to significantly reduce the fat content in the liver from 8% by weight to 4-5% by weight by virtue of the presence of the biomass according to the invention in comparison with feeding without the biomass.
  • Fat deposition in the liver is considered to be a sign of an imbalance in food metabolism and, in particular, also an indication of oxidative stress. The distinct reduction in the proportion of fat in the liver is thus a clear indication of the reduction of stress and thus of the improvement in the physical condition of the salmon.

Claims (21)

1-15. (canceled)
16. A PUFA-containing biomass, comprising a sulphate content, based on the dry biomass, of 25 to 60 g/kg, and wherein the biomass contains cells of the taxon Labyrinthulomycetes.
17. The PUFA-containing biomass of claim 16, wherein said biomass has a sulphate content, based on the dry biomass, of 25 to 40 g/kg.
18. The PUFA-containing biomass of claim 16, wherein said biomass has a sulphate content, based on the dry mass, of 25 to 30 g/kg.
19. The PUFA-containing biomass of claim 16, wherein the cells of the taxon Labyrinthulomycetes (Labyrinthulea, slime nets) are of the family Thraustochytriaceae.
20. The PUFA-containing biomass of claim 19, wherein the cells are of a genus selected from the group consisting of: Althomia; Aplanochytrium; Elnia; Japonochytrium; Schizochytrium; Thraustochytrium; Aurantiochytrium; Oblongichytrium; and Ulkenia.
21. The PUFA-containing biomass of claim 20, wherein the cells are of the species Aurantiochytrium limacinum.
22. A feedstuff, comprising a PUFA-containing biomass, wherein said PUFA-containing biomass has a sulphate content, based on the dry mass, of 25 to 60 g/kg, and wherein the biomass contains cells of the taxon Labyrinthulomycetes.
23. The feedstuff of claim 22, comprising the following properties:
a) a total protein content of 30 to 60% by weight;
b) a total fat content of 15 to 35% by weight;
c) a total starch content of at most 25% by weight;
d) a content of biomass of 2 to 22% by weight.
24. The feedstuff of claim 23, wherein the biomass comprises cells of a genus selected from the group consisting of: Althomia; Aplanochytrium; Elnia; Japono-chytrium; Schizochytrium; Thraustochytrium; Aurantiochytrium; Oblongichytrium; and Ulkenia.
25. The feedstuff of claim 24, wherein the biomass comprises cells of the species Aurantiochytrium limacinum.
26. The feedstuff of claim 23, comprising one or more of the following properties:
e) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight;
f) an omega-3 fatty acid content of 1 to 6% by weight;
g) a DHA content of 0.5 to 3% by weight.
27. The feedstuff of claim 23, comprising at least two of the following properties:
e) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight;
f) an omega-3 fatty acid content of 1 to 6% by weight;
g) a DHA content of 0.5 to 3% by weight.
28. The feedstuff of claim 23, comprising all of the following properties:
g) a polyunsaturated fatty acid (PUFA) content of 2 to 12% by weight;
f) an omega-3 fatty acid content of 1 to 6% by weight;
g) a DHA content of 0.5 to 3% by weight.
29. The feedstuff of claim 22, comprising the following properties:
a) a total protein content of 40 to 50% by weight;
b) a total fat content of 20 to 30% by weight;
c) a total starch content of 5 to 15% by weight;
d) a content of Thraustochytriaceae biomass of 10 to 16% by weight.
30. The feedstuff of claim 29, comprising one or more of the following properties:
e) a polyunsaturated fatty acid (PUFA) content of 3 to 10% by weight;
f) an omega-3 fatty acid content of 2 to 4.5% by weight;
g) a DHA content of 1.2 to 2.2%.
31. The feedstuff of claim 29, comprising at least two of the following properties:
e) a polyunsaturated fatty acid (PUFA) content of 3 to 10% by weight;
f) an omega-3 fatty acid content of 2 to 4.5% by weight;
g) a DHA content of 1.2 to 2.2%.
32. The feedstuff of claim 29, comprising all of the following properties:
e) a polyunsaturated fatty acid (PUFA) content of 3 to 10% by weight;
f) an omega-3 fatty acid content of 2 to 4.5% by weight;
g) a DHA content of 1.2 to 2.2%.
33. The feedstuff of claim 32, wherein the biomass comprises cells of a genus selected from the group consisting of: Althomia; Aplanochytrium; Elnia; Japono-chytrium; Schizochytrium; Thraustochytrium; Aurantiochytrium; Oblongichytrium; and Ulkenia.
34. The feedstuff of claim 32, wherein the biomass comprises cells of the species Aurantiochytrium limacinum.
35. A method for farming animals, comprising feeding said animals the feedstuff of claim 22.
US15/516,024 2014-10-02 2015-09-22 Process for producing a pufa-containing biomass which has high cell stability Abandoned US20170295824A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14187471 2014-10-02
EP14187471.9 2014-10-02
PCT/EP2015/071635 WO2016050552A1 (en) 2014-10-02 2015-09-22 Process for producing a pufa-containing biomass which has high cell stability

Publications (1)

Publication Number Publication Date
US20170295824A1 true US20170295824A1 (en) 2017-10-19

Family

ID=51702979

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/516,024 Abandoned US20170295824A1 (en) 2014-10-02 2015-09-22 Process for producing a pufa-containing biomass which has high cell stability
US15/516,058 Active 2036-04-04 US10842174B2 (en) 2014-10-02 2015-10-02 Method for producing biomass which has a high exopolysaccharide content

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/516,058 Active 2036-04-04 US10842174B2 (en) 2014-10-02 2015-10-02 Method for producing biomass which has a high exopolysaccharide content

Country Status (9)

Country Link
US (2) US20170295824A1 (en)
EP (2) EP3200602B1 (en)
CN (3) CN118813731A (en)
BR (2) BR112017006838B1 (en)
CA (2) CA2958457C (en)
CL (2) CL2017000754A1 (en)
DK (2) DK180021B1 (en)
ES (2) ES2870093T3 (en)
WO (2) WO2016050552A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531679B2 (en) 2013-07-16 2020-01-14 Evonik Degussa, GmbH Method for drying biomass
US10619175B2 (en) 2014-10-02 2020-04-14 Evonik Operations Gmbh Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass
US10842174B2 (en) 2014-10-02 2020-11-24 Evonik Operations Gmbh Method for producing biomass which has a high exopolysaccharide content
US11261400B2 (en) 2017-09-05 2022-03-01 Evonik Operations Gmbh Method of separating lipids from a lysed lipids containing biomass
US11324234B2 (en) 2014-10-02 2022-05-10 Evonik Operations Gmbh Method for raising animals
US11352651B2 (en) 2016-12-27 2022-06-07 Evonik Operations Gmbh Method of isolating lipids from a lipids containing biomass
US11414621B2 (en) 2018-05-15 2022-08-16 Evonik Operations Gmbh Method of isolating lipids from a lipids containing biomass with aid of hydrophobic silica
US11464244B2 (en) 2014-10-02 2022-10-11 Evonik Operations Gmbh Feedstuff of high abrasion resistance and good stability in water, containing PUFAs
US11542220B2 (en) 2017-12-20 2023-01-03 Evonik Operations Gmbh Method of isolating lipids from a lipids containing biomass
US11814665B2 (en) 2017-08-17 2023-11-14 Evonik Operations Gmbh Enhanced production of lipids by limitation of at least two limiting nutrient sources
US11946017B2 (en) 2016-07-13 2024-04-02 Evonik Operations Gmbh Method of separating lipids from a lysed lipids containing biomass
US11976253B2 (en) 2018-05-15 2024-05-07 Evonik Operations Gmbh Method of isolating lipids from a lysed lipids containing biomass by emulsion inversion
US12408685B2 (en) 2018-10-12 2025-09-09 Evonik Operations Gmbh Animal feed for improving the growth performance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4492C1 (en) * 2016-07-28 2018-01-31 Государственный Университет Молд0 Process for cultivation of Spirulina platensis cyanobacterium
CN107557303A (en) * 2017-09-08 2018-01-09 天津大学 A kind of ocean thraustochytriale Isolation and screening of bacterial strain method of high-yield extracellular polysaccharide
EP3756472A4 (en) * 2018-04-04 2022-04-27 Xiamen Huison Biotech Co., Ltd. Application of schizochytrium limacinum and preparation thereof in improvement of quality and yield of animal product
WO2023175141A1 (en) 2022-03-18 2023-09-21 Purac Biochem B.V. Method for reducing fermentation broth viscosity

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2123134A (en) 1937-01-06 1938-07-05 Sardik Inc Process of treating food materials
US2177031A (en) 1938-04-01 1939-10-24 Tanner Thomas Gordon Continuous heat treatment furance
US2513369A (en) 1946-07-02 1950-07-04 Terminal Island Sea Foods Ltd Drying by fluidization of the work
GB1024835A (en) 1961-10-11 1966-04-06 Andre Gabriel Margittai A process and apparatus for low-temperature dehydration
US3437489A (en) 1964-06-20 1969-04-08 Seiji Arakawa Process for producing fishmeals
US3920815A (en) 1970-04-15 1975-11-18 Mirlin Corp Taste-modifying composition
US3773527A (en) 1970-07-30 1973-11-20 Shapoff L Method of preserving cooked potatoes
GB1397410A (en) 1971-09-09 1975-06-11 Distillers Co Yeast Ltd Yeast
GB1560478A (en) 1975-11-10 1980-02-06 Gist Brocades Nv Compressed yeast compositions
DE2614348C3 (en) 1976-04-01 1986-01-02 Versuchsanstalt Der Hefeindustrie E.V., 1000 Berlin Powdered, free-flowing fresh baker's yeast preparation
US4209538A (en) 1977-04-04 1980-06-24 Transfresh Corporation Method for inhibiting fungi in citrus fruit
US4228197A (en) 1979-01-18 1980-10-14 Food Storage Systems, Inc. Atmosphere controlling method and apparatus for food storage
US4335150A (en) 1979-06-19 1982-06-15 Chlorine Engineers Corp. Low temperature food drying process
CH646729A5 (en) 1981-10-09 1984-12-14 Aeromatic Ag Process and apparatus for drying active yeast
US4592762A (en) 1981-10-22 1986-06-03 Institute Of Gas Technology Process for gasification of cellulosic biomass
US4683139A (en) 1985-07-11 1987-07-28 Wilson Foods Corporation Process for prepacking fresh meat
EP0276233A1 (en) 1986-07-08 1988-08-03 Kohlensäurewerk Deutschland Gmbh Process for separating volatile substances
US6977167B2 (en) 1988-09-07 2005-12-20 Martek Biosciences Corporation Mixtures of omega-3 and omega-6 highly unsaturated fatty acids from euryhaline microorganisms
US5698244A (en) 1988-09-07 1997-12-16 Omegatech Inc. Method for raising animals having high concentrations of omega-3 highly unsaturated fatty acids
US5340742A (en) 1988-09-07 1994-08-23 Omegatech Inc. Process for growing thraustochytrium and schizochytrium using non-chloride salts to produce a microfloral biomass having omega-3-highly unsaturated fatty acids
US20060094089A1 (en) 1988-09-07 2006-05-04 Martek Biosciences Corporation Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
US5130242A (en) 1988-09-07 1992-07-14 Phycotech, Inc. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
US6451567B1 (en) 1988-09-07 2002-09-17 Omegatech, Inc. Fermentation process for producing long chain omega-3 fatty acids with euryhaline microorganisms
US5340594A (en) 1988-09-07 1994-08-23 Omegatech Inc. Food product having high concentrations of omega-3 highly unsaturated fatty acids
US5298271A (en) 1989-04-14 1994-03-29 Fuji Oil Co., Ltd. Method of preventing edible oils and fats from deteriorating
US5244921A (en) 1990-03-21 1993-09-14 Martek Corporation Eicosapentaenoic acids and methods for their production
SE9101642D0 (en) 1991-05-30 1991-05-30 Kabi Pharmacia Ab phospholipids
JP3354581B2 (en) 1991-09-30 2002-12-09 サントリー株式会社 Method for producing dihomo-γ-linolenic acid and lipid containing the same
US6410281B1 (en) 1992-07-10 2002-06-25 Omegatech, Inc. Reducing corrosion in a fermentor by providing sodium with a non-chloride sodium salt
US6068874A (en) 1993-02-16 2000-05-30 Dehydration Technologies, Inc. Process of dehydrating biological products
DE4308498C2 (en) 1993-03-17 1997-01-09 Degussa Animal feed additive based on fermentation broth, process for its preparation and its use
US5574065A (en) 1994-04-21 1996-11-12 Clintec Nutrition Co. Method and composition for normalizing injury response
US5700506A (en) 1995-10-27 1997-12-23 Dna Plant Technology Corporation Method for prolonging the shelf life of fresh tomato pieces
DE69705297T2 (en) 1996-02-15 2001-10-11 Biotal Ltd., Cardiff MICROORGANISMS AND THEIR USE IN ANIMAL AND GARNAGE
US6255505B1 (en) 1996-03-28 2001-07-03 Gist-Brocades, B.V. Microbial polyunsaturated fatty acid containing oil from pasteurised biomass
CN101928213B (en) 1996-03-28 2012-12-05 Dsmip资产有限公司 Process for the preparation of a granular microbial biomass and isolation of valuable compounds therefrom
AU771809B2 (en) 1996-03-28 2004-04-01 Gist-Brocades B.V. Process for the preparation of a granular microbial biomass and isolation of valuable compounds therefrom
DK0894142T4 (en) 1996-03-28 2014-02-24 Dsm Ip Assets Bv Microbial oil comprising a polyunsaturated fatty acid and process for producing oil from pasteurized and granulated biomass.
US20030143659A1 (en) 1996-03-28 2003-07-31 Hendrik Louis Bijl Process for the preparation of a granular microbial biomass and isolation of a compound thereform
WO1997043362A1 (en) 1996-05-15 1997-11-20 Gist-Brocades B.V. Sterol extraction with polar solvent to give low sterol, high triglyceride, microbial oil
DE19621930C1 (en) 1996-05-31 1997-12-11 Degussa Process for the preparation of an animal feed additive based on fermentation broth
WO1998003671A1 (en) 1996-07-23 1998-01-29 Nagase Biochemicals, Ltd. Process for preparing docosahexaenoic acid and docosapentaenoic acid
JP3792309B2 (en) 1996-08-30 2006-07-05 サントリー株式会社 Process for producing unsaturated fatty acid-containing fats and oils
JP4633204B2 (en) 1996-10-11 2011-02-16 サントリーホールディングス株式会社 Arachidonic acid-containing edible oil and fat and food containing the same
CN100351386C (en) 1997-02-20 2007-11-28 Dsm公司 Production of valuable compound by using chemically defined culture medium and adopting industrial scal fermentation process
GB2324701B (en) 1997-05-01 2001-05-16 Ewos Ltd Method for preparing high oil content fish feed pellets
WO1999006585A1 (en) 1997-08-01 1999-02-11 Martek Biosciences Corporation Dha-containing nutritional compositions and methods for their production
US7029691B1 (en) 1998-03-17 2006-04-18 Natural Asa Conjugated linoleic acid compositions
JP4175698B2 (en) 1998-06-19 2008-11-05 サントリー株式会社 Novel triglyceride and composition containing the same
US20070244192A1 (en) 1999-01-14 2007-10-18 Martek Biosciences Corporation Plant seed oils containing polyunsaturated fatty acids
US6167638B1 (en) 1999-05-17 2001-01-02 Clearwater, Inc. Drying of grain and other particulate materials
KR101429236B1 (en) 2000-01-19 2014-08-12 마텍 바이오싸이언스스 코포레이션 Solventless extraction process
MXPA02007321A (en) 2000-01-28 2003-01-28 Omegatech Inc Enhanced production of lipids containing polyenoic fatty acids by high density cultures of eukaryotic microbes in fermentors.
AU2001268078A1 (en) 2000-06-23 2002-01-08 Acuabiotec Llc Bioactive food complex, method for making bioactive food complex product and method for controlling disease
AU7302801A (en) 2000-06-26 2002-01-08 Omegatech Inc Improved methods of incorporating polyunsaturated fatty acids in milk
AU2001292586A1 (en) 2000-09-07 2002-03-22 University Of Maryland Biotechnology Institute Use of arachidonic acid for enhanced culturing of fish larvae and broodstock
WO2002092540A1 (en) 2001-05-14 2002-11-21 Martek Biosciences Corporation Production and use of a polar lipid-rich fraction containing omega-3 and/or omega-6 highly unsatruated fatty acids from microbes, genetically modified plant seeds and marine organisms
US20050287263A1 (en) 2001-06-13 2005-12-29 Yaron Mayer Proteinaceous food based on hempseed and/or other plants, that keeps the seed's nutritional value and does not use dangerous ingredients, such as preservatives or coloring.
ATE363486T1 (en) 2001-07-27 2007-06-15 Neptune Technologies & Bioress NATURAL PHOSPHOLIPIDS OF MARITIME ORIGIN CONTAINING FLAVONOIDS AND POLYUNSATURATED FATTY ACIDS AND THEIR APPLICATIONS
DE10158046A1 (en) 2001-11-27 2003-06-05 Basf Ag Formulation for use in food, food supplements, animal feed, feed additives, pharmaceutical and cosmetic preparations and processes for their preparation
US20030170371A1 (en) 2002-01-10 2003-09-11 Cargill, Inc. High fat/fiber composition
EP2266525B1 (en) 2002-05-03 2012-07-11 Martek Biosciences Corporation High quality lipids and methods for producing by enzymatic liberation from biomass
EP1504677A4 (en) 2002-05-14 2005-12-28 J Oil Mills Inc Body taste improver comprising long-chain highly unsaturated fatty acid and/or ester thereof and vegetable fat composition containing the same
EA030476B1 (en) 2002-06-19 2018-08-31 ДСМ АйПи АССЕТС Б.В. Untreated oil produced from mortierella alpina, and food product containing same
ES2567569T3 (en) 2002-06-19 2016-04-25 Dsm Ip Assets B.V. Preparation of microbial oil containing polyunsaturated fatty acids
US20060068019A1 (en) 2002-08-14 2006-03-30 Dalziel Sean M Coated polyunsaturated fatty acid-containing particles and coated liquid pharmaceutical-containing particles
KR101451415B1 (en) 2002-10-11 2014-10-22 닛폰 스이산 가부시키가이샤 Process for producing microbial fat or oil having lowered unsaponifiable matter content and said fat or oil
JP4280158B2 (en) 2002-12-27 2009-06-17 富士フイルム株式会社 Microorganisms capable of producing docosahexaenoic acid and use thereof
CA2518197A1 (en) 2003-03-07 2004-09-23 Advanced Bionutrition Corporation Feed formulation for terrestrial and aquatic animals
US20060265766A1 (en) 2003-03-19 2006-11-23 Advanced Bionutrition Corporation Fish and the production thereof
CN1767769B (en) 2003-03-27 2010-04-28 三得利控股株式会社 Lipid improving agent and composition containing lipid improving agent
WO2004112767A1 (en) 2003-06-19 2004-12-29 Advanced Bionutriton Corporation Improved absorption of fat-soluble nutrients
DE10334271B4 (en) 2003-07-25 2006-02-23 Stockhausen Gmbh Process for the agglomeration of superabsorbent fine particles, superabsorbent particles obtainable therefrom, their use and composites containing them
JP2007503802A (en) 2003-09-01 2007-03-01 ノボザイムス アクティーゼルスカブ Method for increasing the yield of marine microbial biomass and / or components of the biomass
US7935365B2 (en) 2003-10-22 2011-05-03 Enzymotec, Ltd. Glycerophospholipids for the improvement of cognitive functions
US8052992B2 (en) 2003-10-22 2011-11-08 Enzymotec Ltd. Glycerophospholipids containing omega-3 and omega-6 fatty acids and their use in the treatment and improvement of cognitive functions
DE10352838A1 (en) 2003-11-10 2005-07-07 Nutrinova Nutrition Specialties & Food Ingredients Gmbh A method of cultivating microorganisms of the genus Thraustochytriales using an optimized low salt medium
TW201119585A (en) 2003-11-12 2011-06-16 J Oil Mills Inc Body taste improver comprising long-chain highly unsaturated fatty acid and/or its ester
WO2005083101A1 (en) 2004-03-01 2005-09-09 Suntory Limited Process for producing phospholipid containing long chain polyunsaturated fatty acid as constituent thereof and utilization of the same
DE102004026152A1 (en) 2004-05-28 2005-12-15 Basf Ag Fermentative production of fine chemicals
CA2515572C (en) 2004-09-20 2007-04-03 Can Technologies, Inc. Mineral feed supplement
JP4849806B2 (en) 2005-02-08 2012-01-11 日本水産株式会社 Method for producing polyunsaturated fatty acids using novel cell treatment method
US8241868B2 (en) 2005-02-08 2012-08-14 Nippon Suisan Kaisha, Ltd. Production of polyunsaturated fatty acids using cell treatment method
WO2006124598A2 (en) 2005-05-12 2006-11-23 Martek Biosciences Corporation Biomass hydrolysate and uses and production thereof
DK2447356T3 (en) 2005-06-07 2016-06-06 Dsm Nutritional Products Ag Eukaryotic MICROORGANISMS FOR PRODUCTION OF LIPIDS AND ANTIOXIDANTS
JP5315049B2 (en) 2005-06-23 2013-10-16 ディーエスエム アイピー アセッツ ビー.ブイ. How to get lipids from cells
US20070032383A1 (en) 2005-07-27 2007-02-08 Newell M K Systems, methods, and compositions for modifying the metabolism of plants and of euucaryotic microbes
US7977498B2 (en) 2005-08-26 2011-07-12 Ocean Nutrition Canada Limited Reduction of sterols and other compounds from oils
AU2006299462C1 (en) 2005-09-30 2011-07-21 Hill's Pet Nutrition, Inc. Methods for extending the shelf-life of food compositions containing polyunsaturated fatty acids
CA2625338A1 (en) 2005-10-07 2007-06-14 Ocean Nutrition Canada Ltd. Salts of fatty acids and methods of making and using thereof
EP1965672A1 (en) 2005-12-13 2008-09-10 Unilever N.V. Dehydration method for comminuted food products
DE602006015701D1 (en) 2005-12-29 2010-09-02 Abl Biotechnologies Ltd NEW SCHIZOCHYTRIUM LIMACINUM TRUNK, SUITABLE FOR THE PRODUCTION OF LIPIDES AND EXTRACELLULAR POLYSACCHARIDES, AND METHOD THEREFOR
US20070172540A1 (en) 2006-01-25 2007-07-26 Neece Charles E High density, energy component-added pelletized agricultural processing byproducts for animal feed
EP2010140A2 (en) 2006-04-03 2009-01-07 Advanced Bionutrition Corporation Feed formulations containing docosahexaenoic acid
WO2007121273A2 (en) 2006-04-11 2007-10-25 Martek Biosciences Corporation Food products comprising long chain polyunsaturated fatty acids and methods for preparing the same
GB2437909A (en) 2006-05-12 2007-11-14 Advanced Bionutrition Inc Animal feed comprising docosahexaenois acid from a microbial source
DE102006026328A1 (en) 2006-06-02 2008-01-03 Evonik Degussa Gmbh Process for the preparation of a feed additive containing L-lysine
US7910604B2 (en) * 2006-07-12 2011-03-22 Novus International, Inc. Antioxidant combinations for use in feed rations to increase milk production and milk fat
EP2082053B1 (en) 2006-08-01 2016-04-13 DSM Nutritional Products AG Process for producing microbial oil comprising polyunsaturated fatty acids
CA2660767A1 (en) 2006-08-18 2008-02-21 Organobalance Gmbh Probiotic microorganisms for the reduction of manure odor
TW200820913A (en) 2006-08-25 2008-05-16 Martek Biosciences Corp Food fortification with polyunsaturated fatty acids
US20100086979A1 (en) 2006-10-27 2010-04-08 Thomas Kiy Production of omega-3 fatty acids in microflora of thraustochytriales using modified media
RU2009120568A (en) 2006-11-01 2010-12-10 Пронова Биофарма Норге Ас (No) COMPOSITION
MX2009004339A (en) 2006-11-03 2009-05-20 Pronova Biopharma Norge As Fatty acid alcohols.
JP5101894B2 (en) 2007-01-15 2012-12-19 サントリーホールディングス株式会社 Polyunsaturated fatty acid and method for producing lipid containing the same
US8071715B2 (en) 2007-01-31 2011-12-06 Georgia-Pacific Chemicals Llc Maleated and oxidized fatty acids
JP4221617B2 (en) 2007-05-23 2009-02-12 北海道特殊飼料株式会社 Animal and plant residue dry fermented feed, dry fertilizer, etc.
CL2008001640A1 (en) 2007-06-08 2008-11-07 Bergen Teknologioverforing As Use of hydroxyproline to prepare an alloy composition intended to promote the growth of an animal, such as fish, birds and mammals.
CL2008002020A1 (en) 2007-07-12 2008-11-14 Ocean Nutrition Canada Ltd Method of modifying an oil, which comprises hydrolyzing glycerides with a solution of thermomyces lanuginosus lipase, separating the saturated fatty acid fraction from the hydrolyzed glyceride fraction and esterifying the hydrolyzed glycerides in the presence of candida antarctica lipase b; and oil composition.
EP2198038B1 (en) 2007-09-12 2018-03-14 DSM IP Assets B.V. Method for producing biological oil using a nonsterile fermentor
CA2704371A1 (en) 2007-11-01 2009-05-07 Wake Forest University School Of Medicine Compositions and methods for prevention and treatment of mammalian diseases
US8343753B2 (en) 2007-11-01 2013-01-01 Wake Forest University School Of Medicine Compositions, methods, and kits for polyunsaturated fatty acids from microalgae
EP2071019A1 (en) 2007-12-15 2009-06-17 Lonza AG Method for the cultivation of microoranisms of the order thraustochytriales
US20090202672A1 (en) 2008-02-11 2009-08-13 Monsanto Company Aquaculture feed, products, and methods comprising beneficial fatty acids
EP2105506A1 (en) * 2008-03-26 2009-09-30 Lonza Ag Process for preparing oils containing PUFAs employing microorganisms of the order Labyrinthulomycota
US20100303961A1 (en) 2008-10-14 2010-12-02 Solazyme, Inc. Methods of Inducing Satiety
US20100297331A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Reduced Fat Foods Containing High-Lipid Microalgae with Improved Sensory Properties
US20100303989A1 (en) 2008-10-14 2010-12-02 Solazyme, Inc. Microalgal Flour
AU2009303354C9 (en) 2008-10-14 2017-09-07 Corbion Biotech, Inc. Food compositions of microalgal biomass
US20100297323A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Gluten-free Foods Containing Microalgae
US20100297292A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Reduced Pigmentation Microalgae Strains and Products Therefrom
US20100297295A1 (en) 2008-10-14 2010-11-25 Solazyme, Inc. Microalgae-Based Beverages
US20100303990A1 (en) 2008-10-14 2010-12-02 Solazyme, Inc. High Protein and High Fiber Algal Food Materials
US20110258915A1 (en) 2008-10-17 2011-10-27 Stc.Unm Method and Unit for Large-Scale Algal Biomass Production
KR101780799B1 (en) 2008-11-28 2017-09-22 테라비아 홀딩스 인코포레이티드 Manufacturing of tailored oils in recombinant heterotrophic microorganisms
EP2393576B1 (en) 2009-02-03 2017-04-12 Praxair Technology, Inc. Method for solvent recovery in a batch fluidized bed process
US8207363B2 (en) 2009-03-19 2012-06-26 Martek Biosciences Corporation Thraustochytrids, fatty acid compositions, and methods of making and uses thereof
EP2418959B1 (en) 2009-04-14 2019-07-24 Corbion Biotech, Inc. Novel microalgal food compositions
EP2427200B1 (en) 2009-05-08 2014-04-30 Bioprotein AS Feed composition for the treatment or prevention of enteritis in fish
CA2766799A1 (en) 2009-06-26 2010-12-29 Eric Kuhrts Water-soluble dietary fatty acids
KR20120085240A (en) 2009-07-17 2012-07-31 오션 하베스트 테크놀로지 (캐나다) 아이엔씨. Natural and sustainable seaweed formulations replace synthetic additives in fish feed
CN107746869A (en) 2009-12-28 2018-03-02 赛诺菲疫苗技术公司 The production of heterologous polypeptide in microalgae, the extracellular body of microalgae, composition and its production and use
CN103068965A (en) 2009-12-28 2013-04-24 Dsmip资产公司 Recombinant Thraustochytrium growing on sucrose and its composition, preparation method and use
EP2519642B1 (en) 2009-12-28 2017-10-25 DSM IP Assets B.V. Recombinant thraustochytrids that grow on xylose, and compositions, methods of making, and uses thereof
NZ601757A (en) 2010-01-19 2015-01-30 Dsm Ip Assets Bv Eicosapentaenoic acid-producing microorganisms, fatty acid compositions, and methods of making and uses thereof
US20120213905A1 (en) 2010-08-11 2012-08-23 E. I. Du Pont De Nemours And Company Aquaculture feed compositions
CN101999552B (en) 2010-12-08 2012-11-14 上海市奶牛研究所 TMR (total mixed ration) fermented feed taking rice grass as raw material for replacement dairy cows and preparation method thereof
US8999663B2 (en) 2011-02-11 2015-04-07 E L Du Pont De Nemours And Company Method for obtaining a lipid-containing composition from microbial biomass
JP2014511406A (en) 2011-02-11 2014-05-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Eicosapentaenoic acid concentrate
EP2673354A1 (en) 2011-02-11 2013-12-18 E.I. Du Pont De Nemours And Company Method for forming and extracting solid pellets comprising oil-containing microbes
MX2012003321A (en) 2011-03-18 2013-03-21 Int Flavors & Fragrances Inc Microcapsules produced from blended sol-gel precursors and method for producing the same.
AR087944A1 (en) 2011-07-21 2014-04-30 Dsm Ip Assets Bv MICROORGANISMS PRODUCERS OF EICOSAPENTAENOIC ACID, COMPOSITIONS OF FATTY ACIDS, AND METHODS OF ELABORATION AND USES OF THE SAME
CN102687810B (en) 2012-04-23 2013-09-04 浙江省海洋开发研究院 Compound feed for Scylla serrata and preparation method of same
CN104270957B (en) 2012-05-09 2016-08-24 赢创德固赛有限公司 Animal feed additive comprising l-amino acid of bulk material form based on fermentation liquid and preparation method thereof
US20150232900A1 (en) 2012-09-18 2015-08-20 Myko Tech Private Limited Paper folding method and device for manufacturing filter cartridges
CN102919512B (en) 2012-09-26 2015-05-27 内蒙古金达威药业有限公司 DHA (docosahexaenoic acid)-rich microalgae powder and preparation method thereof
CN103070293A (en) 2013-01-22 2013-05-01 青岛琅琊台集团股份有限公司 Method for extracting biological protein from aurantiochytrium sp residue
WO2014122092A1 (en) 2013-02-05 2014-08-14 Evonik Industries Ag Improving the bioavailability of useful materials from microorganisms
EP2762008A1 (en) 2013-02-05 2014-08-06 Evonik Industries AG Improving bioavailability of valuable materials from microorganisms by use of a rotor-stator system for cell disruption
EP2826384A1 (en) 2013-07-16 2015-01-21 Evonik Industries AG Method for drying biomass
CN103385390B (en) 2013-08-02 2014-12-17 青岛七好营养科技有限公司 Artificial particle feed for juvenile turbot
BR112016002818A2 (en) 2013-08-06 2017-08-01 Prairie Aquatech non-animal protein concentrate production methods; protein concentrates; compositions; and method of producing a polyunsaturated fatty acid
RU2016114480A (en) 2013-09-17 2017-10-23 Эвоник Дегусса Гмбх METHOD FOR PRODUCING GRANULES WITH SIGNIFICANTLY IMPROVED PROPERTIES FROM AMINO ACIDS SOLUTIONS AND SUSPENSIONS
US20160249642A1 (en) 2013-10-08 2016-09-01 Evonik Degussa Gmbh Method for drying biomass
DK2865275T3 (en) 2013-10-24 2020-05-18 Evonik Operations Gmbh Feed additive containing L-amino acid
EP2932856B1 (en) 2014-04-07 2017-08-23 Evonik Degussa GmbH Process for fluidized bed granulation of amino acid-containing fermentation broths
US20160066600A1 (en) 2014-09-08 2016-03-10 The United States Of America, As Represented By The Secretary Of Agriculture Method and System for Producing Aquaculture Feed
DK180022B1 (en) 2014-10-02 2020-01-23 Evonik Degussa Gmbh Method for producing a granular biomass which contains an oxidation-sensitive valuable substance.
BR112017005388B1 (en) 2014-10-02 2022-09-13 Evonik Operations Gmbh FOOD FOR ANIMALS CONTAINING AURANTIOCHYTRIUM BIOMASS
US11464244B2 (en) 2014-10-02 2022-10-11 Evonik Operations Gmbh Feedstuff of high abrasion resistance and good stability in water, containing PUFAs
US10619175B2 (en) 2014-10-02 2020-04-14 Evonik Operations Gmbh Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass
CA2958457C (en) 2014-10-02 2022-10-25 Evonik Industries Ag Process for producing a pufa-containing biomass which has high cell stability
EP3371303A4 (en) 2015-11-02 2019-06-26 Synthetic Genomics, Inc. Algal mutants with increased lipid productivity
DK201970085A1 (en) 2016-07-13 2019-02-21 Dsm Ip Assets B.V. Method for isolating lipids from lipid-containing cells
RU2744913C2 (en) 2016-12-27 2021-03-17 Эвоник Оперейшенс ГмбХ Method for isolation of lipids from lipid-containing biomass

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531679B2 (en) 2013-07-16 2020-01-14 Evonik Degussa, GmbH Method for drying biomass
US10619175B2 (en) 2014-10-02 2020-04-14 Evonik Operations Gmbh Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass
US10842174B2 (en) 2014-10-02 2020-11-24 Evonik Operations Gmbh Method for producing biomass which has a high exopolysaccharide content
US11324234B2 (en) 2014-10-02 2022-05-10 Evonik Operations Gmbh Method for raising animals
US11464244B2 (en) 2014-10-02 2022-10-11 Evonik Operations Gmbh Feedstuff of high abrasion resistance and good stability in water, containing PUFAs
US11946017B2 (en) 2016-07-13 2024-04-02 Evonik Operations Gmbh Method of separating lipids from a lysed lipids containing biomass
US11352651B2 (en) 2016-12-27 2022-06-07 Evonik Operations Gmbh Method of isolating lipids from a lipids containing biomass
US11814665B2 (en) 2017-08-17 2023-11-14 Evonik Operations Gmbh Enhanced production of lipids by limitation of at least two limiting nutrient sources
US11261400B2 (en) 2017-09-05 2022-03-01 Evonik Operations Gmbh Method of separating lipids from a lysed lipids containing biomass
US11542220B2 (en) 2017-12-20 2023-01-03 Evonik Operations Gmbh Method of isolating lipids from a lipids containing biomass
US11414621B2 (en) 2018-05-15 2022-08-16 Evonik Operations Gmbh Method of isolating lipids from a lipids containing biomass with aid of hydrophobic silica
US11976253B2 (en) 2018-05-15 2024-05-07 Evonik Operations Gmbh Method of isolating lipids from a lysed lipids containing biomass by emulsion inversion
US12408685B2 (en) 2018-10-12 2025-09-09 Evonik Operations Gmbh Animal feed for improving the growth performance

Also Published As

Publication number Publication date
US20170303561A1 (en) 2017-10-26
WO2016050965A1 (en) 2016-04-07
ES2870093T3 (en) 2021-10-26
DK180015B1 (en) 2020-01-22
CL2017000754A1 (en) 2017-12-15
EP3200605B1 (en) 2021-03-10
CA2958457A1 (en) 2016-04-07
CN118813731A (en) 2024-10-22
WO2016050552A1 (en) 2016-04-07
EP3200602B1 (en) 2021-03-10
DK180021B1 (en) 2020-01-22
CA2958466A1 (en) 2016-04-07
BR112017006838A2 (en) 2018-06-19
ES2869980T3 (en) 2021-10-26
BR112017005253A2 (en) 2018-07-31
EP3200602A1 (en) 2017-08-09
US10842174B2 (en) 2020-11-24
DK201770206A1 (en) 2017-04-10
CA2958466C (en) 2022-10-25
EP3200605A1 (en) 2017-08-09
CN107075540A (en) 2017-08-18
CL2017000752A1 (en) 2017-12-15
CN107072248A (en) 2017-08-18
BR112017005253B1 (en) 2022-04-26
CA2958457C (en) 2022-10-25
DK201770208A1 (en) 2017-04-10
BR112017006838B1 (en) 2021-07-06

Similar Documents

Publication Publication Date Title
DK180021B1 (en) Process for producing a PUFA-containing biomass which has high cell stability.
US11324234B2 (en) Method for raising animals
US11464244B2 (en) Feedstuff of high abrasion resistance and good stability in water, containing PUFAs
DK179981B1 (en) Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass
US10531679B2 (en) Method for drying biomass
US20220017929A1 (en) Method for producing a biomass with an increased content of polyunsaturated fatty acids
US20220017930A1 (en) Method for producing a biomass which can be easily broken down and which has an increased content of polyunsaturated fatty acids
RU2779882C1 (en) Method for producing biomass with a high content of polyunsaturated fatty acids
RU2776914C1 (en) Method for producing easily decomposing biomass characterised by an increased content of polyunsaturated fatty acids

Legal Events

Date Code Title Description
AS Assignment

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRIEFERT, HORST;SCHNEIDER, JENS;RABE, CHRISTIAN;AND OTHERS;SIGNING DATES FROM 20170125 TO 20170201;REEL/FRAME:041819/0434

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: EVONIK OPERATIONS GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:051342/0587

Effective date: 20191104

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION