US20170254041A1 - Triangle unit assembly block and method using same of building landslide preventing draining retaining wall - Google Patents

Triangle unit assembly block and method using same of building landslide preventing draining retaining wall Download PDF

Info

Publication number
US20170254041A1
US20170254041A1 US15/506,748 US201515506748A US2017254041A1 US 20170254041 A1 US20170254041 A1 US 20170254041A1 US 201515506748 A US201515506748 A US 201515506748A US 2017254041 A1 US2017254041 A1 US 2017254041A1
Authority
US
United States
Prior art keywords
fastening
body portion
assembly block
triangle unit
unit assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/506,748
Inventor
Heung Sik Yu
Sung Kyun JIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20170254041A1 publication Critical patent/US20170254041A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/205Securing of slopes or inclines with modular blocks, e.g. pre-fabricated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • E02D29/025Retaining or protecting walls made up of similar modular elements stacked without mortar
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/12Revetment of banks, dams, watercourses, or the like, e.g. the sea-floor
    • E02B3/14Preformed blocks or slabs for forming essentially continuous surfaces; Arrangements thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Definitions

  • the present invention relates to a triangle unit assembly block. More particularly, it relates to a triangle unit assembly block for preventing damage from landslides and a method of building a landslide preventing draining retaining wall using the same.
  • a landslide is a calamity of a massive scale of earth flowing downwards and sweeping over like a waterfall, wherein the degree of damage is great and recovery to the original state is impossible, so in order to prevent or lessen the damage, thorough preparation is required.
  • facility for preventing landslides must have both a smooth drainage function and a high durability that can withstand several hundred tons of earth pressure at the same time.
  • Korean Patent Publication no. 10-2012-0049106 (published on May 16, 2012), which may be a prior art associated with the present invention, discloses a prefabricated shore protection block characterized in that a frame block is fitted into a connecting block groove portion in a lattice form and, an anchor hole is formed so that the fixing force at a sloped surface is improved by burying a reinforcing bar anchor vertically at the center of the connecting block.
  • the above-mentioned conventional block is a shore protection block for protecting a sloped surface, wherein a block is laid flat on the sloped surface, so it is a structure that cannot be used in a place where a cut area and earth pressure acts largely, and especially, a separate apparatus for draining is not installed.
  • a shaft with easy angle adjustment and a block apparatus for a retaining wall of Korean Utility Model Registration no. 20-02555686 (registered on Nov. 15, 2001) is technology related to a block apparatus for easily adjusting an angle when a retaining wall is built, which holds to problem of not being able to perform drainage when rain water flows in.
  • the present invention has been made to solve the above problems of the above-mentioned prior art, and an aspect of the present invention is directed to providing a triangle unit assembly block and a landslide preventing draining retaining wall building method using the same, that enables drainage to be performed through a large space between a multiple of convex portions formed on a upper surface of a block, and by the formation of a large space in a unit triangle form in an assemblage retaining wall and a large space in a central hexagonal shape to quickly drain a large amount at the time of heavy rain, and uses an assembly block including first and second fastening protrusions disposed to be corresponding to side surfaces mutually facing each other, and first and second fastening grooves disposed in a misaligned manner at side surfaces mutually facing each other, to provide a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction.
  • another aspect of the present invention is directed to providing a triangle unit assembly block and a landslide preventing draining retaining wall building method using the same, that enables work to be done easily even by a non-expert because only two grooves are formed symmetrically, each very compact and rigid, since both ends of a block body are connecting protrusion portions, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby the cost-efficiency is excellent and the stability is suitable to constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly.
  • a triangle unit assembly block for solving the above problems may include: a body portion comprising mutually facing first and second side surfaces and mutually facing third and fourth side surfaces;
  • first and second fastening protrusions are disposed to correspond to each other and protrude in mutually opposite directions
  • first and second fastening grooves are disposed to be misaligned with one another to be concave in mutually facing directions.
  • the area of the first side surface of the body portion prefferably be equal to the area of the second side surface of the body portion, and be larger or smaller than the area of the third or fourth side surface of the body portion.
  • first and second fastening protrusions prefferably be formed on both sides respectively from the upper surface to a lower surface of the body portion, and a hemispherical protrusion line protruding in a perpendicular direction to the third side surface or the fourth side surface of the body portion to be formed.
  • first and second fastening grooves prefferably be formed along both inner sides respectively from the upper surface to the lower surface of the body portion, and a hemispherical groove line recessed in a perpendicular direction to the first side surface or the second side surface to be formed.
  • the areas of the first and second fastening grooves prefferably be larger than the first and second fastening protrusions.
  • first and second protrusions prefferably be fastened to a first fastening groove or a second fastening groove of an adjacent assembly block.
  • a plurality of convex portions to be formed to be disposed at regular intervals on at least one of the upper surface and the lower surface of the body portion.
  • a plurality of convex portions to be formed on the upper surface of the body part, and the upper and lower surfaces of the body portion to be flat planes, and the side surface of the convex portion to be an inclined surface.
  • first and second fastening grooves are disposed between adjacent convex portions.
  • a method of building a landslide preventing draining retaining wall using a triangle unit assembly block comprising first and second fastening protrusions disposed to correspond to side surfaces mutually facing each other, and first and second fastening grooves disposed to be misaligned on side surfaces mutually facing each other, wherein the method comprises:
  • forming a horizontal assembly by connecting at least two triangle unit assemblies in a horizontal direction; and forming a structure while stacking adjacent triangle unit assemblies to be misaligned with each other, by stacking at least two horizontal assemblies in a vertical direction.
  • the triangle unit assembly block has an effect that a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction is provided, thereby enabling work to be done easily even by a non-expert when building a landslide preventing draining retaining wall using an assembly block, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby there is an effect of excellent cost-efficiency and a stability suitable to constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly.
  • the present invention is a triangle unit assembly, bending moments don't occur thereby an earthquake-resistent retaining wall may be easily and simply built in a prefabricated manner.
  • the present invention can be utilized for various purposes such as a breakwater, a retaining wall, a shore protection, etc., by adjusting the size of the blocks in accordance with the site conditions.
  • the present invention does not require foundation work, it is advantageous in that the structure can be firmly built even in mountainous areas and soft grounds.
  • the present invention does not perform concrete pouring work on site, it is advantageous in that the work in water or near the water is easy.
  • the present invention uses finished products, it is advantageous in that the construction period can be shortened.
  • the present invention is advantageous in that the assembling work is simple and easy to open and repair.
  • FIG. 1 is a perspective view showing a triangle unit assembly block according to the present invention.
  • FIGS. 2 and 3 are views showing convex portions and a large draining space of an assembly block according to the present invention.
  • FIG. 4 is a plan view showing a triangle unit assembly using an assembly block according to the present invention.
  • FIG. 5 is a view showing a retaining wall and shore protecting block using assembly blocks according to the present invention.
  • FIG. 6 is a flow chart for describing a landslide preventing draining retaining wall building method using a triangle unit assembly block according to the present invention.
  • FIG. 1 is a perspective view showing a triangle unit assembly block according to the present invention.
  • a triangle unit assembly block 1 may include a body portion 10 including mutually facing first and second side surfaces 11 and 12 and mutually facing third and fourth side surfaces 13 and 14 between a upper surface 15 and a lower surface 16 , a first fastening protrusion 21 formed on the first side surface 11 of the body portion 10 , a second fastening protrusion 22 formed on the second side surface 12 of the body portion 10 , a first fastening groove 31 formed on the third side surface 13 of the body portion 10 , and a second fastening groove 32 formed on the fourth side surface 14 of the body portion 10 .
  • first and second fastening protrusions 21 and 22 may be disposed to correspond to each other and protrude in mutually opposite directions, and the first and second fastening grooves 31 and 32 may be disposed to be misaligned with one another to be concave in mutually facing directions.
  • first fastening groove 31 may be disposed to be adjacent to the first fastening protrusion 21
  • second fastening groove 32 may be disposed to be adjacent to the second fastening protrusion 22 .
  • first and second fastening protrusions 21 and 22 may be inserted and fastened to a first fastening groove or a second fastening groove of a different adjacent assembly block 1 .
  • first and second fastening grooves 31 and 32 may have a first fastening protrusion or a second fastening protrusion of a different adjacent assembly block 1 inserted and fastened thereto.
  • the area of the first side surface 11 of the body portion 10 where the first fastening protrusion 21 is formed may be the same as the area of the second side surface 12 of the body portion 10 where the second fastening protrusion 22 is formed.
  • the area of the first side surface 11 of the body portion 10 where the first fastening protrusion 21 is formed may be different from the area of the third side surface 13 of the body portion 10 where the first fastening groove 31 is formed, or may be different from the area of the fourth side surface 14 of the body portion 10 where the second fastening groove 32 is formed.
  • the area of the first side 11 of the body 10 may be smaller than the area of the third side 13 or the fourth side 14 of the body 10 .
  • the assembly block 1 is formed in a straight shape so that the triangle unit assembly block can be easily assembled.
  • the triangle unit assembly block does not easily deform or collapse when an external force due to an external impact is applied to the assembly, by dispersing the external force.
  • first fastening protrusion 21 may have first and second protrusion lines 21 a and 21 b formed on both sides thereof and the second fastening protrusion 22 may have third and fourth protrusion lines 22 a and 22 b formed on both sides thereof.
  • first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b are formed from the upper surface 15 to the lower surface 16 of the body portion 10 , and may protrude in a direction perpendicular to the third side surface 13 or the fourth side surface 14 of the body portion 10 .
  • first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • first fastening groove 31 may have first and second groove lines 31 a and 31 b formed recessed to both inner side surfaces and the second fastening groove 32 may have third and fourth grooves lines 32 a and 32 b formed recessed to both inner side surfaces.
  • first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b are formed from the upper surface 15 to the lower surface 16 of the body portion 10 , and may be concave in a direction perpendicular to the first side surface 11 or the second side surface 12 of the body portion 10 .
  • first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • the sectional shapes of the first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b may be the same as those of the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b.
  • first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b, and the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b, can be easily fastened to each other.
  • a groove line concave towards both inner side surfaces is formed on the first and second fastening grooves 31 and 32 respectively, and a protrusion line protruding towards both sides is formed on the first and second fastening protrusions 21 and 22 respectively, thereby the coupling force between the assembly blocks can be improved, and the coupling force can be greatly enhanced even in the triangular unit assembly.
  • the areas of the first and second fastening grooves 31 and 32 may be larger than the areas of the first and second fastening protrusions 21 and 22 .
  • first and second fastening grooves 31 and 32 are smaller than or equal to the areas of the first and second fastening protrusions 21 and 22 , the fastening of the first and second fastening grooves 31 and 32 with the first and second fastening protrusions 21 , 22 may be difficult.
  • first and second fastening protrusions 21 and 22 can be easily fastened to the first fastening groove or the second fastening groove of the adjacent assembly block 1 .
  • a plurality of convex portions 40 may be formed on the upper surface 15 of the body portion 10 .
  • the plurality of convex portions 40 may be arranged at regular intervals.
  • the assembly blocks 1 stacked on each other can have a water dripping passage by forming a certain space by the convex portions 40 , and it is for the purpose of having water quickly drained between the assembly blocks 1 stacked on each other.
  • the convex portions 40 may be arranged at different intervals depending on the different cases.
  • the gap between the convex portions 40 located in the central region of the upper surface 15 of the body portion 10 may be narrower than the gap between the convex portions 40 located on the edge region.
  • the assembly blocks 1 stacked on each other can have a water dripping passage by forming a certain space by the convex portions 40 , so that more water can be drained through the edge region than the central region of the assembly blocks stacked on each other.
  • the gap between the convex portions 40 located on the central region of the upper surface 15 of the body portion 10 may be wider than the distance between the convex portions 40 located on the edge region.
  • the assembly blocks 1 stacked on each other can have a water dripping passage by having a certain space by the convex portions 40 , so that more water can be drained through the central region than the edge region of the assembly blocks stacked on each other.
  • a plurality of convex portions 40 are formed on the upper surface 15 of the body portion 10 , and the lower surface 16 of the body portion 10 is a flat plane without the convex portions 40 .
  • a plurality of convex portions 40 are formed on the upper surface 15 of the body portion 10 , and the lower surface 16 of the body portion 10 is a flat planar surface.
  • the flat lower surface 16 of the body portion 10 may be in contact with a plurality of convex portions 40 formed on the upper surface 15 of the body portion 10 .
  • the upper surface of the convex portion 40 may be a flat planar surface, and the side surface of the convex portion 40 may be an inclined surface.
  • the angle between the side surface of the convex portion 40 and the upper surface 15 of the body portion 10 may be an obtuse angle.
  • the angle between the side surface of the convex portion 40 and the upper surface 15 of the body portion 10 may be a right angle.
  • first and second fastening grooves 31 and 32 may be disposed between adjacent convex portions 40 .
  • the plurality of convex portions 40 and the first and second coupling grooves 31 and 32 may be disposed misaligned with each other.
  • the reason for this is to secure a space in which the convex portion 40 can be formed on the upper surface 15 of the body portion 10 .
  • the present invention provides a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction, thereby enabling work to be done easily even by a non-expert when building a landslide preventing draining retaining wall using an assembly block, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby the cost-efficiency is excellent and the stability is suitable to constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly.
  • FIGS. 2 and 3 are views showing convex portions and a large draining space of an assembly block according to the present invention.
  • the triangle unit assembly block 1 may include a first fastening protrusion 21 formed on the first side surface of the body portion 10 , a second fastening protrusion 22 formed on the second side surface of the body portion 10 , a first fastening groove 31 formed on the third side surface of the body portion 10 , and the second fastening groove 32 formed on the fourth side surface of the body portion 10 .
  • first and second fastening protrusions 21 and 22 are arranged so as to correspond to each other and protrude in opposite directions to each other and the first and second fastening grooves 31 and 32 may be disposed so as to be misaligned with each other and convex in a direction mutually facing each other.
  • first fastening groove 31 may be disposed adjacent to the first fastening protrusion 21
  • second fastening groove 32 may be disposed adjacent to the second fastening protrusion 22 .
  • first fastening protrusion 21 may have first and second protrusion lines 21 a and 21 b formed on both sides thereof and the second fastening protrusion 22 may have third and fourth protrusion lines 22 a, 22 b formed on both sides thereof.
  • first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • first fastening groove 31 is formed with first and second groove lines 31 a and 31 b recessed in both inner side surfaces respectively and the second fastening groove 32 is formed with third and fourth grooves Lines 32 a and 32 b may be formed.
  • first fastening groove 31 may have first and second groove lines 31 a and 31 b formed recessed to both inner side surfaces and the second fastening groove 32 may have third and fourth grooves lines 32 a and 32 b formed recessed to both inner side surfaces.
  • first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • a plurality of convex portions 40 may be formed on the upper surface 15 of the body portion 10 .
  • the upper surface of the convex portion 40 may be a flat planar surface, and the side surface 42 of the convex portion 40 may be an inclined surface.
  • the angle between the side surface 42 of the convex portion 40 and the upper surface of the body portion 10 may be an obtuse angle.
  • the angle between the side surface 42 of the convex portion 40 and the upper surface of the body portion 10 may be a right angle.
  • the convex portions 40 according to a first exemplary embodiment of the present invention, as shown in FIG. 2 , are formed on the upper surface of the body portion 10 in plurality, and the lower surface of the body portion 10 is a flat plane without the convex portions 40 .
  • the plurality of convex portions 40 may be arranged at regular intervals.
  • the assembly blocks 1 stacked on each other can have a water dripping passage by forming a certain space by the convex portions 40 , and it is for the purpose of having water quickly drained between the assembly blocks 1 stacked on each other.
  • the plurality of convex portions 40 may be arranged at different intervals depending on the different cases.
  • the gap between the convex portions 40 located in the central region of the upper surface 15 of the body portion 10 may be narrower than the gap between the convex portions 40 located on the edge region.
  • the assembly blocks 1 stacked on each other can have a water dripping passage by having a certain space by the convex portions 40 , so that more water can be drained through the central region than the edge region of the assembly blocks stacked on each other.
  • FIG. 4 is a plan view showing a triangle unit assembly using an assembly block according to the present invention.
  • the first fastening protrusion of the first assembly block 1 is inserted into the first fastening groove of the third assembly block 3
  • the second fastening protrusion of the third assembly block 3 is inserted into the first fastening groove of the second assembly block 2
  • the first fastening protrusion of the second assembly block 2 is inserted into the second fastening groove of the first assembly block 1 , thereby enabling the triangle unit assembly 100 to be formed.
  • the horizontal assembly 200 may be formed by connecting at least two triangle unit assemblies 100 in the horizontal direction.
  • first fastening protrusion of the first assembly block 1 may be inserted into the first fastening groove of the second assembly block 2
  • second fastening protrusion of the first assembly block 1 may inserted into the second fastening groove of the third assembly block 3 .
  • first fastening protrusion of the fourth assembly block 4 is inserted into the first fastening groove of the first assembly block 1 and the second fastening protrusion of a fifth assembly block 5 may be inserted into the second fastening groove of the first assembly block 1 .
  • the horizontal assembly 200 includes six unit large spaces 50 of each triangle unit assembly, and a hexagonal large space 60 is formed at the center of the horizontal assembly 200 .
  • the structure 300 may then be formed by stacking at least two horizontal assemblies 200 in a vertical direction.
  • a plurality of horizontal assemblies 200 are further extended in the horizontal direction, and are stacked to be connected to each other in a vertical direction again, thereby enabling building a landslide prevention draining retaining wall.
  • a plurality of horizontal assemblies 200 having six triangular unit large spaces 50 and one central hexagon-shaped large space 60 may be connected in the horizontal direction and the vertical direction.
  • the triangle unit assemblies 100 adjacent to each other can be stacked to be misaligned with each other.
  • the structure 300 in which the triangular unit assemblies 100 are stacked to be misaligned can elastically disperse an external force when an external impact is present, even when elongation, shrinkage, differential settlement or the like occurs between the assembly blocks, so it cannot be easily deformed or collapsed.
  • the assembly blocks of the present invention can elastically disperse the external force, so with the strong support strength against external force, deformation can be prevented or the damage can be minimized.
  • FIG. 6 is a flow chart for describing a landslide preventing draining retaining wall building method using a triangle unit assembly block according to the present invention.
  • the first fastening protrusion of the first assembly block is inserted into the first fastening groove of the second assembly block
  • the second fastening protrusion of the second assembly block is inserted into the first fastening protrusion of the third assembly block
  • the first fastening protrusion of the third assembly block is inserted into the second fastening groove of the first assembly block to form the triangle unit assembly in step S 11 .
  • step S 13 At least two triangle unit assemblies are horizontally connected to form a horizontal assembly in step S 13 .
  • At least two horizontal assemblies may be stacked in a vertical direction to form a structure in step S 15 .
  • the present invention is a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction, work is enabled to be done easily even by a non-expert when building a landslide preventing draining retaining wall using an assembly block, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby it is suitable for constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly and the cost-efficiency and stability are also excellent.
  • the present invention is a triangle unit assembly, bending moments don't occur, so an earthquake-resistent retaining wall may be easily and simply built in a prefabricated manner, and can be utilized for various purposes such as a breakwater, a retaining wall, a shore protection, etc., by adjusting the size of the blocks in accordance with the site conditions, and because the present invention does not require foundation work, the structure can be firmly built even in mountainous areas and soft grounds.
  • the present invention does not perform concrete pouring work on site, it is advantageous in that the work in water or near the water is easy, and because finished products are used, the construction period can be shortened, and the assembling work is simple and easy to open and repair.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Revetment (AREA)
  • Retaining Walls (AREA)

Abstract

A triangle unit assembly block comprises a body portion comprising mutually facing first and second side surfaces and mutually facing third and fourth side surfaces between a upper surface and a lower surface; a first fastening protrusion formed on the first side surface of the body portion; a second fastening protrusion formed on the second side surface of the body portion; a first fastening groove formed on the third side surface of the body portion; and a second fastening groove formed on the fourth side surface of the body portion, wherein the first and second fastening protrusions are disposed to correspond to each other and protrude in mutually opposite directions, and the first and second fastening grooves are disposed to be misaligned with one another to be concave in mutually facing directions.

Description

    TECHNICAL FIELD
  • The present invention relates to a triangle unit assembly block. More particularly, it relates to a triangle unit assembly block for preventing damage from landslides and a method of building a landslide preventing draining retaining wall using the same.
  • BACKGROUND OF ART
  • In the 21st century, the world is suffering from various disasters caused by unpredictable climate change (many human casualties and damages of property loss are seen) and especially with floods and local heavy rain, landslide damages are increasing a lot.
  • A landslide is a calamity of a massive scale of earth flowing downwards and sweeping over like a waterfall, wherein the degree of damage is great and recovery to the original state is impossible, so in order to prevent or lessen the damage, thorough preparation is required.
  • In addistion, facility for preventing landslides must have both a smooth drainage function and a high durability that can withstand several hundred tons of earth pressure at the same time.
  • However, there is no technology or method that satisfies the above conditions yet.
  • Korean Patent Publication no. 10-2012-0049106 (published on May 16, 2012), which may be a prior art associated with the present invention, discloses a prefabricated shore protection block characterized in that a frame block is fitted into a connecting block groove portion in a lattice form and, an anchor hole is formed so that the fixing force at a sloped surface is improved by burying a reinforcing bar anchor vertically at the center of the connecting block.
  • The above-mentioned conventional block is a shore protection block for protecting a sloped surface, wherein a block is laid flat on the sloped surface, so it is a structure that cannot be used in a place where a cut area and earth pressure acts largely, and especially, a separate apparatus for draining is not installed.
  • Further, a shaft with easy angle adjustment and a block apparatus for a retaining wall of Korean Utility Model Registration no. 20-02555686 (registered on Nov. 15, 2001) is technology related to a block apparatus for easily adjusting an angle when a retaining wall is built, which holds to problem of not being able to perform drainage when rain water flows in.
  • DISCLOSURE OF THE INVENTION Technical Problem
  • The present invention has been made to solve the above problems of the above-mentioned prior art, and an aspect of the present invention is directed to providing a triangle unit assembly block and a landslide preventing draining retaining wall building method using the same, that enables drainage to be performed through a large space between a multiple of convex portions formed on a upper surface of a block, and by the formation of a large space in a unit triangle form in an assemblage retaining wall and a large space in a central hexagonal shape to quickly drain a large amount at the time of heavy rain, and uses an assembly block including first and second fastening protrusions disposed to be corresponding to side surfaces mutually facing each other, and first and second fastening grooves disposed in a misaligned manner at side surfaces mutually facing each other, to provide a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction.
  • Further, another aspect of the present invention is directed to providing a triangle unit assembly block and a landslide preventing draining retaining wall building method using the same, that enables work to be done easily even by a non-expert because only two grooves are formed symmetrically, each very compact and rigid, since both ends of a block body are connecting protrusion portions, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby the cost-efficiency is excellent and the stability is suitable to constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly.
  • Technical Solution
  • According to an exemplary embodiment of the present invention, a triangle unit assembly block for solving the above problems may include: a body portion comprising mutually facing first and second side surfaces and mutually facing third and fourth side surfaces;
  • a first fastening protrusion formed on the first side surface of the body portion;
  • a second fastening protrusion formed on the second side surface of the body portion;
  • a first fastening groove formed on the third side surface of the body portion; and
  • a second fastening groove fromed on the fourth side surface of the body portion,
  • wherein the first and second fastening protrusions are disposed to correspond to each other and protrude in mutually opposite directions,
  • and the first and second fastening grooves are disposed to be misaligned with one another to be concave in mutually facing directions.
  • Further, it is preferable for the area of the first side surface of the body portion to be equal to the area of the second side surface of the body portion, and be larger or smaller than the area of the third or fourth side surface of the body portion.
  • Further, it is preferable for the first and second fastening protrusions to be formed on both sides respectively from the upper surface to a lower surface of the body portion, and a hemispherical protrusion line protruding in a perpendicular direction to the third side surface or the fourth side surface of the body portion to be formed.
  • Further, it is preferable for the first and second fastening grooves to be formed along both inner sides respectively from the upper surface to the lower surface of the body portion, and a hemispherical groove line recessed in a perpendicular direction to the first side surface or the second side surface to be formed.
  • Further, it is preferable for the areas of the first and second fastening grooves to be larger than the first and second fastening protrusions.
  • Further, it is preferable for the first and second protrusions to be fastened to a first fastening groove or a second fastening groove of an adjacent assembly block.
  • Further, it is preferable for a plurality of convex portions to be formed to be disposed at regular intervals on at least one of the upper surface and the lower surface of the body portion.
  • Further, it is preferable for a plurality of convex portions to be formed on the upper surface of the body part, and the upper and lower surfaces of the body portion to be flat planes, and the side surface of the convex portion to be an inclined surface.
  • Further, it is preferable for the first and second fastening grooves to be disposed between adjacent convex portions.
  • In addition, according to an exemplary embodiment of the present invention to solve the above-mentioned problems, a method of building a landslide preventing draining retaining wall using a triangle unit assembly block comprising first and second fastening protrusions disposed to correspond to side surfaces mutually facing each other, and first and second fastening grooves disposed to be misaligned on side surfaces mutually facing each other, wherein the method comprises:
  • forming a triangle unit assembly by inserting a first fastening protrusion of a first assembly block into a first fastening groove of a second assembly block, inserting a second fastening protrusion of a second assembly block into a first fastening groove of a third assembly block, and inserting a first protrusion of the third assembly block into a second fastening groove of the first assembly block;
  • forming a horizontal assembly by connecting at least two triangle unit assemblies in a horizontal direction; and forming a structure while stacking adjacent triangle unit assemblies to be misaligned with each other, by stacking at least two horizontal assemblies in a vertical direction.
  • Advantageous Effects
  • According to the present invention, the triangle unit assembly block has an effect that a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction is provided, thereby enabling work to be done easily even by a non-expert when building a landslide preventing draining retaining wall using an assembly block, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby there is an effect of excellent cost-efficiency and a stability suitable to constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly.
  • In addition, because the present invention is a triangle unit assembly, bending moments don't occur thereby an earthquake-resistent retaining wall may be easily and simply built in a prefabricated manner.
  • Next, the present invention can be utilized for various purposes such as a breakwater, a retaining wall, a shore protection, etc., by adjusting the size of the blocks in accordance with the site conditions.
  • Next, because the present invention does not require foundation work, it is advantageous in that the structure can be firmly built even in mountainous areas and soft grounds.
  • In addition, since the present invention does not perform concrete pouring work on site, it is advantageous in that the work in water or near the water is easy.
  • Next, because the present invention uses finished products, it is advantageous in that the construction period can be shortened.
  • Next, the present invention is advantageous in that the assembling work is simple and easy to open and repair.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view showing a triangle unit assembly block according to the present invention.
  • FIGS. 2 and 3 are views showing convex portions and a large draining space of an assembly block according to the present invention.
  • FIG. 4 is a plan view showing a triangle unit assembly using an assembly block according to the present invention.
  • FIG. 5 is a view showing a retaining wall and shore protecting block using assembly blocks according to the present invention.
  • FIG. 6 is a flow chart for describing a landslide preventing draining retaining wall building method using a triangle unit assembly block according to the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Hereinafter, preferred embodiments according to the present invention will be described with reference to the accompanying drawings.
  • FIG. 1 is a perspective view showing a triangle unit assembly block according to the present invention.
  • As shown in FIG. 1, a triangle unit assembly block 1 may include a body portion 10 including mutually facing first and second side surfaces 11 and 12 and mutually facing third and fourth side surfaces 13 and 14 between a upper surface 15 and a lower surface 16, a first fastening protrusion 21 formed on the first side surface 11 of the body portion 10, a second fastening protrusion 22 formed on the second side surface 12 of the body portion 10, a first fastening groove 31 formed on the third side surface 13 of the body portion 10, and a second fastening groove 32 formed on the fourth side surface 14 of the body portion 10.
  • Here, the first and second fastening protrusions 21 and 22 may be disposed to correspond to each other and protrude in mutually opposite directions, and the first and second fastening grooves 31 and 32 may be disposed to be misaligned with one another to be concave in mutually facing directions.
  • At this time, the first fastening groove 31 may be disposed to be adjacent to the first fastening protrusion 21, and the second fastening groove 32 may be disposed to be adjacent to the second fastening protrusion 22.
  • In addition, the first and second fastening protrusions 21 and 22 may be inserted and fastened to a first fastening groove or a second fastening groove of a different adjacent assembly block 1.
  • Further, the first and second fastening grooves 31 and 32 may have a first fastening protrusion or a second fastening protrusion of a different adjacent assembly block 1 inserted and fastened thereto.
  • Next, the area of the first side surface 11 of the body portion 10 where the first fastening protrusion 21 is formed may be the same as the area of the second side surface 12 of the body portion 10 where the second fastening protrusion 22 is formed.
  • However, the area of the first side surface 11 of the body portion 10 where the first fastening protrusion 21 is formed may be different from the area of the third side surface 13 of the body portion 10 where the first fastening groove 31 is formed, or may be different from the area of the fourth side surface 14 of the body portion 10 where the second fastening groove 32 is formed.
  • Here, the area of the first side 11 of the body 10 may be smaller than the area of the third side 13 or the fourth side 14 of the body 10.
  • The reason for this is that the assembly block 1 is formed in a straight shape so that the triangle unit assembly block can be easily assembled.
  • Therefore, the triangle unit assembly block does not easily deform or collapse when an external force due to an external impact is applied to the assembly, by dispersing the external force.
  • Further, the first fastening protrusion 21 may have first and second protrusion lines 21 a and 21 b formed on both sides thereof and the second fastening protrusion 22 may have third and fourth protrusion lines 22 a and 22 b formed on both sides thereof.
  • Here, the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b are formed from the upper surface 15 to the lower surface 16 of the body portion 10, and may protrude in a direction perpendicular to the third side surface 13 or the fourth side surface 14 of the body portion 10.
  • At this time, the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • In addition, the first fastening groove 31 may have first and second groove lines 31 a and 31 b formed recessed to both inner side surfaces and the second fastening groove 32 may have third and fourth grooves lines 32 a and 32 b formed recessed to both inner side surfaces.
  • Here, the first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b are formed from the upper surface 15 to the lower surface 16 of the body portion 10, and may be concave in a direction perpendicular to the first side surface 11 or the second side surface 12 of the body portion 10.
  • At this time, the first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • For example, the sectional shapes of the first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b may be the same as those of the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b.
  • The reason for this is that the first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b, and the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b, can be easily fastened to each other.
  • As described above, a groove line concave towards both inner side surfaces is formed on the first and second fastening grooves 31 and 32 respectively, and a protrusion line protruding towards both sides is formed on the first and second fastening protrusions 21 and 22 respectively, thereby the coupling force between the assembly blocks can be improved, and the coupling force can be greatly enhanced even in the triangular unit assembly.
  • Further, the areas of the first and second fastening grooves 31 and 32 may be larger than the areas of the first and second fastening protrusions 21 and 22.
  • The reason for this is so that the first and second fastening grooves 31 and 32 and the first and second fastening protrusions 21 and 22 are fastened together smoothly.
  • If the areas of the first and second fastening grooves 31 and 32 are smaller than or equal to the areas of the first and second fastening protrusions 21 and 22, the fastening of the first and second fastening grooves 31 and 32 with the first and second fastening protrusions 21, 22 may be difficult.
  • Therefore, the first and second fastening protrusions 21 and 22 can be easily fastened to the first fastening groove or the second fastening groove of the adjacent assembly block 1.
  • Next, a plurality of convex portions 40 may be formed on the upper surface 15 of the body portion 10.
  • Here, the plurality of convex portions 40 may be arranged at regular intervals.
  • The reason for this is that the assembly blocks 1 stacked on each other can have a water dripping passage by forming a certain space by the convex portions 40, and it is for the purpose of having water quickly drained between the assembly blocks 1 stacked on each other.
  • However, the convex portions 40 may be arranged at different intervals depending on the different cases.
  • For example, the gap between the convex portions 40 located in the central region of the upper surface 15 of the body portion 10 may be narrower than the gap between the convex portions 40 located on the edge region.
  • The reason for this is that the assembly blocks 1 stacked on each other can have a water dripping passage by forming a certain space by the convex portions 40, so that more water can be drained through the edge region than the central region of the assembly blocks stacked on each other.
  • In another case, the gap between the convex portions 40 located on the central region of the upper surface 15 of the body portion 10 may be wider than the distance between the convex portions 40 located on the edge region.
  • The reason for this is that the assembly blocks 1 stacked on each other can have a water dripping passage by having a certain space by the convex portions 40, so that more water can be drained through the central region than the edge region of the assembly blocks stacked on each other.
  • Further, a plurality of convex portions 40 are formed on the upper surface 15 of the body portion 10, and the lower surface 16 of the body portion 10 is a flat plane without the convex portions 40.
  • In another case, a plurality of convex portions 40 are formed on the upper surface 15 of the body portion 10, and the lower surface 16 of the body portion 10 is a flat planar surface.
  • Here, the flat lower surface 16 of the body portion 10 may be in contact with a plurality of convex portions 40 formed on the upper surface 15 of the body portion 10.
  • Further, the upper surface of the convex portion 40 may be a flat planar surface, and the side surface of the convex portion 40 may be an inclined surface.
  • Here, the angle between the side surface of the convex portion 40 and the upper surface 15 of the body portion 10 may be an obtuse angle.
  • In some cases, however, the angle between the side surface of the convex portion 40 and the upper surface 15 of the body portion 10 may be a right angle.
  • Next, first and second fastening grooves 31 and 32 may be disposed between adjacent convex portions 40.
  • That is, the plurality of convex portions 40 and the first and second coupling grooves 31 and 32 may be disposed misaligned with each other.
  • The reason for this is to secure a space in which the convex portion 40 can be formed on the upper surface 15 of the body portion 10.
  • As described above, the present invention provides a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction, thereby enabling work to be done easily even by a non-expert when building a landslide preventing draining retaining wall using an assembly block, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby the cost-efficiency is excellent and the stability is suitable to constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly.
  • FIGS. 2 and 3 are views showing convex portions and a large draining space of an assembly block according to the present invention.
  • As shown in FIGS. 2 and 3, the triangle unit assembly block 1 may include a first fastening protrusion 21 formed on the first side surface of the body portion 10, a second fastening protrusion 22 formed on the second side surface of the body portion 10, a first fastening groove 31 formed on the third side surface of the body portion 10, and the second fastening groove 32 formed on the fourth side surface of the body portion 10.
  • Here, the first and second fastening protrusions 21 and 22 are arranged so as to correspond to each other and protrude in opposite directions to each other and the first and second fastening grooves 31 and 32 may be disposed so as to be misaligned with each other and convex in a direction mutually facing each other.
  • At this time, the first fastening groove 31 may be disposed adjacent to the first fastening protrusion 21, and the second fastening groove 32 may be disposed adjacent to the second fastening protrusion 22.
  • Further, the first fastening protrusion 21 may have first and second protrusion lines 21 a and 21 b formed on both sides thereof and the second fastening protrusion 22 may have third and fourth protrusion lines 22 a, 22 b formed on both sides thereof.
  • At this time, the first and second protrusion lines 21 a and 21 b or the third and fourth protrusion lines 22 a and 22 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • In addition, the first fastening groove 31 is formed with first and second groove lines 31 a and 31 b recessed in both inner side surfaces respectively and the second fastening groove 32 is formed with third and fourth grooves Lines 32 a and 32 b may be formed.
  • In addition, the first fastening groove 31 may have first and second groove lines 31 a and 31 b formed recessed to both inner side surfaces and the second fastening groove 32 may have third and fourth grooves lines 32 a and 32 b formed recessed to both inner side surfaces.
  • At this time, the first and second groove lines 31 a and 31 b or the third and fourth groove lines 32 a and 32 b may have a hemispherical cross section, but the present invention is not limited thereto, and it is possible to be made in various forms.
  • Next, a plurality of convex portions 40 may be formed on the upper surface 15 of the body portion 10.
  • Here, the upper surface of the convex portion 40 may be a flat planar surface, and the side surface 42 of the convex portion 40 may be an inclined surface.
  • Here, the angle between the side surface 42 of the convex portion 40 and the upper surface of the body portion 10 may be an obtuse angle.
  • In some cases, however, the angle between the side surface 42 of the convex portion 40 and the upper surface of the body portion 10 may be a right angle.
  • Further, the convex portions 40 according to a first exemplary embodiment of the present invention, as shown in FIG. 2, are formed on the upper surface of the body portion 10 in plurality, and the lower surface of the body portion 10 is a flat plane without the convex portions 40.
  • Here, the plurality of convex portions 40 may be arranged at regular intervals.
  • The reason for this is that the assembly blocks 1 stacked on each other can have a water dripping passage by forming a certain space by the convex portions 40, and it is for the purpose of having water quickly drained between the assembly blocks 1 stacked on each other.
  • However, the plurality of convex portions 40 may be arranged at different intervals depending on the different cases.
  • For example, the gap between the convex portions 40 located in the central region of the upper surface 15 of the body portion 10 may be narrower than the gap between the convex portions 40 located on the edge region.
  • The reason for this is that the assembly blocks 1 stacked on each other can have a water dripping passage by having a certain space by the convex portions 40, so that more water can be drained through the central region than the edge region of the assembly blocks stacked on each other.
  • FIG. 4 is a plan view showing a triangle unit assembly using an assembly block according to the present invention.
  • As shown in FIG. 4, the first fastening protrusion of the first assembly block 1 is inserted into the first fastening groove of the third assembly block 3, and the second fastening protrusion of the third assembly block 3 is inserted into the first fastening groove of the second assembly block 2, the first fastening protrusion of the second assembly block 2 is inserted into the second fastening groove of the first assembly block 1, thereby enabling the triangle unit assembly 100 to be formed.
  • Here, at the center of the triangle unit assembly 100, a unit large space in which a large amount of water is rapidly drained is formed.
  • In addition, as shown in FIG. 4, the horizontal assembly 200 may be formed by connecting at least two triangle unit assemblies 100 in the horizontal direction.
  • For example, the first fastening protrusion of the first assembly block 1 may be inserted into the first fastening groove of the second assembly block 2, and the second fastening protrusion of the first assembly block 1 may inserted into the second fastening groove of the third assembly block 3.
  • In addition, the first fastening protrusion of the fourth assembly block 4 is inserted into the first fastening groove of the first assembly block 1 and the second fastening protrusion of a fifth assembly block 5 may be inserted into the second fastening groove of the first assembly block 1.
  • In this manner, the horizontal assembly 200 includes six unit large spaces 50 of each triangle unit assembly, and a hexagonal large space 60 is formed at the center of the horizontal assembly 200.
  • Next, the structure 300 may then be formed by stacking at least two horizontal assemblies 200 in a vertical direction.
  • Here, a plurality of horizontal assemblies 200 are further extended in the horizontal direction, and are stacked to be connected to each other in a vertical direction again, thereby enabling building a landslide prevention draining retaining wall.
  • That is, a plurality of horizontal assemblies 200 having six triangular unit large spaces 50 and one central hexagon-shaped large space 60 may be connected in the horizontal direction and the vertical direction.
  • Here, when at least two horizontal assemblies 200 are stacked in the vertical direction, the triangle unit assemblies 100 adjacent to each other can be stacked to be misaligned with each other.
  • The reason for this is that, by stacking the adjacent triangular unit assemblies 100 mutually adjacent to each other to be misaligned, there is an advantage that the fastening force between the assembly blocks 1 is large, so that even if an impact is applied in the horizontal direction, it can withstand.
  • Further, the structure 300 in which the triangular unit assemblies 100 are stacked to be misaligned can elastically disperse an external force when an external impact is present, even when elongation, shrinkage, differential settlement or the like occurs between the assembly blocks, so it cannot be easily deformed or collapsed.
  • In this case, when an external force such as a tidal wave, a storm, or an earthquake is applied to the structure by a supernatural disaster, the assembly blocks of the present invention can elastically disperse the external force, so with the strong support strength against external force, deformation can be prevented or the damage can be minimized.
  • FIG. 6 is a flow chart for describing a landslide preventing draining retaining wall building method using a triangle unit assembly block according to the present invention.
  • As shown in FIG. 6, first, the first fastening protrusion of the first assembly block is inserted into the first fastening groove of the second assembly block, the second fastening protrusion of the second assembly block is inserted into the first fastening protrusion of the third assembly block, and the first fastening protrusion of the third assembly block is inserted into the second fastening groove of the first assembly block to form the triangle unit assembly in step S11.
  • Then, at least two triangle unit assemblies are horizontally connected to form a horizontal assembly in step S13.
  • Next, at least two horizontal assemblies may be stacked in a vertical direction to form a structure in step S15.
  • Here, when stacking at least two horizontal assemblies in the vertical direction, mutually adjacent triangle unit assemblies can be stacked to be misaligned with each other.
  • Like this, since the present invention is a combined function single block with a connecting block function and a frame block function that can safely and easily combine a triangle unit assembly in a double row longitudinal, lateral, and vertical direction, work is enabled to be done easily even by a non-expert when building a landslide preventing draining retaining wall using an assembly block, and because foundation work is unnecessary, there's less influence from seasons and bending moments don't occur structurally and thereby it is suitable for constructing a semi-permanent structure such as a landslide preventing retaining wall as an earthquake-proof assembly and the cost-efficiency and stability are also excellent.
  • In addition, because the present invention is a triangle unit assembly, bending moments don't occur, so an earthquake-resistent retaining wall may be easily and simply built in a prefabricated manner, and can be utilized for various purposes such as a breakwater, a retaining wall, a shore protection, etc., by adjusting the size of the blocks in accordance with the site conditions, and because the present invention does not require foundation work, the structure can be firmly built even in mountainous areas and soft grounds.
  • Further, since the present invention does not perform concrete pouring work on site, it is advantageous in that the work in water or near the water is easy, and because finished products are used, the construction period can be shortened, and the assembling work is simple and easy to open and repair.
  • While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation in the scope of the appended claims. It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined by the appended claims, and these modifications should not be understood individually from the technical idea or viewpoint of the present invention.

Claims (10)

1. A triangle unit assembly block comprising:
a body portion comprising mutually facing first and second side surfaces and mutually facing third and fourth side surfaces between a upper surface and a lower surface;
a first fastening protrusion formed on the first side surface of the body portion;
a second fastening protrusion formed on the second side surface of the body portion;
a first fastening groove formed on the third side surface of the body portion; and
a second fastening groove formed on the fourth side surface of the body portion,
wherein the first and second fastening protrusions are disposed to correspond to each other and protrude in mutually opposite directions, and the first and second fastening grooves are disposed to be misaligned with one another to be concave in mutually facing directions.
2. The triangle unit assembly block of claim 1, wherein the area of the first side surface of the body portion is equal to the area of the second side surface of the body portion, and is larger or smaller than the area of the third or fourth side surface of the body portion.
3. The triangle unit assembly block of claim 1, wherein the first and second fastening protrusions are formed on both sides respectively from the upper surface to the lower surface of the body portion, and a hemispherical protrusion line protruding in a perpendicular direction to the third side surface or the fourth side surface of the body portion is formed.
4. The triangle unit assembly block of claim 1, wherein the first and second fastening grooves are formed along both inner sides respectively from the upper surface to the lower surface of the body portion, and a hemispherical groove line recessed in a perpendicular direction to the first side surface or the second side surface is formed.
5. The triangle unit assembly block of claim 1, wherein the areas of the first and second fastening grooves are larger than the first and second fastening protrusions.
6. The triangle unit assembly block of claim 1, wherein the first and second protrusions are fastened to a first fastening groove or second fastening groove of an adjacent assembly block.
7. The triangle unit assembly block of claim 1, wherein a plurality of convex portions are formed to be disposed at regular intervals on the upper surface of the body portion.
8. The triangle unit assembly block of claim 7, wherein, a plurality of convex portions are formed on the upper surface of the body part, and the upper and lower surfaces of the body portion are flat planes, and the side surface of the convex portion is an inclined surface.
9. The triangle unit assembly block of claim 8, wherein between adjacent convex portions, the first and second fastening grooves are disposed.
10. Method of building a landslide preventing draining retaining wall using a triangle unit assembly block comprising first and second fastening protrusions disposed to correspond to side surfaces mutually facing each other, and first and second fastening grooves disposed to be misaligned on side surfaces mutually facing each other, wherein the method comprises:
forming a triangle unit assembly by inserting a first fastening protrusion of a first assembly block into a first fastening groove of a second assembly block, inserting a second fastening protrusion of a second assembly block into a first fastening groove of a third assembly block, and inserting a first protrusion of the third assembly block into a second fastening groove of the first assembly block;
forming a horizontal assembly by connecting at least two triangle unit assemblies in a horizontal direction; and
forming a structure while stacking adjacent triangle unit assemblies to be misaligned with each other, by stacking at least two horizontal assemblies in a vertical direction.
US15/506,748 2014-09-02 2015-09-02 Triangle unit assembly block and method using same of building landslide preventing draining retaining wall Abandoned US20170254041A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2014-0116428 2014-09-02
KR1020140116428A KR101521438B1 (en) 2014-09-02 2014-09-02 Interlocking block for assembling triangle unit structure and Method for constructing drainage retaining wall to prevent landsliding using the same
PCT/KR2015/009217 WO2016036120A1 (en) 2014-09-02 2015-09-02 Triangle unit assembly block and method using same of building landslide preventing draining retaining wall

Publications (1)

Publication Number Publication Date
US20170254041A1 true US20170254041A1 (en) 2017-09-07

Family

ID=53395033

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/506,748 Abandoned US20170254041A1 (en) 2014-09-02 2015-09-02 Triangle unit assembly block and method using same of building landslide preventing draining retaining wall

Country Status (3)

Country Link
US (1) US20170254041A1 (en)
KR (1) KR101521438B1 (en)
WO (1) WO2016036120A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101774A (en) * 2018-09-29 2018-12-28 西南石油大学 A kind of earthquake earth pressure calculation method of gravity type embankment retaining wall
US10316485B1 (en) * 2018-07-17 2019-06-11 Pacific Coast Building Products, Inc. Retaining wall block
US20210381185A1 (en) * 2020-06-09 2021-12-09 Mark Castellucci, SR. System for increasing the height of seawalls
CN114197501A (en) * 2021-12-29 2022-03-18 中国长江三峡集团有限公司 Reinforcement system for large-scale landslide control and construction method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106087858B (en) * 2016-06-28 2018-07-13 南京工业大学 A kind of retaining wall building system of tsunami preventing and flood damage
CN109295957B (en) * 2018-10-12 2020-09-08 安徽徽风新型合成材料有限公司 Geocell fixing frame and working method thereof
KR102049689B1 (en) 2019-03-27 2019-11-27 주식회사 제이디 엔지니어링 Retaining wall construct having excellent drainage, structure stability and constructability, and construction method thereof
KR102250974B1 (en) 2019-10-23 2021-05-12 김규진 Construction method for retaining wall construct
KR102145237B1 (en) 2020-04-14 2020-08-18 주식회사 정우 Multipurpose block

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3465134B2 (en) * 1997-09-18 2003-11-10 創建工業株式会社 Civil engineering structures using assembled concrete blocks
KR20010070795A (en) * 2001-06-08 2001-07-27 권창성 Inter Locking Multi-Function Block
KR200286249Y1 (en) * 2002-05-15 2002-08-21 이원영 Embankment block
KR100710493B1 (en) * 2006-06-19 2007-05-04 강용구 A block of plant
KR100957217B1 (en) * 2010-01-27 2010-05-11 (주)가람콘크리트 Assembly blockset

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hare US 2003/0138296 *
Jin KR 10-1227275 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316485B1 (en) * 2018-07-17 2019-06-11 Pacific Coast Building Products, Inc. Retaining wall block
CN109101774A (en) * 2018-09-29 2018-12-28 西南石油大学 A kind of earthquake earth pressure calculation method of gravity type embankment retaining wall
US20210381185A1 (en) * 2020-06-09 2021-12-09 Mark Castellucci, SR. System for increasing the height of seawalls
US11655604B2 (en) * 2020-06-09 2023-05-23 Mark Castellucci, SR. System for increasing the height of seawalls
CN114197501A (en) * 2021-12-29 2022-03-18 中国长江三峡集团有限公司 Reinforcement system for large-scale landslide control and construction method thereof

Also Published As

Publication number Publication date
WO2016036120A1 (en) 2016-03-10
KR101521438B1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
US20170254041A1 (en) Triangle unit assembly block and method using same of building landslide preventing draining retaining wall
US7997830B2 (en) Barrier wall made of sheet-pile components
US5020938A (en) Block-formed revetment system for controlling soil erosion
KR100998253B1 (en) Temporary Structure For Land-Side Protection Wall
KR102135594B1 (en) Retaining Wall Block System
CN110678609A (en) Assembled type earthquake-proof retaining wall building block system
KR101220537B1 (en) Combination method of breakwater caisson structures
US20200248442A1 (en) Rainwater storage and infiltration facility
EP2682534A1 (en) Irrigation box, drainage box, or an attenuation box and a set of two of these boxes
KR101183241B1 (en) Revetment block fixing device and construction mothed of revetment block using the same
KR101744083B1 (en) Interlocked cap concrete structure and method for interlocking cap concrete structure being already constructed
KR100957217B1 (en) Assembly blockset
KR102250974B1 (en) Construction method for retaining wall construct
KR101303944B1 (en) Planting revetment block and construction method thereof
KR100778372B1 (en) Shore protection block capable of adjusting location
KR101742565B1 (en) Precast rainwater storage tank having enhanced earthquake-proof performance
JP5938919B2 (en) Tide structure
KR101580747B1 (en) assembling block and method for constructing high durability and waterproof structure using the same
KR20010039040A (en) Retaining block
CN210597674U (en) Structure of building structure seam
KR200395309Y1 (en) Vegetation shore protection block
KR101261467B1 (en) Support structure for rain station
KR20070000295U (en) H-I type revetment block for vegetation
CN214169176U (en) Overlength basement wall body expansion joint waterproof construction
KR200379954Y1 (en) Standardization Caission Block

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION